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Abstract
With the arrival of the open-source RISC-V processor architecture, there is the chance to rethink Deep Neural Networks

(DNNs) and information representation and processing. In this work, we will exploit the following ideas: i) reduce the

number of bits needed to represent the weights of the DNNs using our recent findings and implementation of the posit

number system, ii) exploit RISC-V vectorization as much as possible to speed up the format encoding/decoding, the

evaluation of activations functions (using only arithmetic and logic operations, exploiting approximated formulas) and the

computation of core DNNs matrix-vector operations. The comparison with the well-established architecture ARM Scalable

Vector Extension is natural and challenging due to its closedness and mature nature. The results show how it is possible to

vectorize posit operations on RISC-V, gaining a substantial speed-up on all the operations involved. Furthermore, the

experimental outcomes highlight how the new architecture can catch up, in terms of performance, with the more mature

ARM architecture. Towards this end, the present study is important because it anticipates the results that we expect to

achieve when we will have an open RISC-V hardware co-processor capable to operate natively with posits.
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1 Introduction

In the latest years, RISC-V has started to emerge as an

open-source alternative CPU architecture [4, 7, 27]. Being

it also royalty-free, it is the rising star competitor of Intel,

AMD and ARM CPUs (both for 32 and 64-bit variants).

Important software and hardware industries have endorsed

and funded the project, including Intel, Microsoft and ST

Microelectronics [6].

The main feature of RISC-V is its open instruction set

architecture. This means that any user can extend it by adding

his own instructions and functionalities: this possibility is

strategic to design very low-latency co-processors and accel-

erators without having to treat them as external devices with

memory mapping and interrupts. Furthermore, with the latest

advancements of the vector extension development, RISC-V

processors are able to accelerate the processing of several

kernels for machine and deep learning (e.g., dot products,

vector-matrix multiplications and image filtering). Lately,

several real number representations have been proposed by

industry and research such as Intel with Flexpoint [23, 26],

Google with BFLOAT16 [8] and Facebook AI [22]. Another

very promising alternative to IEEE 32-bit Floating-point stan-

dard is thepositTM number system,proposedbyGustafson [19].

This format has been proven tomatch single precision accuracy

performance with only 16 bits used for the representation

[9, 12, 16, 17, 24]. Furthermore, the first hardware implemen-

tations of this novel type are very promising in terms of energy

consumption and area occupation [10, 20, 28].

In this work, we envision the adoption of these two

disruptive innovations (vector extension and posit
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arithmetic) within the same architecture. Our ultimate goal

is to extend RISC-V to be able to use a Posit Processing

Unit (PPU) as a co-processor, by extending the processor

instruction set architecture (ISA). While going towards this

end, we can anyway gain great benefits from the posit

format. It is of particular interest knowing the potential

benefits of posit-based co-processor in a killer application

such as Deep Neural Networks.

In this work, we assess the quality of the vectorization of

RISC-V operations when using posit numbers and we

compare it with ARM SVE. The paper is organized in the

following way. In Sect. 2, we briefly present an overview

of the posit format, along with recent improvements and

findings achieved at University of Pisa, in collaboration

with MMI spa, on information processing using posit

numbers. In Sect. 3, we summarise the core aspects of the

RISC-V architecture. In particular, we focus on the RISC-

V vector extension, showing the principal component used

in the rest of the work. In Sect. 4, we present the imple-

mentation of vectorized posit operations inside the

cppPosit library (a C?? Posit library developed and

maintained by the authors) for RISC-V, following the same

approach of our previous implementation of the ARM SVE

vectorized operations [14]. In particular, we focus on the

implementation of posit encoding and decoding from/to the

floating-point format. In Sect. 5, we illustrate the bench-

marks used to test our implementation. The tests represent

different core operations of DNNs, including convolutions,

dot-products and matrix-matrix multiplications as well as

activation functions. In particular, the proposed activation

functions are fast approximated versions of the real ones;

these functions can be computed just by an arithmetic-logic

unit, thus being highly vectorizable. In Sect. 6, we outline

our vision to enable hardware accelerators for posit oper-

ations for a RISC-V processor focusing on the latency and

implementation complexity of the different solutions.

Finally, we also present a comparison with ARM SVE and

future works. In Sect. 7, we draw some conclusions.

