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Abstract
Traditional local image descriptors such as SIFT and SURF are based on processings similar to those that take place in the

early visual cortex. Nowadays, convolutional neural networks still draw inspiration from the human vision system,

integrating computational elements typical of higher visual cortical areas. Deep CNN’s architectures are intrinsically hard

to interpret, so much effort has been made to dissect them in order to understand which type of features they learn.

However, considering the resemblance to the human vision system, no enough attention has been devoted to understand if

the image features learned by deep CNNs and used for classification correlate with features that humans select when

viewing images, the so-called human fixations, nor if they correlate with earlier developed handcrafted features such as

SIFT and SURF. Exploring these correlations is highly meaningful since what we require from CNNs, and features in

general, is to recognize and correctly classify objects or subjects relevant to humans. In this paper, we establish the

correlation between three families of image interest points: human fixations, handcrafted and CNN features. We extract

features from the feature maps of selected layers of several deep CNN’s architectures, from the shallowest to the deepest.

All features and fixations are then compared with two types of measures, global and local, which unveil the degree of

similarity of the areas of interest of the three families. From the experiments carried out on ETD human fixations database,

it turns out that human fixations are positively correlated with handcrafted features and even more with deep layers of

CNNs and that handcrafted features highly correlate between themselves as some CNNs do.
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1 Introduction

Computer vision researchers have long tried to emulate the

biology of primate vision. Visual recognition methods

based on features such as the widely adopted Scale

Invariant Feature Transform (SIFT) [28], are inspired by

computations that take place in the early visual cortex,

while early convolutional neural networks such as HMAX

of [30] mimic the simple and complex cell hierarchy first

described in the seminal work of Hubel and Wiesel [17].

Convolution neural networks (CNNs), adding further steps

that likely occur in human vision such as nonlinearity, and

being trained on millions of images, are currently

employed by neuroscientists to produce plausible compu-

tational models not only of lower but also of higher visual

cortical areas [39].

In order to understand the functioning of CNNs, much

effort is being made to dissect them, mainly by visualizing

or labelling the features learned at the hidden layers. This

has been achieved by looking for input patterns that max-

imize the activation of hidden units [12, 42], or by trying to

identify salient image features through back-propagation

[25, 32]. As a result it has emerged that salient regions

extracted from the top layers of CNNs tend to have

semantic meaning, i.e. they correspond to objects or sub-

jects relevant to humans [13, 42, 44] and similarly, from a

neuroscience perspective, that top layers of hierarchical

neural networks are highly predictive of neural responses

in the higher visual cortex [40]. Recently, some authors
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have been looking at ways to improve attention maps

generated by CNNs: by direct guidance on the attention

maps generated by a weakly supervised learning deep

neural network [23] or by attribute based textual explana-

tion [38] and, inspired by the human visual system, by task-

specific top-down signals together with visual stimuli [10].

Increasing knowledge on the primate visual cortex sys-

tem has, on the other side, led to several saliency models

that try to predict where humans look in a scene [4, 15, 18]

and, more recently, the application of CNNs

to the definition of saliency models improved prediction

performance [22]. It seems that the gap between compu-

tational visual recognition methods and the primate visual

system is narrowing. In order to determine the extent of

their similarity we think some of the fundamental questions

we need to answer are whether deep convolutional neural

networks actually ‘‘look’’ where humans look in an image

and if they are getting any closer to where humans look

with respect to earlier biologically inspired models. In this

paper, we address these questions by proposing a

methodology to establish the similarity between human

fixations and the features used (or learned) by biologically

inspired computational visual recognition methods. These

questions have been partially addressed in [8], where

human fixations have been compared to some relevant

points of two CNNs, and earlier in [11] where SIFT, SURF

[1] and the Harris Corner Detector (HCD) [33] have been

compared to human fixations. Our proposed method draws

inspiration from both works and it improves them in sev-

eral ways: with a reliable definition of the regions of

interest starting from human fixations or interest points,

with the definition of two comparison protocols, one global

and one local, implemented to establish regions similarity.

Furthermore, the approach is applied to a large variety of

handcrafted features and CNNs. To evaluate feature simi-

larity, we run several experiments on the MIT eye tracking

dataset (ETD) [20] comparing both human fixations to a

variety of CNNs and handcrafted interest points, and also

comparing intraclass and interclass points from hand-

crafted interest points and CNNs. A thorough statistical

analysis shows that there is a positive correlation between

human fixations and handcrafted features, overturning

results in [11]. The results show that highest correlations

occur between intraclass features and that human attention

regions tend to be contained in the regions of interest

defined by most features.

2 Related work

Prior to the introduction of CNNs, in [11] the authors

investigated the correlation between human fixations and

interest points extracted with SIFT, SURF and HCD,

concluding that the similarity is not much different to that

obtained with randomly generated interest points, with the

exclusion of SURF points, although no tests to determine

whether the difference in similarity was statistically sig-

nificant were conducted.

After the development of high-performance CNNs,

much effort has been dedicated to visualize their behaviour

at individual unit levels. Erhan et al. [12] were the first to

look for input image patterns that maximize the activation

of hidden units. Zeiler et al. in [42] introduced a visual-

ization technique that reveals which image input stimuli

excite individual feature maps. They do it by mapping back

feature maps activity from hidden layers back to the orig-

inal input image simply by reversing the process from the

considered layer to the original image (deconvnet). In the

proposed method, we also reverse the process to extract our

features, but since we are interested in determining the

points coordinates on the input image rather than passing

the feature maps through a deconvnet layer to visualize the

features, what we do is simply to back-propagate the

maximum response points coordinates to the original

image. Yosinski et al. [41] released an interactive software

to visualize the activations produced in each layer of a

DNN when an image is processed. Both studies by Zeiler

et al. [42] and Yosinski et al. [41] reveal the hierarchical

nature of the features: shallow layers respond to corners,

edges or colours or a combination of them, intermediate

layers tend to be class specific so, for instance, they

respond to animal faces or legs, while deepest layers

respond to entire objects, e.g. a dog. A further step to

interpret DNNs representation was made in [43], where the

alignment between individual units and visual semantic

concepts is evaluated. Again, it is confirmed that the deeper

the layer, the higher the capacity to represent concepts of

high semantic complexity, such as entire objects or scene

parts.

