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Abstract Gravitational-wave detection strategies are
based on a signal analysis technique known as matched
filtering. Despite the success of matched filtering, due
to its computational cost, there has been recent inter-
est in developing deep convolutional neural networks
(CNNs) for signal detection. Designing these networks
remains a challenge as most procedures adopt a trial
and error strategy to set the hyperparameter values. We
propose a new method for hyperparameter optimiza-
tion based on genetic algorithms (GAs). We compare
six different GA variants and explore different choices
for the GA-optimized fitness score. We show that the
GA can discover high-quality architectures when the
initial hyperparameter seed values are far from a good
solution as well as refining already good networks. For
example, when starting from the architecture proposed
by George and Huerta, the network optimized over the
20-dimensional hyperparameter space has 78% fewer
trainable parameters while obtaining an 11% increase in
accuracy for our test problem. Using genetic algorithm
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optimization to refine an existing network should be
especially useful if the problem context (e.g. statistical
properties of the noise, signal model, etc) changes and
one needs to rebuild a network. In all of our experiments,
we find the GA discovers significantly less complicated
networks as compared to the seed network, suggesting
it can be used to prune wasteful network structures.
While we have restricted our attention to CNN classi-
fiers, our GA hyperparameter optimization strategy can
be applied within other machine learning settings.
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1 Introduction

During their first and second observing runs, the ad-
vanced Laser Interferometer Gravitational-Wave Obser-
vatory (LIGO) [1] and Virgo [2] ground-based gravi-
tational wave (GW) detectors have identified several
coalescing compact binaries [3–9]. As these detectors
improve their sensitivity, GW detections [10–16] are
becoming routine [17, 18]. In the current observing run,
for example, gravitational wave events are now being
detected multiple times a month [19]. Among the most
important sources for these detectors are binary black
hole (BBH) systems, in which two black holes (BHs)
radiate energy through GW emission, causing them to
inspiral, merge, and finally settle down into a single
black hole through a ringdown phase. GWs and their
strong emission from compact astrophysical objects like
binary black holes, are century-old predictions of Ein-
stein’s general relativity theory that have just recently
been directly verified by the LIGO/Virgo network of
detectors.
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Current BBH gravitational wave search analysis [9,
20] is based on a technique known as matched-filtering [21].
The detector’s output, i.e. time-series data of the relative
motion of the mirrors as a function of time, is correlated
(i.e. “matched”) with a set of expected signals known as
templates. These templates are generated using theory-
based models of expected GW sources. To find all signals
buried in a given dataset, a complete catalog of tem-
plates should cover all astrophysically plausible signals
we might expect to observe. Consequently, templates
must sample the BBH parameter space with sufficient
density, which results in very large catalogs and compu-
tationally expensive analysis [22]. There are currently
several low-latency pipeline configurations [23–27] that
partially reduce this expense by a combination of hard-
ware acceleration and algorithm-specific optimizations.

It is known that the matched filter is the optimal
linear filter for maximizing the chances of signal detec-
tion in the presence of an additive, Gaussian noise. Yet
despite its remarkable successes, the main drawback of
matched-filtering is its high computational expense. Fur-
thermore, this optimality result is limited by two very
strong assumptions, Gaussian noise and knowing the
expected signal precisely. Clearly, these assumptions are
not satisfied in practice, and so modern search efforts
have extended the simple matched-filter framework to
work in realistic settings [9].

Deep filtering [28] is an alternative, machine-learning-
based approach that has received significant attention
over the past two years [28–38] as a way to overcome the
aforementioned limitations of matched filtering. While
it remains to be seen if deep filtering can entirely re-
place matched filtering in realistic settings, it is pri-
marily due to its orders-of-magnitude faster perfor-
mance that makes it a very promising candidate to
complement traditional search pipelines in the context
of low-latency detection. As a first step towards this
goal, multiple researchers have demonstrated that deep
filtering can achieve accuracy comparable to that of
matched filters [33]. There has already been significant
exploration of different approaches to deep filtering,
involving recurrent neural networks [39], transfer learn-
ing [40], topological feature extraction [41], Bayesian
networks [42], binary neutron stars [43–45], and multiple
detectors [46]. In the context of gravitational-wave data
analysis, deep learning has been shown to be highly-
effective for low-latency signal searches and parameter
estimation [36,47–49], with and without Gaussian noise,
detector glitch classification [35], denoising gravitational
waves [34,50], and even to characterize the GW signal
manifold [51].

While there has been significant attention paid to
different approaches to deep filtering, one aspect of the

problem that has gone unexplored, however, is an auto-
mated approach to hyperparameter optimization. This
issue arises in two scenarios. First, when testing out a
new deep filtering network on an entirely new class of
signals or noise. In such cases, it is unknown what the hy-
perparameter values should be and a brute force search
is often used. Given the large number of hyperparame-
ters, typically around 20 for the cases we will consider,
a human tester might wish to test 10 different values for
each hyperparameter resulting in an unacceptably large
≈ 1020 different network configurations to train. Hyper-
parameter optimization may also be needed to refine an
existing network. For example, perhaps an already good
network architecture is known, but this network was
trained on a specific signal class and noise model. If, say,
the noise characteristics (due to non-stationary drifts)
or the signal model changes, one might be interested in
finding optimal network configurations using an already
reasonable network architecture as a starting guess. To
maximize a deep filter’s search sensitivity, it makes sense
to invest extra offline computational resources to identify
an improved network.

Despite the importance of hyperparameter optimiza-
tion, and numerical optimization being a well-studied
subject, to our knowledge there are no currently agreed-
upon best practices to accomplish this. Indeed, this is
an open area of inquiry taking place in many different
fields of research and industry [52–55]. Within the grav-
itational wave community, the only methods considered
have been brute force searches by trial-and-error.

In this paper, we develop a class of genetic algo-
rithms (GAs) to solve this problem. GAs are optimiza-
tion algorithms seeking to (in our case) maximize a
fitness function. GAs are built from a collection of ran-
dom walkers exploring the fitness function along with
evolution-inspired heuristic rules for these walkers to in-
teract, mutate, and move towards regions of high fitness.
Briefly, the algorithm begins with a random population
of network architectures, then iterates through 3 phases:
selection, crossover, and mutation. The selection phase
occurs when the candidates compete for survival based
on their fitness. The crossover phase is the first search
operator, where some of the surviving candidates swap
their hyperparameter values (called genes in GA litera-
ture) and replace themselves. The mutation phase is the
second search operator, where the genes may undergo
a random walk to a nearby value. These concepts will
be explored more fully, but similarities with particle
swarm optimization, which have been recently explored
in gravitational-wave contexts [56], are noteworthy.

We will show that GAs can automatically discover
new Deep Filtering networks that are both more ac-
curate and more compact, which will allow searches
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with these refined networks to detect more signals more
quickly. We also provide comparisons between GA vari-
ants and Monte Carlo. As GW detectors are excep-
tionally sensitive to very massive objects [57], and the
majority of compact binaries observed to date are pairs
of O(30M�) BBH systems [9], we will focus on such
systems.

This paper is organized as follows. In Section 2 we in-
troduce the GW detection problem and signal detection
diagnostics. In Section 3 we summarize the deep convo-
lutional neural network filter and the hyperparameters
that define its architecture. This architecture is opti-
mized for a fitness score using a family of related GAs
that are introduced in Sec. 4. Numerical experiments
on a variety of benchmark tests are considered in Sec. 5.
Our experiments focus on exploring the properties of the
genetic algorithm and its performance under different
scenarios.

2 Preliminaries

This section summarizes the gravitational-wave signal
detection problem, which provides a framework for an-
swering the question: is there a gravitational-wave signal
in the data? We review this background material to fa-
cilitate a clearer context for the convolutional neural
networks considered throughout this paper.

Signal detection in general, and gravitational wave
detection in particular, is a well established field. This
section primarily draws from [58–64], and our conven-
tions follow those of Ref. [64].

2.1 Gravitational-wave signal model

A gravitational-wave strain signal h(t) detected by a
ground-based interferometer has the form,

h(t; ϑ) =1
r
F+ (ra,dec, ψ)h+(t; ι, φc, tc,M, q)+

1
r
F× (ra,dec, ψ)h×(t;φc, tc, ,M, q) , (1)

where r is the distance from the detector to the source,
tc is the coalescence time (time-of-arrival), φc is the
azimuthal angle between the x−axis of the source frame
and the line-of-sight to the detector (sometimes called
the orbital phase at coalescence), ι is the inclination
angle between the orbital angular momentum of the
binary and line-of-sight to the detector, and the antenna
patterns F(+,×) project the gravitational wave’s +- and
×-polarization states, h(+,×), into the detector’s frame.
The antenna patterns are simple trigonometric functions
of variables which specify the orientation of the detector

with respect to the binary: the right ascension (ra),
declination (dec), and polarization (ψ) angles. For the
non-eccentric, non-spinning BBH systems considered
here are typically parametrized by a mass ratio q =
m1/m2 ≥ 1 and total mass M = m1 + m2, where m1
and m2 are the component masses of each individual
black hole. To summarize, the measured gravitational-
wave strain signal h(t; ϑ) is described by 9 parameters,
ϑ = {r, φc, ι, ra,dec, ψ, tc,M, q} whose range of values
will be set later on.

When discussing waveform models, it is common
practice to introduce the complex gravitational wave
strain

h+(t; ι, φc, . . . )− ih×(t; ι, φc, . . . )

=
∞∑
`=2

∑̀
m=−`

h`m(t; . . . )−2Y`m(ι, φc) ,

(2)

which can be decomposed [65,66] into a complete basis
of spin-weighted spherical harmonics −2Y`m. Here, for
brevity, we only show the model’s dependence on ι

and φc while suppressing the other 7 parameters. Most
gravitational waveform models make predictions for the
modes, h`m, from which a model of what a noise-free
detector records, h(t; ϑ), is readily recovered.

Throughout this paper we will consider a numeri-
cal relativity gravitational-wave surrogate model that
provides up to ` ≤ 8 harmonic modes and is valid for
1 ≤ q ≤ 10 [67]. We evaluate the model through the
Python package GWSurrogate [68,69].

2.2 Signal detection problem setup

Consider a single gravitational-wave detector. We sam-
ple the output of the detector at a rate 1/∆t over some
time period T . This produces a set of N = T/∆t time-
ordered samples s.1 In the absence of a signal, the detec-
tor is a stochastic processes that continually outputs ran-
dom noise n. We wish to know whether a gravitational-
wave signal h exists in the detector during the observa-
tion time, or if the detector data consist purely of noise.
This is complicated by the fact that the signal depends
on the unknown value of ϑ. For now, we simplify the
problem by asking whether the data contains a signal
with fixed parameters ϑ′ (we will relax this condition
later). In that case, our problem is reduced to finding a
statistical test that best differentiates between two sim-
ple hypotheses, the signal hypothesis H ′1 : s = h(ϑ′)+n
and the null/noise hypothesis H0 : s = n.