2 Posit arithmetic

The posit format [11, 12, 16, 19] is a configurable fixed

length format for real number representation; the format

configuration involves the number of overall bits (nbits)

and the maximum number of exponent bits (esbits).

2.1 Format overview

As shown in Fig. 1, a posit number is composed by a

maximum of 4 fields: i) sign (1-bit), ii) regime (variable

length), iii) exponent (maximum of esbits) and iv) fraction

(variable length). Note that posits are encoded using 2’s

complement. The regime field is a particular one; its length

is identified by a series of bit equal to 1 (or 0) terminated

by a stop-bit with the opposite value. The value of the

regime field is then the number of equal bits in the so

discovered bit-string.

Expression (1) shows themathematical relation between the

posit bit content (v) and the representedvalue (x). k is the regime

value computed as described before and useed ¼ 22
esbits

. e and f

are, respectively, the exponent and fraction values decoded

from the base-2 representation (Fig. 2).

x ¼
0, if v ¼ 0

NaN, if v ¼ �2ðnbits�1Þ

signðvÞ � useedk � 2e � ð1þ f Þ, otherwise

8
><

>:
ð1Þ

2.2 Advantages over IEEE 32-bit Floats

As widely described in [18, 19] several issues are afflicting

the IEEE Float32 format that are addressed by this novel

format:

• Waste of bit patterns: IEEE Float32 wastes millions of

patterns for NaN values;

• Mathematically incorrect: two representation of 0 (�0);

• Non-configurable accuracy: pre-determined number of

exponent and mantissa bits;

• Being a more nonlinear and compressed representation,

it allows more powerful bit manipulations (changing the

bit string of a posit in an appropriate way, using the

ALU alone, can lead to interesting nonlinear transfor-

mations of the posit number itself).

The application of posit numbers to Deep Neural Networks

(DNN) has been independently proven to this authors and

others, to perform as good as float numbers [15, 25] with

half the bits (or even less), as reported in Table 1. The

table reports the comparison between different configura-

tions of posit with a 32-bit float, on the German Traffic

Sign Recognition Benchmark (GTRSB) dataset. In the

Table 1, a 10-bit posit arithmetic allows for the same

detection and classification accuracy of 32-bit float, while

Fig. 1 Example of a Posit\32; 11[ configuration, where nbits ¼ 32 and esbits ¼ 11
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the accuracy reduction of a 8-bit posit is limited to 0.2%

(for a data size saving of a factor 4 vs 32-bit float).

2.3 No exponent bit case

As shown by the authors in [13], the posit format gains

interesting properties when configured with esbits ¼ 0.

This particular configuration allows the implementation of

fast versions of common operations (a little approximation

is introduced in some of them); the new versions can be

computed just by using the arithmetic-logic unit (ALU) of

the CPU since they only involve bit manipulation and

integer operations. Among the basic operations that can be

accelerated this way, there are the double and half opera-

tors (2x and x/2), the inverse operator (1/x) and the one’s

complement (1� x).

Furthermore, some common use activation functions for

Deep Neural Networks (DNNs) can be implemented this

way. The basic building block is represented by the fast

approximation of the Sigmoid function (from [19]). Start-

ing from this one, we developed the others as a simple

combination of the previous operators and the Sigmoid.

What we obtained is the fast approximation of the

hyperbolic tangent (FastTanh [11, 13]):

tanhðxÞ ¼ 2sigmoidð2xÞ � 1 ¼ � 1� 2sigmoidð2xÞð Þ

and the fast approximation of the extended linear unit

(FastELU [13]):

ex � 1 ¼ �2 � 1� 1

2sigmoidð�xÞ

� �

The possibility to implement several operations as simple

ALU instructions leads to some interesting aspects:

• It allows the ALU emulation of posit operations without

specific hardware support.

• It allows an operator to be implemented as a sequence

of ALU instructions; this means that every operation

implemented this way can be easily vectorizable.

2.4 Past achievements concerning posit-based
DNNs

In previous work, we have been able to:

• develop our posit software library (cppPosit, see Sect.

4);

• implement fast approximated activation functions, only

possible when using posits, which exploit the ALU (no

PPU necessary for it): [13, 15];

• fast matrix-vector multiplication, thanks to vectoriza-

tion (demonstrated on ARM CPUs, using SVE: [14]).

