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Abstract Electronic Health Records (EHRs) in hos-
pital information systems contain patients’ diagnosis

and treatments, so EHRs are essential to clinical data

mining. Of all the tasks in the mining process, Chinese

Word Segmentation (CWS) is a fundamental and im-

portant one, and most state-of-the-art methods greatly
rely on large-scale of manually-annotated data. Since

annotation is time-consuming and expensive, efforts have

been devoted to techniques, such as active learning,

to locate the most informative samples for modeling.
In this paper, we follow the trend and present an ac-

tive learning method for CWS in EHRs. Specifically,

a new sampling strategy combining Normalized En-
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tropy with Loss Prediction (NE-LP) is proposed to se-
lect the most representative data. Meanwhile, to min-

imize the computational cost of learning, we propose

a joint model including a word segmenter and a loss

prediction model. Furthermore, to capture interactions

between adjacent characters, bigram features are also
applied in the joint model. To illustrate the effective-

ness of NE-LP, we conducted experiments on EHRs col-

lected from the Shuguang Hospital Affiliated to Shang-

hai University of Traditional Chinese Medicine. The re-
sults demonstrate that NE-LP consistently outperforms

conventional uncertainty-based sampling strategies for

active learning in CWS.

Keywords Active learning · Chinese word segmenta-

tion · Deep learning · Electronic health records

1 Introduction

Electronic Health Records (EHRs) systematically col-
lect patients’ clinical information, such as health pro-

files, histories of present illness, past medical histories,

examination results and treatment plans [8]. By ana-

lyzing EHRs, many useful information, closely related
to patients, can be discovered [37]. Since Chinese EHRs

are recorded without explicit word delimiters (e.g., “糖

尿病酮症酸中毒” (diabetic ketoacidosis)), ChineseWord

Segmentation (CWS) is a prerequisite for processing

EHRs. Currently, state-of-the-art CWS methods usu-
ally require large amounts of manually-labeled data to

reach their full potential. However, compared to gen-

eral domain, CWS in medical domain is more difficult.

On one hand, EHRs involve many medical terminolo-
gies, such as “高血压性心脏病” (Hypertensive Heart

Disease) and “罗氏芬” (Rocephin), so only annotators

with medical backgrounds are qualified to label EHRs.

http://arxiv.org/abs/1908.08419v3
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On the other hand, EHRs may involve personal priva-

cies of patients. Therefore, they cannot be released on

large scales for labeling. The above two reasons lead to

the high annotation cost and insufficient training cor-

pus for CWS in medical texts.
CWS was usually formulated as a sequence labeling

task [19], which can be solved by supervised learning

approaches, such as Hidden Markov Model (HMM) [6]

and Conditional Random Field (CRF) [16]. However,
these methods rely heavily on handcrafted features. To

relieve the efforts of feature engineering, neural net-

work based methods are beginning to thrive [3, 5, 20].

However, due to insufficient annotated training data,

conventional models for CWS trained on open corpora
often suffer from significant performance degradation

when transferred to specific domains, let alone the re-

searches are rarely dabbled in medical domain.

One solution for this obstacle is to use active learn-
ing, where only a small scale of samples are selected and

labeled in an active manner. Active learning methods

are favored by the researchers in many Natural Lan-

guage Processing (NLP) tasks, such as text classifica-

tion [30] and Named Entity Recognition (NER) [13].
However, only a handful of works are conducted on

CWS [19], and few focuses on medical domain.

Given the aforementioned challenges and current

researches, we propose a word segmentation method
based on active learning. To select the most informative

data, we incorporate a sampling strategy called NE-

LP, which consists of Normalized Entropy (NE) and

Loss Prediction (LP). Specifically, we leverage the nor-

malized entropy of class posterior possibilities from Bi-
directional Long-Short Term Memory and Conditional

Random Field (BiLSTM-CRF) based word segmenter

to define uncertainty. Then, we attach a “loss predic-

tion model” based on self-attention [31] to the word
segmenter and it aims to predict the loss of input data.

The final decision on the selection of labeling samples

is made by calculating the sum of normalized token en-

tropy and losses according to a certain weight. Besides,

to capture coherence over characters, we additionally
add n-gram features to the input of the joint model

and experimental results show that for specific texts,

such as our medical texts, bigram performs best.

To sum up, the main contributions of our work are
summarized as follows:

– We propose a novel word segmentation method in-

corporating active learning and hybrid features. The

former lightens the burden of labeling large amounts

of data, and the latter combines bigram features
with character embeddngs to achieve better repre-

sentations of the coherence between adjacent char-

acters.

– To improve the performance of active learning, we

propose a simple, yet effective sampling strategy

called NE-LP, which is based on a joint model in-

cluding a word segmenter and a loss prediction model.

