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Abstract Metro system has been increasingly recog-

nized as a backbone of urban transportation system in

many cities around the world. To improve the demand

management and operation efficiency, it is crucial to

have accurate prediction of real-time metro passenger

flow. However, the forecast performance is often sub-

ject to the complex spatial and temporal distributions

of the metro passenger flow data. To this end, we de-

veloped a novel Dual Attentive Graph Neural Network

(DAGNN) that can effectively predict the distribution

of metro traffic flow considering the spatial and tempo-

ral influences. Specifically, two directed complete metro

graphs (i.e., inbound and outbound graphs) and the

weighted matrix of them are proposed to character-

ize the inbound (entering the system) and outbound

(leaving the system) passenger flow respectively. The

weighted matrix of inbound graph is estimated based

on the historical origin-destination (OD) demand and

that of the outbound graph is estimated based on the

similarity metrics between every two stations. More-

over, to capture the dependencies between inbound and

outbound flows, multi-layer Graph Spatial Attention

Networks (GSANs) that incorporate the spatial con-

text are applied to exploit the dynamic inter-station

correlations. Then, the acquired dependencies feature

integrated with external factors, such as weather con-

ditions, are filtered by temporal attention and fed into

a sequence decoder to produce short-term and long-

term passenger flow predictions. Finally, a series exper-

iments are conducted based on a comprehensive empiri-

cal dataset. Findings indicated that the proposed model

does not only well predict the metro passenger flow, but

also effectively detect the emergencies and incidents of

metro system.

Keywords Metro system · Passenger flow prediction ·
Graph neural network · Attention mechanism

1 Introduction

To relieve the traffic congestion and improve the air

quality, public transport, i.e. bus and metro, has been

introduced and developed in many cities. To encour-

age the public transport use, policy initiatives includ-

ing park, ride and bike sharing are implemented [1–3].

Specifically, metro system has become the backbone of

urban transportation in many cities because of its high

capacity and reliability. Also, (underground) metro sys-

tem does not occupy any road space. However, with the

popularity of metro system, the system operation and

service quality is often of concern, especially for the

high passenger flow in the peak periods [4]. Thus, it

is essential to find a method that can accurately pre-

dict the metro passenger flow. It is helpful for passenger

evacuation, vehicle scheduling, fare policy and demand

management.

In the previous studies, numerous approaches have

been proposed to predict traffic flow [5–8]. For instance,

Ahmed and Cook [9] first introduced autoregressive in-

tegrated moving average (ARIMA) model to forecast

the short-term traffic flow. Afterwards, ARIMA and

its variants [10–12] were widely applied to the free-

way traffic flow prediction. ARIMA and its variants

outperformed other traditional linear regression mod-

els [13]. Moreover, with the advancement of informa-

tion and communication technologies, comprehensive

data is available and provides the opportunity to fur-

ther investigate the inherent flow dynamics of the trans-

portation systems. Compared with traditional predic-

tion models, machine learning methods are more effi-

cient for the processing of such high-dimensional and

nonlinear data. Several machine learning methods ap-

proaches including decision tree [14, 15], support vector

machine [16, 17], Bayesian network [18–20] and neural

network [21–23], have been developed to predict traffic

flow. Furthermore, deep learning methods were applied

in the prediction models to explore the complex cor-

relation features of the traffic flow data [24–27]. For

example, Convolutional Neural Networks (CNNs) and

Recurrent Neural Networks (RNNs) were developed to

capture the spatial and temporary correlations of traffic

flows. Moreover, some researchers attempted to explore

the deep-seated spatial interactions among traffic sen-

sors based on the physical topologies of road networks

using some advanced methods, such as Graph Neural

Networks (GNNs) [28–32].

Although the above methods are available for the

traffic flow prediction, to generalize the prediction

methods for metro passenger flow prediction, it is still

a challenging task because of the following two consid-

erations:

– Inbound dependencies: The current outbound

(leaving the system) flow of a station is affected

by previous inbound (entering the system) flows of

one or several other stations. Notably, such correla-

tions change over time. For instance, in the morning

peak hours, the outbound flow of a transfer station

is strongly correlated with the inbound flows of one

or several stations far away. However, in the evening

peak hours, the outbound flow of a transfer station

is strongly correlated with the inbound flows of the

stations nearby.

– Outbound dependencies: The outbound flow of

a station is strongly correlated with that of the sta-

tions that share the same land use type (e.g. busi-
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ness districts) and functional type (e.g. transfer sta-

tions).

To capture the inbound and outbound dependen-

cies, a novel Dual Attentive Graph Neural Network

(DAGNN) was proposed in this study. Firstly, metro

stations are denoted as nodes and two directed com-

plete metro graphs, the weighted matrix of inbound and

outbound graph, are proposed to describe the inbound

and outbound flow profiles respectively. Specifically, the

weighted matrix of inbound graph is estimated based

on the historical metro passenger flows and that of the

outbound graph is derived by the similarity metrics be-

tween two stations. Then the above two graphs are in-

corporated into the multi-layer Graph Spatial Atten-

tion Networks to accommodate the inbound and out-

bound dependencies, and the dependencies embeddings

would be integrated with external factors (e.g. weath-

ers). Moreover, we developed a temporal attention to

adaptively select the most relevant embeddings. Finally,

the filtered embeddings are fed into a stacked RNN net-

work to forecast the outbound passenger flow of more

than one future time intervals.