In this paper, we aim the present what we did to obtain the

same achievements, but this time on an open processor, the

RISC-V.

3 The RISC-V architecture

The RISC-V [4] architecture is a modular, open-source and

royalty-free instruction set architecture (ISA) and com-

prises both 32 and 64-bit flavours. The overall ISA is

composed of smaller sub-ISAs among which there are the

base subsets. These subsets are referred as base integer

instruction sets and identified by the letter I. Besides, a

RISC-V-based architecture can present some other exten-

sions; some of them are referred to as frozen. This means

that their encoding and behaviour has been ratified and will

not change during the current draft of the architecture.

These extensions include integer multiplication/division

operations (M), single (F), double (D) precision floating

point operations (following the IEEE 754 Float standard)

and atomic instructions (A).

3.1 The RISC-V vector extension

A very interesting and under development extension is the

vector one (V). This extension aims to provide single-in-

struction multiple-data (SIMD) capabilities to the RISC-V

architecture. By design, this extension can seamlessly

exploit either the CPU registers or a special vector co-

processor for hardware acceleration. Any RISC-V-based

Fig. 2 An example of posit instance with 16 bits and 3 exponent bits.

The associated real value to the shown posit is:

þ256�9 � 26 � ð1þ 2=4Þ ¼ 2:0329 � 10�20:

Table 1 Comparing the

classification accuracy of a

DNN on the GTRSB dataset,

when using different real

number representations and

different number of bits

Type Acc. (%)

Float32 94.01

posit\16; 0[ 94.02

posit\14; 0[ 94.01

posit\12; 0[ 94.01

posit\10; 0[ 94.01

posit\8; 0[ 93.81
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architecture implementing this extension will define some

parameters:

• Number of vector registers (standard is 32)

• vlen: size (in bits) of the vector registers (e.g., 256)

• elen: maximum supported size for a single element

(e.g., 64 for a 64-bit integer or double)

The idea behind the vector extension is the same of the

ARM scalable vector extension (SVE) architecture [1];

there is not a predetermined vector length (as happens in

the Intel SIMD extensions) but a special instruction

vsetvl. This instruction takes as input a requested vector

length vreql and returns the granted vector length vgrant as

in next expression:

vgrant ¼ min vlen; vreqlð Þ

This design allows porting an application between RISC-V

architectures, without re-writing a single line of code and,

in case of furtherly compatible architectures, without

recompilation. Moreover, this will help us later when

simulating the same program with different vector

configurations.

4 The cppPosit library

The support for posit arithmetic is offered by the cppPosit

library. This library has been developed in Pisa, and it is

maintained by the authors of this work. The library uses

advanced templatization techniques from C??14 to ease

the definition of posit configurations at compile time. Posit

operations are classified into four different levels (L1-L4)
with increasing computational complexity [13]. The sim-

plest and fastest level is called L1 and comprises all the

operators described in Sect. 2.3. The library also offers

three back-ends to rely on for posit operations that cannot

be emulated via ALU:

• Floating point back-end, using the standard FPU

support for operations;

• Fixed point back-end, exploiting big-integer support

(64 or 128 bits) for operations;

• Tabulated back-end, generating lookup tables for most

of the operations (suitable for Posit\½8; 12�; �[ due to

table sizes).

4.1 Posits and RISC-V vectorization

Vectorization of posit operations was already proved to be

interesting in the ARM SVE environment in [14]. As

shown in that work, each function aimed at vectorizing

posit operations has three main parts: i) prologue, ii) body,

iii) epilogue.

In the prologue, we need to prepare the vector containing

posit data referring to the underlying vector architecture. This

phase varies whether we are implementing L1 function or

not. In the former case, the prologue is just a reinter-

pret_cast from the posit type to the underlying integer

holder type. Instead, when dealing with non-L1 function, this

phase is also devoted to the conversion from posit type to a

suitable back-end type (e.g., for RISC-V we choose to convert

it to IEEE Float32). In the body, there is the actual imple-

mentation of the vectorized operation. Finally, in the epi-

logue, we need to build back the posit vector (the same

considerations of the prologue hold here).