1 For simplicity, we assume here that N is even. This can
always be made to be the case, since the observation time and
sampling rate are free parameters in an analysis.
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Let β be the probability of making a type II error
with our test (the false dismissal probability), so that
1 − β is its power (the probability that we reject the
noise hypothesis when the signal hypothesis is true),
and α be the probability of making a type I error with
our test (the false alarm probability). By the Neyman-
Pearson lemma [70], the most powerful test that can be
performed between two simple hypotheses at a signifi-
cance level α is the likelihood-ratio test. That is, given
the likelihood ratio,

Λ(s|ϑ′) = p(s|ϑ′, h)
p(s|n) , (3)

we reject the noise hypothesis if Λ(s|ϑ′) exceeds a thresh-
old value. Here the vertical bar denotes a conditional
probability. For example, p(s|ϑ′, h) is the probability of
observing the signal, s, given a gravitational waveform
model h and system parameters ϑ′.

To proceed further, we need to assume a model for
the noise. It is standard to assume that the detector
outputs wide-sense stationary Gaussian noise such that
the Fourier coefficients of the noise, ñ(fi), satisfy

〈ñ(fi)〉 = 0 , 〈ñ(fi)ñ∗(fj)〉 = T

2 Sn(fi)δij , (4)

where the brackets, 〈X〉, denote the expectation value
of a random variable X, Sn(f) is the single-sided power
spectral density (PSD) computed from n(t), and δij
denotes the Kronecker delta function. In this case, the
likelihood (see Appendix B for a derivation) that the
data does not contain a signal is

p(s|n) ∝ exp
[
−1

2 〈s, s〉
]
, (5)

and we do not need to evaluate the normalization con-
stant as it will cancel in the likelihood ratio. The inner
product is defined as

〈a,b〉 ≡ 4<

∆f
N/2−1∑
p=p0

ã∗[p]b̃[p]
Sn[p]

 , (6)

where ∗ denotes complex conjugation, ∆f = 1/T , Sn[p]
is the PSD of the noise evaluated at frequency f =
p∆f , ã[p] indicates the Fourier transform of the time
domain vector a evaluated at frequency f = p∆f , and
p0 corresponds to a low frequency cutoff, below which
the PSD is effectively infinity; for current generation
detectors, this is at ∼ 20Hz.

Since the signal hypothesis is s = h(ϑ′) + n, the
likelihood that the data contains a signal is simply the
probability of observing n = s− h(ϑ′),

p(s|ϑ′, h) ∝ exp
[
−1

2
〈
s− h(ϑ′), s− h(ϑ′)

〉]
,

assuming the same noise model. The likelihood ratio is
therefore

Λ(s|ϑ′) = exp
[〈

h(ϑ′), s
〉
− 1

2
〈
h(ϑ′),h(ϑ′)

〉]
. (7)

Since this only depends on the data via the
〈
h(ϑ′), s

〉
term, a sufficient statistic for the simple hypothesis test
is

K =
〈
h(ϑ′), s

〉
. (8)

Note that in the literature K is often taken to be
K = |

〈
h(ϑ′), s

〉
| to account for large, negative values

that indicate that the data contains the signal, but that
it is 180◦ out of phase with the test signal. As we will see
later, K is related to the signal’s SNR whose statistical
properties, in turn, depend on this choice. In particu-
lar, in the absence of a signal the test statistic Eq. (8)
is normally distributed with zero mean and variance
σ2 =

〈
h(ϑ′),h(ϑ′)

〉
[60]. With the alternative choice,

K would have been χ-distributed with one degree of
freedom.

To indicate whether or not there is a signal in the
data, we can use the one-sided test function,

ϕ′(s) =
{

1 if
〈
h(ϑ′), s

〉
≥ K∗,

0 otherwise ,
(9)

with the threshold K∗ chosen such that the size of the
test is

EH0ϕ
′(s) =

∫
〈h(ϑ′),s〉≥K∗

exp
[
−1

2 〈s, s〉
]

ds ≤ α. (10)

As stated above, Eq. (9) is the most powerful test
assuming fixed parameters. However, in practice, the
parameters of the signal are not known a priori. We
therefore need a test that can distinguish between the
null hypothesis H0 and a composite hypothesis H1 : s =
h(ϑ) + n, where the parameters ϑ may be in a range of
possible values.

2.3 Detecting a signal with unknown amplitude

Most of the signal parameters — such as mass, spin, etc.
— cannot be analytically maximized over, as the signal
models have non-trivial dependence on them. We can,
however, construct a uniformly most powerful test that
maximizes over the distance, r, since 1/r is simply an
overall amplitude scaling factor for the signal (1).

To construct the optimal statistic that allows for any
distance, consider a template signal h that is generated
at some fiducial distance r0 > 0 such that all possible
astrophysical signals h′ are at a distance r′ ≥ r0. The
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signal hypothesis becomes H1 : s = Ah(ϑ) + n, where
A ≡ 1/r ∈ (0, 1]. Assume for a moment that we use the
same test statistic and function as defined in Eqs. (8)
and (9), but with hm(ϑ′) replaced with Ahm(ϑ). The
statistical power is

1− β ≡ EH1ϕ
′(s) =∫

A〈h(ϑ),s〉≥K∗
exp

[
A 〈h, s〉 − 1

2A
2 〈h,h〉 − 1

2 〈s, s〉
]

ds

(for simplicity of notation, from here on we will use
h to mean h(ϑ)). Since A ∈ (0, 1], the power grows
monotonically with A. Maximizing the argument, which
noting that in the exponent over A yields

A = 〈h, s〉
〈h,h〉 . (11)

This gives test statistic K = 〈h, s〉2 / 〈h,h〉, or, equiva-
lently,

ρ = 〈h, s〉√
〈h,h〉

=
〈

ĥ, s
〉
, (12)

where we have defined a normalized template, ĥ, that
satisfies

〈
ĥ, ĥ

〉
= 1. The quantity ρ is known as the

signal-to-noise ratio (SNR). Let s = Cĥ + n, where
C ≥ 0 (C = 0 corresponds to the noise hypothesis),
then ρ is normally distributed with the following mean
and variance:

〈ρ〉 = C , 〈ρ2〉 − 〈ρ〉2 = 1 . (13)

To indicate whether or not there is a signal in the data,
we can use the one-sided test function,

ϕ(s) =
{

1 if ρ(s) ≥ ρ∗,
0 otherwise,

(14)

where the threshold, ρ∗, is chosen such that the size
EH0ϕ(s) ≤ α. Note that ϕ(s) has the same size and
power as ϕ′(s) for the simple hypothesis testH ′1 in which
some fixed A is used. This is because the two functions
only differ by the factor of 1/

√
〈h,h〉, which for the

simple signal hypothesis is a constant. Consequently, ϕ is
the uniformly most powerful test for any distance r > r0.
In terms of the SNR, the matched filtering classifier
Eq. (14) will generate false alarms with a probability of

α(ρ∗) = p(ρ > ρ∗|H0) =
∫ ∞
ρ∗

p(ρ|H0)dρ , (15)

and false dismissals with a probability of

β(ρ∗) = p(ρ < ρ∗|H ′1) =
∫ ρ∗

−∞
p(ρ|H ′1)dρ . (16)

2.4 Matched-filter classification

In practice one will need to search over the entire model
space. We select a discrete set {ϑi}Mi=1 of M parameter
values and a corresponding template bank of normalized
filters

B = {ĥ(ϑi) s.t. ϑi ∈ {ϑi}Mi=1 and 〈ĥ, ĥ〉 = 1} .

The bank’s SNR is defined to be

ρ(B) = max
i
ρ (ϑi) , (17)

where ρ (ϑi) is the SNR computed with ĥ(ϑi). While
each ρ (ϑi) is normally-distributed the bank’s SNR, ρ(B),
is not. The bank’s efficacy will depend on how densely
we sample the continuum. A faithful template bank
guarantees that for any possible signal with an optimal
SNR (signal and filter are identical) of ρopt, then one
of the templates in the bank will be sufficiently close to
the optimal one such that ρ(B) ' 0.97ρopt.

To summarize, assuming a Gaussian noise model,
the matched-filter signal-detection classifier is to test if
the bank SNR is larger than a predetermined threshold
value. Sec. 3 will described the convolutional neural
network signal-detection classifier for solving the same
signal-detection problem.

2.5 Signal detection diagnostics

One goal of this paper is to compare different CNN-
based classifiers. The diagnostics we will use to facilitate
this comparison include the false alarm and dismissal
probabilities, accuracy, receiver operating characteristic
(ROC) curves, and efficiency curves.

2.5.1 False alarms, dismissals, and accuracy

Given a classifier ranking statistic, R, (for the matched
filter this is the SNR, R = ρ, and for the CNN this
is the output of the softmax layer, R = Psignal) and a
threshold, R∗, on this value, we can assign labels to our
data. We can then compare the true labels to compute
the number of false alarms and false dismissals. For
certain cases, the false alarm, α, and false dismissal,
β, probabilities can be computed analytically. However,
in many cases, in particular, for CNN classifiers, these
probabilities can only be computed empirically through
a Monte Carlo study. A true alarm is 1 − β while the
true dismissal is 1−α. These four numbers, 1−α, 1−β,
α, and β, define the confusion matrix. In Sec. 4.2.4, one
component of the GA fitness score is the accuracy, which
for a balanced testing set containing an equal number of
examples with and without a GW signal, the accuracy
is given by 1− α/2− β/2.
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2.5.2 Receiver operating characteristic

An ROC curve plots the true alarm probability, 1 −
β(R∗), vs the false alarm probability, α(R∗), both of
which are functions of the ranking statistic threshold
R∗. Such curves can be used to assess the classification
strategy as the detection threshold is varied. It is im-
portant to note that the shape of an ROC curve will
depend on the anticipated distribution of the ranking
statistic over a class of expected signals. For example,
we expect different ROC curves for weak and strong
signal strengths.

2.5.3 Efficiency curves

An efficiency curve plots the true alarm probability vs
signal strength at a fixed value of either the ranking
statistic threshold or false alarm probability. Such curves
can be used to assess the classification strategy as the
signal’s power is varied. For very loud signals (SNRs>
15) we find that all CNN classifiers are essentially perfect,
while for weaker signals (SNRs between 3 and 10) the
classifier’s efficacy will depend on details such as the
architecture and problem domain.