Attention modules in vision were also applied to

enhance the interpretability of neural networks [37]. For

example, Chen et al. [10] utilised a human saliency dataset

to boost their network’s performance, while the recent

Transformer [36] architecture relies on attention to achieve

the state-of-the-art results. While providing good perfor-

mance, attention allows the network to dynamically assign

relative importance to the features, allowing greater

transparency. However, none of these works involving

attention conduct qualitative nor quantitative evaluations

against human fixations, which is the main focus of this

work.

Mopuri et al. [26] proposed a method for conducting

evidence tracing from the prediction layer to the image in

order to identify discriminative pixel locations. While their

method also produces a set of fixation points similar to our

work, they do not evaluate the similarity between the
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obtained CNN points and human fixation points. Instead,

their work focuses mainly on weakly supervised object

localization and caption grounding.

Several other network dissection works focus on the

quality and accuracy of visualizations rather than similarity

with human saliency. In [29], although there is evaluation

against human attention for the task of Visual Question

Answering (VQA), the emphasis is again on visualization

quality and, importantly, there is not a comparison of dif-

ferent CNN architectures on the basis of similarity with

human saliency.

3 Interest points extraction

In this section, we describe the interest points we use to

define visual attention regions. While human fixations can

be acquired by eye tracking devices and handcrafted fea-

ture points are determined by the feature extraction algo-

rithms, the process of extracting interest points from CNNs

needs to be defined.

3.1 Human fixations

Human fixations are defined to be the image points where

eye gaze is stable, or its speed is below a set threshold (see

[27]). The human fixations we use in this paper were col-

lected at the Massachusetts Institute of Technology as part

of a project that focused on visual attention [20]. In the

dataset, called the MIT eye tracking dataset (ETD), the

fixations from 15 users asked to free view 1003 images

randomly selected from Flickr were collected. Images were

shown in succession to each viewer, each image was shown

on screen for 3 s, with a grey screen interval of one second

between consecutive images. Among the available human

fixation datasets, the MIT-ETD is the best suited for our

purposes for the high number of images and the fact that

they are randomly picked, have different resolution, ori-

entation and content (779 are landscape and 228 are por-

trait). For each image I in the dataset we consider the set of

cumulative fixations of all 15 users, and we name it

HFix(I).

3.2 Handcrafted features

SIFT, SURF and the Harris corner detector (HCD) have

been extensively used to perform a variety of tasks, from

face recognition [5] to object recognition [7] and object

tracking [45]. SIFT and SURF both derive from the Hes-

sian of the Scale Space representation of the image, but, as

shown in [6], the SIFT descriptor tends to locate points

around edges, while the SURF one around corners, so,

since they do not look exactly at the same image points it is

interesting analysing both of them to evaluate the extent of

their correlation. Interest points for the three descriptors are

extracted from all images in the dataset according to the

original implementations in [1, 28, 33], yielding, for a

given image I the interest points sets SIFT(I), SURF(I) and

HCD(I). Although the cardinality of these sets is often

higher than that of human fixations, there is no a priori

criterion for selecting highly significant interest points

among SIFT, SURF and HCD, so all the extracted points

have been considered.

3.3 CNN’s features

We consider 7 pretrained deep convolutional neural net-

works from 6 different families: AlexNet [21], VGG-19

[31] and VGG-F [9], InceptionV3 [34], ResNetV2-50 [14],

DenseNet-201 [16], and EfficientNet-b7 [35]. All networks

were pretrained on more than a million images from the

ImageNet Large-Scale Visual Recognition Challenge

(ILSVRC) 2012 classification dataset with 1,000 object

categories. To locate image points that are significant to a

deep neural network, we look for the points that have

maximum filter response and map them back onto the

original image. We do not resize or crop the images we

feed into the networks. This allows to maintain sufficient

points positions accuracy, which is critical since accuracy

is also affected by the reduction of the images as they are

processed by the networks, something that intrinsically

causes a degree of localization uncertainty when the points

coordinates are mapped back to the original image. Since

we are interested in selecting the points at convolution

stages, before the fully connected layers occur, feeding

images of different sizes is not an issue, nor it is in terms of

points significance, since the networks are trained on

images of objects captured at different scales and from

different view points.

As an example, Fig. 1 depicts the general VGG-19

architecture with the feature maps from which the interest

points are selected. As the image shows, we extract interest

points from the feature maps obtained after the first five

convolutions that precede the max pooling steps; in par-

ticular, in Fig. 1 the first set of feature maps is obtained at

the level relu1 1 after the first bunch of convolutions.

There are 64 such maps resulting from the convolution

conv1 2 with 64 filters. From each of these maps, we

extract the point that has the maximum filter response,

obtaining 64 maximum response points. The points coor-

dinates are mapped back through the inverse scaling

function, leading to 64 interest points on the original

image.

The points of highest response to each filter will cer-

tainly be included in the subsequent max pooling step and

will affect the result of the following convolution steps, in
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other words, they are highly significant for the network.

While it would be perfectly reasonable to extract more than

one point from each feature map, we choose to select the

global maximum since the eye fixations we compare them

with were collected from viewers that were shown each

image for 3s, a short time in which the human eye can scan

only a subset of the areas it might find attractive.

We repeat this process for the stages relu1 2, relu2 2,

relu3 4, relu4 4 and relu5 4 in Fig. 1, obtaining 5 sets of

64, 128, 256, 512 and 512 points, respectively, which will

be denoted by VGG-19Ci, for i ¼ 1; . . .; 5. The set that

contains all sets of interest points VGG-19Ci, for i ¼
1; . . .; 5 will be denoted by VGG-19. The same interest

points extraction is carried forward for the other networks;

in particular, the points are extracted at the end of each

block of convolutional layers.