An important focus must be put on the epilogue and

prologue phases: since these phases employ posits with an

overall size of 16 or 8, we are performing a data com-

pression by a factor 2 or 4. Moreover, even if we use 32-bit

floats to perform computations, the data expansion is per-

formed only inside the vector processing unit. Therefore,

we are transferring compressed data from the scalar CPU

registers to the vector ones. We can thus transfer from

twice to quadruple the data with a single vector load

instruction. This means that just by using posits as a

compressed information storage can lead to great opti-

mizations in data transfer. Figure 3 shows the overall idea

behind posit vectorization in cppPosit.

5 Experimental results

In this section, we will present the benchmarks for the

novel RISC-V-‘‘V’’ vectorized approach on several

benchmark kernels. Instead of relating our benchmarks to a

particular DNN library or implementation, we decided to

present the benchmarks on simple and core building blocks

for DNNs.

Firstly, we will present benchmarks of vectorized L1
activation functions such as sigmoid, hyperbolic tangent and

extended linear unit. Secondly, we will present benchmarks

on matrix and vector operations such as dot product, convo-

lution and general matrix-matrix multiplication.

The RISC-V benchmark binaries were generated using

the Barcellona Supercomputing Centre (BSC) LLVM cross

compiler (clang?? 11.0). As for now, this is the only

compiler providing high-level intrinsics for the RISC-V

vector extension [3]. The RISC-V binaries were then exe-

cuted on the RISC-V Spike simulator (riscv-isa-sim

RVV version 0.8) [5].

The ARM benchmarks binaries were generated using

the upstream branch of the GCC compiler (GCC 10.0)

with SVE intrinsic support. The examples were executed

on a static, user-space QEMU (QEMU 5.0) installation for

ARMv8.2 that supports SVE instructions.
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All the simulations were executed on a 8 core

Intel(R) Core(TM) i7-9700 CPU with 3.00GHz base

frequency.

For each benchmark result, we analyzed the timing

performance of prologue, body and epilogue to address the

overhead that is introduced by the first and the last part (as

already discussed in Sect. 4.1. Moreover, we compared the

vectorized performance varying the vector length against

the non-vectorized implementation (called naive from now

on).

5.1 Vectorization of posit encoding
and decoding

Since we could not rely on auto-vectorization due to

compiler limitations there was the need to provide a vec-

torized implementation of posit decoding and decoding

operations for prologue and epilogue blocks.

Completely decoding a posit means taking its repre-

senting integer and extract the four fields described in Sect.

2.1. This can be accomplished using just arithmetic and

logic integer operations. Algorithm 1 shows the steps we

used to unpack a posit into its (at most) four fields. Given

these fields, we can build a float number.

Let F be a IEEE754 FP32 number:

F ¼ \signðsF ; 1Þ; exponentðesF; 8Þ; fractionðmF; 23Þ[

The represented value (see (1)) is:

xF ¼ ð�1ÞsF � 2esF�127 � ð1þ fF=2
23Þ

Let P be a posit\nbits; esbits[ :

P ¼ \ðsP; 1Þ; ðkP; regbitsÞ; ðesP; esÞ; ðmP; fracbitsÞ[

where es� esbits.

The represented real value is:

xP ¼ ð�1ÞsP � 2ðkP�2esbitsÞ � 2esP � ð1þ fP=2
fracbitsÞ

where fracbits ¼ nbits� 1� regbits � es.
For the conversion, we want that xP ¼ xF : This implies

that:

sP ¼ sF

esF ¼ kP � 2esbits þ esP þ 127 ð2Þ

mF ¼ mP � 223�fracbits ð3Þ

Fig. 3 UML class diagram for

the overall implementation of

vectorized operations on posits.

Both ARM SVE (left) and

RISC-V (right) vectorized

operations are supported by our

cppPosit library
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Encoding a posit means taking any real number repre-

sentation (e.g., IEEE Float32) and computing the integer

that represents the posit as described in Sect. 2.1. This can

be accomplished using just arithmetic and logic integer

operations. Algorithm 2 shows the steps we used to unpack

a posit into its (at most) four fields. Once we decode the

floating point into its 3 fields we can reason on how to

retrieve posit fields. If we look at Eq. (2), we can see that

kP is the result of an integer division between esF and 2esbits

and esP þ 127 is the remainder of the integer division. This

means that we can retrieve the two fields as:

kP ¼ esF=2
esbits

esP ¼ esF � kP � 2esbits

Now, we consider the fraction part. As shown in Eq. (3),

retrieving mP is equivalent to a logical right shift of 23�
fracbits onmF , thus obtaining the fracbitsmost significant bits.