3 Deep models for time series classification

Sec. 2 summarized a classical matched-filtering approach
to signal detection: given time series data s and a tem-
plate bank of possible signals we compute the SNR (17)
whose value provides both a classification method (ex-
ceeding a threshold) as well as a measure of significance.
In this section, we summarize one commonly explored
CNN that has been successfully used for the same pur-
pose of signal detection. Our key aim will be to describe
what parameters describe the CNN and their interpre-
tation since it will be the genetic algorithm’s job to
optimize their values.

Deep networks are specified by learned parameters
and hyperparameters. Learned parameters are found
through an optimization procedure known as training.
Hyperparameters are parameters that control the net-
work’s overall design and characteristics, and unlike
learned parameters, their values are provided by the
programmer. We will distinguish between three flavors
of hyperparameter. We will refer to the parameters used
to describe the network’s structure as model hyperpa-
rameters, and the ones we consider are summarized in
Sections 3.1.1 and 3.1.2. Those parameters that control
the training process will be referred to as training hyper-
parameters are summarized in Sec. 3.1.3. Finally, since
we have control over our training set we will consider
training-set hyperparameters, summarized in Sec. 3.2

to be those parameters that control the training set
generation.

Usually, it’s not clear what values the hyperparam-
eters should be, so one must resort to trial-and-error
or random sampling of the hyperparameter space. The
main goal of our work is to automate the process of
exploring the hyperparameter space with a genetic al-
gorithm, introduced in Sec. 4, such that the resulting
network’s architecture is optimized.

3.1 Classifier network and its hyperparameters

Fig. 1 summarizes a typical classifier network consid-
ered in this paper, which is based on the original Deep
Filter discovered by George and Huerta [28]. In fact,
the overall architecture displayed in Fig. 1 is the same
as their network except for the inclusion of two extra
dropout layers that we use to reduce overfitting. The
authors of Ref. [28] tested around 80 different network
architectures, and for the best one(s) the network’s hy-
perparameters were tuned manually via a trial-and-error
procedure [28].

From Fig. 1 we see that the input is first reshaped
to match the input expected by a Keras’ Conv1D layer.
This is a trivial step that we mention only for complete-
ness. Next, a sequence of convolutional layers is applied.
In keeping with common terminology, we will refer to
a single convolutional layer as built out of three more
primitive layers: Conv1D, MaxPooling1D, and Activa-
tion, all of which are summarized in Sec. 3.1.1. From
Fig. 1 we see that the initial input vector passes through
three convolutional layers, after which it has been trans-
formed into a matrix. The Flatten layer simply “unwraps”
the matrix into a vector, which is subsequently passed
through a sequence of two fully-connected layers. We
will refer to a single fully-connected layer as built out
of Dropout layer and a Dense layer, each of which is
summarized in Sec. 3.1.2.

The output of the final layer is a vector with two
components which sum to 1. The ranking statistic, 0 ≤
Psignal ≤ 1, is a measure of the network’s confidence
that the data contains a signal. Similar to the matched
filtering case outlined in Sec. 2.2, we can use the one-
sided test function

ϕCNN(s) =
{

1 if Psignal ≥ P ∗,
0 otherwise.

(18)

to indicate whether or not there is a signal in the data.
The threshold P ∗ can be chosen such that the size of
the test satisfies EH0ϕCNN(s) ≤ α.

The basic architecture structure enforced on our
classifier network is a sequence of Nconv alternating
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0.6 0.4 0.2 0.0 0.2
Time (s)

4

3

2

1

0

1
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4

InputLayer
input: output:
(2048) (2048)

Reshape
input: output:

(2048) (2048, 1)

Conv1D
input: output:

(2048, 1) (2048, 16)

MaxPooling1D
input: output:

(2048, 16) (512, 16)

Activation
input: output:

(512, 16) (512, 16)

Conv1D
input: output:

(512, 16) (512, 32)

MaxPooling1D
input: output:

(512, 32) (128, 32)

Activation
input: output:

(128, 32) (128, 32)

Conv1D
input: output:

(128, 32) (128, 64)

MaxPooling1D
input: output:

(128, 64) (32, 64)

Activation
input: output:

(32, 64) (32, 64)

Flatten
input: output:
(32, 64) (2048)

Dropout
input: output:
(2048) (2048)

Dense
input: output:
(2048) (64)

Dropout
input: output:
(64) (64)

Dense
input: output:

(64) (2)

PSignal

1- PSignal

Fig. 1: Architecture of the typical classifier network used to seed the genetic algorithm optimizer. The input vector
is 1 second of data sampled at 2,048 Hertz and the classification output layer uses the softmax activation function
such that the vector’s components sum to one. We interpret the value of Psignal as a measure of the network’s
confidence that the data contains a signal. Three convolutional layers are used to extract signal features, which are
subsequently passed through two dense layers each of which is composed of a fully-connected linear layer and a
non-linear ReLU activation function. Dropout layers are used to reduce overfitting. Each layer has its own internal
structures and parameters that are discussed in the text and summarized in Table. 2. The genetic algorithm
will modify this seed architecture and each layer automatically by approximately solving the hyperparameter
optimization problem.

convolutional and pooling layers followed by Nfull fully-
connected layers. Currently, the number of layers is set
manually although in principle the genetic algorithm
could be extended to modify these values allowing it to
explore shallower or deeper networks. As described in
Sec. 4, we penalize deepness through an overall network
complexity factor that modifies the fitness score (19).

3.1.1 The convolutional layer’s hyperparameters

The first part of the network is described by Nconv

convolutional layers. This part of the network seeks to
extract learned features from the data which are local
and may appear at different locations of the dataset. A
single convolutional layer is typically built out of three
more primitive sub-layers [53], which is depicted in Fig. 1
as Conv1D, MaxPooling1D, and Activation.

The Conv1D layer performs a discrete convolution
of the input data with Cfilter kernels, which are some-
times called filters. The convolution’s output is designed
to extract features from the signal, and so if there are
Cfilter filters our output data will provide information
about the possible appearance of Cfilter features. Fil-
ters are typically compact with a window length (or
size) specified by Cfilter−size and in any given Conv1D
layer all filters are required to have the same size. The
convolution can be modified by specifying a stride factor,
Cfilter−stride, the number of data samples to move per

convolution operation. Finally, we consider dilated con-
volutions that effectively enlarge the filter by a dilation
rate, Cfilter−dilation, to explore larger features of the
data.

The next sub-layer is MaxPooling1D, which is a
max reduction over an input vector of size Psize. The
pooling operator is slid across the input vector spaced
Pstride elements apart. For example, in Fig. 1 we see
that the MaxPooling1D operation applied in the first
convolutional layer takes the input vector of size 2048 to
an output vector of size 512 (= 2048/4), which means
Pstride = 4. As the max reduction is applied to each
filter’s output, the input and output vector’s row size is
left unchanged.

The final sub-layer uses the common Rectified Linear
Unit (ReLU) activation function that simply requires
the output is positive by applying a function, max(x, 0),
to each element of the input vector. This layer has
no hyperparameters and so does not contribute to the
search space.

To summarize, the ith convolutional layer is uniquely
defined by 6 numbers Cifilter, Cifilter−size, Cifilter−stride,
Cifilter−dilation, P isize, and P istride. We consider Nconv

convolutional layers and allow different hyperparameter
values in each layer. So in total there are as many as
6Nconv hyperparameters associated with the network’s
convolutional layers.
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3.1.2 The fully-connected layer’s hyperparameters

The second part of the network is described by Nfull

fully-connected layers. As we will always use dropout,
we will refer to a fully-connected neural network layer
as built out of two more primitive sub-layers, which is
depicted in Fig. 1 as Dropout and Dense.

Input to the first densely-connected layer is a set
of features provided by the last convolutional layer.
The goal of the densely-connected layers is to find a
non-linear function mapping the features to the correct
classification signal vs no-signal. That this might even be
possible, in principle, one often appeals to the universal
approximation theorem [71,72]. However, neither this
theorem nor any we are aware of, provide guidance on
the number or depth of the layer that should be used
for a particular problem.

The Dropout sub-layer randomly sets a random frac-
tion, Ddrop, of the input units to zero at each training
update. As such, the network after dropout can be
viewed as a smaller layer (fewer neurons) that is forced
to train on the dataset same. This technique helps to
reduce overfitting. There are no learned weights in this
sub-layer.

The final Dense sub-layer is a neural network con-
necting all of the inputs to Dunits output units. We use
a ReLU activation function for all fully-connected layers
except the final one. The final output layer’s activation
is the softmax function, which maps a real number to
the interval [0, 1].

To summarize, the ith fully-connected layer is uniquely
defined by Di

drop and Di
units. We consider Nfull fully-

connected layers and allow different hyperparameter
values in each layer. The ith fully-connected layer is
uniquely defined by Di

drop and Di
units. So in total there

are as many as 2Nfull hyperparameters associated with
the network’s fully-connected layers.

3.1.3 Training hyperparameters

Given some value for the model and training-set hyper-
parameters we seek to learn good values for the weights
by solving an optimization problem seeking to mini-
mize a loss function. Training hyperparameters affect
the solution’s convergence properties and computational
resources.

We use the well-known ADAM optimizer [73] to solve
this optimization problem. ADAM works by estimating
the gradient on a subset of the training data known
as the batch size, Nbatch. This optimizer has three hy-
perparameters, a learning rate, εLR, and two adaptive
moment decay rates, βAdam1 and βAdam2. The optimizer
will continue until either reaching a maximum number

of iterations (or epochs), Nepochs, or the validation error
steps decreasing for a predetermined number of itera-
tions. In all of our experiments, we use the standard
categorical cross entropy loss function.

In some numerical experiments, we allow the GA
to modify a subset of training hyperparameters over a
restricted range. In some cases, like with the number
of epochs, the values are set mostly by considering the
computational cost. For other cases, as with adaptive
moment decay rates, good default values are known and
so requiring the GA to explore the enlarged dimensional-
ity of the hyperparameter space is likely not worthwhile.
We note that the ADAM optimizer already exploits au-
tomatic modification of the learning rate that changes
with the iteration.

3.2 The training set and its hyperparameters

When preparing training data we can control the over-
all number of training examples, NTS, and the fraction
of training examples containing a signal, fsignal. We
consider these training-set hyperparameters as they are
not learned yet control the final classifier model. Ide-
ally, we would like to NTS as large as possible, however
larger training sets can lead to much longer training
times and can be excessive in some cases. Indeed, we
have found that for loud signals (say, SNRs greater than
100) perfect classifier networks can be trained with just
tens of training examples while many thousands of ex-
amples are needed for weak signals at low SNRs. For
now we have not allowed the GA to modify training-set
hyperparameters.

