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Abstract
This paper is concerned with modelling cyclist road safety by considering various factors including infrastructure, spatial,

personal and environmental variables affecting cycling safety. Age is one of the personal attributes, reported to be a

significant critical variable affecting safety. However, very few works in the literature deal with such a problem or

undertaking modelling of this variable. In this work, we propose a hybrid approach by combining statistical and supervised

deep learning with neural network classifier, and gradient descent backpropagation error function for road safety inves-

tigation. The study area of Tyne and Wear County in the north-east of England is used as a case study. An accurate

dynamic road safety model is constructed, and an understanding of the key parameters affecting the cyclist safety is

developed. It is hoped that this research will help in reducing the cyclist crash and contribute towards sustainable integrated

cycling transportation system, by making use of cut above methodologies such as deep learning neural network.

Keywords Cyclist safety � Deep learning neural network � Safety modelling � Age � Infrastructure

1 Introduction

Cycling as a mode of travel has social, economic and

environmental benefits. However, it is perceived as a

‘‘Risky Activity’’ [1]. For a cyclist, the interaction between

the cyclist and road environment is the essential factor that

affects its safety. They face a disproportionate share of risk

on roads, e.g. in the UK risk faced by the cyclists in terms

of slight crashes per billion vehicle miles is 4,450; highest

amongst any road user, and 12.5 times higher than car user

for the same traversed distance. Transportation contributes

to 25% of greenhouse gas emissions. It is essential to

decrease the emissions, which can be achieved through a

modal shift towards greener mode of travel, such as

cycling. For this, it is paramount to increase the safety of

cycling as a mode of travel, as its safety and mode share are

correlated (see [1, 2]).

Identifying the physical and environmental threats to

cyclist safety within the network allows a critical insight

into the cyclists’ preference and choice [3]. The built

environment, weather, work-related factors and attitudes

affect the everyday commute by bicycle [4]. Cycling haz-

ards are also dependent upon cyclist-specific variables of

age, experience and gender [1]. A route choice study car-

ried out in Texas [5] concluded that the cyclist route choice

depends on the attributes of the route and cyclist’s demo-

graphics [5]. The cyclist’s route network preference varies

with its personal attributes and behaviour of other road

users [6]. The work on cyclist near misses in London [7]

led them to conclude that the rider’s age group directly

affects their daily near misses. The number of incidents per

day decreases with age, from 2.47 (20–29) to 1.85 ([ 60

groups). These near misses are found to be correlated with

the crashes (see [8, 9]). The similar results were obtained in

Germany, wherein it was concluded that the cyclists of

different age group use the infrastructure differently and

exhibit different microscopic road traffic behaviour [10].

The study in Palermo city (Italy) to investigate associations

between severity of non-fatal crashes and driver charac-

teristic reported that riders below 25 years are more likely

to be involved in a slight or serious crash than riders from
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any other age group, followed by elderly population

(greater than 64) [11]. The similar study in Sweden to

investigate the cyclists’ injury by age and gender found that

the elderly population is at a relatively higher risk than the

middle-age population, with a much more significant fatal

risk for elderly women [12]. An analysis of modal shift

scenarios of short tips to cycling and effect on overall road

safety in Netherland led them to conclude that mode shift

can substantially affect road safety for different age groups.

The most notable impact was modelled on the elderly

population, for which the risk is expected to increase sig-

nificantly [13]. However, presently, there is insufficient

evidence to understand the relationship between cyclist

safety and these identified variables [14], due to the mod-

elling inability. Cycling safety is an important topic, but

there are limited studies which explore the cycling risk to

their exposure [15]. Additionally, there is a need for the

capabilities to assess the safety of the experimental road-

way designs and/or operational strategies before they are

built or employed in the field [16]. Therefore, the present

research needs to develop a road safety model that con-

siders this dynamic variation of safety. Such a model

should model the safety based upon the rider’s attribute and

should be operable even in the initial planning and design

of the cycling network.

To model safety, the first mathematical theory to be used

is generalized linear modelling. Over time, various studies

proposed a generalized linear model with the assumption of

a non-normal error structure [17]. This overcame the lim-

itations associated with the linear regression models and

produced a better fit to the observed collision data [18]. As

the crashes are discrete positive integral variables, there-

fore this prompted the use of Poisson regression. However,

it is unable to handle overdispersion (i.e. the variance

exceeding the mean). This then motivated using negative

binomial or Poisson gamma models, assuming that the

Poisson parameters follow a gamma distribution [19].

However, there are locations with zero reported crashes,

this motivated the use of zero-inflated Poisson method,

having two different states; zero state and normal count

state. For improving the modelling capabilities, various

techniques, such as hierarchical, random effect, cart, finite-

mixture/latent-class, log-linear, probit/logit, Markov

switching, Poisson–Log normal Regression, Empirical

Bayes Method, Conway-Maxwell-Poisson, negative bino-

mial-Lindley method and others [20, 21], have been

explored in the literature. However, all the present avail-

able crash models are reactive and cannot consider the

dynamic nature of the cyclist’s interaction with variable

infrastructure and quantify its safety implications. These all

are based upon modelling the human error, without con-

sidering the cyclist’s vulnerability, and its susceptibility to

various externalities.