Instead of solely relying on the uncertainty of clas-
sifying boundary to choose the most representative

samples for labeling, our proposed method utilizes

normalized token entropy to estimate the uncer-

tainty from outputs of the word segmenter at statis-
tical level, moreover, we also employ self-attention

as a loss prediction model to simulate human un-

derstanding of words from the deep learning level.

– Instead of evaluating the performance in simulated

data, we use cardiovascular diseases data collected
from the Shuguang Hospital Affiliated to Shanghai

University of Traditional Chinese Medicine to illus-

trate the improvements of the proposed method. Ex-

perimental results show that NE-LP is superior to
mainstream uncertainty-based sampling strategies

in F1-score.

The rest of this paper is organized as follows. Sec-

tion 2 briefly reviews the related work on CWS and ac-

tive learning. Section 3 details the proposed method for

CWS, followed by experimental evaluations as Section
4. In the end, the conclusions and potential research

directions are summarized as Section 5.

2 Related Work

2.1 Chinese Word Segmentation

Due to the practical significance [20], CWS has at-

tracted considerable research efforts, and a great num-

ber of solution methods have been proposed in the lit-

erature in past decades [25, 35, 40]. Generally, all the
existing approaches fall into two categories: statistical

machine learning and deep learning [19].

Statistical Machine Learning Methods. Initially,
statistical machine learning methods were widely-used

in CWS. Xue and Shen [35] employed a maximum en-

tropy tagger to automatically assign Chinese charac-

ters. Zhao et al. [39] used CRF for tag decoding and
considered both feature template selection and tag set

selection. However, these methods greatly rely on man-

ual feature engineering [24], while handcrafted features

are difficult to design, and the sizes of these features

are too large for practical use [3]. In such a case, deep
learning methods have been increasingly employed for

the ability to minimize the efforts in feature engineer-

ing.

Deep Learning Methods. Recently, researchers

tended to apply various neural networks for CWS and



Title Suppressed Due to Excessive Length 3

achieved remarkable performance. To name a few, Zheng

et al. [40] used deep layers of neural networks to learn

feature representations of characters. Chen et al. [3]

adopted LSTM to capture the previous important in-

formation. Wang and Xu [32] proposed a Convolutional
Neural Network (CNN) to capture rich n-gram features

without any feature engineering. Gan and Zhang [7]

investigated self-attention for CWS and observed that

self-attention gives highly competitive results. Jiang and
Tang [14] proposed a sequence-to-sequence transformer

model to avoid overfitting and capture character infor-

mation at the distant site of a sentence. La Su and

Liu [15] presented a hybrid word segmentation algo-

rithm based on Bi-directional Gated Recurrent Unit
(BiGRU) and CRF to learn the semantic features of the

corpus. Ma et al. [22] found that BiLSTM can achieve

better results on many of the popular CWS datasets as

compared to models based on more complex neural net-
work architectures. Therefore, in this paper, we adopt

BiLSTM-CRF as our base word segmenter due to its

simple architecture, yet remarkable performance.

Open-source CWS Tools. In recent years, more

and more open-source CWS tools are emerging, such
as Jieba and PyHanLP. These tools are widely-used

due to convenience and great performance for CWS in

general fields. However, terminologies and uncommon

words in medical fields would lead to the unsatisfac-
tory performance of segmentation results. We experi-

mentally compare seven well-known open-source CWS

tools on EHRs. As shown in Table 4, we find that since

these open-source tools are trained from general domain

corpora, the results are not ideal enough to cater to the
needs of subsequent NLP tasks when applied to medical

fields.

Domain-Specific CWS Methods. Currently, a

handful of domain-specific CWS approaches have been

studied, but they focused on decentralized domains.
In the metallurgical field, Shao et al. [25] proposed a

domain-specific CWS method based on BiLSTMmodel.

In the medical field, Xing et al. [34] proposed an adap-

tive multi-task transfer learning framework to fully lever-
age domain-invariant knowledge from high resource do-

main to medical domain. Meanwhile, transfer learning

still greatly focuses on the corpora in general domain.

When it comes to the specific field, large amounts of

manually-annotated data are necessary. Active learn-
ing can solve this problem to a certain extent, where a

model asks human to annotate data that it is uncertain

of [38]. However, due to the challenges faced by per-

forming active learning on CWS, only a few studies have
been conducted. On judgements, Yan et al. [36] adopted

the local annotation strategy, which selects substrings

around the informative characters in active learning.

However, their method still stays at the statistical level.

Therefore, compared to the above method, we intend to

utilize a new active learning approach for CWS in med-

ical text, which combines normalized entropy with loss

prediction to effectively reduce annotation cost.