We implemented both algorithms using hand-vector-

ization for the RISC-V platform, using the ‘‘V’’ extension

intrinsics. The findLeftMostSet is particularly interesting,

since there was not a native vectorized implementation in

the RISC-V ‘‘V’’ extension at the moment of the devel-

opment. Algorithm 3 shows our choice for the implemen-

tation. We implemented also this algorithm using the

RISC-V vectorization intrinsics.

5.2 Vectorized activation function benchmarks

In this subsection, we report in Fig. 4 and 5 the results of the

benchmarks concerning the vectorization of the activation

functions (Sigmoid and ELU, respectively). These bench-

marks consisted in the execution of the vectorized activation

functions on random vectors of 8192 items varying the vector

length and using Posit\16; 0[ and Posit\8; 0[ .

These results are particularly groundbreaking; we are

indeed reducing the processing time of an activation function

by a factor 10 at least. This is easily obtained by just applying

posit properties. Moreover, there is nothing similar that can be

obtained with the floating point format to achieve similar

speedup while varying vector length and data size.

This is extremely important, since modern neural net-

work architectures can require the computation of nonlin-

ear activation functions like ELU on vectors with up to tens

of thousans of elements.

5.3 Vectorized matrix-vector operation
benchmarks

In this subsection, we show the results concerning vector-

ized matrix-vector operation benchmarks. The benchmark

parameters are the following:

• Dot product: timing performance on a dot product

between vectors of size 64.
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• Convolution: timing performance on a 3� 3 convolu-

tion over matrices of size 64� 64.

• Matrix-matrix multiplication (GEMM): timing perfor-

mance on a matrix multiplication between matrices of

size 32� 32.

For each benchmark, we report two different types of

result:

• Performance comparison (Figs. 6, 7, 8): timing perfor-

mance comparison varying the vector length and

disabling vectorization. We used a logarithmic scale

to represent these results in order to increase plot

readability.

• posit decoding/encoding overhead evaluation (Figs. 9,

10, 11): timing performances are decomposed to

evaluate the contribution of each part of the algorithm.

5.4 Analysis of results and discussions

In this section, we will analyse and discuss the results

shown before.

Firstly, as reported in Figs. 4 and 5, the speed-up gained

by the vectorization of activation functions is impressive in

both cases, with vectorized performance being one order of

magnitude smaller than the non-vectorized ones. More-

over, it is evident how much the algorithm benefits from

increasing the vector length and halving the data size. Note

that this speed-up could not be achieved using the IEEE

Float32 format; in fact we could apply the series of arith-

metic and logic operations thanks to the posit representa-

tion with zero exponent bits.

Secondly, speaking of matrix-vector operations, again

the speed-up when using vectorized algorithms is massive,

reducing processing time by more than 2 orders of mag-

nitude (note the logarithmic scale of the plots in Figs. 5, 6

and 7).

Thirdly, the same benchmarks were executed on the

ARM environment explained at the beginning of this sec-

tion. In particular, we considered the 512-bit vector length

for the comparison to match the first hardware ARM SVE

platform on the market (the Fujitsu A64FX processor [2]).

As shown in Fig. 12, if we compare the vectorization on the

Fig. 4 Comparing the elapsed time when computing the approxi-

mated Sigmoid activation function for different vector register

lengths. The comparison is provided both for posit\8; 0[ and

posit\16; 0[ . Naive stands for ‘‘unvectorized’’

Fig. 5 Comparing the elapsed time when computing the approxi-

mated ELU activation function for different vector register lengths.

The comparison is provided both for posit\8; 0[ and

posit\16; 0[

Fig. 6 Dot product time comparison for different vector register

lengths (posit\16; 0[ has been used here). Y axis is reported in

logarithmic scale for readability
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RISC-V platform to the ARM SVE platform, the results are

comparable, basically resulting in a draw.

Finally, the newly proposed approach for decoding and

encoding vectorization of posits brought a substantial

speed-up in the prologue and epilogue phases. As we can

see from Figs. 9, 10 and 11 the vectorized phases benefit

from increasing the vector register lengths. However, there

is still some overhead that afflicts the epilogue part due to

costly conversions between 32-bit integers (for Float rep-

resentation) and posits holder integers (16-bit integers in

this case).