We use a training strategy inspired by George and
Heurata’s technique of presenting the classifier network
with training data of increasing difficulty by decreasing
the SNR [28]. They found that this strategy was able
to improve the classifier’s final accuracy while reducing
the overall training time. We decrease the SNR by in-
creasing noise amplitude rather than manipulating the
distance parameter, and our target SNR is the average
SNR over the dataset, where individual signals will have
SNR values distributed around the average. In addition
to decreasing the SNR, we simultaneously increase the
parameter domain’s extent by slowly widening an ini-
tially narrow sampling distribution around the target
parameter interval’s mean to the full interval. The full
problem is thus revealed to the network over a specified
number of datasets until the parameter intervals and
SNR reach their largest extent and smallest value, re-
spectively. We provided example values in the numerical
experiments section.

The typical sizes of time-domain gravitational-wave
data are of the order 10−21. With such small values, it is
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Table 1: Hyperparameters that determine the classifier network. These parameters may control the overall network’s
architecture or properties of an individual layer. A network is uniquely specified (up to its learned weights) by
architecture and layer parameter values. The learning of the network’s weights, which are found by solving an
optimization problem, are controlled by the training parameters. The optimal network’s weights, in turn, implicitly
depend on the training set parameters. Some parameter values are fixed to reduce the dimensionality search space,
in which case we quote typical values used in our experiments. For GA-modified parameters, the Valid Range
column denotes the largest range the GA could explore (sometimes called the prior in Bayesian optimization).
However, in practice, the population of hyperparameter solutions explore regions localized around the seed network
(cf. Sec. 4.4 and Fig. 5).

Parameter Description Type GA Modifies Valid Range
Model hyperparameters

Nconv # of Conv1D layers Architecture No {3,4,5}
Nfull # of dense layers Architecture No {2,3}
Cifilter Number of filters ith Conv1D layer Yes [1,600]

Cifilter−size Filter size ith Conv1D layer Yes [1,600]
Cifilter−stride Filter stride ith Conv1D layer Yes [1,600]
Cifilter−dilation Filter dilation ith Conv1D layer Yes [1,600]

P isize Pooling size ith Pooling layer No 4
P istride Pooling stride ith Pooling layer No 4
Didrop Dropout rate ith Dropout layer Yes [0,0.5]
Diunits Output units ith Dense layer Yes [1,600]

Training hyperparameters
Nbatch Batch size Adam Optimizer Yes [32, 64]
εLR Learning Rate Adam Optimizer Yes [10−5, 10−3]
βAdam1 Moment decay Adam Optimizer Yes [0.8, 0.999]
βAdam2 Moment decay Adam Optimizer Yes [0.95, 0.999999]
Nepochs Epochs Training No [80, 600]
Npatience Patience Training No 8

Training-set hyperparameters
NTS Training examples Training set No [10, 104]
fsignal Fraction of signals Training set No [0 , 1]

well-known that deep networks require the training data
to be normalized to train correctly. A common choice is
to whiten the data by the PSD, such that after whitening
each training example has a zero mean and unit variance.
We have pursued a PSD-agnostic approach whereby a
normalization layer is the first network layer (not shown
in Fig. 1) that is used to achieve a target mean absolute
deviation (MAD) of the input signal. For example, if we
set our target MAD value to be 1000, and the training
data’s MAD is 10−19, we would multiply the input data
by 1022. Through trial and error we found a target MAD
of 1000 to work well for our problem, although we also
explored letting the GA optimize for this value. We also
tried batch normalization before the input layer but it
appeared to not work as well.

3.3 An optimization model for the hyperparameters

Table 1 summarizes the various hyperparameters that
will impact the final trained classifier network. Regard-
less of the algorithm used to solve the hyperparameter
optimization problem, it is helpful to know in advance

what parameters should be improved, how they should
be changed, and any constraints or relationships that
should be enforced between them. While there is not a
general theory applicable to our problem, our choices
are guided by insights compiled by previous efforts to
design similar classifiers [28,29,33,38] as well as our own
expectations.

For example, some parameters should not be modi-
fied by the GA. The training size (NTS), epochs (Nepochs),
and early-stopping condition (Npatience), for example,
are problem-specific numbers that can be set by avail-
able computational resources and common sense. In our
case, NTS and Nepochs is often set as large as possible
such that training a single network can be completed
in under 24 hours. We also do not allow the optimizer
to change the number of convolutional or dense layers,
which would dramatically alter the network’s behavior;
finding for good values of Nconv or Nfull are better ac-
complished through a simple grid-based search while
optimizing over the remaining set of modifiable hyper-
parameters. While the pooling-layer parameters could
be modified for some problems, in our case we do not.
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Fig. 2: Genetic algorithm hyperparameter optimization.
The algorithm starts with an initial population of net-
works created by randomly sampling a large volume
of the hyperparameter space centered around the seed
network. Each network is trained and an overall fit-
ness score (19) is computed. A sequence of selection,
crossover, and mutation operators are applied to the
population, thereby generated a new population to train.
This process continues until either a suitably accurate
network is identified or the populations have converged
to a best solution. The overall performance of the opti-
mization process requires that we use reasonable values
for the search operators. We explore six different choices
in this paper. The inset bubble shows the effect of 1-point
crossover and mutation operators acting on candidate
models.

Indeed, the pooling stride is essentially redundant with
the convolutional layer stride (which we optimize for).
The pooling size is often used to add some network ro-
bustness to time translations of the input vector, so that
signals shifted in time will still be detected. Since the
intended use of our signal-detection classifier is for con-
tinuously streamed data [28,38], and the signal’s time
of arrival is of astrophysical importance, we prefer the
network to be sensitive to time translations. We do use
a small, fixed value of the pooling size for downsampling
the data and reducing training time.

Training hyperparameters have a well-known range
of good values that have been extensively used in the
literature. This fact is reflected in the tight intervals
shown in Table 1. Plausible values for the moment decay
parameters, for example, are similar to the ranges sug-
gested in the original ADAM optimizer paper [73]. For
different deep networks, various scaling relations con-
necting Nbatch and εLR have been proposed, typically of
the form εLR ∝ Nbatch or εLR ∝

√
Nbatch [74–76]. While

such relations could be used to reduce the problem’s
dimensionality, we have not explored this possibility

here. Our numerical experiments (cf. Fig. 3a) suggest
the existence of a similar scaling relationship for our
problem.

The plausible range and relationship between the re-
maining model hyperparameters is somewhat less clear
and will be highly problem dependent. For example,
while it is known that changing the stride and dilation
of the convolutional filter will detect signal features
of different characteristic sizes, we do not know ahead
of time what these values should be for gravitational
wave signals embedded in detector noise. Lacking a
trustworthy model for these parameters, we allow the
optimization procedure to fully explore this hyperpa-
rameter subspace over a relatively large region. In all
of our GA experiments, the final optimized hyperpa-
rameter values do tend to lie within a factor of ≈ 3
from the starting values of the George & Huerta seed
network. Yet unconstrained optimization does result
in some surprises: contrary to our expectation based
on other CNN architectures reported in the literature,
the middle convolutional layer typically has the fewest
number of filters after being optimized by the GA (cf.
Table. 2).

4 Hyperparameter optimization with genetic
algorithms

4.1 Motivation

Hyperparameter optimization is difficult. For example,
Table 1 lists at least 18 hyperparameters defining the
classier model with potentially many more as certain
hyperparameters are defined layer-by-layer, and so the
total number of hyperparameters will grow with the num-
ber of layers. Furthermore, the gradient of the relevant
objective function either may not exist (e.g. discrete-
valued parameters) or may be noisy, and we might ex-
pect to train hundreds or thousands of networks, so the
algorithm must parallelize efficiently.

There are not many optimization algorithms that
meet the above conditions. Due to the dimensional-
ity of the problem, a brute-force grid search would be
prohibitive while gradient-based optimization is unavail-
able due to the formal lack of a gradient. Consequently,
in gravitational-wave applications, the hyperparame-
ters have been selected by a combination of experience,
intuition, and random sampling. While the resulting
networks have been accurate, they are not expected to
be optimal. Nor is it known how close to the optimal
configuration they might be. Their architectures might
be biased by intuition or unnecessarily complicated for
a given problem.
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Evolutionary algorithms are a class of optimization
algorithms that meet all of the above criteria. We con-
sider one particular variant of an evolutionary algorithm
for hyperparameter optimization known as genetic al-
gorithms [77]. These algorithms have been inspired by
concepts of natural evolution and survival of the fittest.
They are stochastic optimizers drawing on familiar ideas.

Genetic algorithms due come with some drawbacks
which include they have their own hyperparameters to
set (fortunately setting these parameters is relatively
easy) and they can require significant computational
resources to evaluate many candidate models in parallel.
As with any optimization algorithm, its possible they
will get stuck in local minima. Since the optimization
of the hyperparameters is an offline cost it is reasonable
to use all available computational resources to search
for the best network configuration. In our case, many of
our numerical experiments took just a few days using
20 compute nodes with NVIDIA Tesla V100 GPUs. To
avoid local minima, a few independent GA simulations
can be performed or the mutation rate can be increased.

We first summarize the essential pieces that make
up a genetic algorithm then, later on, provide specific
configurations considered and compared throughout this
paper.

4.2 General algorithmic workflow

The algorithm’s structure is summarized in Fig. 2. One
complete iteration of the inner-loop is called a genera-
tion, and this process continues for multiple iterations
or until a sufficiently small value of the model’s fitness
score is found. A list of the top models are recorded
throughout all generations, and their hyperparameter
values and scores are returned when the algorithm is
finished.

The algorithm begins with a seed value for the hyper-
parameter, λseed, where λ is a vector of model hyperpa-
rameters. In the GA literature this vector is sometimes
called a chromosome and its components are known as
a genes. Starting from a seed, a set of, say, 20 candi-
date hyperparameter values, {λ1

i }20
i=1, are drawn from a

probability distribution as described in Sections 4.2.3
and 4.4. Here the notation λji means the hyperparameter
values of the ith candidate model for the jth iteration
of the genetic algorithm. At any given iteration the set
of all surviving solutions is called the population.

Next, each candidate classifier model (defined by its
value λi) is trained, validated, and an overall fitness
score is computed. The fitness score may attempt to
maximize accuracy, minimize architecture complexity,
penalize false positives, or any other desirable property.

In particular, it need not be the loss function used for
training. Our particular choice (cf. Sec. 4.2.4) defines
the fitness score as a weighted sum of the validation
accuracy and an estimate of the model’s complexity.
In this way, the population of classifier models will be
nudged towards simpler models.

A key aspect of any genetic algorithm is to contin-
ually update the population so that it moves toward
higher values of the fitness score. This is achieved by
applying a sequence of three operators to the popula-
tion {λ1

i }20
i=1. These are referred to as a selection opera-

tor, crossover operator, and finally a mutation operator.
Taken together, these three operators will generate new
candidate hyperparameter values sometimes referred
to as children, which are subsequently added to the
population.