2.2 Active Learning

Active learning [1] mainly aims to ease data collec-

tion process by automatically deciding which instances

should be labeled by annotators, thus saving the cost of

annotation [12]. In active learning, the sampling strat-
egy plays a key role. Over the past few years, the rapid

development of active learning has resulted in various

sampling strategies, such as uncertainty sampling [18],

query-by-committee [9] and information gain [11].
Currently, in sequence labeling tasks, uncertainty-

based method has attracted considerable attention since

it performs well and saves much time in most cases [21].

Traditional uncertainty-based sampling strategies mainly

include least confidence, maximum token entropy and
minimum token margin.

Least Confidence (LC). The LC strategy selects

the samples whose most likely sequence tags that the

model is least confident of. Despite its simplicity, this
approach has been proven effective in various tasks [38].

SLC(x) = 1− p (y∗|x) (1)

where x is the instance to be predicted and y∗ repre-

sents the most likely tag sequence of x.

Maximum Token Entropy (MTE). The MTE
strategy evaluates the uncertainty of a token by en-

tropy. The closer the distribution of marginal probabil-

ity to uniform, the larger the entropy:

SMTE(x) = −
N∑

i=1

p (y∗|x) · log p (y∗|x) (2)

where N represents the number of classes.

Minimum Token Margin (MTM). To measure

the informativeness, MTM considers the first and sec-

ond most likely assignments and subtracts the highest
probability by the lowest one [23]:

SMTM (x) = max p (y∗|x) −max ′p (y∗|x) (3)

where max′ means the second maximum probability.

However, in some complicated tasks, such as CWS

and NER, only considering the uncertainty of data is
obviously not enough. Therefore, we further take loss

values into account and pick up samples from two per-

spectives including both uncertainty and loss.
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Base Model

Loss Prediction Model

Input Data Segmentation Prediction

Loss Prediction

Fig. 1 The overall architecture of the joint model, where the
loss prediction model is attached to the base model.

3 Joint Model Incorporated Active Learning

framework for Chinese Word Segmentation

3.1 Overview

Active learning algorithm is generally composed of two
parts: a learning engine and a selection engine. The

learning engine is essentially a segmenter, which is mainly

utilized for training in sequence labeling problems. The

selection engine picks up unlabeled samples based on

preset sampling strategy and submits these samples for
human annotation. Then, we incorporate them into the

training set after experts complete the annotation, thus

continuously improving the F1-score of the segmenter

with the increasing of the training set size [26]. In this
paper, we propose a joint model as a selection engine.

Fig. 1 shows the overall architecture of the joint model,

where the loss prediction model predicts the loss value

from input data. Moreover, the loss prediction model is

(i) attached to the base model, and (ii) jointly learned
with the base model. Here, the base model is employed

as a learning engine.

Algorithm 1 demonstrates the procedure of CWS

based on active learning with the sampling strategy of

NE-LP. First, with training set, we train a joint model

including a segmenter and a loss prediction model. Later,

the joint model selects n-highest ranking samples based
on NE-LP strategy, which are expected to improve the

performance of the segmenter to the largest extent.

Afterwards, medical experts annotate these instances

manually. Finally, these annotated instances are incor-
porated into the training set, and we use the new train-

ing set to train the joint model. The above steps iterate

until the desired F1-score is achieved or the number of

iterations has reached a predefined threshold.

Fig. 2 demonstrates the detailed architecture of the

joint model. First, we pre-process EHRs at the character-

level, separating each character of raw EHRs. For in-
stance, given a sentence L = [C0C1C2 . . . Cn−1Cn], where

Ci represents the i-th character, the separated form

is Ls = [C0, C1, C2, . . . , Cn−1, Cn], and we obtain the

character embeddings by converting character indexes
into fixed dimensional dense vectors. Afterwards, to

capture interactions between adjacent characters, bi-

gram embeddings are utilized to feature the coherence

Algorithm 1: NE-LP based Active Learning for

Chinese Word Segmentation

Input: labeled data L, unlabeled data U , the number
of iterations M , the number of samples
selected per iteration n, partitioning function
Split, size τ

Output: a word segmentation model f∗ with the
smallest testing set loss lmin

1 begin

2 Initialize: Trainingτ , T estingτ ← Split(L, τ)
3 train a joint model with a word

segmenter fτ and a loss prediction model tτ
4 estimate the testing set loss lτ on fτ
5 label U by fτ
6 for i = 1 to M do