To sum up, the main contributions of this work are

three-fold:

– We develop a novel Graph Spatial Attention Net-

work (GSAN) to capture both inbound and out-

bound dependencies. Specifically, we integrate spa-

tial attention into a generic GNN to dynamically

capture inter-station correlations. Graph spatial at-

tention layer can be stacked like CNNs to facili-

tate the representation learning of inbound and out-

bound dependencies.

– We design a temporal attention based decoder to

produce both short-term and long-term predictions.

At each prediction step, the dependencies embed-

dings concatenated with external factors are filtered

by temporal attention and then the selected embed-

dings are fed into a stacked LSTM network to fore-

cast the outbound passenger flow at the next time

interval.

– Extensive experiments on a real-world benchmark

consisting of Guangzhou metro passenger flow and

meteorological data justifies that the proposed

model outperforms the state-of-the-art methods.

The remainder of this paper is organized as follows.

Section 2 describes the formulation of LSTM network,

and highlights the key issues to be resolved. The for-

mulation of proposed DAGNN is described in Section 3.

Then, the analysis results and illustrative example are

presented in Section 4. Lastly, the concluding remarks

and future research directions are given in Section 5.
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Fig. 1 Internal structure of a LSTM cell.

2 Preliminaries

2.1 Long short term memory network

The Long Short Term Memory (LSTM) network [33]

is a variant of traditional (RNN) [34], which has been

proved to be capable of alleviating the vanishing gra-

dient problem [35]. As shown in Fig.1, different from

basic RNNs, a LSTM cell contains several gates, which

can selectively retain information. These small modifi-

cations enable the LSTM network to capture long-term

dependencies, and thereby eliminate the effect of van-

ishing gradient. Specifically, after integrating the cur-

rent input xt and previous hidden state ht−1, the com-

plete workflow of a LSTM cell can be represented as

follows:

ft =σ (Wf [ht−1,xt] + bf ) (1)

it =σ (Wi [ht−1,xt] + bi) (2)

ot =σ (Wo [ht−1,xt] + bo) (3)

ct =ft � ct−1 + it � tanh (Wc [ht−1,xt] + bc) (4)

ht =ot � tanh (ct) (5)

where {Wf ,Wi,Wo} and {bf , bi, bo} are trainable pa-

rameters. {Wf ,Wi,Wo} denote the weighted matri-

ces of the forget gate, the input gate and the out-

put gate respectively while {bf , bi, bo} denote their bias

vectors correspondingly. The operator � refers to the

Hadamard product. σ(·) and tanh(·) are two widely

used activation functions, which can be defined as:

σ(x) =
1

1 + e−x
(6)

tanh(x) =
ex − e−x

ex + e−x
(7)
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2.2 Problem statement

A transaction in metro system includes the card id,

station name, timestamp, transaction type (either in-

bound or outbound) and card type. Given a fixed time

span (e.g., 10 mins), we aggregate the transactions

and denote by xts,i, x
t
s,o the total inbound and out-

bound passengers at station s during t-th time inter-

val, respectively. Suppose the set of stations is S =

{s1, s2, . . . , sN}, where N denotes the total number of

stations. We use xtI =
(
xts1,I , x

t
s2,I

, . . . , xtsN ,I
)T ∈ RN

and xtO =
(
xts1,O, x

t
s2,O

, . . . , xtsN ,O
)T ∈ RN to denote

the inbound and outbound series of all stations during

t-th interval respectively.

With the aforementioned notations, the objective of

this paper is to use the historical passenger flow data{
(xtI ,x

t
O) ,

(
xt−1I ,xt−1O

)
,
(
xt−2I ,xt−2O

)
, . . .

}
and exter-

nal factors, to forecast the outbound passenger flow over

next τ time intervals X̂O =
(
x̂t+1
O , x̂t+2

O , . . . , x̂t+τO

)
∈

RN×τ .

3 Methodology

3.1 Model overview

There are two issues in the conventional metro passen-

ger flow prediction models: (1) effective modeling of the

non-Euclidean structures of metro systems; and (2) ex-

cessive learning of local spatial dependencies. In this

study, a novel metro passenger flow prediction model

- Dual Attentive Graph Neural Network (DAGNN) -

is proposed. In particular, the Graph Neural Network

(GNN) method is applied to capture the trends of metro

passenger flow pattern. Then, two metro network dia-

grams are constructed to model the inter-station pas-

senger flow dynamics globally.

Fig.2 presents the framework of Dual Attentive

Graph Neural Network (DAGNN). Following the novel

graph-to-sequence architecture [36], we employ two

graph neural networks to encode inbound and out-

bound dependencies respectively and then design a se-

quence decoder to forecast the future outbound pas-

senger flows. More specifically, our DAGNN consists of

following two parts: 1) In the encoder, we first orga-

nize two metro graphs representing the characteristics

of inbound and outbound flows respectively. Then we

develop Graph Spatial Attention Networks (GSANs) to

capture the dependencies from above metro graphs. Fi-

nally, each dependencies embedding is combined with

the features of external factors as the input to de-

coder. 2) In the decoder, an attention mechanism is

designed to adaptively select the relevant embeddings

and a stacked LSTM network is adopted to produce

both short-term and long-term predictions.