Next, we will describe in more detail these three
operators as they are defined for one particular variant
of the (µ + λ)-evolutionary algorithm, which in turn
is one particular class of genetic algorithms we will
consider.

4.2.1 Selection operator

Our first step in this process is to select a subset of top-
performing models. The best two can be automatically
selected (known as the elitism selection rule, which we
will sometimes use), while from the remaining models
we randomly pair off in subsets of 2 and select the best
one of the subset. This procedure, known as tournament-
style (or arena) selection rules, continues until we are
left with µ models in total. Tournament selection is
performed with replacement and can be generalized to
have subsets of more than 2 competing for selection.
Note that our selection rule does not simply pick the
best µ models, but rather randomly selects µ models
that are biased towards the fittest while inferior solutions
are removed with a higher probability.

The remaining µ models function as parents. The
parent model seed λ new models (known as children)
according to a set of operations described below. Conse-
quently, after this step, there will be λ children models
and µ parent models. The (µ+λ)-evolutionary algorithm
allows both parent and children models to continue to
the next iteration giving a population size of λ+µ candi-
date models. Despite the increased population size, there
are only µ new models to train. In a variant strategy,
which we will refer to as the “standard” evolutionary
algorithm, only the λ children models will be part of
the next generation.
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4.2.2 Crossover operator

We pair off randomly selected candidate models and
swap their hyperparameter values with some probability
known as the crossover rate, pcross. This is sometimes re-
ferred to as breeding in the GA literature. Two popular
options are the one-point and two-point crossover oper-
ators. Each randomly selects position(s) in the hyperpa-
rameter vector where two solutions’ content is spliced
into each other. This operation allows for the generation
of new candidate models. An example of a one-point
crossover is shown in Fig. 2. Our genetic algorithms use
both 1-point and 2-point crossover rules. Note that the
order in which hyperparameters are stacked will impact
the solution after crossover. We group hyperparame-
ters that describe larger units together, which preserve
higher-level structures. For example, parameters that
specify each convolutional layer are grouped together in
the hyperparameter vector.

4.2.3 Mutation operator

After crossover there is the mutation phase, this is where
randomly selected solutions undergo mutation on ran-
domly selected genes. We associate with each model
some probability of changing its hyperparameter values
known as the mutation rate, pmutate. If its selected for
mutation, we then associate with each gene some proba-
bility of changing its value known as the gene-mutation
rate, pgene. For the experiments used in this paper, we
typically set pgene = 1/NCNN, where NCNN denotes the
dimensionality of the hyperparameter search space. We
tried larger values of pgene but they performed worst
on the problems we considered. If a hyperparameter is
selected for mutation its value is modified according to
a Gaussian mutation: we draw the new value from a
normal distribution whose mean is the current value
and whose variance is 0.2 ×

(
Ihigh
m − I low

m

)
, where the

parameter-specific interval Im is defined in Eq. (20) and
Ihigh
m and I low

m are the upper and lower boundaries of
this interval, respectively.

4.2.4 Fitness evaluation

At the end of the modification steps we have a new
set of µ candidate hyperparameter values, {λji}

µ
i=1, to

add to the population. Each new candidate classifier
model is trained, validated, and an overall fitness score
is computed. The fitness score can be flexibly selected
to encourage networks with desirable properties and, in
particular, need not be related to the loss function used
for training the network. We choose our fitness score to

be

Sji = 0.975Jji + 0.025Cji , (19)

where Jji is the ith classifier’s accuracy at generation j,
evaluated on the validation dataset, and Cji is network’s
size (or complexity) fitness. The weighting factors are
selected such that Sji ≤ 1.

The accuracy is computed using a simple formula
as the number of correctly classified examples divided
by the total number of examples. To assign a label
to each testing example, we use a threshold of P ∗ =
0.5 in our one-sided test function (18); we will return
to the choice of threshold in Sec. 5.4. The complexity
fitness is computed as the ratio of the total number of
trainable parameters (the network’s degrees of freedom)
computed relative to the seed network. As an example,
Cji obtains a maximum value of 1 if there are no learned
parameters, is 0 if there are as many learned parameters
as the seed network, and can be negative if there are
more learned parameters than the seed network. Note
that there are many possible alternative measures for
complexity one could consider, such as the Rademacher
complexity or Vapnik-Chervonenkis dimension. In all
cases, the complexity fitness measure should result in
more compact networks (hence faster training times) and
might lead to better performing networks by reducing
generalization error or adversarial attack examples [78].

The genetic algorithm’s goal is to maximize the
fitness score, which is a weighted sum of the accuracy
and an estimate of the model’s complexity. Table 1
provides typical ranges we allow our hyperparameters
to vary over.

4.3 Genetic algorithm variants

To summarize, a completely specified genetic algorithm
will specify a selection, crossover, and mutation operator.
We mainly consider the following 6 variations in this
paper:

– Standard: The selection rule does not use elitism
and only children comprise the next generation. We
use a 1-point crossover with pcross = 0.4 and a mu-
tation rate of pmutate = 0.1. The evolutionary algo-
rithm used is the simple one described in Chapter 7
of Ref. [77].

– µ+λ: This variant has the same settings as the stan-
dard one above, except that the previous generation
of µ parents competes with the offspring for a place
in the next generation. This is expected to help sta-
bilize the evolution by protecting against offspring
models with low fitness scores.
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– Elitist µ+ λ: This variant has the same settings as
the (µ+λ) algorithm above, but the best 2 solutions
in a population are guaranteed to survive, which
helps to stabilize the evolution by always retaining
the fittest solutions in the population.

– Erratic: We also consider all three versions men-
tioned above, but now setting pcross = 0.55 and
pmutate = 0.25. This allows the population to more
aggressively move around the hyperparameter space.

4.4 Hyperparameter intervals

Given a seed network architecture, the GA optimizer
will explore the hyperparameter space around this seed
value. Each hyperparameter’s value will be restricted to
a valid interval, and the tensor product of these intervals
defines the optimization problem’s domain.

Let λseed be the seed hyperparameter for the tem-
plate network, then the hyperparameter’s interval is
given by

Im = [λseed(1− Sm), λseed(1 + Sm)] (20)

where Sm is a parameter used to create an interval
surrounding λseed. We typically set its value to 0.65. For
certain hyperparameters, we modify the lower and upper
bounds of Im to comply with valid ranges (“hard limits”)
as well as performing other necessary adjustments. For
example, the ADAM optimizer’s moment decay values
must lie between 0 and 1. Similarly, for discrete variables,
we would move the upper and lower limits to the nearest
positive integer.

The hyperparameter’s domain, Im, determines both
the Gaussian mutation strength and the search space of
the initial population. Note that the initial population is
selected from a uniform distribution on the interval Im,
which allows the candidate solutions to initially explore
a large portion of the search space.

4.5 Libraries and computational hardware

Our hyperparameter optimization algorithm (cf. Sec. 4)
is implemented using the Distributed Evolutionary Algo-
rithms in Python (DEAP) framework [79]. This frame-
work provides for customizable classes which control
the mutation, cross-over, and selection rules applied
to the population of candidate models. One of the ad-
vantages of genetic algorithms is that they are easily
parallelized, and we use the Mpi4py library to distribute
the population over available GPU-enabled compute
nodes.

We setup the model’s architecture using Keras’ API
to the Tensorflow library. Tensorflow allows for training

on GPU devices, which we make extensive use of here.
Our GA simulations have typically been performed on
our local cluster, CARNiE, which has 20 nodes with
NVIDIA Tesla V100 GPUs. As GA optimization requires
significant computational resources, having access to a
GPU cluster proved to be crucial for our studies.

5 Numerical experiments: Training and
optimizing the network

Our numerical experiments will focus on exploring the
properties of the genetic algorithm. We consider its
performance under different scenarios and between GA
variants. The goal here is not to compare with tradi-
tional matched filtering searches but rather explore the
viability of hyperparameter optimization using a genetic
algorithm.

5.1 Discovering networks from scratch

In our first example, we consider starting hyperparam-
eter values for which the network cannot learn at all.
Most of these values are depicted in Fig. 1, and we also
select Di

drop = 0.2, Nbatch = 50, and εLR = 0.001 as the
seed values. As is well known, the ADAM optimizer can
fail when the learning rate is either too high or too low.
We have purposefully specified a large value to show
how the GA can overcome poor starting values.

Our classification problem is defined byM ∈ [40, 60],
q ∈ [1, 3], T = 1 s, fs = 2048Hz, Gaussian noise, SNR ∼
15, and fsignal = 0.5. Our training data is comprised of a
few thousand examples with 20% held out for validation.
We restrict to high SNRs to facilitate a comparison to
a dense grid-based search on unreasonably large grids
to challenge the evolutionary algorithm.

To get a better sense of the search subspace, we first
perform a brute-force, grid-based search for optimal
parameter values by fixing all of the hyperparameter
values except for the batch size and learning rate. A
total of 1740 unique training runs are performed on
the grid depicted in Fig. 3a, and for each run, we stop
the training sequence if the network fails to improve
after 10 epochs. As the network’s learned parameters are
randomly initialized, sometimes the ADAM optimizer
will fail simply due to unlucky initial values. And so we
also retry training a failed network with new initialized
values up to 4 times. Fig. 3a also shows how the resulting
network’s accuracy varies with these two parameters,
where the accuracy is computed as the mean of the
diagonal entries of the confusion matrix as 1−α/2−β/2.
As expected, there is a region of equally valid solutions
where the classifier obtains perfect accuracy along with
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Fig. 3: These figures summarize the experiment described in Sec. 5.1, where we challenge the genetic algorithm by
seeding the learning training in a region of low fitness (upper left panel, red asterisk). The upper right panels show
that the genetic algorithm finds a region of high fitness, and the resulting network is both very accurate and much
more compact than the seed network (in our definition of network complexity, a network with a complexity factor
of 1 would have no learned parameters). The bottom panels show the evolution of Conv1D filters (left) and ADAM
learning parameters (right) averaged over the top 5 networks. The network’s seed values are shown in the legend.

large regions where the network exhibits poor accuracy.
Recall that since half of our training examples contain
a signal, an accuracy of 0.5 corresponds to a random
guess.

Next, we solve the optimization problem using a
genetic algorithm. For this experiment, we proceed with
different values for the GA operators to show good
solutions can be found without fine-tuning the GA’s
parameters. The GA uses pmutate = 0.4, pcross = 0.6,
pgene = 0.2, a population size of 60, tournament size of
2, and each subsequent population retains the top two
best solutions from the previous generation (the elitism
selection rule). We slightly modify our weighted fitness
function to weight loss by 0.95 and network complexity
by 0.05.