7 for Sample ∈ U do

8 compute UncertaintySample from the
output of f and predict LossSample by t

9 calculate the sum of UncertaintySample

and LossSample according to a certain
weight

10 end

11 select n-highest ranking samples R

12 relabel R by annotators
13 form a new labeled dataset

TrainingR ← Trainingτ
⋃
{R}

14 form a new unlabeled dataset UR ← Uτ\{R}
15 train a joint model with fR and tR
16 estimate the new testing loss lR on fR
17 compute the loss reduction δR ← lR − lτ
18 if δR < 0 then

19 lmin ← lR
20 end

21 else

22 lmin ← lτ
23 end

24 end

25 f∗ ← f with the smallest testing set loss lmin

26 end

27 return f∗

over characters. We construct the bigram feature for

each character by concatenating it with the previous

character, i.e., B = [x0x1, x1x2, . . . , xt−1xt]. We employ
Word2Vec [10] to train bigram features to get bigram

embedding vectors. Then, we concatenate the charac-

ter embeddings and bigram embeddings as the input

of BiLSTM layer. Finally, CRF layer makes positional

tagging decisions over individual characters, and self-
attention layer learns to simulate the loss defined in

the base model.

3.2 BiLSTM-CRF based Word Segmenter

CWS can be formalized as a sequence labeling problem

with character position tags, which are (‘B’, ‘M’, ‘E’,
‘S’), so we convert the labeled data into the ‘BMES’

format, in which each character in the sequence is as-

signed with a label as follows: B=beginning of a word,
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Bigram 

Embeddings

Word2Vec

x x! x!x" x"x# x#x$ x$x% x%x& x%x& x&x'

Concatenated 

Embeddings

Embedding Layer

x x! x" x# x$ x% x& x' x(

Character 

Embeddings

…… ……

…… ……

CRF Layer

B M E B E E EB B

Self-Attention Layer

a predicted loss

BiLSTM

Layer

Segmentation

Prediction
Loss

Prediction

Fig. 2 The detailed architecture of the joint model, where BiLSTM-CRF is employed as a word segmenter and BiLSTM-Self-
Attention is a loss prediction model. The loss prediction model shares BiLSTM layer parameters with word segmenter to learn
feature representations better for loss prediction.

M=middle of a word, E=end of a word and S=single

word. For example, a Chinese segmented sentence “病

人/长期/于/我院/心血管科/住院/治疗/。/” (The pa-
tient was hospitalized for a long time in the cardio-

vascular department of our hospital.) can be labeled

as ‘BEBESBEBMMEBEBES’. In this paper, we use

BiLSTM-CRF as the base model for CWS, which is

widely-used in sequence labeling.

3.2.1 BiLSTM Layer

LSTM is mainly an optimization for traditional Recur-

rent Neural Network (RNN). RNN is widely used to

deal with time-series prediction problems. The result of

its current hidden layer is determined by the input of
the current layer and the output of the previous hidden

layer [17]. Therefore, RNN can remember historical re-

sults. However, traditional RNN has vanishing gradient

and exploding gradient problems when training long se-
quences [2], and LSTM can effectively solve these prob-

lems by adding a gated mechanism to RNN. Formally,

the LSTM unit performs the following operations at

time step t:

ft = σg (Wfxt + Ufht−1 + bf) (4)

it = σg (Wixt + Uiht−1 + bi) (5)

ot = σg (Woxt + Uoht−1 + bo) (6)

ct = ct−1 ⊙ ft + it ⊙ σc (Wcxt + Ucht−1 + bc) (7)

ht = σh (ct)⊙ ot (8)

where xt, ct−1, h(t−1) are the inputs of LSTM, all W∗

and U∗ are a set of parameter matrices, and b∗ is a
set of bias parameter matrices. ⊙ and σ operation rep-

resent matrix element-wise multiplication and sigmoid

function, respectively. In the LSTM unit, there are two

hidden layers (ht, ct), where ct is the internal memory

cell for dealing with vanishing gradient, while ht is the
main output of the LSTM unit for complex operations

in subsequent layers.

Obviously, the hidden state ht of the current LSTM

unit only relies on the previous hidden state ht−1, while

ignoring the next hidden state ht+1. However, future

information from the backward direction is also useful
to CWS [29]. BiLSTM, which consists of two LSTMs,

i.e., forward LSTM and backward LSTM, can capture

and merge features both from the forward and back-

ward direction of a sequence. Therefore, BiLSTM can

understand the syntactic and semantic context from a
deeper perspective than LSTM. Assume that the out-

put sequence of hidden states of the forward and back-

ward LSTM are
−→
ht and

←−
ht , respectively, the context

vector can be denoted by concatenating the two hidden

vectors as ht=[
−→
ht ;
←−
ht ].
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3.2.2 CRF Layer

For CWS, it is necessary to consider the dependencies

of adjacent tags. For example, a B (Begin) tag should
be followed by an M (Middle) tag or an E (End) tag,

and cannot be followed by an S (Single) tag. Given the

observed sequence, CRF has a single exponential model

for the joint probability of the entire sequence of labels,

so it can solve the label bias problem effectively, which
motivates us to use CRF to model the tag sequence

jointly, not independently [33].