6 Future work

Having a dedicated posit processing unit is critical to

increase the architecture performance removing the soft-

ware emulation bottleneck. There are three main ways to

equip a RISC-V CPU with a hardware PPU:

1. include the PPU within the processor [21]. This

requires the introduction of an additional instruction

set and the instrumentation of the compiler.

2. use the PPU as a slave peripheral. The peripheral can

be an external FPGA board connected via PCI Express

Fig. 7 Convolution performance comparison on posit\16; 0[ . Y

axis is reported in logarithmic scale for readability

Fig. 8 GEMM performance comparison on posit\16; 0[ . Y axis is

reported in logarithmic scale for readability

Fig. 9 Dot product performance comparison on posit\16; 0[ with

separation of the operation blocks. This picture provides additional

details to Fig. 6. Here, the epilogue time is not reported, since the time

taken to transform a single float into a posit is negligible

Fig. 10 Convolution product performance comparison on

posit\16; 0[ with separation of the operation blocks. This picture

provides additional details to Fig. 7
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bus. This is similar to how GPUs are connected to

CPUs nowadays. This solution has the highest latency,

since we need to communicate with an external

peripheral via bus communication.

3. design the PPU as an IP-core to be included within the

processor chip. This can be viewed as a co-processor

approach, thus having PPU and CPU on the same SoC

(system-on-chip). In terms of latency, this solution is

an intermediate one.

We are currently working to implement a PPU for RISC-V

following option 1. However, even without a hardware

PPU, the solution proposed in this paper (vectorized posit

operations, emulated on ALU of FPU) is still of interest in

particular situations, as discussed below.

Figure 13 shows some computing environments, with

increasing computing power, cost and energy consumption:

i) micro-controllers, ii) CPUs without the FPU, iii) CPUs

with the FPU, iv) Many Core CPUs without GPUs, and v)

Multi (or Many) Core CPUs with GPUs. With ‘‘Many

Core’’ CPU (MaCPU), we designate a CPU having more

than 100 cores, while with ‘‘Multi Core’’ CPUs we indicate

those having up to 100 cores.

The solution proposed in this work is of interests for

cases ii), iii) and iv). Indeed, In case ii) the use of ALU-

emulated Posit-DNNs is particularly interesting and justi-

fied (see [13, 15]). Also in case iii), the approach proposed

here is a viable and appealing solution, provided that the

CPU supports vectorization. Case iv) is the situation where

the solution proposed here is expected to obtain the best

speedup, since we can exploit the massive data and

instruction parallelism introduced by many core architec-

tures to increase the DNN processing capabilities.

In all the cases, the use of posit numbers can at least

halve (when using posit\16; x[ ) the representation size,

thus doubling the bandwidth of the information and

improving the usage of the cache. Moreover, reducing the

information size is extremely useful when combined with

the vector engines. With a half of the element size, we can

fit double the elements inside a vector register, as

demonstrated in [14] for ARM CPUs and here for RISC-V

CPUs. Finally, when posit\8; x[-based DNN reaches a

satisfying accuracy, the benefit with respect to 32-bit floats

is much more impactful.

7 Conclusions

In this paper, we presented the implementation of posit

vector operations for DNNs using the RISC-V open-source

hardware platform. We proposed an extension of our

cppPosit library enabling dot-product, matrix-matrix and

convolution operations in the RISC-V Vector extension

environment. Moreover, we provided the implementation

of fast approximated activation functions only using vec-

torized integer arithmetic and logic. As reported in the

experimental results, we gained a significant speed-up from

the hand-vectorization of posit operations, including the

encoding and decoding of the novel format to the standard

IEEE 32-bit floating-point format. Furthermore, we man-

aged to catch up the ARM SVE results when vectorizing

the same operations. The promising results may indicate

that open-source hardware platform like RISC-V, along

with open-source DNN software implementations, may

Fig. 11 GEMM product performance comparison on posit\16; 0[
with separation of the operation blocks. Therefore this picture is

related to Fig. 8, but without reporting the time for the naive

approach, of course

Fig. 12 Comparison between SVE and RISC-V using Posit\16; 0[
with 512-bit vector registers
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enable a brand new class of completely open DNN com-

puting environments.
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7. Asanović K, Patterson DA.:(2014) Instruction sets should be free:

The case for RISC-V. EECS Department, University of Califor-

nia, Berkeley, Tech. Rep. UCB/EECS-2014-146

8. Burgess N, Milanovic J, Stephens N, Monachopoulos K, Mansell

D. (2019): Bfloat16 processing for neural networks. In: 2019

IEEE 26th Symposium on Computer Arithmetic (ARITH),

pp. 88–91. https://doi.org/10.1109/ARITH.2019.00022

9. Carmichael Z, Langroudi HF, Khazanov C, Lillie J, Gustafson

JL, Kudithipudi D (2019) Deep positron: A deep neural network

using the posit number system. In: 2019 Design, Automation Test

in Europe Conference Exhibition (DATE), pp 1421–1426

10. Chaurasiya R, Gustafson J, Shrestha R, Neudorfer J, Nambiar S,

Niyogi K, Merchant F, Leupers R (2018) Parameterized posit

arithmetic hardware generator. In: 2018 IEEE 36th International

Conference on Computer Design (ICCD), pp. 334–341. https://

doi.org/10.1109/ICCD.2018.00057

11. Cococcioni M, Rossi F, Ruffaldi E, Saponara S (2019) A fast

approximation of the hyperbolic tangent when using posit num-

bers and its application to deep neural networks. In: Int. Work-

shop on Applic. in Electronics Pervading Ind., Envir. and Society

(ApplePies’19) https://doi.org/10.1007/978-3-030-37277-4_25

12. Cococcioni M, Rossi F, Ruffaldi E, Saponara S (2019) Novel

arithmetics to accelerate machine learning classifiers in autono-

mous driving applications. In: In Proc. of the 26th IEEE Inter-

national Conference on Electronics, Circuits and Systems

(ICECS’19), pp. 779–782. https://doi.org/10.1109/ICECS46596.

2019.8965031

13. Cococcioni M, Rossi F, Ruffaldi E, Saponara S (2020) Fast

approximations of activation functions in deep neural networks

when using posit arithmetic. Sensors 20(5) https://www.mdpi.

com/1424-8220/20/5/1515

14. Cococcioni M, Rossi F, Ruffaldi E, Saponara S (2020) Fast deep

neural networks for image processing using posits and ARM

Scalable Vector Extension. Journal of Real-Time Image Pro-

cessing pp. 1–13. https://doi.org/10.1007/s11554-020-00984-x

15. Cococcioni M, Rossi F, Ruffaldi E, Saponara S (2021) Novel

arithmetics in deep neural networks signal processing for

autonomous driving: Challenges and opportunities. IEEE Signal

Processing Magazine, Special Issue on Autonomous Driving, vol.

38, no. 1, pp. 97–110. https://doi.org/10.1109/MSP.2020.2988436

16. Cococcioni M, Ruffaldi E, Saponara S (2018) Exploiting posit

arithmetic for deep neural networks in autonomous driving

applications. In: In Proc. of the 2018 IEEE International Con-

ference of Electrical and Electronic Technologies for Automotive

(Automotive’18), pp. 1–6. https://doi.org/10.23919/EETA.2018.

8493233

17. Fatemi Langroudi SH, Carmichael Z, Gustafson J, Kudithipudi D

(2019) Positnn framework: Tapered precision deep learning

inference for the edge. pp. 53–59. https://doi.org/10.1109/Space

Comp.2019.00011

18. Gustafson JL (2015) The end of error: unum computing. Chap-

man and Hall/CRC, Cambridge

19. Gustafson JL, Yonemoto IT (2017) Beating floating point at its

own game: posit arithmetic. Supercomput Front Innov 4(2):71–86

20. Jaiswal MK, So HKH. (2018): Universal number posit arithmetic

generator on FPGA. In: 2018 Design, Automation Test in Europe

Conference Exhibition (DATE), pp 1159–1162. https://doi.org/

10.23919/DATE.2018.8342187

21. Jaiswal MK, So HKH (2019) PACoGen: A hardware posit

arithmetic core generator. IEEE Access 7:74586–74601

22. Johnson J (2018) Rethinking floating point for deep learning.

CoRR. http://arxiv.org/abs/1811.01721. Accessed 7 July 2020
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