3.2 Model input

Before elaborating on the proposed model, we first

define the input with regard to inbound and outbound

passenger flows. Assume that the current time interval

is t and the size of inbound time window is TI . The

inbound flow segment of input can be represented as

follows:

Xt
I =

(
xt−TI+1
I ,xt−TI+2

I , . . . ,xtI

)
∈ RN×TI (8)

Likewise, we can determine the outbound flow seg-

ments of input. Notably, the outbound passenger flow

at a certain time interval of a day shares a high sim-

ilarity with those of previous days or weeks. Assume

that the time interval to forecast is t + ε (1 ≤ ε ≤ τ).

Considering the recent time intervals, daily and weekly

periodicity, we intercept three outbound flow segments

of length TO,r, TO,d and TO,w:

XtO,r =
(
x
t+ε−TO,r
O , . . . ,xtO, x̂t+1

O , . . . , x̂t+ε−1
O

)
∈ RN×TO,r

(9)

XtO,d =
(
x
t+ε−TO,d·d
O , . . . ,xt+ε−2d

O ,xt+ε−dO

)
∈ RN×TO,d

(10)

XtO,w =
(
x
t+ε−TO,w·w
O , . . . ,xt+ε−2w

O ,xt+ε−wO

)
∈ RN×TO,w

(11)

where x̂t+1
O denotes the predicted value at time interval

t+1. d and w refer to the one-day and one-week period

respectively. Combining these three flow segments, we

derive the complete outbound flow segment of input:

Xt
O =

(
Xt
O,r,X

t
O,d,X

t
O,w

)
∈ RN×TO (12)

where TO = TO,r + TO,d + TO,w.

3.3 Metro graph construction

In Graph Neural Networks (GNNs), the feature rep-

resentation of a node is determined by its neighbour-

ing nodes. This property makes GNNs naturally suit-

able for the task of network-wise flow prediction. Thus

in previous works concerning traffic estimation, urban

road network topology is directly converted into the

traffic graph, where nodes refer to the intersections and

edges refer to the road segments. However, in the case

of the metro system, there are direct interactions (pas-

sengers shuttle) between any two stations even though
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GSAL ··· 𝐱𝑂
𝑡LSTM

···

Residual 
connection

𝐡𝑡, 𝐜𝑡

GSAL

GSAL

GSAL

GSAL

GSAL···

𝐗𝐼
𝑡

𝐗𝑂
𝑡

···

Attention

LSTM

LSTM

···

LSTM

LSTM

LSTM

···

ො𝐱𝑂
𝑡+1

ො𝐱𝑂
𝑡+𝜏

𝐡𝑡, 𝐜𝑡

Dependencies embedding External factors fusion Attention Decoder

Fig. 2 The framework of our model. GSAL: graph spatial attention layer. XtI : inbound passenger flow segment at time interval

t. XtO: outbound passenger flow segment at time interval t. x̂t+1
O : the predictive outbound flow of all stations at time interval

t + 1. ht: the hidden state at t-th time interval. ct: the cell state at t-th time interval.

they are separated by several stations. To fully repre-

sent such relationships and expeditiously extract the

traffic patterns inherent in the metro system, we con-

struct two directed complete graphs GI (V, E ,AI) and

GO (V, E ,AO) carrying inbound and outbound informa-

tion respectively. V ∈ RN denotes the set of nodes and

each node corresponds to a metro station. E ⊆ |V|× |V|
denotes the set of edges. AI ∈ RN×N and AO ∈ RN×N
represents the weighted matrices of inbound informa-

tive graph GI and outbound informative graph GO, re-

spectively. Given a graph Gβ (β = I or O), Aβ(i, j) is

the weight of the edge from node j to node i.

3.3.1 Inbound informative graph

Distinct from the traditional GNNs, the weighted ma-

trix AI ∈ RN×N in GI is developed based on do-

main knowledge rather than adjacency and degree of

nodes. We first construct an origin-destination matrix

D ∈ RN×N , where D(i, j) denotes the total number of

passengers travelling from station sj to station si in the

training set. Then we obtain the AI(i, j) by employing

the row normalization on D (as shown in Fig. 3):

AI(i, j) =
D(i, j)∑N
k=1 D(i, k)

(13)

3.3.2 Outbound informative graph

Likewise, to derive the weighted matrix AO ∈ RN×N ,

we first construct a similarity matrix Q ∈ RN×N . We
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Fig. 3 Illustration of inbound informative graph generation.

denote by qsi the historical outbound flow of station

si extracted from the training set. Thus the similarity

score between two stations si and sj can be calculated

by:

Q(i, j) =
1

1 + exp
(
DDTW

(
qsi ,qsj

)) (14)

where DDTW(·) denotes the Derivative Dynamic Time

Warping [37] algorithm, which is a modification of

DTW [38] and is widely used in measuring the distance

between two periodic time series. Then we apply the

row normalization to Q to obtain the AO(i, j):

AO(i, j) =
Q(i, j)∑N
k=1 Q(i, k)

(15)
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3.4 Graph encoder

In this section, we first introduce a generic GNN model

used by [39] to represent and propagate passenger

flow information. Given the feature matrix
(
Xt
β

)(l)
∈

RN×Tβ in the l-th layer (β = I or O), the output(
Xt
β

)(l+1)

∈ RN×Tβ can be derived as follows:

(
Xt
β

)(l+1)
= f

(
Aβ

(
Xt
β

)(l)
W(l)

)
(16)

where Aβ ∈ RN×N is the weighted matrix, W(l) ∈
RTβ×Tβ refers to the learnable layer-specific parameter

matrix and f(·) denotes the activation function.