We continue to use the seed values mentioned above
while now allowing the hyperparameter values to vary
over the full 17-dimensional space. Our genetic algo-
rithm seeks to find accurate and compact networks by
maximizing the fitness function (19). Fig. 3b shows the
accuracy and complexity contributions to the overall
fitness score of the top 5 networks in the population
as a function of generation. By the 17th generation we
have found a network with perfect accuracy and whose
size is about 85% more compact than the original seed
network. At this point we could reasonably halt the opti-
mization algorithm, while continuing shows that future
generations continue to evolve with more and more of
the population moving towards regions of higher fitness.
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Figures 3c and 3d show how the hyperparameter val-
ues evolve away from their seed value and towards fitter
networks. For example, Fig. 3c shows that in all three
convolutional layers significantly fewer filters are needed.
Fig. 3d shows the GA moves the learning parameters in
the direction anticipated by the brute force search show
in Fig. 3a.

The final network discovered by the GA is more
compact than others that have been reported in the
literature, which is perhaps not too surprising given
the comparatively smaller size of signal space. Never-
theless, this example highlights the effectiveness of the
GA at automatically discovering compact and accurate
networks tuned to a specific problem.

5.2 Comparison of genetic algorithms
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Fig. 4: Relative change in weighted fitness (19) versus
generation for the 6 different genetic algorithm variants
considered here. The weighted fitness, which includes
contributions from both the network’s accuracy and
complexity into the objective function, is the quantity
that the GA optimizes over this 20-dimensional hyper-
parameter search space. We see that GA variants that
explore the parameter space most aggressively (erratic
versions) provide for continual refinements of the popu-
lation through all 25 generations. For comparison, we
also show random sampling (Monte Carlo) of the hyper-
parameter space, which, given the high dimensionality
of the problem, results in many generations without
any better performing candidates. While the improve-
ments in all cases are modest, we note that the GA is
refining the George & Huerta architecture whose hyper-
parameter values have been found through an extensive,
manual, and randomized trial-and-error procedure.
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Fig. 5: Standard deviation in the (normalized) hyperpa-
rameter values from the top 10 solutions. In all trials,
our GA’s appear to converge to a minima as shown by
the decreased diversity in the population of solutions.
Note that because we use 5 non-interacting populations
the spread of hyperparameter values is larger than the
spread in each trial (cf. Fig. 6d). Notice that after many
generations most GA populations slow their evolution
while µ+ λ/elitism/erratic continues to find new, high-
quality solutions. The top 10 solutions found through
random sampling (Monte Carlo) do not show any simi-
larity, which indicates that there are a variety of decent
solutions for this problem.

In the previous example, we considered how a genetic
algorithm could improve on hyperparameter values for
which the seed network cannot learn at all. We now con-
sider how genetic-algorithm optimization can improve
upon an already good network architecture as well as
comparing GA variants.

In this first numerical experiment, we perform hy-
perparameter optimization with the six different genetic
algorithm variants described in Sec. 4.3 as well as ran-
dom sampling (Monte Carlo). Each GA uses the same
network seed shown in Fig. 1. Our key aim is to compare
the convergence and fitness properties of each approach
as well as understanding how these algorithms move
through the hyperparameter space. In all cases, the
search space is defined by the hyperparameter ranges
quoted in Table 1.

We use a sequence of 15 training datasets with 2000
training examples per dataset. Each training example
corresponds to T = 1 second of time series data sampled
at a rate of ∆t = 2048 Hz. In our noise model, we set
a constant value of Sn(fi) = Sn (cf. Sec. 2.2) such that
each dataset in the sequence contains signals with a typ-
ical target SNR computed from Eq. (12). Our sequence
of datasets is constructed such that the classification
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problem is gradually more challenging, which is achieved
by gradually lowering the SNR from 1828.272 to 2.711
at a decelerating rate (cf. Sec. 3.2). The last 4 datasets
in this sequence have signals with average SNR values
of 14.7961, 9.9239, 6.9361, and 2.711. From these four
datasets we hold out 20% of the training examples to
compute the accuracy fitness score (19).

Gravitational-wave signals are simulated using a non-
spinning numerical relativity surrogate model [67]. We
simulate systems by sampling a uniform distribution
with the total mass from 22.5 to 67.5 solar masses, the
mass ratio from 1 to 5, and the distance from 0.5 to 1.5
megaparsecs. The binary system is oriented such that
ι = φc = π/3, and we choose values of right ascension
(ra), declination (dec), and polarization (ψ) such that
the antenna patterns satisfy F+ = 1 and F× = 0. Half
of the training examples are pure noise and half contain
a signal. Signals are added to the noise with random
time shifts such that the signal’s peak amplitude occurs
at different times.

In general, optimization algorithms will tend to con-
verge to a local minima. In the case of the GA, there
are a variety of strategies to overcome this problem
including simulated annealing [80,81], dual population
algorithms [82], and others. We instead follow a more
brute-force approach by rerunning the algorithm 5 times,
with each run using the same seed network but 20 with
distinct candidates in the initial population. All 5 popu-
lations are advanced forwards over 25 generations. We
then aggregate these 5 distinct (non-interacting) sub-
populations into a single population of size 100. As there
are 6 distinct GA variants plus Monte Carlo tested here,
we have trained a total of 17,500 CNNs to compile the
results of this subsection.

Figures 5 and 4 show the evolution of these 100 can-
didates over all 25 generations. This provides us with
an overview of how each GA algorithm is performing at
the expense of a more detailed view of each of the 5 sub-
populations. Note that since each sub-population may
be converging towards a local minima, large hyperparam-
eter spreads should be interpreted as sub-populations
converging to different parts of the parameter space.
Later on in Sec. 5.3 we explore a more detailed view of
one particular genetic algorithm.

We first consider how well each GA performs its
primary task, which is to optimize the weighted fitness
objective function given in Eq. (19). Fig. 4 compares 6
GA variants for this problem by plotting the change in
the highest achieved fitness for any individual network
(i.e. the current best solution) versus generation. Due
to the random starting values of the initial population
there is already some spread amongst GA variants at the
first generation. To account for this we monitor the rel-

ative percentage change, 100× |maxi Sji − Sseed|/Sseed,
from the initial weighted fitness value, Sseed = maxi S0

i .
To assess the algorithm’s performance, we consider how
quickly the algorithms can achieve higher fitness scores.
While all of the variants provide good performance on
this challenging (low SNR) case, it is clear that GAs
that more aggressively explore the parameter space (“er-
ratic" versions) offer better performance. In particular,
we see that erratic µ+ λ with elitism continues to find
refined hyperparameter values throughout the simula-
tion. Non-erratic versions, for example the standard and
µ+ λ variants, are less effective at exploring the space
and are characterized by no improvement for multiple
generations. Monte Carlo sampling approach also fails
to find better candidates for most of the simulation.

Next we turn our attention to how the hyperpa-
rameter values evolve. If the optimization problem has
neither local minima nor degeneracies then we would
expect to see the population converge to a unique point
in parameter space. Consequently, under this scenario,
we would expect the average spread of hyperparameter
values to converge towards zero. For the complicated
problem considered here, however, we instead expect
potentially many local minima and degeneracies. Addi-
tionally, as described above, we have combined results
from 5 non-interacting populations each of which might
converge to different local minima. Nevertheless, it is
still useful to monitor the diversity of the entire popula-
tion over generations. Fig. 5 shows the average (over all
20 hyperparamters) standard deviation of the (normal-
ized) hyperparameter values in top 10 best solutions. We
find that all of the genetic algorithm variants show some
form of convergence that tends to slow with generation.
The µ+ λ/elitism/erratic GA variant shows the fastest
convergence of the 6 variants, which was also seen in
the fitness plot Fig. 4. Due to Monte Carlo’s global,
uncoordinated sampling, there is very little similarity
seen among the best solutions for this case.

One common measure of algorithm performance is
the rate at which it converges toward the solution, in
this case, the maximum value of the fitness function.
For genetic algorithms there are some theoretical results
on convergence [83–85], but its not clear how applicable
these results are to our case. For this problem, empirical
evidence from Fig. 4 indicated that erratic µ+ λ with
elitism performs at least as good as the other GA vari-
ants, and in some cases much better. This is possibly
due to the synergy between the stabilizing properties
of µ + λ with elitism combined with the aggressively
explorative search rates used in erratic variants. We did
find, however, that for small populations sizes (less than
10) genetic algorithms with elitism are more susceptible
to local minima, and so in this regime the stabilizing fea-
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tures are counterproductive. We also tested erratic µ+λ
with elitism using a two-point crossover and mutation
operators, but these more aggressive search operators
had little effect and so these results were not included
here.

It is worth noting that certain algorithms are more
computationally challenging to run. For example, at each
generation the Monte-Carlo algorithm, the most costly
of the algorithms we considered, selects an entirely new
set of individuals all of which need to be retrained. By
comparison, the fittest individuals in the GA population
are carried over to the next iteration and do not need to
be trained. However, this difference is more significant
for cpu- or gpu-time than walltime since training a
population of networks is embarrassingly parallel, unlike
generations that proceed sequentially.

5.3 Network refinement using erratic µ+ λ with elitism

In Sec. 5.2 we found that the GA variant erratic µ+ λ

with elitism was a top performer for this problem. Here
we explore this GA variant in a bit more detail while
scaling up the search to use a population size of 50, 50
generations, and 5 elites (the elites have been scaled
proportionally to the population). We continue to use
the same training and testing data as in Sec. 5.2. Also as
before, to avoid local minima we use 5 non-interacting
populations (called trials below) with different seeds,
however they are now displayed separately rather than
aggregated.

In Fig. 6 shows the evolution of the best solution for
each trial. We see that by about 35 generations each
trial has converged to a solution that has improved upon
the seed network, whose fitness values are shown in each
subfigure. It should be noted that although our GA will
guarantee improvements in weighted fitness (cf. Fig. 6d),
accuracy and complexity fitness have no such guarantee
since the algorithm is optimizing the weighted fitness.
Figure 6 shows that both fitness measures increase.

From Fig. 6a we see that trial 3 found the network
with the best overall accuracy, whose accuracy fitness
improved from .71 (accuracy of the seed network) to
.79, an 11% increase. The accuracy baseline of the seed
network was computed by taking the best score after re-
training 10 times from scratch to guard against unlucky
weight initializations. By comparison, due to compu-
tational cost considerations, each member of the GA’s
population was only evaluated once with a randomized
seed. Due to a large number of generations and popu-
lation size the GA effectively explores many possible
seed choices to make the impact of an unlucky seed
unimportant.