This paper aims to develop a fundamental understanding

of one of the reported dynamic variables: the trip maker’s

personal attribute, i.e. the rider’s age. This is motivated by

the fact that this variable has been reported as a significant

variable in the literature. Still, there are very few works

which deal with modelling this variable. Besides, it is

shown that motorists exhibit behavioural sensitivity to the

bicyclist appearance [22]. Consequently, we seek to

understand how the rider’s age affects their safety in the

natural road environment. By modelling this variable, it is

expected that the knowledge obtained can be utilized for

better design and planning of cycling infrastructure based

upon its intended users. We propose a knowledge-driven

approach for infrastructure planning based upon the

specific users rather than the infrastructure’s generalized

usage. More precisely, our objectives are:

• To develop an understanding of how safety is affected

by the age group of the rider.

• Test the hypothesis that unsafeness of the interaction

between user and the infrastructure depends on the

user’s age.

• To develop a dynamic safety model with age as an

output variable.

• Identify the most important variables affecting the

unsafeness of an age group.

• Validate the importance of the identified variables

statistically.

In the next section, we describe the considered study

area for the proposed research. In Sect. 3, the proposed

methodology is described. In Sect. 4, the results of the

research are presented, followed by discussion. Finally,

some conclusions are drawn in Sect. 5.

2 The considered area of study

To achieve the aim and objectives, north-east of England

(Tyne and Wear County) is selected as the considered area

of study. It is one of the nine official regions of England,

encompassing an area of 3317 sq. miles, population of 1.13

million, housing five boroughs Gateshead, Newcastle–

upon-Tyne, North Tyneside, South Tyneside and Sunder-

land, thirteen urban and three rural districts (Fig. 1).

The Department for Transport (DfT) houses the data-

base for road crashes in the United Kingdom. For each road

traffic collision, a trained road crash investigator visits the

crash site and records the crash in a document known as

STATS 19, consisting of four sections: (i) Accident

Statistics, (ii) Vehicle Record, (iii) Casualty Record and

(iv) Contributory Factors. The Gateshead city council

provided access to the crash database. The accessed data

set houses: (i) Type of severity, (ii) Time, date and location
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of the crash, (iii) Environment conditions such as lighting

conditions, weather, road surface condition, type of

infrastructure and number of vehicles involved, (iv)

Sociodemographic information such as age and gender of

the cyclist. The classification of the severity is performed

through the Department for Transport (DfT) criterion. A

crash is classified fatal; if the crash results in the death

within 28 days from the crash, serious; if it results in either

a death after 28 days or at least an overnight admission in

the hospital and slight; if crash results in overnight dis-

charge from the hospital or property damage only [23]. The

crash investigation by DfT aims to record the information

as accurately as possible, as it serves the basis for further

legal and other courses of actions.

There are 3,325 bicyclist crashes recorded in the study

area between 2005 and 2018. Out of these, 79.3% are

slight, 19.9% serious and 0.8% are fatal crashes. The

subsequent crash distribution is obtained for the respective

age groups (Table 1).

3 Hybrid modelling for cycling safety

Besides developing a predictive safety model, the investi-

gation will uncover the causality, have a high predictive

capability and be scalable to a large data set. Therefore, a

combination of the data-driven and statistical methods

seems to be the most appropriate for such an investigation.

This work proposes a hybrid model combining: (a) Tradi-

tional Safety, (b) Causal Inference and (c) Data-driven

methods. Firstly, the traditional statistical models are

constructed, using crash and mode share risk rate. Then, for

causal inference, heat maps are developed to understand

the inference between infrastructure and the age groups.

Deep learning is used to construct the riskiest age predic-

tion model and identify the variable importance of the

different input variables. To validate the inference

obtained, results are validated using the chi-square test for

testing the association between age and identified variables.

The strength of the inference is tested using Cramer’s V

value. This framework consists of the following

methodologies:

3.1 Statistical risk rate and heat maps

The mode share (miles share rate) of each age group is

calculated by scrutinizing and evaluating Department for

Transport’s National Travel Survey (NTS) database. This

is a household survey collected through household inter-

views and trip diaries, the primary source of data on

England’s personal travel pattern. A base input file for

crashes is constructed, having detailed information

regarding each crash. In the next step, crashes are grouped

based upon the age of the rider involved and evaluated.

Then, both crash and mile rates are compared and gauged,

to calculate the risk faced by each group (for the same

distance traversed). To compare the age groups within

themselves, the normalized risk is determined for each age

group, concerning the safest age group. The analysis is

performed accurately up to one decimal place. For inves-

tigating the spatial variation of risk with different

Fig. 1 Location and boundaries of the study area

Table 1 Age distribution of the crashes

Age Frequency Per cent Age Frequency Per cent

Under 17 1420 42.7 45–54 251 7.5

17–24 537 16.2 55–64 115 3.5

25–34 494 14.9 Over 64 65 2.0

35–44 347 10.4 Unknown 96 2.8
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infrastructure, heat maps are generated for the identified

age groups.

