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Abstract
Time-series analysis and forecasting problems are generally considered as some of the most challenging and complicated

problems in data mining. In this work, we propose a new complete framework for enhancing deep learning time-series

models, which is based on a data preprocessing methodology. The proposed framework focuses on conducting a sequence

of transformations on the original low-quality time-series data for generating high-quality time-series data, ‘‘suitable’’ for

efficiently training and fitting a deep learning model. These transformations are performed in two successive stages: The

first stage is based on the smoothing technique for the development of a new de-noised version of the original series in

which every value contains dynamic knowledge of the all previous values. The second stage of transformations is

performed on the smoothed series and it is based on differencing the series in order to be stationary and be considerably

easier fitted and analyzed by a deep learning model. A number of experiments were performed utilizing time-series datasets

from the cryptocurrency market, energy sector and financial stock market application domains on both regression and

classification problems. The comprehensive numerical experiments and statistical analysis provide empirical evidence that

the proposed framework considerably improves the forecasting performance of a deep learning model.

Keywords Deep Learning � Time-series � Forecasting � Stationarity

1 Introduction

Time-series forecasting problems are considered as one of

the most challenging real-world prediction problems due to

the large number of unpredictable factors involved,

resulting in complicated temporal dependencies [1, 2]. In

general, time series are encountered in a variety of popular

real-world applications ranging from sales transactions

[3, 4] and commodities [5, 6] to econometrics [7, 8] and

finance [9, 10]. Time series data is a series of discrete data

points, obtained at successive predefined equally spaced

points in time. Their characteristics and unique properties

considerably distinguish them from other types of data. The

major difference between time-series data and other types

of data is that their features need to be invariant to tran-

sition of time.

Stationarity is an important property and issue in time

series. However, many real-world time series are non-sta-

tionary, which implies that significant properties such as

mean, frequency, variance and kurtosis change over time.

As a result, these series possess high volatility, trend and

are frequently characterized by heteroskedasticity. The

significance of the stationarity property for the efficiency of

a deep learning time-series model was theoretically and

computationally highlighted in [11]. Additionally, to han-

dle the high volatility and significant fluctuations in the

time-series data, some researchers considered to ‘‘smooth’’
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the series [12]. Summarizing, time-series data are charac-

terized by high complexity, complicated temporal depen-

dencies, high fluctuations in prices and usually by chaotic

behavior which makes the process of analyzing and fore-

casting a rather difficult task. Thus, time-series analysis

and forecasting constitutes an active research area, focus-

ing on the prediction of future values and directional

movements.

During the last decades, a variety of forecasting models

were proposed which were based on traditional time-series

forecasting methods such as autoregressive moving aver-

age (ARMA) and autoregressive integrated moving aver-

age (ARIMA) models and their variations [13, 14] or on the

more sophisticated machine learning methods [15–17].

However, the former are usually not able to deal with

complex time-series patterns, while the latter cannot usu-

ally depict their high volatility and chaotic nature. There-

fore, the need for the development of new more elaborated

approaches and methodologies was considered essential for

successfully addressing time-series forecasting problems.

Recently, the significant improvements in computational

capabilities and storage, assisted researchers to deal and

handle large and enormous amounts of information. Fur-

thermore, the development of sophisticated and powerful

data mining algorithms such as deep learning algorithms,

supported the process of identifying and analyzing com-

plex data. These recent advances of artificial intelligence

and deep learning renew the interest of scientific and

industrial community for the development of expert sys-

tems based on strong prediction models as well as the

development of efficient preprocessing techniques to

develop high-quality data from the original low-quality

data. Although deep learning models possess the ability of

being able to fit highly nonlinear models, they were proved

to produce inefficient forecasts and significant autocorre-

lation in the errors [6, 18]. Recently, Livieris et al. [11]

proposed a novel methodology which ensures the ‘‘suit-

ability’’ of a time series for fitting a deep learning model by

performing a series transformations in order to satisfy the

stationarity property while simultaneously can be applied

for regression and classification time-series tasks in a

unified manner.