A is an important parameter in CRF called a trans-

fer matrix, which can be set manually or learned by

model. Ayi,yi+1
denotes the transition probability from

label yi to yi+1. y
∗ represents the most likely tag se-

quence of x and it can be formalized as:

y∗ = argmax
y

p(y|x;A) (9)

3.3 Self-Attention based Loss Prediction Model

To select the most appropriate sentences in a large

number of unlabeled corpora, we attach a self-attention
based loss prediction model to the base word segmenter,

which is inspired by [38]. The word segmenter is learned

by minimizing the losses. If we can predict the losses of

input data, it is intuitive to choose samples with high
losses, which tend to be more beneficial to current seg-

menter improvement.

3.3.1 Self-Attention Layer

The attention mechanism was first proposed in the field

of computer vision, and it is widely used in NLP tasks

in recent years, which imitates human beings to address
problems focusing on important information from big

data [28]. Attention mainly aims to map a query to a se-

ries of key-value pairs [4]. Formally, attention performs

the following three operations:

1. Calculate the similarity between query and each key

to get the weight coefficient of the value correspond-

ing to each key, and then scale the dot products by
1√
dk
:

f (Q,Ki) =
QTKi√

dk
(10)

where dk denotes the dimension of key and value.

Word Segmenter

Loss Prediction 

Model

Input Data

Segmentation 

Prediction

Loss Prediction

Segmentation 

Segmentation 

Loss

Loss-Prediction-Model Loss

Fig. 3 The method for training loss prediction model. Given
an input, the word segmenter and loss prediction model out-
put a segmentation prediction and a predicted loss, respec-
tively. Next, a segmentation loss can be computed by the seg-
mentation prediction and annotation. Then, the segmentation
loss is regarded as a ground-truth loss for the loss prediction
model, and is used to compute the loss-prediction-model loss.

2. Normalize the weight coefficient by softmax func-

tion:

ai = softmax (f (Q,Ki)) =
exp (f (Q,Ki))∑Len

j=1 exp (f (Q,Kj))

(11)

3. The final attention is a weighted sum of weight co-

efficients and values:

Attention(Q,K, V ) =

Len∑

i=1

ai ∗ Vi (12)

where Len is the length of the input sequence.

Self-attention mechanism is a special form of atten-
tion, where Q, K and V have the same value, i.e., each

token in the sequence will be calculated attention with

other remaining tokens. Self-attention can learn the in-

ternal structure of the sequence and it is more sensitive

to the difference between input and output, so we use
self-attention to learn the loss of word segmenter and we

define that a sequence with higher self-attention score

has higher loss.

3.3.2 Loss Learning

Fig. 3 shows a detailed description of how to train the

loss prediction model. Given the input data x, the seg-

mentation prediction can be obtained through the word
segmenter: spre = Seg(x). Similarly, we can get the loss

prediction through the loss prediction model: losspre =

Loss(x). Next, the segmentation loss can be computed

as: lossSeg = LSeg(spre, strue), where strue represents
the true annotation of x. Then, lossSeg is regarded as a

ground-truth target for loss prediction model, so we can

compute the loss of loss prediction model as lossLoss =
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LLoss(losspre, lossSeg). The final loss function of the

joint model is defined as:

Ljoint = LSeg(spre, strue) + λLLoss(losspre, lossSeg)

(13)

where λ represents the weight coefficient. In the follow-

ing part, we empirically set λ to 1.

When training the loss prediction model, we seek to

minimize the segmentation loss and the predicted loss:

LLoss =
1

n

n∑

i=1

[losspre − lossSeg]
2 (14)

where n means the number of samples.

3.4 NE-LP Sampling Strategy

To judge whether the samples are effective to improve

the model performance, we combine the normalized en-

tropy of segmentation prediction with loss prediction.

The former measures the uncertainty, which can be
computed as Equation (15), while the latter takes seg-

mentation loss into consideration.

Uncertainty(x) =

∑N

i=1 pSeg(x) log pSeg(x)

log 1
N

√
Len

(15)

where pSeg represents the output probability of word

segmenter, andN denotes the number of labeled classes.

To ensure that the normalized entropy and loss are in

the same order of magnitude, we scale the normalized
entropy by 1√

Len
, where Len is the length of the input

sequence.