3.2 Deep learning neural network

A predictive model is developed by using deep learning

with neural network classifier, and gradient descent back-

propagation error function. It is the subgroup of a machine

learning techniques based upon computational method-

ologies which imitate the working of the human brain. The

neural networks were introduced firstly in transportation

research in the 1990s [24]. The road safety problem is

highly nonlinear and characterized by the underlying cor-

relation between various infrastructural, environmental and

personal attributes of the rider. The neural network has

been widely applied as an analytical data method in this

field [25], as these result in generic, accurate and conve-

nient mathematical models, which can simulate the

numerical model components [26]. This is due to their

ability to work with a large amount of multi-dimensional

data, modelling flexibility, learning, generalization ability,

adaptability and good predictive capacity [26]. The pri-

mary motivation for employing deep learning for safety

modelling is that crashes are highly nonlinear. The mod-

eller has no guidance from either theory or even dimen-

sional analysis for modelling. Although other algorithms

exist and deep learning neural networks are not a new

concept, its ability to solve the complex and the inter-

changeable system problems, which the transportation

system is characterized by, is the rationale for its use.

In the first step of building neural model, a learning

algorithm is developed to divide the data set randomly into

training (65%), validation (30%) and testing (5%). This

division ensures proper learning of the constructed model,

assesses the trained model and ensures that the constructed

model is relevant to untrained scenarios [25, 27]. The

predictive safety model is developed using four input

variable types: (a) Infrastructure, (b) Spatial, (c) Personal

and (d) Environmental input variables (Table 2).

Considering that relationship between input variables

and output is highly nonlinear and complex [28]; therefore,

two hidden layers are used in the network. The batch

training, cross-entropy error function and scaled conjugate

gradient optimisation are used. The network structure is

explicitly defined in Table 3.

The following four-step iterative approach is used for

modelling each of the input variables with the output.

Step 1 The random weights are assigned to each of the

input variable connection (between the input and hidden,

first and second hidden, and between the hidden and

output layer).

The activation function ‘Hyperbolic tangent’ is used for

developing the weights in hidden layers, given by:

Oj ¼ tanh Sj

� �
¼ eSj � e�Sj

eSj þ e�Sj
ð1Þ

In the output layer, activation function ‘SoftMax’ is

used, given by:

Oj ¼ r Sj

� �
¼ eSj

Pm
k¼1 eSk

ð2Þ

m is the number of output neurons, and Oj is the

activation of the jth neuron.

These functions take real numbers as arguments and

return real values [ - 1, ? 1].

Step 2 The error between the desired output (target) and

output obtained is calculated using cross-entropy error

function, given by:

E ¼ �
Xm

j¼1

tj lnOa ð3Þ

Oa is the actual output value of the output node j, tj is the

largest value j and m is the number of output nodes.

Step 3 Based on the error (step 2), the initial synaptic

weights are updated. In each epoch, the backpropagation

algorithm calculates the gradient of the training error as:

(i) nodes between input and hidden layer:

oE

owhj

¼
Xm

j¼1

Oa � tj
� �

xhwhj 1� xhð Þxi ð4Þ

(ii) nodes between output and hidden layer:

oE

owhj
¼ Oa � tj

� �
xh ð5Þ

In each of the training case (epoch), the weight wih is

updated by adding it:

Dwih ¼ �c
oE

owhj

ð6Þ

Dwihþ1 ¼ wih þ Dwih ð7Þ

x is the input variable, c is the learning rate and whj is the

synaptic weight for the jth neuron.

Step 4 Iteration (scaled conjugate gradient): The updat-

ing of weights is iterated until either the minimum

change in the training error or the maximum number of

these iterations (epochs) is achieved.

The recommended methodology to measure the neural

models’ performance is through receiver operating

characteristics (ROC) curve [25], which gives the visual

display of sensitivity and specificity for all the possible
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Table 2 Input variable for the proposed model

No Input variable Values

1 Infrastructure

(a) Speed limit (Maximum permissible speed limit on the road) 20–70

(b) First road class (For intersections, the rider may be required to move

from one hierarchy level of road classification to another. This is

the first hierarchy classification of the road from which the rider is

moving towards the next one)

A, B, C, E, U

(c) Second road class (Hierarchy classification of the road that the rider

to intending to move to /already moved to)

A, B, C, E, U

(d) Junction detail (Type of intersection) Crossroad, mini roundabout, multiple junction, straight road,

roundabout, slip road, T or staggered, private drive

(e) Junction control (Type of control employed at the intersection) No control, traffic signal, give way or uncontrolled, Stop sign

(f) Vehicle manoeuvre (Manoeuvre that rider was performing/intending

to perform when the crash occurred)