The feature maps of the first layers are quite close to the

original input image, and interest points extracted from

them can be mapped back to the original image through the

inverse of the image scaling function that results from the

convolution, relu or max pooling steps. In fact, in [25], by

inverting the network representation obtained in the first

few layers, an image that is a slightly fuzzier but otherwise

a visually faithful representation of the original image is

obtained.

Figure 2 contains an image from the ETD with the

interest points just defined. Notice that human fixations

concentrate on the face, the trophy, the microphone and the

hand of the woman, the same areas are mostly targeted by

the seven CNNs. SIFT and SURF detect the same areas,

but they also capture the pattern of the background, while,

as expected, the HCD detects corners and edges. CNNs

features in the image correspond to the last but one layer,

and, as expected, they are mostly located on areas of

semantic meaning, as human fixations are.

4 Interest regions modelling

In this section, we define the region of interest corre-

sponding to a set of interest points. We want to determine

which are the areas in the image that highly likely contain

human fixations, CNN’s and handcrafted features. We use

the same methodology adopted in [8], based on a non-

parametric estimate of the density of a given set of interest

points, which offers more flexibility in modelling our

points distributions over parametric methods. In [11], a

nonparametric estimate is also adopted, specifically a ker-

nel density estimation (KDE) method with a radial basis

function kernel. However, these kind of kernels lack local

adaptivity which in our case can lead to spurious bumps;

moreover, as discussed in [2], classical bandwidth esti-

mators rely on the ‘‘plug-in’’ method [19] which requires

that the data are approximately normal, an assumption that

again is not satisfied by our data. To overcome these

problems and prevent inaccurate comparisons, to model the

Fig. 1 Scheme of features extraction from VGG-19
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density of the sets of points we use the KDE based on a

linear diffusion model developed in [2], which has also the

advantage of using a bandwidth selector that does not

assume data normality. In Fig. 3, we can see some human

fixation points (red dots) over the central part of an image

(figure on top) with the level sets of the density surface

generated via diffusion. On the bottom row, the KDE via

diffusion (on the left) and that via a Gaussian kernel (right)

of the whole image are shown. As it can be seen, KDE

estimation via Gaussian kernel leads to a bumpy surface in

the central area, where there is a high density of points, but

these bumps are clearly spurious, since they do not corre-

spond to any significant clusters of points (see the red

points in the central yellow area in the image on top). This

high-density area would be much better modelled by a

unique peak, which characterises the surface generated by

the KDE via diffusion shown in the top image, represented

by level curves, and in the corresponding highest peak in

the bottom right image.

Given an image I and a set of features or fixations FI , the

density surface associated to FI , and evaluated at an image

point x ¼ ðx; yÞ will be called fFI
ðxÞ, so, for instance, the

density of a set of human fixations for image I will be

denoted by fHFixðIÞðxÞ. In Fig. 4, we can see an image from

the MIT fixations dataset, with human fixations on the top

left and AlexNet interest points on the top right. On the

bottom, we can see the estimated densities for the human

fixations (left) and for the AlexNet points (right). As it can

be seen, the automated bandwidth selection is able to

accurately model both densities: one arising from spread

points and one from clustered points.

5 Distributions comparison

To compare the obtained points densities, we need to take

into account several aspects. The first one is the difference

between the cardinality of the feature sets we want to

Fig. 2 Interest points. CNN’s interest points are from some of the deepest layers: AlexC5, VGG-19C5, VGG-FC3, DensnetC3, EfficientNetb6,

InceptionC6 ResnetC1

Neural Computing and Applications (2021) 33:11905–11922 11909

123



compare, which can vary from an average of 66 in the case

of human fixations, to an average of 1696 in case of HCD.

The second aspect is the variability of image content,

which, for the sake of generality, is not supposed to be

restricted to any particular class. The third aspect is that the

available human fixations dataset results from exposing

each image to the users for 3 s, so users attention tend to

concentrate, when present, on the areas that are most sig-

nificant to humans, such as faces, bodies and texts. Other

potentially interesting image areas are not reached by the

users because of the time limit, whereas they can be

explored by feature extractors or CNNs. On the basis of

these premises, to compare points sets we propose three

(global) indexes of the difference between any two density

distributions and a the local index defined in [8] that can

reveal if the image areas targeted by one set of points are a

subset of the areas target by the other. The first global

index we use is the Bray–Curtis similarity [3], which is

widely used in ecology to quantify the similarity between

two sample populations and is well suited to assess the

global similarity of two points distributions. The same

index is also used in [11] which allows us to compare the

results we obtain on the similarity of human fixation and

handcrafted features with the ones in [11]. The second

global index we use is the Jensen–Shannon divergence

[24], and the third is the universally known Spearman rank

correlation coefficient q.

Given an image I and two densities f1 and f2, the Bray–

Curtis similarity index is defined as

BC1;2 ¼ 1�
Pn

i¼1
jf1ðxiÞ�f2ðxiÞjPn

i¼1
f1ðxiÞþf2ðxiÞ

; for each image pixel xi: The

Jensen–Shannon divergence is defined as

JSD1;2 ¼
X

xi

ðf1ðxiÞ � f2ðxiÞÞ log
f1ðxiÞ
f2ðxiÞ

To be able to directly compare the two indexes, we turn the

Jensen–Shannon divergence into a similarity measure by

defining JS1;2 ¼ 1 � JSD1;2.

Fig. 3 KDE estimation. On top, the points with the diffusion method surface represented by level curves (warmer colours indicate high density).

On the bottom, on the left the KDE via diffusion and on the right the KDE via radial basis functions (Gaussian kernel) (color figure online)
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While the global indexes will quantify how similar the

two densities are globally, they cannot determine whether

one of the two sets of points is contained in the density

distribution of the other set of points. Establishing this

local similarity is particularly meaningful in the cases in

which the points concentrate on small regions of the image,

which is what happens for human fixations of the ETD

dataset, where each image was shown to each person for

only 3 s.