For CWS, we hypothesize that if a sample has both

high uncertainty and high loss, it is probably infor-
mative to the current word segmenter, and we verify

this assumption in our experiments. Therefore, the fi-

nal sampling strategy NE-LP can be formalized as:

SNE−LP (x) = α

∑N

i=1 pSeg(x) log pSeg(x)

log 1
N

√
Len

+ βLoss(x)

(16)

where α and β are the weight coefficients of normalized

entropy and loss prediction, respectively.

Table 1 Detailed Information of EHRs.

Types Counts Contents

Hospital records 957
Admission date,
history of present illness.

Medical records 992
Chief complaints,
physical examination.

Ward round records 952
General, heart rate,
laboratory findings.

Discharged records 967
Treatment plans,
date of discharge.

Table 2 Statistics of Datasets.

Datasets Sentences Words Characters

Training set 16465 400878 706362
Initial labeled set 4950 120699 212598
Unlabeled set 11525 280179 493764
Testing set 5489 131624 233759
Validation set 5489 135406 238954

4 Experiments & Analysis

4.1 Datasets

We collect 204 EHRs with cardiovascular diseases from

the Shuguang Hospital Affiliated to Shanghai Univer-

sity of Traditional Chinese Medicine and each contains

27 types of records. We choose 4 different types with

a total of 3868 records from them, which are hospital
records, medical records, ward round records and dis-

charge records. The detailed information of EHRs are

listed in Table 1.

We divide 3868 records including 27442 sentences

into training set, testing set and validation set with the

ratio of 6:2:2. Then, we randomly select 4950 sentences

from training set as initial labeled set, and the remain-

ing 11525 sentences as unlabeled set, i.e., we obtain the
initial labeled set and unlabeled set by splitting the

training set according to the ratio of 3:7. Statistics of

datasets are listed in Table 2.

4.2 Parameter Settings

Hyper-parameter configuration may have a great im-

pact on the performance of neural network. The hyper-

parameter configurations of our method are listed in

Table 3.

We initialize bigram embeddings via Word2Vec on

the whole datasets. The dimension of character embed-

dings is set as same as the bigram embeddings. Then,
we concatenate two embeddings with the dimsension of

256 as the input of BiLSTM layer. BiLSTM hidden unit

number is twice the dimension of concatenated embed-
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Table 3 Hyper-parameter Setting.

Hyper-parameters Setting

Maximum sequence length len = 200
Character embedding dimension dcha = 128
Bigram embedding dimension dbig = 128
Concatenated embedding dimension dcon = 256
BiLSTM hidden unit number nhid = 512
Dropout rate rate = 0.2

Table 4 Experimental Results of Different Open-source
CWS Tools.

CWS tools Precision Recall F1-score

SnowNLP 59.4 56.68 58.04
PyHanLP 65.01 70.89 67.82
Jieba 70.36 71.48 70.91
THULAC 68.67 77.36 72.76
PyNLPIR 69.14 76.89 72.81
FoolNLTK 72.85 76.98 74.86
pkuseg 78.93 75.86 77.37

dings. Dropout [27] is applied to the outputs of BiLSTM

layer in order to prevent our model from overfitting.

In active learning, we fix the number of iterations

at 10 since each sampling strategy does not improve

obviously after 10 iterations. At each iteration, we select
1000 sentences from unlabeled data for joint model to

learn.

4.3 Experimental Results

4.3.1 Comparisons between Different Open-source

CWS Tools

We select seven widely-used and mainstream open-source

CWS tools from the Internet, which are SnowNLP1, Py-

HanLP2, Jieba3, THULAC4, PyNLPIR5, FoolNLTK6

and pkuseg7. We evaluate them on our datasets with a
total of 27443 sentences.

As shown in Table 4, we find that pkuseg performs

the best with the F1-score of 77.37% while SnowNLP

shows the lowest of 58.04%, and THULAC has the high-

est recall of 77.36%. However, since these open-source
tools are trained by general domain corpora, when ap-

plied to specific fields, such as medical domain, the re-

sults are still not satisfactory. Therefore, we need to

train a new segmenter on medical texts.

1 https://github.com/isnowfy/snownlp
2 https://github.com/hankcs/pyhanlp
3 https://github.com/fxsjy/jieba
4 https://github.com/thunlp/THULAC-Python
5 https://github.com/tsroten/pynlpir
6 https://github.com/rockyzhengwu/FoolNLTK
7 https://github.com/lancopku/pkuseg-python

4.3.2 Comparisons between Different Models for CWS

To select a base word segmenter that is most suitable

for medical texts, we compare different types of mod-

els including both statistical machine learning and deep
learning. These models are trained on the whole train-

ing set with 20 epoches. The results are listed in TA-

BLE 5.

All deep neural networks obtain higher F1-score than

statistical machine learning model CRF by the margins

between 2.35% and 11.84% since neural networks can

effectively model feature representations.