In this work, we propose a new preprocessing frame-

work for enhancing the performance of deep learning time-

series models, which constitutes the main contribution of

this research. The proposed framework aims on trans-

forming the original low-quality time-series data to high-

quality time-series data, which are ‘‘suitable’’ for effi-

ciently fitting a deep learning forecasting model. The

framework consists of two transformation processes

applied on the original time series. The first transformation

is used for the development of a new unique series, based

on the smoothing technique in which every price contains

dynamic knowledge of the all previous prices of the orig-

inal value. It is worth noticing that the new smoothed series

constitutes a de-noised version of the original series; thus,

it is easier for fitting a deep learning model and be ana-

lyzed. To the best of our knowledge, such transformation

has not been applied in the literature. The second trans-

formation is performed on the smoothed series and it is

based on differencing the series in order to enforce sta-

tionarity and stabilize its mean and variance. The station-

arity property is ensured and imposed by the application of

Augmented Dickey–Fuller test [2]. We conducted a num-

ber of numerical experiments utilizing data from the pop-

ular real-world application domains of cryptocurrency

market, energy sector and financial stock market on both

regression (price prediction) and classification (directional

movement prediction) problems. The presented compre-

hensive analysis illustrated that the proposed framework

considerably improved the forecasting performance of a

deep learning model, especially in terms of classification

accuracy.

The remainder of this paper is organized as follows:

Section 2 presents a brief review of deep learning models

for time-series forecasting. Section 3 presents the proposed

framework focusing on highlighting its theoretical advan-

tages and benefits. Section 4 presents data preparation and

reports the descriptive statistics describing the basic fea-

tures of each dataset. Section 5 presents the detailed

experimental analysis, focusing on the evaluation of the

proposed framework. Section 6 summarizes the findings of

this research and discusses the numerical experiments.

Finally, Sect. 7 presents our conclusions and some inter-

esting future directions.

2 Literature review

Time-series analysis and forecasting constitutes a famous

complicated problem in data mining and a challenging

research area which goes from traditional historical series

prediction to social media analysis. Its complexity is

caused by the time-series’ volatility, significant fluctuations

and internal structure which is highly influenced by a

number of factors. Even though some variations exist, the

major focus of scientific and industrial communities is the

prediction of price and directional movement of the

underlying asset. In spite of the diversity of time-series

application, in this research we focus on three application

domains which incorporate most of global research inter-

est, that is cryptocurrency area, energy sector and financial

stock market.

Chowdhury et al. [19] attempted to apply advanced

machine learning methodologies on the index and con-

stituents of cryptocurrency, aiming at forecasting future
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prices. More specifically, they focused on the prediction of

the closing price of the CCI30 index as well as nine major

cryptocurrencies for assisting cryptocurrency investors in

trading. In their research, they utilized a variety of machine

learning algorithms including gradient boosted trees,

ANNs, k-nearest neighbor and ensemble learning methods,

and their utilized data contained daily closing prices from

January 2017 to January 2019. gradient boosted trees and

ensemble models reported the best performance, which was

competitive and sometimes better, compared to that of

similar state of the art models proposed in the literature.

Cen and Wang [20] proposed a new neural network

architecture, called CID-STNN, for forecasting energy

market. The proposed model is based on a stochastic time

strength neural network which is equipped with a novel

learning rate, controlled by the complexity invariant dis-

tance (CID) The data used in their study regard West Texas

Intermediate oil daily prices from January 31, 2005 to

December 5, 2016 and Brent oil daily prices from March

02, 2007 to December 16, 2016. Additionally, the time

series were decomposed into different fluctuation fre-

quency levels using the ensemble empirical mode decom-

position, in order to fit the training models. The performed

empirical research was conducted by evaluating the pre-

dicting ability of the CID-STNN model against that of

other state-of-the art models, which revealed the superi-

ority of proposed model.

Xi et al. [21] proposed a novel approach for forecasting

crude oil price based on online media text mining. Their

primary aim was to capture the more immediate market

antecedents of price fluctuations and improve portfolio

management. A CNN-based neural network model was

utilized for extracting significant relationships of the price

change fluctuations, which were then processed by the

latent Dirichlet allocation topic model for distinguishing

effects from various news topics. Furthermore, the input

variable combination was optimized using feature selection

methods and lag-order selection. Their utilized data con-

tained headlines from the ‘‘Crude oil news’’ section of the

portal https://www.investing.com/ as well as historical

crude oil and financial market prices over the period from

September 15, 2009 to July 20, 2014. Their numerical

experiments demonstrated that the proposed topic-senti-

ment forecasting model outperformed traditional bench-

mark models and that the combination of text and financial

features could improve the forecasting accuracy.