To compare the densities at a local level, we adopt the

measure defined in [8] in terms of a ‘‘two-way’’ binary

classification.

Let F1, F2 be two sets of interest points for an image I

and fF1
, fF2

their respective densities. Let us assume that all

points in F1 are F2 points (positive) and all remaining

image pixels are not (negative). Given a x 2 F1 we can ask

what the probability of x to be a point of type F2 is by

evaluating fF2
ðxÞ. By setting a threshold s, for all i ¼

1; . . .; jF1j we can classify an interest point xi 2 F1 as an F2

interest point (a true positive) if fF2
ðxiÞ� s. All points in F1

that do not satisfy the condition will be false negative. All

pixels w 2 I n F1 in the image that are not F1 points for

which fF2
ðwÞ� s will be false positive, while those for

which fF2
ðwÞ\s will be true negative. We can determine

the true and false positive rates for a given threshold s and,

by varying s, build a ROC curve. The area under the ROC

curve AUCðF1; fF2
Þ is the probability that the classifier will

rank a (randomly selected) F1 point higher than a (ran-

domly selected) I n F1 pixel, so the ability of the classifier

to correctly classify the F1 points tells to which extent the

set F1 is contained in the density fF2
, or equivalently, to

which extent the interest points F1 are a ‘‘subset’’ of F2. By

switching the two sets of points, we can evaluate the

probability fF1
ðxÞ a point x 2 F2 has to be a point of type

F1, and so we can evaluate if the points in F2 are contained

in fF1
with the index AUCðfF1

;F2Þ. The two indexes

describe how the two densities intersect. Notice that

AUCðF1; fF2
Þ ¼ AUCðfF1

;F2Þ ¼ 1 can never be achieved

since even in high density f1 areas there will always be

some pixels that are not F2 points. Nevertheless, high

values of AUCðF1; fF2
Þ mean that a high number of F1

points are contained in fF2
, and to see if the reverse is true,

we need to look at AUCðfF1
;F2Þ: if it is smaller (bigger), it

means that F1 n F2 has a smaller (bigger) area than F2 n F1,

if they have similar values the areas covered by F1 n F2 and

F2 n F1 are similar. The meaning of the two indexes is

schematised in terms of density areas intersection in Fig. 5.

Fig. 4 KDE estimation. On top, the human fixation points (left) and the AlexNet interest points (right). On the bottom, the respective densities

estimated via diffusion
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6 Experiments and results

We conducted a series of experiments to compare human

fixations with CNN’s and handcrafted features and, more

generally, to evaluate the intraclass and interclass similar-

ity of the handcrafted and CNN’s families. We use the

1003 images from the ETD, the Eye tracking database at

MIT [20]. As outlined in Sect. 3.1, for each image I 2
ETD, the database provides a set of point coordinates that

result from the union of the fixations of 15 users, which for

image I, according to the notation in 3.1 we call HFix(I).

As illustrated in Sect. 3, for each image I 2 ETD, we

extract the features from each CNN: for instance, VGG-

19Ci is referred to the interest points of VGG-19 extracted

at the layer Ci. We then extract the interest points SIFT(I),

SURF(I) and HCD(I). For each of the previous sets of

interest points, we estimate a probability density function

as described in Sect. 4, which we will use to establish

points similarity.

6.1 Correlation between human fixations
and interest points

We first compare human fixations to interest points using

the global similarity indexes. Let us denote by FjðIÞ any of

the feature set F over image I, and by fFj
ðIÞ its density. For

each image I 2 ETD we compare fFj
with fHFixðIÞ using the

global indexes defined in Sect. 5. This results in three

similarity scores: the Bray–Curtis BCfFj fHFix
ðIÞ and Jensen–

Shannon JS1;2similarities and the Spearman rank correla-

tion coefficient q between the set FjðIÞ and HFix(I) over

image I. If we average the similarities scores as I ranges in

the dataset ETD, we obtain the similarity between the set of

features F and the human fixations HFix. The average

scores are reported in Table 1.

As a baseline experiment, human fixations densities of

each of the 1003 images in the ETD database are compared

to 100 random densities and the obtained similarity indexes

are averaged. Average random scores for the similarity

indexes BC and JS are reported in the first line of Table 1.

To see if the differences between the average similarity

indexes scores and the random scores are statistically sig-

nificant, a two-tailed Wilcoxon rank-sum test was run for

each comparison in the table rows. The resulting p values

were well under the set threshold of 0.05 for all experi-

ments but the ones reported in bold in the table.

The three similarity indexes are coherent most of the

times, with the Spearman rank correlation coefficients in

between the Bray–Curtis and the Jensen–Shannon indexes.

We can see, in particular, that among handcrafted features,

SURF has the highest similarity with human fixations.

Among CNNs, we can see how the most shallow layers

poorly correlate with human fixations, while the middle to

deep layers show the highest correlation. Deep layers of

EfficientNet have the highest correlation of all interest

points, followed by Resnet, VGG-19, DenseNet and

AlexNet. Inception has a somehow peculiar behaviour,

with low correlation at the shallow layers which further

decreases as the layers deepen(and even becomes nega-

tive). This might be due to the different architecture of the

network which is based on convoluting the image with

filters of multiple sizes at the same layer. The extracted

features thus follow a different pattern than that of the other

networks which start from low level features to follow with

high level ones.

It is interesting to compare the results we obtained rel-

atively to the handcrafted points with the ones in [11],

where no significant differences between features/fixations

Fig. 5 Similarity indexes

relationship in terms of areas of

interest intersection
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similarities and random points/fixations similarities were

found. In particular, limiting the comparison to the BC

index (which is the only similarity measure used the work),

we can see higher similarity scores between the distribu-

tions of random points and human fixations, coupled with

lower scores between the distributions of SIFT, SURF and

HCD and distributions of human fixations. This might be

due to the different kernel density estimation techniques:

an accurate bandwidth selection of the kernel is essential

for robust density estimation, and possibly to a different

methodology, which is not detailed, to estimate random

densities. Contrarily to the conclusions in [11], we can

affirm that global similarities between human fixations and

SIFT, SURF and HCD, although not high, are statistically

significant.