We further observe that self-attention-CRF shows

relatively low F1-score of 86.48% since only a single

self-attention layer cannot extract useful feature repre-

sentations. Thus, to capture more features, we employ
Transformer-CRF, i.e., we use the encoder part of the

model proposed by [31] as the feature extractor, which

is composed of a multi-head attention sub-layer and

a position-wise fully connected feed-forward network.
Results show that Transformer-CRF has an F1-score

of 91.25%, which is a 4.77% improvement compared to

self-attention-CRF.

Among bi-directional RNNs, BiLSTM-CRF shows

a highest F1-score of 95.89%, while BiRNN-CRF and

BiGRU-CRF achieve 95.30% and 95.71%, respectively.

BiLSTM and BiGRU are optimizations for BiRNN since

they introduce gated mechanism to solve the problem
of long-distance dependencies, where BiLSTM contains

three gates, which are forget, input and output gates,

while BiGRU has two gates, which are reset and update

gates.

Furthermore, we notice that BiLSTM-CRF outper-

forms LSTM-CRF by the margins of 2.78%, which shows

that BiLSTM can understand the syntactic and seman-
tic contexts better than LSTM. Compared to CNN-

CRF, the F1-score of BiLSTM-CRF improves by 1.74%.

However, CNN is able to extract more local features,

while BiLSTM may ignore some key local contexts im-

portant for CWS when modeling the whole sentence.
Therefore, when combining BiLSTM and CNN as fea-

ture extractor, the F1-score reaches the peak of 95.97%,

which outperforms BiLSTM-CRF by a small margin of

0.08%.

Given the above experimental results, considering

the computational cost, complextity of model architec-

ture and final results, we adopt BiLSTM-CRF as our
base segmenter since the performance does not improve

greatly when incorporating CNN, but it costs more time

due to a more complex architecture.
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Table 5 Experimental Results of Different Models for CWS.

Model Precision Recall F1-score

CRF 83.39 84.88 84.13
Self-Attention-CRF 85.74 87.23 86.48
Transformer-CRF 90.72 91.78 91.25
LSTM-CRF 92.76 93.46 93.11
CNN-CRF 93.73 94.58 94.15
BiRNN-CRF 94.90 95.71 95.30
BiGRU-CRF 95.36 96.06 95.71
BiLSTM-CRF 95.81 95.97 95.89
CNN-BiLSTM-CRF 95.77 96.18 95.97

Table 6 Experimental Results with Different N-gram Fea-
tures in BiLSTM-CRF.

Model + feature Precision Recall F1-score

BiLSTM-CRF 95.81 95.97 95.89
BiLSTM-CRF + Four-gram 96.72 96.70 96.71
BiLSTM-CRF + Trigram 97.19 97.44 97.32
BiLSTM-CRF + Bigram 97.59 97.80 97.70

4.3.3 Effectiveness of N-gram Features in

BiLSTM-CRF based Word Segmenter

To investigate the effectiveness of n-gram features in
BiLSTM-CRF based word segmenter, we also compare

different n-gram features on EHRs. The results are shown

in Table 6.

By using additional n-gram features in BiLSTM-
CRF based word segmenter, there is an obvious im-

provement of F1-score, where bigram features achieve

97.70% while trigram and four-gram reach 97.32% and

96.71%, respectively. Specifically, bigram, trigram and

four-gram features outperform character-only features
by margins of 1.81%, 1.43% and 0.82%, which indicates

that n-gram features can effectively capture the seman-

tic coherence between characters.

Furthermore, we explore the reason why bigram fea-

tures perform better than trigram and four-gram. We
analyze the number of words consisting of 2, 3 and 4

characters in our datasets. As shown in Table 7, we

find the reason that yields such a phenomenon is that 2-

character words appear most often in datasets, with the
appearance of 147143, 48717 and 49413 times in train-

ing, testing and validation set, respectively. Therefore,

in our texts, bigram features can effectively capture the

likelihood of 2 characters being a legal word, and they

are most beneficial to model performance improvement.

Given the experimental results, we use bigram as

additional feature for BiLSTM-CRF based word seg-

menter.

Table 7 Statistics of words whose characters are of different
lengths.

N-character words Training set Testing set Val set

N = 2 147143 48717 49413
N = 3 30379 10043 10385
N = 4 8187 2707 2857

Fig. 4 Comparisons between different weight coefficients of
normalized entropy and loss prediction.

4.3.4 Comparisons between Different Weight

Coefficients of Normalized Entropy and Loss

Prediction

To study which part has more influence on the final per-

formance, we conduct an experiment on different weight

coefficients of normalized entropy and loss prediction

with bigram features. We compare five different groups

of parameters in Equation (16).