Changing lanes, Going ahead, Moving off, Overtaking, Parked,

Reversing, Slowing/stopping, Turning, U-turn, Waiting to go

ahead, waiting to turn

(g) Carriageway hazard (Additional unexpected hazards on the

carriageway)

Animal in the carriageway, Dislodged vehicle load on the

carriageway, None, Object in the carriageway, Pedestrian on the

carriageway

(h) Road type (type of road infrastructure present at crash spot) Dual carriageway, one-way street, roundabout, single carriageway,

slip road,

(i) Vehicle junction location (location of cyclist at the junction, when

crash occurred)

Approaching junction or waiting/parked at junction exit, cleared

junction or waiting/parked at junction exit, Entering, Leaving,

Mid-Junction, Straight Road (Not at or within 20 m of the

junction)

(j) Road location of vehicle (location of cyclist to the road

infrastructure, when crash has occurred)

Bus lane, busway, cycle lane, cycleway, footpath, on layby or hard

shoulder, main carriageway, tram/light rail track

(k) Skidding and overturning (after crash whether there was any

skidding or overturning)

No skidding or overturning or jack-knifing, overturned, skidded,

overturned, and skidded

(l) Special conditions at site (any infrastructure defects at crash

location)

Defective traffic signal, none, oil, mud, defective road signs or

marking, defective road surface, roadworks,

2 Spatial

(a) Journey hour (The hour in which crash occurred) 0–23

(b) Number of vehicles (Number of vehicles involved in the crash) 1–5

(c) Month of journey (Month in which crash occurred) Jan–Dec

(d) Journey day (day of week on which crash occurred. The day, month

and hour of journey are a representation of the traffic flow regime

plying at the time of the crash)

Monday, tuesday, wednesday, thursday, friday, saturday, sunday

3 Personal attributes

(a) Gender (Gender of the rider) Male, female and unknown

(b) Breath test (To check whether rider was intoxicated or not) Negative, positive and not required

(c) Journey purpose (The purpose of journey being undertaken) Commuting, work trip, school journey by pupil, taking pupil to

school, other, unknown

4 Environmental

(a) Lighting conditions (The lighting conditions, and presence and

working of streetlights)

Daylight/darkness-no street lighting, street lighting unknown, street

lights present and lit, street lights present but unlit,

(b) Meteorological conditions (The meteorological conditions when the

crash occurred)

Fine/rain/snow-with high winds, without high winds, fog or mist

hazard, other

(c) Road surface condition (The road surface condition at the time of

the crash. The road surface and meteorological conditions may not

necessarily be the same)

Dry, frost/ice, wet/damp, snow

Output variable Riskiest age group (0–17, 14–24,25–34, 35–44, 45–54,55–64, and

over 65)

Neural Computing and Applications

123



cut-offs. The area under the curve of the receiver

operating characteristics (AUROC) quantifies the mod-

el’s performance, resulting in an evaluation matrix used

to evaluate networks’ classification performance. ROC is

a probability curve, and AUROCC represents the

measure of the separability power of the network.

Higher the AUROC value, the network’s distinguishable

power between the risky and non-risky age groups is

better. Besides, gain and lift charts are used for

qualitative evaluation, the visual aids for evaluating the

performance. The model is then validated through

validation data sets, ensuring an unbiased review of the

model fit on the validation data set while tuning model

hyperparameters. Thereupon model’s performance is

checked on unseen data, providing an impartial evalu-

ation of the final model constructed based upon the

testing data set. Through this three-step process of

training, validation and testing, the constructed model’s

performance is estimated to establish the credibility and

confidence for further evaluation, planning, design and

policy implications.

The critical variables in the data learning model are

identified through variable importance. Each variable’s

normalized importance concerning the most critical

variable is also evaluated to compare variables relative

to each other. This is based upon both testing and

validation data sets. The independent variable impor-

tance is a measure of how much the predicted output

value changes, viz. a change in the input variable. Each

input variable’s normalised importance is their

respective importance value divided by the largest

importance value and expressed as percentages.

3.3 Chi-square test

After developing the predictive model, the statistical vali-

dation of the identified critical variables is undertaken. The

input variables affecting the crashes are measured either on

a nominal or ordinal scale. Therefore, the nonparametric

technique is the ideal statistical method in such scenarios,

especially when the sample size is small. The two

assumptions of: i) Samples being random, and ii) Obser-

vations being independent of each other [29] need to be

met. The crashes are a random phenomenon [30] and are

independent of other crashes occurring at different loca-

tions, thereby satisfying the two pre-requisites. Chi-square

test for goodness of fit, a nonparametric technique,

specifically designed to solve such complex nonlinear

problems, tests whether there exists a relationship between

two variables and uses the sample data to test the

hypothesis regarding the shape of the proportion of popu-

lation distribution. It determines how well obtained sample

proportions fit the population proportion specified by the

null hypothesis. Each variable in the sample is classified on

n variables, creating an n-dimensional frequency distribu-

tion matrix. As the matrix is greater than two by two order,

a modification of the Phi-Coefficient, known as Cramer’s

V, is used to measure the strength of association [31]. The

following four-step procedure is used.