6.2 Local similarity assessment

To further explore the correlation between interest points

and human fixations, we compare them on a local level

using the local similarity AUC indexes defined in Sect. 5.

Given an image I from the ETD dataset, the sets FiðIÞ and

HFix(I) of interest points and human fixations and the two

densities fFiðIÞ and fHFixðIÞ, we determine the ROC curve

deriving from the classification of the FiðIÞ points with the

human fixations density fHfixðIÞ and calculate the indicator

AUCFi;fHfixðIÞ and conversely, the ROC curve and the index

AUCFHfix;fFi
ðIÞ deriving from the classification of the human

fixations HFix(I) with the density estimated from the

interest points FiðIÞ. We repeat the procedure for each

image I 2 ETD, and we average over the indexes

AUCFi;fHfixðIÞ and AUCFHfix;fFi
ðIÞ to get AUCFi;fHfix and

AUCFHfix;fFi
, which reveal to which extent the areas covered

by the interest points of type Fi are contained in the areas

covered by human fixations and vice versa.

The results can be seen in Table 2. For all feature sets,

both AUC indicators are well above the 50% value corre-

sponding to a random classifier, showing that there is a

significant intersection with human fixations. Furthermore,

in most cases, the first indicator (second column of the

table) is greater than the second (third column of the table).

This means that, on average, the image areas target by

humans tend to be contained in those occupied by the other

features. Only some shallow layers of some the CNNs have

featured that are contained in the attention areas of humans

(AlexNet, VGG-19, DenseNet). The highest value of

79.25% is given by EfficientNetb6, while among hand-

crafted features, SURF has the highest score of 73.28%.

The higher values of the first indicators could be explained

by the way the human fixations were collected. Indeed, the

time limit of 3 s for each image exposure means that fix-

ations concentrate on the image areas that most capture

Table 1 Similarity scores between interest points and human fixations

Feature type Layer BCfFj fH
(%) JSfFj fH (%) qfFj fH (%)

R = 21.26% R = 34.11%

SIFT 32.78 50.32 33.89

SURF 34.92 53.23 24.25

HCD 30.58 46.21 33.88

AlexNet C1 25.51 38.95 31.36

C2 31.61 48.59 29.66

C3 34.45 53.05 37.19

C4 34.47 52.94 36.38

C5 34.09 52.49 35.39

VGG-19 C1 14.03 22.99 14.47

C2 20.51 32.12 21.94

C3 20.24 47.91 20.34

C4 33.46 50.05 33.91

C5 35.18 53.44 37.16

VGG-f C1 34.11 51.77 41.02

C2 31.25 48.30 28.40

C3 34.31 52.42 33.94

ResnetV2-50 C1 22.18 34.27 25.20

b1 32.51 49.42 30.24

b2 35.33 54.24 41.12

b3 29.42 47.09 36.81

b4 29.09 46.71 31.75

InceptionV3 c1 27.03 41.27 32.96

c2 26.51 40.40 28.68

c3 21.87 33.38 21.34

c4 21.87 33.53 19.49

c5 21.88 34.93 12.99

c6 27.54 44.63 5.53

c7 25.62 42.35 -6.14

DenseNet-201 C1 21.66 33.53 24.25

C2 29.82 45.24 27.28

C3 34.65 52.82 32.24

C4 32.36 50.92 30.16

C5 29.02 46.60 32.20

EfficientNet-b7 b1 28.27 42.95 36.69

b2 34.85 52.64 40.12

b3 32.42 50.17 32.59

b4 31.21 49.01 28.63

b5 33.37 51.42 31.15

b6 37.71 56.98 52.33

b7 37.37 56.36 44.92

Third column: BC similarity scores, fourth: Jensen–Shannon simi-

larity scores, fifth: Spearman correlation coefficients. Bold percent-

ages refer to scores for which the two-sided Wilcoxon test returned a

p value [ 0:05, so the difference between similarity with human

fixations and random is not statistically significant
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human attention, other possible areas of interest targeted by

local descriptors or CNNs might not be observed by

humans simply because of lack of time.

In Figs. 6 and 7 are shown the images of the ETD that

produce, respectively, the highest and lowest AUC scores

for SIFT points (the red crosses in the first images of both

figures) and human fixations (the blue crosses). For the

image in Fig. 6, we have the values AUCSIFT ;fHfix ¼ 85:21%

and AUCHFix;fSIFT ¼ 97:19%, indicating that the human

fixations are almost completely contained in the density of

the SIFT points, as confirmed by the image on the bottom

right. On the other hand, the smaller value of the

AUCSIFT ;fHfix indicates that there are areas that contain SIFT

points that are not looked at by humans, as the image on the

bottom left shows. Notice how human fixations tend to

concentrate on the writings. In this case, the value of the

global index was 60:65%, which hints that the two sets are

correlated but does not shed light on how they intersect.

For the image in Fig. 7, the values of the indexes are

AUCSIFT ;fHfix ¼ 37:01% and AUCHFix;fSIFT ¼ 43:37%, which

are both low values that indicate the two sets of points

hardly intersect, as shown in the two images at the bottom

of the figure. In this case the global BC similarity has a

value of 23:45%, below the random value of about 26%.

In Figs. 8 and 9, we show the images for which the local

correlation between AlexNet points and human fixations is,

respectively, maximum and minimum. Local correlation

indexes values for the image in 8 are AUCAlexNetC3;fHfix ¼
88:05% and AUCHFix;fAlexNetC3

¼ 56:81% while the global BC

similarity index is 38:98%. As it can be seen from the

density images, the proportion of AlexNetC3 points that is

contained in the human fixation density (left bottom image)

is higher than the proportion of human fixations contained

in the AlexNeC3 density, which is correctly reflected by the

AUC scores.