Fig. 6b shows that this network also has 78% fewer
learned parameters as compared to the seed network.
Note that in our definition of complexity, a value of 0
means the network has as many learned parameters as
the seed network while a value of 1 is a trivial network
with no trainable parameters. We remind the readers
that our seed network architecture was taken to be
the best network with 3 CNN layers from Ref. [28],
and so we see here the ability of the GA to improve
upon already good networks, which will be important
for maximizing the efficacy of machine-learning based
gravitational wave searches.

Finally, in Fig. 7 we show the evolution of (normal-
ized) hyperparameter values across generations. This
provides some insight into the influence of a given hyper-
parameter for this problem. For example, the 2nd and
3rd convolutional layers’ dilation rates benefited from
being smaller. The dense units also moved to notably
smaller sizes while higher dropout rates were preferred.
We also observe a decrease in Conv1D kernel sizes from
layers 1 to 3, perhaps since the maxout layers reduce the
activation areas between each convolutional layer. There
also appears to be degeneracy among the first two filter
values, where the population wanders between many
plausible values even at later generations, however, the
last filter value tends to become smaller.

5.4 Comparing seed and optimized architectures

In Sec. 5.3 a genetic algorithm was used to improve
George and Huerta’s proposed architecture (our seed net-
work) for the classification problem described in Sec. 5.2.
We now consider a more detailed comparison between
the George and Huerta (GH) and GA-optimized archi-
tectures by considering diagnostics discussed in Sec. 2.5.
Our testing data is comprised of 400, 000 examples with
half containing signals with SNRs between 2 and 30.

Recall that the output of a classier is a number,
the ranking statistic, that assigns a measure of confi-
dence that the dataset contains a signal. For traditional
matched filtering this number, ρ, is the signal-to-noise
ratio. For the CNN classifier the network outputs a num-
ber, 0 ≤ Psignal ≤ 1, which we would like to interpret
as the significance of a signal: when Psignal = (0)1 the
network is absolutely certain is (no) signal. The inset of
Fig. 8d shows the distribution of Psignal over 200, 000
datasets that contain a signal. Two peaks are evident.
The largest one, located at Psignal = 1, corresponds to
high SNR events. A secondary peak, comprised of mod-
erate SNR events, lies just above 0.5. The distribution
of Psignal over 200, 000 noise-only datasets also shows a
large peak just below 0.5.
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(a) Weighted fitness (seed value = 0.68)

● ● ●

● ● ●

● ● ● ● ● ●

● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ●

● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●

●

●

●

● ● ● ●

●

●

● ● ● ● ● ● ● ● ●

● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●
● ●

● ● ●

● ● ● ● ● ● ●

● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

● ●

● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.75

0.76

0.77

0.78

0 10 20 30 40 50
generation

F
itn

es
s

trial ● ● ● ● ●0 1 2 3 4

(b) Accuracy fitness (seed value = 0.7)
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(c) Complexity fitness (seed value = 0)
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Fig. 6: These figures summarize the experiment described in Sec. 5.3, where we perform hyperparameter optimization
with the erratic µ+ λ with elitism GA variant using five distinct runs (labeled trials) to help guard against local
minima. In all trials, the populations appear to have converged to a local minima by about 35 generations. This is
most evident by monitoring the spread in the (normalized) hyperparameter values in the top 10 solutions (bottom
right). The genetic algorithm finds a region of high weighted fitness (upper left panel) and the resulting network
is both more accurate (upper right panel) and more compact (lower than panel) than the George and Huerta
small classifier (our seed network), whose values are shown in the subfigure’s caption. The GA made significant
improvements in network complexity, which had about 80% fewer learned parameters as compared to the seed
network. We have included extremely weak signals in our validation set with SNRs as low as 2, which is why our
accuracy fitness obtains a maximum of ≈ 79%; Sec. 5.4 explores network properties as the SNR is varied.

Following Gabbard et al. [33] our next comparison
between the GH and GA-optimized networks consid-
ers the true alarm probability versus the optimized
matched-filter SNR of the signal. Fig.8a shows that the
GA-optimized network (solid blue line) outperforms the
seed network (dash blue like) at the threshold value of
P ∗signal = 0.5 used in the computation of the accuracy
when computing the GA’s fitness score. However, from
Figs. 8b and 8c we see that at this threshold value the
networks have different false alarm probabilities. At a

fixed FAP of 10−3 (green) both networks show compa-
rable performance. We believe this is a consequence of
using a threshold of P ∗signal = 0.5 in the computation of
the fitness score, which, as we have empirically shown,
does not control the FAP. In future work we hope to
explore different loss functions or GA fitness scores to
directly control and optimize for target FAPs.

Finally, in Fig. 8b we compute ROC curves for three
representative optimal matched-filter SNR values. We
see that the GA outperforms the seed network for weaker
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Fig. 7: Parallel coordinate plot of hyperparameter evo-
lution over 30 generations of architecture optimization
using the GA-variant described in Sec. 5.3. The gener-
ations are shown logarithmically to better distinguish
earlier generations from one another. Each generation
is represented as a color-coded, connected line showing
the best performing architectures averaged over the 5
sub-populations. Hyperparameter values are normalized
such that a value of 0 corresponds to value of the George
& Huerta seed architecture, thus allowing us to com-
pare GA’s solution to the seed network as well as the
evolution the population took to arrive at the optimized
architecture.

signals at FAPs corresponding to thresholds near 0.5,
while at higher SNR values and/or different FAPs neither
network has a clear advantage. We note that despite
both networks having comparable effectiveness in some
of our tests, the optimized architecture is able to achieve
these results with 79% fewer learned parameters.

6 Discussion & Conclusion

We have presented a novel method for optimizing the hy-
perparameter values of a deep convolutional neural net-
work classifier based on genetic algorithms. We have ap-
plied our method to optimize deep filtering [28] networks,
a special kind of convolutional neural network classifier
designed to rapidly identify the presence of weak signals
in noisy, time-series data streams. For example, deep
filtering has been used to search for gravitational-wave
signals [28,28–38] as an alternative to more traditional
(and computationally expensive) matched filtering. All
previous attempts to optimize deep filtering hyperpa-

Table 2: Genetic algorithm optimized architecture for
the gravitational-wave classification problem defined in
Sec. 5.3. For comparison, we also show the values used
for the seed network, which is essentially the classifier
discovered by George and Huerta [28] and shown in
Fig. 1. Interestingly, the GA was able to find a sig-
nificantly more compact network that simultaneously
achieves better accuracy. It is surprising how few filters
and neurons the network needs; the largest number of
filters and neurons per layer being only 30 and 38 respec-
tively. It is also noticeable that the kernels in the early
layers need to be very wide and relatively dense, while
later kernels shrink and become sparse (as indicated
by dilation) rather quickly. This is somewhat contrary
to the conventional wisdom of CNN architectures and
underscores the potential benefits of automated hyper-
parameter tuning.

Quantity Seed GA
Weighted Fitness 0.6830484375 0.7825329
Accuracy Fitness 0.7005625 0.7837500

Size Fitness 0 0.7350671
CNN-1 Filters 16 20
CNN-1 Size 16 14

CNN-1 Dilation 1 1
CNN-2 Filters 32 14
CNN-2 Size 8 6

CNN-2 Dilation 4 3
CNN-3 Filters 64 30
CNN-3 Size 8 4

CNN-3 Dilation 4 2
Dropout-1 Rate 0.1 0.1948836
Dense Units 64 38

Dropout-2 Rate 0.1 0.1058403
GW comparisons Sec. 5.4

rameter values have relied on trial and error strategies
to set the hyperparameter values.

The principal contribution of our work is to assess
the benefits of genetic algorithms for hyperparameter
optimization. Our work also constitutes the first attempt
to automate the hyperparameter optimization procedure
for such networks. We have specifically focused on (i)
assessing the effectiveness of different genetic algorithm
variants for our problem, (ii) quantifying the genetic
algorithm’s ability to improve upon state-of-the-art ar-
chitectures, and (iii) considering the genetic algorithm’s
ability to discover new architectures from scratch. We
also provide a detailed comparison of our fully optimized
network with the network described in Ref. [28]. Our
main findings include:

– (i) In Sec. 5.2 we compared six different GA algo-
rithms, differing in their choice of selection, mutation,
and crossover operators. While many performed com-
parably well, the variant erratic µ+ λ with elitism
was generally found to work the best. This is possibly
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Fig. 8: Comparison of our seed network to the GA-optimized architecture as described in Sec. 5.4. In Sec. 5.3 we
showed that the optimized architecture has 79% fewer trainable parameters while its classification accuracy is 11%
higher than the seed network when using a ranking statistic threshold of P ∗signal = 0.5. As seen in the upper left
panel, when using this threshold value, the optimized network’s true alarm probability is higher across a range of
signal SNR values. However, at fixed false alarm probabilities (FAP) the optimized network does not show any clear
advantage beyond being significantly more compact. This is perhaps not surprising since the fitness score (19) uses
a fixed threshold of P ∗signal = 0.5 instead of a fixed the FAP. Indeed, from the bottom two figures we see that the
ranking statistic of the optimized network has a dramatically different distribution before and after the threshold
value of 0.5. Exploring alternative GA fitness scores to address this issue will be considered in future work.

due to the synergy between the stabilizing properties
of µ+ λ with elitism combined with more aggressive
search operators used in our erratic variants. We
also considered a GA fitness score (19) based on
both classification accuracy and network complex-
ity, and found that the network complexity fitness
term resulted in significantly more compact networks
without sacrificing accuracy.

– (ii) Previous attempts at hyperparameter optimiza-
tion relied on trial and error (Monte Carlo) searches.
For the benchmark cases considered here, we find

that all GA variants outperform trial and error
searches; see Sec. 5.2.

– (iii) In Sec. 5.1, we show that when the seed network
is of very low quality quality with no predictive
ability whatsoever, the genetic algorithm is able
to discover new networks with high accuracy and
low complexity. This is important when designing
entirely new networks where good hyperparameter
values may be unknown.

– (iv) In Sec. 5.3, we showed that when starting from
the architecture proposed by George and Huerta [28],
the GA-optimized network has 78% fewer trainable
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parameters while obtaining an 11% increase in accu-
racy for our test problem. This showcases the GA’s
ability to refine state-of-the-art convolutional neu-
ral networks to simultaneously achieve both more
compact networks and higher accuracy. In all of our
experiments, we find the GA discovers significantly
less complicated networks as compared to the seed
network, suggesting it can be used to prune wasteful
network structures.