Step 1 Chi-square statistic is calculated as:

Table 3 The network structure

of the deep learning model
Network topology

Number of hidden layers 2

Elements in each layer 350

Activation function between the hidden layers Hyperbolic tangent

Activation function between hidden and output layer SoftMax

Training

Type of learning Supervised

Optimization Gradient Descent (Batch)

Iterative method Scaled conjugate gradient

Initial lambda 0.000000001

Initial sigma 0.000000001

Initial centre 0

Initial offset ± 0.000000001

Stop and memory criterion

Steps (maximum) without a change in the error 999,999

Training (maximum) time 999,999

Training (maximum) epochs 999,999

Relative change in the training error (minimum) 0.000001

Relative change in the training error ratio (minimum) 0.000001

Cases to store in the memory (maximum) 999,999
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v2 ¼
X nij � ninj

n

� �2

ninj

n

¼
X Observed� Expectedð Þ2

Expected

ð8Þ

Step 2 Degree of freedom of the two variables, whose

association being evaluated is calculated, as:

df ¼ smaller of either R � 1ð Þor C � 1ð Þ ð9Þ

where R is number of rows; and C is the number of

columns:

Step 3 For determining the strength of the correlation,

Cramer’s V statistic is used, a post-test (after Chi-square

correlation test):

V ¼

ffiffiffiffiffiffiffiffiffiffiffi
v2

n dfð Þ

s

ð10Þ

Step 4 Cramer’s V is a single-valued numeric output,

which needs to be converted into qualitative knowledge,

performed using Cohen’s Table. This determines the

strength of correlation using the degree of freedom and

the numerical V value, in terms of no correlation, small,

medium and large correlation.

4 Result and discussion

4.1 Risk rate and heat maps

The rider’s age group is divided into eight groups (0–16

to[ 70), the relative risk is calculated for each group

based upon the crash rate, and their relative distance

travelled. The corresponding normalized risk is calculated,

with respect to the safest age group age (60–69) in Table 4.

The risk rates and normalized risk lead to infer that the

cyclist’s risk decreases with age. The risk faced by the age

group under 17 is 27 times higher than the age group of

60–69 for the same distance traversed. The risk for the

cyclist continues to decrease with age, from 17 to 69.

However, the elderly population (age[ 70) face a pro-

portionally higher risk than the two preceding age groups.

This can be attributed to physical and cognition limitation

with advanced age. These results agree with the results

obtained in other European countries. Similar results for

the young and elderly population were obtained in Italy

[11] and Netherlands [32]. In the UK, London’s naturalistic

study found everyday near-miss incidence rate for cyclist’s

decreases with the rider’s age [7]. We can thus conclude

that the risk for the cyclists decreases with the age of the

rider. There are underlying factors which contribute to a

decrease in normalized risk with age. These include a

reduction in risk-taking behaviour with age, better control,

experience and behavioural sensitivities of other road users

with the rider’s appearance. The motorists have been found

to exhibit behavioural sensitivity to the bicyclist appear-

ance [22] and change their behaviour of interaction with

the cyclist based upon the riders’ own attributes. Therefore,

age is a multilayer variable affecting the safety of cyclist in

multiple ways. To test the hypothesis, that unsafeness of

the interaction between the rider and infrastructure depends

on the age of the user, following risk heat maps are gen-

erated for each age group in the investigation area (Fig. 2).

The heat maps demonstrate that the risk that infras-

tructure present to riders is dependent upon their age. There

is an expected centralization in Newcastle city centre, as it

has a higher cyclist flow than other parts of the study area.

The similar results for the city centre have been reported in

the literature for university towns (see [33]). For the rest of

the study area, the pattern and the spread of the crashes are

different for different age groups. The naturalistic study on

cyclists in Germany found that microscopic traffic param-

eters are significantly different for riders belonging to

different age groups [10]. There are location-specific

infrastructure parameters which determine the risk,

affecting cyclists differently. The cyclist’s attributes also

influence their interaction with the infrastructure, i.e. the

same infrastructure can pose a different risk to different

riders. Therefore, we can conclude that not only

Table 4 Age distribution of the

crashes
Age Miles share rate Crash rate Relative risk Normalized risk

0–16 5.9 43.0 7.3 26.9

17–20 9.2 9.8 1.1 3.9

21–29 13.1 14.5 1.1 4.1

30–39 15.1 13.1 0.9 3.2

40–49 23.0 9.8 0.4 1.6

50–59 19.0 5.4 0.3 1.1

60–69 9.7 2.6 0.3 1.0

70 ? 5.0 1.8 0.4 1.3

Total 100 100
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infrastructure is a dynamic variable, but also the age of the

rider is also a dynamic variable affecting its safety.