Obviously, this fundamental GNN model can ex-

ploit the spatial and temporal characteristics inherent

in metro passenger flow data. Nevertheless, since the

weighted matrix Aβ is a static constant, it fails to cap-

ture the dynamic correlations between different nodes

(i.e., stations). To address the above issues, we devise

the unique GSAN to reinforce the embedding capability

of DAGNN.

3.4.1 Graph spatial attention layer

In the context of metro passenger flow prediction, the

interactions between different stations are complex and

variable. There are many other factors (e.g. crowd-

ing degrees of stations and carriages) can have im-

pact on the passenger flow upon the metro network.

Hence, modulating concrete relations between nodes in

real time is significant for further exploring the depen-

dencies. Recently, Graph Attention Network (GAT) is

prevalent as an efficient paradigm to implement the

above function. As contrasted with spectral-domain

Graph Convolutional Networks (GCNs), GAT accom-

modates specifying different importance to neighbor-

hoods within the same hop through self-attention mech-

anism [39]. Self-attention mechanism has achieved huge

successes in natural language processing [40, 41] and

computer vision [42–44]. It ensures that GAT has the

superiority in modelling the network dynamics com-

pared to GCNs. However, the attention scores calcu-

lated in GAT are purely dependent on the input, which

induces the learning bias to some extent. Thus we in-

corporate the hidden states generated by decoder to en-

hance the relations representation. Specifically, hidden

states are used as approximations to the latent features

of network status.

To augment the representation power of input fea-

tures, a linear transformation U ∈ RTβ×Tβ is applied

to each node to obtain the high-dimensional expression.

Then we can compute the pair-wise relation score from

node j to node i as follows:

uij = g

(
aT

[
U
((

Xt
β

)(l)
i

)T
||U

((
Xt
β

)(l)
j

)T
||ht||ct

])
(17)

where a ∈ R2Tβ+2N is a mapping vector.
(
Xt
β

)(l)
i

,(
Xt
β

)(l)
j
∈ R1×Tβ denote the i-th and j-th row of input

feature matrix
(
Xt
β

)(l)
respectively. ht, ct ∈ RN are

the hidden and cell states at the current time interval t

respectively. (·||·) refers to the concatenation operation.

g (·) denotes the LeakyReLU function [45]:

g(x) =

{
x if x ≥ 0,
x
0.2 if x < 0.

(18)

Afterwards, a softmax function is employed to en-

sure the attention weights of a node sum to one:

eij =
exp (uij)∑N
k=1 exp (uik)

(19)

Finally, these element-wise attention weights can

constitute an attention matrix E
(l)
t ∈ RN×N and we

impose it on initial weighted matrix Aβ to update the

propagation rule:

(
Xt
β

)(l+1)
= f

((
E

(l)
t �Aβ

) (
Xt
β

)(l)
W(l)

)
(20)

For convenience, Eq. (20) is abbreviated as:

(
Xt
β

)(l+1)
= GSAL

(
ht, ct,Aβ ,

(
Xt
β

)(l))
(21)

3.4.2 Dependencies embedding

On the basis of GSAL, we design two paralleled GSANs

to capture the inbound and outbound dependencies re-

spectively. As shown in Fig. 2, we stack the GSALs as

building blocks to generate the dependencies embed-

dings. However, since the range of elements in E
(l)
t is

[0, 1], the values will continually decrease, which leads

to the degradation of model. To resolve this matter, we

introduce the residual connection [46] to promote model

training while retaining the original input information.

Assume that the number of layers in GSAN is L. The

output of l-th layer is:
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(
Xtβ

)(l)
=

GSAL

(
ht, ct,Aβ ,

(
Xtβ

)(l−1)
)

+
(
Xtβ

)(l−1)
, l < L

GSAL

(
ht, ct,Aβ ,

(
Xtβ

)(l−1)
)
·Wβ , l = L

(22)

where
(
Xt
β

)(0)
= Xt

β and Wβ ∈ RTβ×Tβ is a learnable

parameter. To prevent the over-smoothing, we utilize

a linear transformation in the last layer to obtain the

final embedding
(
Xt
β

)(L)
. Apparently, each column of(

Xt
β

)(L)
, denoted by xt

′

β ∈ RN , characterizes the spa-

tial variation of network-wide inbound or outbound flow

at the given time interval.