Local correlation indexes for the image in 9 are

AUCAlexNetC3;fHfix ¼ 36:38% and AUCHFix;fAlexNetC3
¼ 34:29%,

the minimum local correlation between AlexNetC3 point

and human fixations in the ETD dataset. The BC similarity

index has a very low value of 9:08%. The two sets of points

hardly intersect, in accordance with the low AUC values.

6.3 Similarity assessment with CNN fixations
extracted with other methods

The correlation between humans and CNNs might depend

on the way CNN’s interest regions are selected. While our

main intent is to analyse the correlation between human

fixations and CNNs at all layers, by unveiling what the

filters learn stage by stage, it is also interesting to see how

human fixations compare with CNN’s interest regions

extracted with other methods that take into account also the

fully connected layers (see last block in Fig. 1). To do this,

we extracted the VGG-16 fixations from all images in the

ETD dataset using the technique described in [26], where

discriminative pixel locations that guide the network pre-

diction are obtained by considering feature dependencies

Table 2 AUC indexes of the comparison between interest points and

human fixations

Feature type Layer AUCFi;fHfix (%) AUCFHfix ;fFi
(%)

SIFT 69.77 58.41

SURF 73.28 58.78

HCD 67.54 61.48

AlexNet C1 63.49 63.96

C2 69.73 58.29

C3 73.89 58.69

C4 73.84 58.99

C5 73.35 58.71

VGG-19 C1 58.04 63.70

C2 59.66 60.82

C3 71.51 62.69

C4 72.92 61.54

C5 74.19 59.68

VGG-f C1 71.55 61.65

C2 69.49 57.67

C3 73.60 59.07

ResnetV2-50 C1 70.37 59.65

b1 76.15 58.52

b2 69.81 53.57

b3 69.37 53.22

b4 60.04 62.70

InceptionV3 c1 64.44 62.93

c2 63.49 61.50

c3 59.01 56.85

c4 58.85 56.07

c5 63.66 51.08

c6 66.08 52.59

c7 53.25 50.35

DenseNet-201 C1 59.21 62.52

C2 67.06 60.64

C3 74.10 59.03

C4 75.45 55.14

C5 69.75 53.16

EfficientNet-b7 b1 64.79 64.07

b2 71.55 62.24

b3 69.55 58.25

b4 68.17 56.15

b5 71.12 58.00

b6 79.25 61.87

b7 78.20 61.94
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Fig. 6 SIFT-human fixations local correlation maximum. Top image:

red crosses are SIFT points, blue crosses are human fixations. Bottom

images: (left) planar projection of human density and sift points (red

crosses), (right) SIFT density and human fixations (red crosses) (color

figure online)

Fig. 7 SIFT-human fixations local correlation minimum. Top image:

red crosses are SIFT points, blue crosses are human fixations. Bottom

images: (left) planar projection of human density and sift points (red

crosses), (right) SIFT density and human fixations (red crosses) (color

figure online)
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between pairs of consecutive layers. The resulting pixel

locations, or interest image points, are fed into our KDE

module to produce the regions of interest that are compared

to the regions of interest generated by human fixations. In

Tables 3 and 4, we can see the similarity scores (global and

local, respectively) between human fixations and VGG-16

interest points extracted with our method from each layer

before the max pooling step (lines 2–6), and the similarity

scores between human fixations and VGG-16 fixations

extracted according to [26] (line 7).

The correlation between VGG-16 fixations of [26] and

human fixations is similar to the correlation between VGG-

Fig. 8 AlexNetC3-human fixations local correlation maximum. Left

image: original. Middle: AlexNetC3 points (red), human fixations

(blue). Right images: (top) planar projection of AlexNetC3 density and

human fixations (red crosses), (bottom) human density and AlexNetC3

points (red crosses) (color figure online)

Fig. 9 AlexNetC3-human fixations local correlation minimum. Left

image: AlexNetC3 points (red) and human fixations (blue). Right

images: (top) planar projection of AlexNetC3 density and human

fixations (red crosses), (bottom) human density and AlexNetC3 points

(red crosses) (color figure online)
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16 interest points of the last two layers and human fixa-

tions. This was somehow predictable, since the features

extracted from the last layers tend to have semantic

meaning. The slightly superior correlation humans fixa-

tions have with VGG-16 fixations of [26] is probably due to

outlier removal.

6.4 Similarity across features types

Having established the similarity between features and

human fixations, we investigate the intraclass and interclass

features correlation. This question has hardly been

explored in the past, even for handcrafted features. In

[5, 6], there is evidence that SIFT and SURF points only

partially overlap, but the experiments are limited to images

of human faces. To have an idea of how the various interest

points correlate, we select a representative of each CNN

family, namely the set of features relative extracted from

the deepest layer. For each pair of feature sets, we calculate

the similarity indexes across all images of the ETD data-

base. In Table 5, the three global similarity scores are

reported for all pairs of features sets compared, arranged in

decreasing order from top to bottom. Similarity scores of

human fixations with the last layer of CNNs and hand-

crafted features are reported again for ease of comparison.

On a global level, interest points appear to be more

correlated among themselves than with human fixations.

Greatest correlations occur between DenseNet and Resnet

(BC ¼ 93:91%, JS ¼ 99:47%, q ¼ 75:06%), Inception and

Resnet BC ¼ 85:45%; JS ¼ 97:33%; q ¼ 41:97%, Dense-

Net Inception (BC ¼ 85:51%; JS ¼ 97:38%; q ¼ 40:86%),

VGG-f and AlexNet

(BC ¼ 77:28%; JS ¼ 92:47%; q ¼ 78:70%), SIFT and

SURF (BC ¼ 77:16%; JS ¼ 92:72%; q ¼ 77:66%). We can

generally see that interest points from the CNN’s family

highly correlate, as they do sets from the handcrafted

points family, while interfamilies correlations are weaker

(humans included).