The findings are contrary to the variables modelled in

the present road safety models. The critical variables

modelled in American/Canadian crash prediction model is

the annual average daily traffic (AADT) on minor and

major road [34]. British crash prediction model takes

AADT and the length of the investigated infrastructure, as

input variables [35]. Similarly, Danish model takes AADT

and road geometry [36]. Land use pattern and hierarchy of

road are the variables considered by the Swedish crash

prediction model [37]. TRAVA, i.e. Finnish crash model

considers speed limit, number of intersections, lighted,

paved road, sight distance, congestion, number of vehicles

and percentage of heavy vehicles [38]. These conventional

road safety models are ill-equipped to the specific and

peculiar needs of the cyclist. An in-depth safety model is

developed in the next section for the cyclist, modelling

dynamic input variable of ‘age of the rider’.

4.2 Deep learning results

The constructed deep learning model based upon the

identified input critical variables from literature has the

following characteristics (Table 5). The output is the

riskiest age group.

The ROC curve, gain and lift charts developed for the

constructed model are shown in Fig. 3. The AUROC

values are presented in Table 6 to establish the credibility

of the model.

The AUROCC values obtained for over 65 (85%),

55–64 (76%), 45–54 (75%), 35–44 (77%), 25–34 (75%),

17–24 (75%) and under 17 (87%) age groups indicate a

high distinguishable capability between the risky and non-

risky age groups. The accuracy achieved is plausible,

considering the multifactor nature of crashes. To evaluate

the model’s prediction capability, gain and lift charts are

developed, indicating the model has an excellent prediction

capability. Therefore, we can conclude that the developed

model can be used efficiently for predicting the riskiest age

group based upon the specific input variables. There are

very few works in the literature, which have been able to

model the age variable for safety analysis with such rea-

sonable accuracy and efficiency.

Hossaon and Muromachi [39] found that majority of

motorist crash prediction models have the prediction suc-

cess of less than 50%. Peltola and Kulmala [38] found an

error of 65% in the Finnish crash prediction mode TRAVA

for the cyclist. Similarly, Federal Highway Administration

FHWA [16] (transportation department USA) analysis on

the safety analysis using the major simulation software’s,

VISSIM, AIMSUM, TEXAS and PARAMICS revealed

that there are modelling inaccuracy in the microsimulations

for the cyclist. Lawson et al. [40] argued that the con-

ventional models are developed for the assignment of the

motorized modes of travel and are not equipped for the

cyclist’s needs, as these are unable to quantify the effect of

the cyclist safety performance function. A survey on safety

models [41] found that around 70% of the European road

agencies rarely or never systematically use the collision

bFig. 2 Hotspot identification i under 17, ii 17–24, iii 25–34, iv 35–44,

v 45–54, vi 55–69, vii over 70

Table 5 Model features of the

constructed deep learning model
Sample size Per cent (%)

Sample Training 2142 64.5

Validation 903 30.0

Holdout 180 5.5

Total 3225 100.0

Dependent variable: driver age group

Input layer Number of units 173

Hidden layer(s) Number of hidden layers 2

Number of units in each hidden layer 350

Activation function Hyperbolic tangent

Error function Cross-entropy

Cross-entropy error 2674.1

Output layer Dependent variables Driver age group

Number of units 7

Activation function SoftMax

Error function Cross-entropy

Cross-entropy error 1162.9

Neural Computing and Applications

123



prediction model in their decision-making owing to these

reasons. The constructed model has superiority over the

available traditional road safety models in the literature.

This is attributed to the deep learning neural network’s

ability to model the nonlinear and complex relationship

between input and output variables.

These present models are usually probability-based. The

gain and lift charts evaluate the developed model’s dis-

tinguishable capability compared to a non-model proba-

bilistic approach (baseline scenario). In the gain chart, all

the predicted outcomes are higher than the baseline sce-

nario of 45�, reinforcing the constructed model’s appro-

priateness. The same is depicted in the lift chart, e.g. in

predicting the age group[ 70 years, at 10% data points,

the accuracy of the model is 5.5 times higher than the base

case. The developed safety performance functions are

Fig. 3 (i) ROC curve, (ii) Gain chart and (iii) Lift chart for the constructed deep learning model

Table 6 Area under receiver operating curve (AUROC) for the output

variable

Variable AUROC Variable AUROC

Under 17 0.87 45–54 0.75

17–24 0.74 55–64 0.76

25–34 0.75 Over 65 0.85

35–44 0.77 Average 0.81
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equipped to the particular needs of the cyclist. The model

does not require historical crash data for modelling. The

various input variables of infrastructure, spatial, personal

and environmental variables can be directly used to model

safety, once the model has been constructed. It can be

applied to an infrastructure which is still in the planning

and design phase.

The importance of each of the variable and the nor-

malized importance with respect to the most critical vari-

able are calculated and tabulated in Table 7.

The most significant variable affecting the risk for an

age group is the rider’s journey purpose. This is followed

by the number of vehicles involved in the crash and the

hour in which the journey is undertaken; both are spatial

variables and represent the traffic flow regime. They are

followed by vehicle manoeuvre, carriageway hazards, and

road location of the cycle, which are infrastructure vari-

ables that define cyclist interaction with the infrastructure.