3.5 External factors fusion

Metro passenger flow is affected by various external

factors, especially meteorological conditions [47]. Thus

we incorporate the meteorological data to enhance the

performance of our model. Inspired by some previous

works [25, 48] considering the fusion of external factors

in traffic prediction, we construct a Multilayer Percep-

tron (MLP) to extract the meteorological features. For

each meteorological variable (e.g. temperature), Min-

Max normalization is applied to map the value into the

range of [0, 1]:

y =
x−min(x)

max(x)−min(x)
(23)

Then the processed data is sent to the input layer,

which is followed by three stacked fully-connected layers

containing 16, 8 and 4 neurons respectively. To speed up

the training, we use ReLU [49] as activation function:

ReLU(x) = max (0, x) (24)

Finally, we can obtain the embedding of meteoro-

logical information at each time interval t′, which is

denoted by xt
′

E .

3.6 Attention based decoder

After acquiring the dependencies embeddings as well as

external factor features, we integrate them as the new

input to the decoder:

x̃t
′

β =
(
xt
′

β ||xt
′

E

)
(25)

It should be noted that passenger flows at preced-

ing time intervals have unequal contributions to that

at next time interval. To capture such dynamic corre-

lations, we employ a temporal attention mechanism to

adaptively select the most relevant inputs:

ut
′

β = vT
T

(
W
′

T [ht||ct] + WT x̃t
′

β + bT

)
(26)

γt
′

β =
exp

(
ut
′

β

)
∑Tβ
k=1 exp

(
ukβ

) (27)

ctβ =

Tβ∑
k=1

γkβ x̃kβ (28)

where WT ∈ R(N+4)×2N , W
′

T ∈ R(N+4)×(N+4) and vT ,

bT ∈ RN+4 are learnable parameters. Subsequently, we

concatenate the inbound and outbound context vectors

and feed it into the LSTM network to produce the final

predictions:

x̂t+εO = LSTM
(
ctI ||ctO,ht, ct

)
(29)

Since our model is smooth, we can use back-

propagation algorithm [34] to train the model. During

the training stage, parameters in the approach are opti-

mized by Adam optimizer [50] through minimizing the

mean squared error (MSE) between the predictive val-

ues and ground-truth outbound passenger flows. Specif-
ically, we choose M training samples, each of which con-

tains N stations and τ prediction steps, to optimize our

model. The objective function can be defined as follows:

θ = arg min
θ

1

MNτ

M∑
i=1

τ∑
k=1

∥∥∥xti+kO − x̂ti+kO

∥∥∥2
2

(30)

where ‖·‖2 refers to L2-norm and θ denotes all learnable

parameters.

4 Experiments

4.1 Data description

To verity the proposed architecture, we create a bench-

mark dataset for the evaluation. It consists of two kinds

of data, including metro passenger flow data and mete-

orological data of Guangzhou in 2017.
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4.1.1 Metro passenger flow data

Metro passenger flow is collected from the Guangzhou

Metro System, which contains more than 460 million

transaction records from June 22th to September 30th

in 2017. By 2017, Guangzhou Metro is composed of 10

metro lines and 166 stations, including some stations of

Guangfo Line located in Foshan city. The time span to

aggregate passenger flow is set to 10 mins.

4.1.2 Meteorological data

We obtained high-frenquency regional weather data

(0.5h intervals) from the Wunderground1, which is

an acknowledged meteorological data provider. Since

there was only one weather station located near the

Guangzhou Baiyun International Airport, the data

extracted from it was regarded as that of whole

Guangzhou city. To fully depict the meteorological in-

formation, five meteorological variables were adopted as

external factors, including temperature, precipitation,

humidity, wind speed and visibility.

In the experiments, we choose the first 69 days as the

training set, the next 16 days as the validation set and

the remaining 16 days as the testing set. Our model is

trained on the training set with 1000 epochs and early-

stopping mechanism is adopted to prevent overfitting.

4.2 Experimental setting

4.2.1 Parameter setting

We set the number of prediction steps τ = 3 to pro-

duce both short-term and long-term forecasts. During

the training stage, the batch size and learning rate of

Adam optimizer are 256 and 0.001 respectively. Totally,

our model has 6 hyperparameters. The length of in-

bound time window TI is set to 18 (last three hours)

and the length of three outbound flow segments TO,r,

TO,d and TO,w are set to 12 (last two hours), 4 (previ-

ous four days) and 2 (previous two weeks) respectively.

Moreover, we set the number of layers q = 2 for the

stacked LSTM network. The hidden size is set to 256.

4.2.2 Evaluation metrics

Two commonly used performance metrics, Mean Ab-

solute Error (MAE) and Root Mean Square Error

(RMSE), are applied in the experiments.

1 https://www.wunderground.com/

Table 1 Optional values of input-related hyperparameters

Model Optional values

TI 6,12,18,24,30
TO,r 3,6,12,18,24
TO,d 2,3,4,5,6
TO,w 0,1,2,3,4

MAE =
1

zN

z∑
i=1

∥∥xiO − x̂iO
∥∥
1

(31)

RMSE =

√√√√ 1

zN

z∑
i=1

∥∥xiO − x̂iO
∥∥2
2

(32)

where ‖·‖1 refers to L1-norm. z denotes the total num-

ber of testing samples and N is the total number of

stations. xiO and x̂iO represent the ground-truth and

predictive outbound flow of i-th sample respectively.

4.3 Parametric studies

Although increase in the inputs of time span can result

in the prediction accuracy of models, the computational

cost would be simultaneously increased due to the data-

specific parametric learning. Therefore, a trade-off be-

tween computational efficiency and forecast precision

should be identified. In this section, four input-related

hyperparameters TI , TO,r, TO,d and TO,w are investi-

gated on the validation set and the value range of them

are listed in Table 1.