Global scores can be better interpreted together with

local scores. To this end, the AUC values for all pairs of

feature types of Table 5 are calculated, and the results are

shown in the plot, where, for two feature sets ðFi;FjÞ, the

two local indexes are displayed as a point of coordinates

(AUCFi;fFj
, AUCFj;fFi

). As the plot shows, human fixations

scores (see Table 2) are all above the bisector, indicating

that a notably higher fraction of humans fixations are

contained in all other features, as discussed in Sect. 6.2.

This also holds for Harris Corner points, which tend to be

contained in other sets but SIFT and SURF. Looking at

CNNs, it is surprising to discover that the pairs that have a

high global similarity, such as DenseNet and Resnet

(58.19%,58.04%), Inception and Resnet (56.14%,56.84%),

DenseNet and Inception (56.56%, 55.85%) have not so

high local similarity indexes, while all being near the

bisector. This is due to the fact that the interest points of the

deepest layers of the mentioned CNNs are generated by

points that are quite spread (and not numerous) over the

images, so they will generate densities that share a similar

support and shape. The global indexes, based on the shape

of the densities, will score high values, while the local

similarity is more subtle, since the low probability values

of the densities cause more false negatives and the many

pixels sitting in the densities support but not belonging to

the interest points sets will be false positive, thus leading to

a low local similarity scores. How the features are spread

on the last layers of the networks Densnet-201 and Resnet-

V2-50 can be seen in Fig. 10. The small size of the feature

Table 3 Similarity scores

between human fixations and

VGG-16 interest points

extracted with our method from

layers C1; . . .;C5 and with

CNN fixations as in [26]

Feature type Layer BCfFj fH
(%) JSfFj fH (%) qfFj fH (%)

VGG-16 interest points C1 14.95 24.56 16.55

C2 20.06 31.57 21.38

C3 27.67 41.80 30.66

C4 35.53 52.90 36.27

C5 35.58 53.93 37.48

VGG-16 fixations [26] – 38.71 56.68 50.12

Third column: BC similarity scores, fourth: Jensen–Shannon similarity scores, fifth: Spearman correlation

coefficients

Table 4 AUC indexes of the comparison between human fixations

and VGG-16 with intersect points extracted with our method from

layers C1; . . .;C5 and with CNN fixations as in [26]

Feature type Layer AUCFi ;fHfix (%) AUCFHfix ;fFi
(%)

VGG-16 interest points C1 53.94 63.50

C2 57.70 64.38

C3 66.28 63.96

C4 74.82 62.07

C5 74.13 59.69

VGG-16 fixations [26] – 75.06 64.90
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Table 5 Similarity scores between all pairs of interest points, in decreasing order

Feature types BCfFj fH
(%) Feature types JSfFj fH (%) Feature types qfFj fH (%)

DenseNet-201 Resnet-v2-50 93.91 DenseNet-201 Resnet-v2-50 99.47 VGG-f AlexNet 78.70

DenseNet-201 InceptionV3 85.51 DenseNet-201 InceptionV3 97.38 SIFT SURF 77.66

InceptionV3 Resnet-v2-50 85.45 InceptionV3 Resnet-v2-50 97.33 DenseNet-201 Resnet-v2-50 75.06

VGG-f AlexNet 77.28 SIFT SURF 92.72 VGG-f VGG-19 71.10

SIFT SURF 77.16 VGG-f AlexNet 92.47 AlexNet VGG-19 70.55

Efficientnet-b7 Resnet-v2-50 73.73 Efficientnet-b7 Resnet-v2-50 90.76 SIFT HCD 68.27

Efficientnet-b7 DenseNet-201 73.62 Efficientnet-b7 DenseNet-201 90.66 VGG-19 Efficientnet-b7 66.22

AlexNet VGG-19 72.33 AlexNet VGG-19 89.62 SURF HCD 65.35

VGG-f VGG-19 71.52 VGG-f VGG-19 88.92 Efficientnet-b7 DenseNet-201 64.88

AlexNet Efficientnet-b7 70.76 AlexNet Efficientnet-b7 88.59 Efficientnet-b7 Resnet-v2-50 63.15

VGG-19 Efficientnet-b7 70.28 VGG-19 Efficientnet-b7 88.46 AlexNet Efficientnet-b7 62.78

Efficientnet-b7 InceptionV3 69.00 Efficientnet-b7 InceptionV3 87.79 VGG-f Efficientnet-b7 62.24

VGG-f Efficientnet-b7 67.46 VGG-f Efficientnet-b7 86.13 AlexNet DenseNet-201 60.62