The lighting conditions that the cyclist is subjected to

impact cyclists’ safety, which varies with the rider’s age.

This is an expected result as to how different age groups

react to different lighting conditions is dependent upon

their experience, physical and cognitive capabilities. This

is followed by road type and class, and the speed limit of

the infrastructure. This implies that the riders from dif-

ferent age groups interact differently with the different road

infrastructure. The variable importance from the con-

structed deep learning model and the risk rates and hotspot

heat maps led us to conclude that infrastructure poses a

different risk to the cyclist based upon the rider’s age. The

study results can have significant implications on the

policy, design, and planning of the road network. The

present models do not consider the variable age and are

based upon the assumption that road safety is independent

of age. The cyclist age distribution is highly varied and can

vary significantly from one place to another. Therefore, the

research can help develop focused remedial measures to

improve safety based on the intended users, rather than the

infrastructure’s average usage.

4.3 Statistical modelling

The variables, having the importance[ 0.04, are selected

for further analysis. The association between the target

variable and input variables is tested statistically, and their

association with safety is determined using Cramer’s V

value and Cohen’s table (Table 8).

A significant correlation exists between all the identified

variables and age group at a 99.9% confidence interval. A

medium strength of the correlation is obtained for journey

purpose, hour of journey, vehicle manoeuvre, carriageway

hazard and first road class. A small strength correlation is

obtained for the number of vehicles, road location of

vehicle, lighting condition, road type and speed limit. The

results indicate that no single variable has a high strength

of correlation with the age of the rider, which affects its

safety. A single high correlation would have been contrary

to the established road traffic crash modelling theories

[42, 43]. The statistical analysis of the identified variables

has validated the results obtained by deep learning neural

networks.

Table 7 Normalized importance of the input variables

Independent variable importance

Variable Importance Normalized importance

(%)

Variable Importance Normalized importance

(%)

Journey purpose of driver/

rider

0.113 100.0 Junction detail 0.039 34.2

Number of vehicles 0.066 58.5 Skidding and

overturning

0.038 33.6

Hour 0.065 57.4 Breath test 0.038 33.3

Vehicle manoeuvre 0.059 51.7 Weather 0.033 29.5

Carriageway hazards 0.049 43.6 Special conditions at site 0.03 26.9

Road location of vehicle 0.048 42.0 Road surface condition 0.029 25.3

Light conditions 0.045 39.6 Second road class 0.029 25.2

Road type 0.043 38.2 Day 0.028 24.5

First road class 0.042 37.1 Casualty gender 0.024 21.4

Speed limit 0.041 36.3 Junction control 0.024 21.4

Junction location of vehicle 0.04 35.7 Driver gender 0.022 19.2

Month 0.039 34.6 Weekday or weekend 0.014 12.8
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4.4 Model significance

At present, the safety analysis is mainly performed at the

macro-level, such as country level, and demographics of

the intended users are ignored, e.g. a university town

such as Oxford may have a different population demo-

graphics than an old English mining town such as Sun-

derland. The study results demonstrate that if we

undertake such modelling without considering the age

distribution, it will lead to inaccurate modelling. Hence, a

single countrywide model without considering age dis-

tribution of the particular area such as a city or a county

will lead to improper modelling, and corresponding

inaccurate recommendation measures. Such a model may

be appropriate for motorists, who benefit from a machine

at their disposal. A motorist’s physical and cognitive

abilities do not get severely strained as a cyclist nor is

the maturity and ability to respond to the riskiest situation

a critical safety variable.

Numerous studies have questioned the present mod-

elling and their ability to model the cyclists’ idiosyncratic

needs [3, 44]. The hybrid methodology proposed and

applied in the Tyne and Wear not only models’ the safety

accurately but also develops the understanding of the

interaction of the variables, and how they affect safety.

These attributes, such as the journey purpose, traffic flow

regime and infrastructure parameters, are all dynamic

variables unique to a cyclist. Therefore, there is a need to

develop the models specifically for the cyclist using such

an intelligent hybrid methodology based upon deep neural

networks; demonstrated as an effective method of mod-

elling safety and understanding variable interactions to

affect the cyclists’ safety. Hence, we can conclude that the

present methodologies, such as probability or regression-

based, need to be replaced. Such a shift in modelling will

result in a better understanding of cycling safety, identi-

fying the crash causation, knowledge-driven recommen-

dation measures and an integrated sustainable

transportation system. Such studies have a renewed focus

as we move towards the pathway for the autonomous

transportation system. The cyclist’s variabilities modelled

can be inputted into the V–V (vehicle to vehicle) and V–I

(vehicle to infrastructure) algorithm for autonomous vehi-

cles. These algorithms will consider the rider’s variability

in a specific age group at the critical infrastructure type or

the particular environmental/spatial conditions.

The local authorities can also use the model to plan,

design and optimize the cycling network based upon the

intended population (age distribution) and model the safety

considering the infrastructure, environmental, spatial and

other personal attributes of gender and journey purpose.