To evaluate the performance of DAGNN on the in-

bound time span, the quantitative analysis is conducted

across setting different TI values (6 to 30), see Fig. 4(a).

It can be seen that there is a significant decrease trend

at the beginning on the predictive errors, which how-

ever level-off after TI = 18. Also, the performance of

DAGNN on the outbound time span is examined. To

be specific, the impact of overall outbound time span

TO (TO = TO,r+TO,d+TO,w) is adopted for simplifying

the calculation process. Fig. 4(b) provides the predic-

tion results over the varying TO values. Similarly, values

of the MAE and RMSE both descend dramatically until

TO = 18.

To sum up, with the consideration of the trade-off

between the computational efficiency and prediction ac-

curacy, four input-related hyper-parameters TI = 18,

TO,r = 12, TO,d = 4 and TO,w = 2 are applied in this

study, which is consistent with the parameter setting in

Section 4.2.1.
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(a) Evaluation on the length of inbound time window.
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(b) Evaluation on the length of outbound time window.

Fig. 4 Prediction results of the proposed DAGNN with respect to input-related hyperparameters.

4.4 Model comparison

In addition to the basic methods, such as autoregres-

sive integrated moving average (ARIMA) and Bayesian

ridge regression (BRR), the performance of our model

was compared with five state-of-the-art deep learning-

based metro passenger flow prediction approaches.

To comprehensively verify the superiority of proposed

model, we carefully tune the parameters for each base-

line and present their best results. Furthermore, for con-

venience, our model is denoted by DAGNN.

– CNN-BLSTM: Ma et al. [51] developed a par-

allel structure by combining CNN and BLSTM.

They transformed the metro ridership into an image

and utilize CNN to capture the spatial correlations

among nearby stations. Simultaneously, BLSTM is

employed to explore the temporal dependencies hid-

den in metro flow sequences. In this study, the con-

volutional filter and pooling size are set to 3×3 and

2× 2 respectively. The hidden size of BLSTM is set

to 512 after numerous experiments.
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Connection

Regular station

Terminal station

Transfer station

Fig. 5 Example of a metro network.

– DeepPF: Liu et al. [47] proposed a LSTM-based

ensemble model for metro passenger flow predic-

tion, which considers the meteorological factors and

metro operational properties. In this study, when

the hidden size of LSTM is set to 512, DeepPF

achieves the best results.

– AS2S: Hao et al. [52] introduced sequence-to-

sequence model with attention mechanism to pro-

duce multi-step predictions. Through exploiting the

inbound passenger flow at each station in the last

few time intervals, this model is able to forecast the

outbound passenger flows in the near future. In this

study, the hidden size of BLSTM is set to 256. In ad-

dition, we test the different combinations of depth of

encoder and decoder. The attention Seq2Seq model

with 2 layers of encoder and 3 layers of decoder,

which is denoted by AS2S 2E3D, outperforms the

others.

– STGCN: Yu et al. [29] proposed an GCN and CNN

combined model for network-wise traffic prediction.

They constructed an undirected graph based on the

physical topology of a network and then employed

GCN to extract spatial features. Simultaneously, a

gated CNN along time axis is used to extract tem-

poral features. Here, the kernel size of both GCN

and CNN are set to 3.

– STGAT: This model is a variant of STGCN, which

replaces the GCN with GAT.

In this experiment, we firstly divide the stations into

three categories (as illustrated in Fig. 5) and then eval-

uate the performance of different models on each cat-

egory. Table 2-4 summarize the comparison results at

each time interval. The best results (lowest MAE and

RMSE) are highlighted in bold.

While classical models, such as ARIMA and BRR,

acquire decent results in this experiment, deep learning-

based models are obviously more effective in both short-

term and long-term predictions. Moreover, classical

models are not capable of handling high-dimensional

data, which makes them unsuitable for network-wide

forecast. In terms of five deep learning-based baselines,

CNN-BLSTM performs worse than the other four mod-

els, especially in the long-term prediction task (the next

20-30 mins). The main reason is that CNN is able to ex-

tract spatial characteristics from metro passenger flow

image to some extent, nevertheless, the rendered image

is sparse and can not express the station-level connec-

tion. Worse still, the sparsity will become more seri-

ous with the increase of prediction steps. AS2S 2E3D

and STGAT produce comparatively better results than

DeepPF and STGCN respectively, thus the results in-

dicate that attention mechanism is helpful for enhanc-

ing the model performance, no matter in short-term

or long-term prediction. This is the underlying reason

for the development of spatial and temporal attention

in our model. In addition, we test DAGNN models of

different structures through varying the number of lay-

ers in graph encoder. For instance, DAGNN 2L denotes

the DAGNN model with 2 GSALs in both inbound

and outbound dependencies embedding components.