From the learning curves of Fig. 4, it is clear that

when the weight coefficients α and β are all set to 1,

the results are better than others in early iterations,

and then tend to be uniform, except for the coefficients

of 1 and 100.

Furthermore, we find that, when α and β are 100

and 1, i.e., we enlarge the effect of loss prediction, the

F1-scores are higher than the results when α and β are

1 and 100. We believe the reason is that loss predic-

tion is task-agnostic as the model is learned from losses
regardless of target tasks while normalized entropy is

more effective to the task like classification, which is

learned to minimize cross-entropy between predictions

and labels.

When the weight coefficients α and β are all set
to 1, respectively, the performance is the best, which

shows that combining two parts together can make full

use of respective advantages to achieve better results,
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thus we choose this group of parameters for subsequent

experiments.

4.3.5 Comparisons between Different Sampling

Strategies

In this experiment, we compare the conventional sam-
pling strategies introduced in Section 2 with our pro-

posed method NE-LP, as well as the uniformly ran-

dom baseline (RAND). We evaluate the performance

of strategy by its F1-score on the testing set. To prove
the effectiveness of our proposed method, we conduct

our experiments in two configurations: adding addi-

tional bigram features and using character-only fea-

tures. For each iteration, we train 30 epoches with bi-

gram features, which is a good trade-off between speed
and performance, while 50 epoches without bigram fea-

tures to ensure model convergence.

As illustrated in Fig. 5, all sampling strategies per-

form better than RAND baseline. From the left of

Fig. 5, we find that LC and MTE greatly outperform
MTM in early rounds while from the right of Fig. 5,

we notice that MTE works very effectively with the bi-

gram features, but LC suffers from performance drop.

The reason may be that, on the influence of bigram fea-

tures, LC is not accurate enough to localize the best
token to label.

Furthermore, we observe that the F1-scores improve

greatly when adding bigram features, which again indi-

cates the effectiveness of bigram features.

Regardless of whether to add bigram features, our

approach NE-LP shows the best performance for all
active learning cycles. The performance gaps between

our method NE-LP and entropy-based MTE are ob-

vious since NE-LP not only captures the uncertainty

of sequences, but also takes segmentation losses into

consideration.

4.3.6 Comparisons between Different Sampling

Strategies with Different Sizes of Initial labeled Set

Furthermore, we also investigate the effects of different

initial labeled set sizes on the final performance. Instead

of using the ratio of 3:7, we now divide the training set
with the ratio of 1:9 to get the initial labeled set and

unlabeled set.

As depicted in Fig. 6, we find that our proposed

method NE-LP still outperforms other uncertainty-

based sampling strategies at all iterations, which shows
that our method can always select informative samples

beneficial to current model improvement regardless of

the size of initial labeled set.

The performance trends of these sampling strategies

are similar to those in Fig. 5. NE-LP shows the best

performance, MTE achieves better F1-scores than LC

and MTM while RAND obtains the lowest results.

However, the performance gaps between NE-LP
and MTE are less obvious than Fig. 5 since when the

ratio is 1:9, losses tend to be smaller than those with

the ratio of 3:7. Therefore, in NE-LP, compared to loss

prediction, normalized entropy has a greater impact on
performance, leading to the phenomenon that the F1-

score curve of NE-LP is close to MTE. However, de-

spite the small gaps, NE-LP outperforms MTE any-

way. Therefore, we still can’t ignore the importance of

loss prediction since it also plays a role to improve the
performance.

5 Conclusion and Future Work

To relieve the efforts of EHRs annotation, we propose
an effective word segmentation method based on active

learning with a novel sampling strategy called NE-LP.

NE-LP effectively utilizes the output of a joint model

and combines normalized entropy with self-attention
based loss prediction. Compared to the widely-used and

mainstream uncertainty-based sampling methods, our

sampling strategy selects samples from statistical per-

spective and deep learning level. In addition, to cap-

ture coherence between characters, we further add bi-
gram features to the joint model. Based on EHRs col-

lected from the Shuguang Hospital Affiliated to Shang-

hai University of Traditional Chinese Medicine, we eval-

uate our method on CWS. Compared to conventional
uncertainty-based sampling strategies, NE-LP achieves

best performance, which proves the effectiveness of our

method to a certain extent.

As possible research directions, we plan to employ

other highly performant pre-trained neural networks,
such as Bert and GPT for EHRs segmentation. Then,

considering the characteristics of CWS task and model,

we believe that our method can also be applied to other

tasks, such as NER and relation extraction.
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Fig. 5 Comparisons between different sampling strategies when the ratio of initial labeled set and unlabeled set is 3:7.

Fig. 6 Comparisons between different sampling strategies when the ratio of initial labeled set and unlabeled set is 1:9.
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