AlexNet Resnet-v2-50 66.10 AlexNet Resnet-v2-50 85.15 VGG-f DenseNet-201 60.30

AlexNet DenseNet-201 65.99 AlexNet DenseNet-201 85.04 VGG-19 DenseNet-201 59.69

SURF DenseNet-201 65.90 SURF DenseNet-201 83.95 VGG-19 Resnet-v2-50 59.09

SURF Resnet-v2-50 65.32 SURF Resnet-v2-50 83.54 AlexNet Resnet-v2-50 58.47

SURF Efficientnet-b7 64.52 SURF Efficientnet-b7 83.42 VGG-f Resnet-v2-50 57.52

SURF AlexNet 63.73 SURF AlexNet 83.15 Human Efficientnet-b7 50.63

AlexNet InceptionV3 63.47 AlexNet InceptionV3 83.11 SURF AlexNet 45.72

VGG-19 Resnet-v2-50 62.73 VGG-19 Resnet-v2-50 83.09 SURF VGG-19 44.70

VGG-19 DenseNet-201 62.44 VGG-19 DenseNet-201 82.84 SIFT AlexNet 44.41

SIFT HCD 62.21 VGG-f Resnet-v2-50 81.34 Human SURF 43.46

SURF InceptionV3 61.65 VGG-f DenseNet-201 81.24 SURF Efficientnet-b7 43.24

VGG-f Resnet-v2-50 61.50 VGG-19 InceptionV3 80.86 SIFT VGG-19 43.23

VGG-f DenseNet-201 61.41 SURF VGG-19 80.74 SURF VGG-f 43.05

SURF VGG-19 60.79 SURF InceptionV3 80.70 SIFT VGG-f 43.04

SURF VGG-f 60.39 SIFT HCD 80.68 InceptionV3 Resnet-v2-50 41.97

VGG-19 InceptionV3 60.16 SURF VGG-f 80.05 DenseNet-201 InceptionV3 40.86

VGG-f InceptionV3 59.29 VGG-f InceptionV3 79.49 HCD VGG-19 40.35

SIFT AlexNet 58.69 SIFT AlexNet 78.83 HCD AlexNet 39.91

SIFT DenseNet-201 58.57 SIFT DenseNet-201 77.85 HCD VGG-f 38.17

SIFT Resnet-v2-50 57.97 SIFT Resnet-v2-50 77.35 SIFT Efficientnet-b7 37.89

SIFT Efficientnet-b7 57.33 SIFT Efficientnet-b7 77.27 Human VGG-19 37.16

SURF HCD 56.73 SIFT VGG-19 76.46 HCD Efficientnet-b7 36.39

SIFT VGG-f 56.21 SIFT VGG-f 76.38 SIFT DenseNet-201 35.44

SIFT VGG-19 56.12 SURF HCD 76.03 Human AlexNet 35.39

SIFT InceptionV3 55.06 SIFT InceptionV3 74.83 SURF DenseNet-201 35.33

HCD AlexNet 44.13 HCD AlexNet 64.08 AlexNet InceptionV3 34.13

HCD VGG-19 43.43 HCD VGG-19 63.12 Human VGG-f 33.94

HCD VGG-f 42.77 HCD VGG-f 62.33 Human SIFT 33.89

HCD Efficientnet-b7 42.49 HCD Efficientnet-b7 62.03 Human HCD 33.88

HCD DenseNet-201 40.87 HCD DenseNet-201 60.15 VGG-f InceptionV3 33.86

HCD Resnet-v2-50 40.42 HCD Resnet-v2-50 59.68 VGG-19 InceptionV3 32.52

HCD InceptionV3 38.63 HCD InceptionV3 57.59 Human DenseNet-201 32.30

Human Efficientnet-b7 37.05 Human Efficientnet-b7 56.13 Human Resnet-v2-50 31.75

Human VGG-19 35.18 Human VGG-19 53.44 SURF Resnet-v2-50 31.66

Human SURF 34.93 Human SURF 53.23 SIFT Resnet-v2-50 30.49
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maps at these two deepest layers contributes to the ‘‘grid’’

effect.

On the contrary, as Fig. 11 and Table 2 show, the local

measure tells us that human fixations highly correlate with

EfficientNet, VGG, AlexNet, SIFT and SURF, albeit being

subsets of them.

Human fixations tend to be located in areas that are

targeted by local descriptors and CNNs and, at the same

time, there are areas targeted by local descriptors and

CNNs that humans do not seem to look at.

7 Conclusion

The more we learn about the mechanisms of the primate

visual system, the more these mechanisms can be embed-

ded in computational models to improve their performance.

While earlier local image descriptors were inspired by the

mechanisms of the early visual cortex, today’s CNNs

embed processes that take place on the higher cortical areas

of the primate visual system. It is then natural to ask if

these computational models rely on the same image areas

humans focus their attention on when performing recog-

nition or classification tasks. In this paper, we measured the

similarity between attention areas of humans, handcrafted

features (we used the three local image descriptors SIFT,

SURF and HCD) and seven deep CNNs from the families

AlexNet, VGG, Resnet, Inception, DenseNet, EfficientNet.

To do so, we used three global similarities and a local one

to compare the area of interest of the three classes humans,

local image descriptors and CNNs. Extensive experiments

were carried out on the ETD dataset, to establish intraclass

and interclass similarities. The obtained results indicate

that human fixations positively correlate with SIFT, SURF

and HCD. Slightly higher correlations can be seen with the

deepest layers of some of the networks, notably Effi-

cientNet, Resnet, DenseNet, VGG and AlexNet, while

there is weak or no correlation with shallow layers. Only

Inception learns features through the layers that do not

follow this pattern: correlation with humans is always weak

or negative, especially at the intermediate layers. Local

comparisons highlight that humans attention areas tend to

Table 5 (continued)

Feature types BCfFj fH
(%) Feature types JSfFj fH (%) Feature types qfFj fH (%)

Human VGG-f 34.31 Human AlexNet 52.49 HCD DenseNet-201 29.43

Human AlexNet 34.10 Human VGG-f 52.42 Efficientnet-b7 InceptionV3 28.43

Human SIFT 32.82 Human SIFT 50.32 HCD Resnet-v2-50 24.91

Human HCD 30.58 Human Resnet-v2-50 46.71 SIFT InceptionV3 12.03

Human Resnet-v2-50 29.09 Human DenseNet-201 46.61 SURF InceptionV3 12.00

Human DenseNet-201 29.02 Human HCD 46.21 HCD InceptionV3 9.10

Human InceptionV3 25.62 Human InceptionV3 42.35 Human InceptionV3 -6.14

First column: BC similarity scores, second: Jensen–Shannon similarity, third: Spearman correlation coefficients

Fig. 10 (Left) DenseNet-201

layer c5 interest points and

(right) Resnet-V2-50 layer b4

interest points. Notice how the

points are evenly spread at these

two deepest layers
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be contained in areas relevant to local descriptors and most

CNN’s layers. This might be due to the fact that human

fixations were collected by viewing images for only 3 s.

Further investigations on how correlation changes when

humans can view images for a longer time would shed light

on the full extent of the correlations. Moving on to intra-

class similarities, we can see how SIFT and SURF highly

correlate, as most of the networks do, while interclass

similarities are predictably lower, with the most relevant

being the ones between humans and CNNs.
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