Overall, the DAGNN models have much better perfor-

mance, especially that have more than 2 GSALs. The

best result is yield from DAGNN 3L. Compared to that

of DAGNN 3L, the total average RMSE is decreased

by 44.26%, 35.53%, 23.25%, 18.62%, 11.52%, 10.68%

and 7.34% for ARIMA, BRR, CNN-BLSTM, DeepPF,

AS2S 2E3D, STGCN and STGAT, respectively. Apart

from the total average error, we also focus on the predic-

tion accuracy of transfer station, since the transfer sta-

tion has a huge passenger flow and is critical for metro

system. Obviously, DAGNN 3L also shows the supe-

riority on the forecast of large ridership. The average

RMSE for the transfer station is found to be reduced

by 43.52%, 34.47%, 22.14%, 17.20%, 11.18%, 10.98%

and 8.84% for ARIMA, BRR, CNN-BLSTM, DeepPF,

AS2S 2E3D, STGCN and STGAT, respectively. In ad-

dition, as shown in Table 2-4, the proposed model is

relatively robust while some of the other baselines suf-

fer from the sharp decline of prediction accuracy as the

forecast interval moves forward. This demonstrates that

DAGNN indeed has an advantage in capturing the long-

term dependencies.

To better evaluate the performance of the proposed

DAGNN, Fig. 6 illustrates the prediction accuracy with

regard to the passenger flow of each station. As we

can see, the prediction accuracy of stations located in

downtown area are mostly lower than that of located

in suburban area. This can be attributed to the large

passenger flow and unstable travel demands of down-

town stations. In particular, stations located in bustling

commercial area like Tianhe and Haizhu districts, at-

tract enormous non-commuting trips and thus present

the poor forecast performance. Also, the traffic mix on

the transfer stations is generally complicated, thus it is
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Table 2 Prediction results in the next 0-10 mins

Model
Transfer station Terminal station Regular station

MAE RMSE MAE RMSE MAE RMSE

ARIMA 33.24 42.79 23.07 35.46 29.10 39.17
BRR 30.07 36.25 22.18 29.60 25.39 31.82
CNN-BLSTM 24.18 31.07 20.11 25.62 23.08 27.12
DeepPF 22.35 30.88 18.79 24.05 21.03 27.66
AS2S 2E3D 20.93 28.47 17.33 22.80 18.81 26.57
STGCN 21.05 28.39 17.12 22.97 18.68 26.64
STGAT 20.41 27.96 17.04 22.81 18.20 25.97
DAGNN 1L 21.31 29.07 18.39 23.58 20.94 26.84
DAGNN 2L 20.18 27.43 17.28 22.24 19.03 25.79
DAGNN 3L 18.77 25.68 15.52 20.91 17.25 24.26
DAGNN 4L 19.13 26.05 16.74 21.39 18.77 25.53

Table 3 Prediction results in the next 10-20 mins

Model
Transfer station Terminal station Regular station

MAE RMSE MAE RMSE MAE RMSE

ARIMA 37.12 45.64 26.48 39.15 33.17 42.70
BRR 33.58 40.22 25.14 32.31 29.93 36.80
CNN-BLSTM 26.35 32.87 21.57 27.42 24.58 31.15
DeepPF 24.51 32.49 20.86 25.19 23.22 30.68
AS2S 2E3D 21.72 30.58 17.36 23.11 19.34 28.09
STGCN 21.82 30.46 17.19 22.84 19.67 28.15
STGAT 21.48 30.13 16.90 22.71 19.32 27.84
DAGNN 1L 22.43 31.30 18.21 23.97 20.69 29.72
DAGNN 2L 21.56 30.19 17.05 22.83 18.90 26.27
DAGNN 3L 20.89 27.06 16.02 21.35 17.75 24.98
DAGNN 4L 21.32 27.94 16.51 21.60 18.23 25.33

Table 4 Prediction results in the next 20-30 mins

Model
Transfer station Terminal station Regular station

MAE RMSE MAE RMSE MAE RMSE

ARIMA 44.27 55.03 35.17 45.29 40.68 52.37
BRR 38.47 47.19 32.31 41.22 36.97 45.62
CNN-BLSTM 32.71 40.14 29.88 33.40 31.24 38.09
DeepPF 28.03 34.50 24.72 30.93 26.41 33.72
AS2S 2E3D 23.96 32.17 21.26 26.53 21.97 30.34
STGCN 24.05 32.16 21.18 26.39 22.13 30.24
STGAT 23.72 30.81 20.70 25.26 22.08 28.99
DAGNN 1L 24.00 31.82 20.52 26.08 21.15 28.77
DAGNN 2L 22.65 30.61 19.37 24.10 20.81 26.63
DAGNN 3L 21.33 28.29 18.49 22.96 19.82 26.20
DAGNN 4L 21.96 28.40 18.51 23.30 19.96 27.05

not surprising why the prediction performance of the

DAGNN on the transfer stations is not as well as other

types of stations.

4.5 Variant comparison

To further investigate the effects of different model com-

ponents on the prediction accuracy, we design the vari-

ants of DAGNN 3L as follows and evaluate their per-

formance in this experiment.

– DAGNN-I−: We remove the component that cap-

tures inbound dependencies.

– DAGNN-O−: The component that captures out-

bound dependencies is excluded from prototype.

– DAGNN-E−: This variant does not include the

component of external factor fusion.
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Fig. 6 Spatial distribution of prediction errors.

– DAGNN-GSAL−: To validate the effectiveness of

GSAL, we replace it with GAT.