High dimensional hyperparameter optimization is
challenging. Based on considerations of the problem, evo-
lutionary algorithms in general, and genetic algorithms
in particular, are one possible solution to this problem.
Future work should include exploring and comparing
to alternative algorithms, such as particle swarm opti-
mization or Bayesian optimization, as well as different
forms of the GA fitness score. Indeed, due to the choice
of fitness score, the GA optimizes the network at a fixed
threshold of the ranking statistic, P ∗signal, instead of a
fixed false alarm probability. In Sec. 5.4 we see that at a
fixed false alarm probability the GA-optimized network
does not have a clear accuracy advantage, although it
is significantly more compact. In future work we hope
to explore different loss functions or GA fitness scores
to directly control and optimize for target FAPs. Fur-
thermore, as the complexity of the neural network is
high, one might consider designing fitness functions for
individual layers of the classifier thereby reducing one
high dimensional optimization problem to a handful of
lower-dimensional optimization problems. While this
approach is computationally attractive, it would require
access to layer-specific fitness functions that, at least
at present, do not have an obvious choice. However, if
such fitness functions can be found (perhaps for specific
problems) this would provide for faster optimization.

To facilitate comprehensive studies of the GA’s be-
havior, we have focused on signals from non-spinning
binary black hole systems. One important extension of
our work is to consider GA optimized networks in the
context of signals from spinning and precessing binary
black hole systems, which is the more realistic case of
interest. Finally, while we have restricted our attention
to deep CNN classifiers, genetic algorithm optimization
can be applied to any other machine learning setting
where hyperparameter values need to be set, includ-
ing alternative architectures for signal classification or
parameter estimation.

GA-optimized networks should prove useful in a va-
riety of contexts. Most importantly, they provide some
assurance that the most accurate, compact networks
are being found and used in realistic gravitational-wave
searches. GA-optimizations should be especially when
exploring new architectures or refining an existing one.

For example, if the detector’s noise properties or signal
model might change, a GA can make automated hyper-
parameter refinements while the network is retrained.
GA optimizations may also be useful when comparing
different machine learning algorithms. In such compar-
isons it is often unclear if the better performing model
is genuinely better or its hyperparameters are better op-
timized; automating the hyperparameter selection will
remove some of this ambiguity. Finally, the evolution of
hyperparameter values over generations might provide
insight into the network by elucidating degeneracies and
patterns in network’s structure.
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A Fourier transform and inner product
conventions

We summarize our conventions, which vary somewhat in the
literature. Given a time domain vector, a, the discrete version
of the Fourier transform of a evaluated at frequency fp = p/T
is given by

ã(fp) = ã[p] = ∆t
N−1∑
n=0

a(tn)e−2πifpn∆t = ∆t
N−1∑
n=0

a(tn)e−2πin p

N ,

(21)

where 0 ≤ p ≤ N − 1. Notice that the zero frequency (fp = 0)
corresponds to p = 0, positive frequencies (0 < fp < fs/2)
to values in the range 0 < p ≤ N/2, and negative frequencies
(−fs/2 ≤ f < 0) correspond to values in the rangeN/2 < p < N .
This follows from the usual assumptions that the signal is both
periodic in the observation duration, a(t) = a(t ± T ), and
compactly supported, ã(f) = 0 for |f | ≥ fs/2, where fs =
1/∆t is the sampling rate and fs/2 is the Nyquist frequency.
Consequently, the Fourier transformed signal is periodic in k
with a period of N , ã(fk) = ã(fk ±N∆f). The value p = N/2
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corresponds to the Fourier transform at the maximum resolvable
frequencies, −fs/2 and fs/2, for a given choice of ∆t.

Given the Fourier transformed data, ã and b̃, the noise-
weighted inner product 〈·, ·〉 between ã and b̃ is defined as

〈a, b〉 = 2∆f
N−1∑
i=0

a(fi)b∗(fi)
Sn(fi)

≈ 2
∫ fs/2

−fs/2

a(f)b∗(f)
Sn(f) df . (22)

Notice that by convention the inner product is defined with an
overall factor of 2, but unlike Eq. 6 the full set of positive and
negative frequencies are used. The continuum limit (∆f → 0)
of the summation makes clear that this is a (discretized) inner
product between a(f) and b(f) over the domain |f | ≤ fs/2.
Note that because the time-domain signal is real the Fourier
transformed signal satisfies ã∗(f) = ã(−f). As a result, the
inner product expression can be “folded-over"

〈a, b〉 = 4<
N/2−1∑
i=0

a(fi)b∗(fi)
Sn(fi)

≈ 4<
∫ fs/2

0

a(f)b∗(f)
Sn(f) df , (23)

which now features an integral over the positive frequencies and
shows the inner product to be manifestly real. We then arrive
at Eq. 6. This motivates the use of the term “inner product"
when discussing Eq. 6 despite the fact that when taken at face
value it does not satisfy the usual properties of an inner product
while Eq. (22) does. Finally, some authors set the noise at the
Nyquist frequency to 0 (see, for example, Ref. [64] discussion
after Eq. 7.1.) frequency.

B Derivation of conditional probabilities used
in likelihood-ratio test

A derivation of the standard inner product used in gravitational-
wave analyses can be found in Ref. [86], which makes use of
methods laid out in Ref. [63]. Here, we provide a brief derivation
to highlight some of the assumptions that go into the classical
filter.

In the absence of a signal, we assume that the detector is a
stochastic process that outputs Gaussian noise with zero mean.
The likelihood that some observed output s is purely noise
is therefore given by a N−dimensional multivariate normal
distribution

p(s|n) =
exp

[
− 1

2 sTΣ−1s
]

√
(2π)N det Σ

, (24)

where Σ is the covariance matrix of the noise and det Σ is its
determinant.

It is also common to assume that the noise is wide-sense
stationary and ergodic. This is generally true on the time scales
that a gravitational-wave from a compact binary merger passes
through the sensitive band of the detector (∼ maxO(100 s)). In
that case, Σ is a real symmetric Toeplitz matrix with elements

Σ[j, k] = 1
2Rss[k − j]

where

Rss[k] ≡ lim
n→∞

1
n

n−1∑
l=−n

s[l]s[l + k] (25)

is the autocorrelation function of the data.
There is no general, analytic solution for Σ−1. However, if

Rss → 0 in finite time τmax and the observation time T > 2τmax

(i.e., dN/2e > dτmax/∆te), then Σ is nearly a circulant matrix;
it only differs in the upper-right and lower-left corners. All
circulant matrices, regardless of the values of their elements,
have the same eigenvectors [87]

up[k] = 1√
N
e−2πikp/N . (26)

We make the approximation that Σ is circulant, and use these
eigenvectors to solve the eigenvalue equation, yielding

λp = 1
2<


N/2−1∑
l=−N/2

Rss[l]e−2πipl/N

 . (27)

(The < arises because the covariance is real and symmetric.)
The error in this approximation decreases with increasing obser-
vation time; indeed, the eigenvalues of Σ asymptote to Eq. 27
as N →∞ [87]. The autocorrelation function of ground-based
gravitational-wave detectors ≈ 0 for τ > O(10 ms). Since the
observation time for a gravitational wave is > O(s), this approx-
imation is valid in practice.

We recognize Eq. 27 as 1/∆t times the real part of the
discrete Fourier transform of Rss[p].2 Therefore, via the Wiener-
Khinchin theorem,

λp = Sn[p]
2∆t (28)

where Sn[p] is the discrete approximation of the power spectral
density (PSD) of the noise at frequency p/T ≡ p∆f . Since the
matrix of eigenvectors U are unitary, we have

Σ−1[j, k] ≈
[
UΛ−1U†

]
[j, k]

≈ 2∆t
N

N−1∑
p=0

e−2πijp/Ne2πikp/N

Sn[p]

= cjk + 4∆f(∆t)2
N/2−1∑
p=1

cos (2π(j − k)p/N)
Sn[p] , (29)

To go from the second to the third line, we have substituted
1/N = ∆f∆t and have made use of the fact that Sn[p] is
symmetric about N/2; cjk depends only on the p = 0 and
p = N/2 terms, which correspond to the DC and Nyquist
frequencies, respectively.

Gravitational-wave detectors have peak sensitivity within
a particular frequency band [f0, fmax] (for current generation
detectors, this is f ∼ [20, 2000]Hz). Outside of this range we
can effectively treat the PSD as being infinite, making all terms
in Eq. (29) with p < bf0/∆fc ≡ p0 zero. Likewise, if we choose
a sample rate 1/∆t > 2fmax, then the Nyquist term is also effec-
tively zero. The exponential term in the likelihood is therefore

[
sTΣ−1s

]
≈ 4∆f

N/2−1∑
p=p0

(∆t)2
N−1∑
j,k=0

s[j]s[k] cos (2π(j − k)p/N)
Sn[p]

≈ 4∆f
N/2−1∑
p=p0

|s̃|2 [p]
Sn[p] .

In going from the first to the second line we have again recognized
the sums over j, k as the discrete Fourier transforms over the
real time-series data. We can further simplify this by defining
the inner product Eq. (6), yielding Eq. (5) for the likelihood.

2 We use the same convention for the Fourier transform as in
Ref. [88].
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C How to generate Gaussian Noise

Somewhat surprisingly, we are unaware of a resource that de-
scribes how to implement Eq. (4) to generate time-domain noise
realizations. When implementing this expression one encounters
sufficiently many subtleties that we will summarize our recipe
here.

Eq. (4) specifies the statistical properties satisfied by the
Fourier coefficients of the noise. Note that in the literature
similar expressions for the discrete Fourier transform coefficients
are sometimes given, which differs from ours.

Since the frequency-domain noise, ñ(fi), is complex, we need
to be careful when sampling the real and imaginary parts. For
example, if the desired property is 〈ñ∗(fi)ñ(fj)〉 = δij , then

<(ñ(fi)) ∼ N (0, 1
2 ) , =(ñ(fi)) ∼ N (0, 1

2 ) , (30)

which gives

〈ñ∗(fi)ñ(fj)〉 = 〈<(ñ(fi))2 + =(ñ(fi))2〉 = 1
2 + 1

2 = 1 . (31)

Furthermore, for real time-domain functions we have ñ∗(f) =
n(−f) and so only the non-negative frequencies are indepen-
dently sampled. When f = 0, this condition implies that n(0)
is real, whence ñ(0) ∼ N (0, 1). A similar property holds at the
Nyquist frequency.

The neural networks considered in this paper use time-
domain data. Synthetic time-domain noise realizations are con-
structed by taking an inverse Fourier transform of our frequency
domain noise. In the time-domain, Eq. (4) becomes,

〈n(ti)〉 = 0 , 〈n2(ti)〉 = ∆f

2

N−1∑
i=0

Sn(fi) , (32)

which follows directly from Eq. (4) and properties of the Fourier
transform. We found Eq. (32) to be an indispensable sanity test
of our time-domain noise realizations.
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