Therefore, this model also considers the land use pattern,

the peak, staggered peak and other dynamic variables

varying from a city to city. Even, through inverse analysis

based upon the rider’s age, the model will predict the

riskiest infrastructure variables keeping the environmental,

spatial and personal attributes constant for a particular

scenario. This can be performed for different age groups

and then combined using the optimization algorithms

(scaled conjugate gradient) to predict the riskiest and safest

infrastructure type.

The model can be interoperable to a different

city/country, as cycling safety factors are not expected to

change significantly. However, there may be variation in

the significance importance of the variables. Therefore,

before applying the model to different scenarios, it needs to

be validated, similar to all the major simulation packages.

Table 8 Chi-square test, and the statistical association between the significant variables and target variable

Null

Hypothesis H0

Alternate hypothesis

H1

Degree of freedom Pearson

Chi-

square

v2

p
value

Hypothesis

Adopted

Type of association

Driver age risk is

independent of

Driver age risk is

dependent on

df = (R-1) ^ (C-1) Degree of

freedom

Cramer’s

V

Type of

association

SJourney purpose (7–1) ^ (6–1) = 5 520.95 0.01 H1 5 0.18 Medium

Number of vehicles (7–1) ^ (5–1) = 4 238.69 0.01 H1 4 0.136 Small

Hour of journey (7–1) ^ (23–1) = 6 678.61 0.01 H1 6 0.187 Medium

Vehicle manoeuvre (7–1) ^ (18–1) = 6 309.68 0.01 H1 6 0.127 Medium

Carriageway hazards (7–1) ^ (5–1) = 4 75.71 0.01 H1 4 0.153 Medium

Road location of vehicle (7–1) ^ (8–1) = 7 190.19 0.01 H1 7 0.099 Small

Light conditions (7–1) ^ (7–1) = 6 203.68 0.01 H1 6 0.103 Small

Road type (7–1) ^ (6–1) = 5 168.96 0.01 H1 5 0.103 Small

First road class (7–1) ^ (5–1) = 4 368.41 0.01 H1 4 0.169 Medium

Speed limit (7–1) ^ (6–1) = 5 265.44 0.01 H1 5 0.128 Small

Neural Computing and Applications

123



5 Conclusion

A cyclist is a vulnerable road user. The manner of inter-

action of cyclist with the road infrastructure depends on

several factors, including cyclist’s own personal attribute,

i.e. the rider’s age. The present crash models are mostly

developed for motorists in general, without considering

cyclist’s limitations. A dynamic hybrid approach is applied

in this research. The causal relationship between the vari-

ables and rider’s age is identified and statistically validated

without compromising the accuracy or predictive

capability.

The study has demonstrated the superiority of the

supervised deep learning neural network, over other tra-

ditional mathematical theories by modelling the dynamic

variable, i.e. the rider’s age effectively and efficiently. An

accurate dynamic road safety model has been constructed,

and an understanding of the key parameters affecting the

cyclist safety has been developed. The following main

conclusions are drawn from this study:

• The cyclist’s risk decreases with age, e.g. riders under

the age of 17 are 27 times more likely to be involved in

a crash than the age group of 60–69 for the same

distance traversed.

• There is no single variable having a high strength of

correlation for road safety with the rider’s age,

reinforcing that cycling safety is a multifactor and

multi-dimensional phenomenon, requiring a similar

modelling approach.

• Different infrastructure networks pose a risk differently

to riders belonging to different age groups.

• The age of the rider influences other road user’s

interaction with the cyclist.

• The unsafeness of the interaction between the rider and

infrastructure is dependent upon the age of the rider.

This interaction is dependent upon a variety of dynamic

variables in the following descending order:

(a) Personal Characteristics (Journey Purpose),

(b) Traffic flow regime (Number of vehicles, and

hour of travel),

(c) Manner of Interaction of the cyclist with the

infrastructure (vehicle manoeuvre, carriageway hazards

and road location of the vehicle),

(d) Environmental (lighting) conditions,

(e) Infrastructure variables (road type and class, and

speed limit).

The present research in the road safety modelling needs

to move from the simple probability-based models to deep

learning neural models, which can open up new possibili-

ties, as demonstrated in this work. The study results can

significantly impact the route choice, modelling and

planning of infrastructure. The constructed model can

assess with certainty regarding the type of infrastructure

required to increase safety, based upon the indented users

rather than a generalized approach. This can be even

employed to an infrastructure which is still in its planning/

design phase, considers the vulnerability of rider, its sus-

ceptibility to externalities, and the varied safety effect

based upon its own personal attributes. It is hoped that this

research will help in reducing the cyclist crash and help in

the promotion of this mode for the holistic, sustainable,

integrated cyclist transportation system. The final output

variable, i.e. the trip maker’s age group, maybe correlated

with many underlying factors. Therefore, future research

should aim to create a heterogeneous model, which can

uncover the underlying variables.
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