The experimental results are shown in Fig. 7. From

Fig. 7(a), we observe that the consideration of external

factors, meteorological variables, can hardly improve

the model performance. The possible reason is that only

extreme weather will result in the large fluctuation of

metro passenger flow, nevertheless, extreme weather is

a rare event in nature. Moreover, DAGNN 3L performs

much better than DAGNN-I− and DAGNN-O−, which

indicates that it is crucial to capture both inbound and

outbound dependencies. Simultaneously, we discover

that DAGNN-I− has an advantage over DAGNN-O−

in the long-term prediction while DAGNN-O− performs

better than DAGNN-I− in the short-term forecast. This

illustrates that the capture of inbound and outbound

dependencies contribute to the modeling of long-range

and short-range correlation respectively, which further

proves the superiority of our model. From Fig. 7(b), we

find that the prediction accuracy of DAGNN-GSAL− is

much lower than that of DAGNN 3L, even worse than

that of STGAT with regard to transfer station. Hence,

the GSAL in DAGNN do considerably enhance the pre-

dictive performance by incorporating the hidden states

from decoder.

4.6 Computational efficiency

Online detection of metro passenger flow has been re-

ceiving more and more attention in recent years. Re-

sults of real time detection are useful for the optimal

train operation and management of the metro systems.

Therefore, it is crucial to enhance the computational

efficiency of the passenger flow prediction models. Ta-

ble 5 presents the average computational time of every

step of the proposed model. Results indicate that the

proposed DAGNN method is capable for the online de-

tection of metro passenger flow in the order of millisec-

ond. In addition, results also indicate that the average

computational times are stable (i.e., five milliseconds)

across different prediction steps, time intervals and sta-

tion types. This justifies the robustness of the proposed

DAGNN.

4.7 Case analysis

To further investigate the functionality of attention

mechanism in DAGNN, we select the most busiest sta-

tion in Guangzhou (denoted by s0) which located in

the central business district (CBD) and perform a case

analysis over the passenger flow of it from 07:30 a.m to

09:00 a.m on Sept. 15, 2017. We plot the spatial atten-

tion weights over s0 obtained from the last layers in in-

bound and outbound dependencies components in Fig.

8(a) and Fig. 8(b) respectively. For the sake of brevity,

we only present a few stations which have high impact

on the target station s0 and mark these stations on the

map in Fig. 9.

As illustrated in Fig. 8(a), the outbound passenger

flow of s0 mainly derives from the inbound flows of s1
and s2. These two stations are located in rural area (as

shown in Fig. 9), which indicates that attention mech-

anism can well interpret the commuting pattern dur-

ing the morning rush hours on weekdays. In Fig. 8(b),

we observe that outbound flow of s0 is highly similar

to those of adjacent station s3 and transfer station s4.

Notably, between 08:10 a.m and 08:20 a.m, there was a

breakdown happening to Metro Line 3 (news from the

official microblog of Guangzhou Metro2), which causes

the rapid drop in outbound flow of s0. It worth noting

that attention mechanism acutely catches this signal

and adjusts the attention weights to make our model

pay more attention to the outbound flow of s3 which is

on the same metro line with s0. This not only highlights

the importance of attention mechanism in DAGNN, but

also provides a new perspective for anomaly detection

in metro system.

2 https://www.weibo.com/gzmtr
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(a) Evaluation on the components of inbound dependencies, outbound dependencies and
external factor fusion.
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Fig. 7 Comparison of forecast performance among different variants.

Table 5 Time cost per prediction step in testing set (ms)

Time interval Transfer station Terminal station Regular station

0-10 mins 5.164 5.127 5.021
10-20 mins 4.987 4.962 5.007
20-30 mins 5.135 4.990 4.973
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𝒔𝟏 𝒔𝟐

(a) Spatial attention weights from inbound dependencies component.

Breakdown

𝒔𝟑 𝒔𝟒

(b) Spatial attention weights from outbound dependencies component.

Fig. 8 Spatial attention matrices obtained from the last layer in inbound and outbound dependencies components, where
each row represents the attention weights over inputs.

5 Conclusion

In this study, we revisit the fundamental problem of

metro passenger flow prediction. A Graph Spatial At-

tention Network is proposed to capture both inbound

and outbound dependencies. The strength of GSAN

is that it introduces spatial attention mechanism to

capture the dynamic interactions of (inbound and out-

bound) passenger flows among stations and adjust the

weighted matrices over time. Then, a temporal at-

tention based decoder is constructed to produce both

short-term and long-term predictions by incorporat-

ing the dependencies embeddings and external factors.

Findings of this study justify that the proposed model

outperforms five state-of-the-art deep learning-based

methods and is effective and efficient for long-term pre-

diction. Moreover, we visualize the attention weights

and reveal that DAGNN is useful for illustrating the

urban mobility patterns and detecting abnormal events

in the metro system.

In the future studies, it is worth exploring the fac-

tor interpretability and capability of online detection of

metro passenger flow of DAGNN. For instance, the at-

tention weights can be incorporated into the DAGNN

for real-time anomaly detection. On the other hand, it is

worth investigating the capability of proposed DAGNN

for the prediction of metro passenger flow in special

circumstances, such as festival events, that have recur-

rent and non-recurrent fluctuations of the supply and

demand of metro services.
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