Fabbri and Moro [22] focused on detecting long-term

dependencies in Dow Jones Industrial Average prices

(DJIA) by utilizing deep recurrent neural networks

(RNNs). More specifically, they presented a complete

economical profit framework based on the predictions of a

long short-term memory (LSTM) network. The data used

in their study contained daily prices covering a period of

DJIA historical prices between January 01, 2000 and

December 31, 2017, concerning open price, high price, low

price and adjusted close price for every working day. Their

experimental results showed that the proposed framework

outperformed feed-forward neural networks, obtaining a

profit of more than 5 times the initial capital. Additionally,

based on their experimental analysis, they stated that their

proposed framework could be extended for the investiga-

tion of possible correlations among various market indexes.

Site et al. [23] evaluated the performance of a number of

deep learning and machine learning models for forecasting

the fluctuations in stock market. In more detail, they

evaluated the prediction performance of LSTM networks,

gated recurrent unit-based networks, recurrent neural net-

works, support vector regression, linear regression and

ridge regression. The authors used data from a long con-

secutive period of 10 years (January 03, 2006 to December

29, 2017) containing weekly and monthly prices from two

different indexes, namely Dow Jones Industrial Average

and Standard & Poor’s 500. Their experimental results

showed that LSTM networks exhibited satisfactory per-

formance on both different stock exchange data, outper-

forming the rest prediction models.

One common weakness of all presented and discussed

approaches as well as most proposed in the literature is that

they focused on obtaining better performance by exploiting

more sophisticated models and deep learning techniques,

usually ignoring the development of a sophisticated data

preprocessing procedure. It is also worth mentioning that

the powerful deep learning models were proved to provide

unreliable predictions, especially when dealing with time

series which follow an almost random walk process [18]. In

this research, we propose a different approach and present a

new complete framework for the development of accurate

and reliable forecasting models. The novelty of the pro-

posed framework is that the deep learning prediction model

is fitted with a transformed series which is smoother than

the original series resulting in a easier and faster training.

Additionally, the new series is ensured to be stationary

which guarantees the development of an accurate fore-

casting model which exhibits reliable forecasts, in terms of

presenting no-autocorrelation in the errors.

3 Smoothing and stationarity framework
for time-series data

Suppose that y0; y1; . . .; yn be the values of a time series. A

nonlinear regression model of order m is defined by

yt ¼ f ðxt; hÞ; ð1Þ

where xt ¼ ðyt�1; yt�2; . . .; yt�mÞ 2 Rm consists of m values

of yt and h is the parameter vector. After the model
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structure has been defined, function f ð�Þ can be determined

by a machine learning or a deep learning algorithm.

In the sequel, we present the proposed preprocessing

process and techniques for time-series forecasting, used in

this research. Our methodology focuses on the transfor-

mation of the original low-quality time-series data to high-

quality time-series data which are suitable for efficiently

fitting and training a deep learning model. Notice that each

step of our framework is successful and applies on the

previous one to incrementally improve the forecasting

performance.

3.1 Smoothing a time series

We define a new time series fstg, which consists of a

‘‘smooth’’ version of fytg, by

st ¼
y0 if t ¼ 0;

ayt þ ð1 � aÞst�1; otherwise;

�
ð2Þ

where a 2 ð0; 1Þ is the smoothing factor or smoothing

coefficient and the term ð1 � aÞ is called dumping factor. It

is worth mentioning, that the smoothed value st consists of

the weighted average of past observations while the

weights decaying exponentially as the observations get

older [24, 25]. In other words, higher weights are associ-

ated with the most recent observations. More specifically,

by applying direct substitution of (2) back into itself, we

obtain

st ¼ayt þ ð1 � aÞst�1

¼ayt þ að1 � aÞyt�1 þ ð1 � aÞ2st�2

¼ayt þ að1 � aÞyt�1 þ að1 � aÞ2yt�2 þ ð1 � aÞ3st�3

..

.

¼ayt þ að1 � aÞyt�1 þ . . .þ að1 � aÞty1 þ ð1 � aÞtþ1y0;

which implies that as time passes the calculated smoothed

value st consists of the weighted average of a number of

past values and these assigned weights are in general

proportional to the term of the following geometric

progression

a; að1 � aÞ; að1 � aÞ2; . . .;

Notice that the value of parameter a controls the trade-off

between the influence of each point yt and the average of

the most recent past observations st. In more detail, a large

value of parameter a denotes that st pays more attention to

the most recent observation while a small value denotes

that the observation yt has less influence to the smoothed

value st. Moreover, st approximately averages over a

number of 1=a past observations. For example, in case

a ¼ 0:1; 0:2 or 0.5 implies that st approximately averages

2, 5 or 10 observations, respectively. Figure 1 presents

daily Crypto-Cryptocurrency Index (CCI30) price trend

from December 1, 2019 to December 31, 2019 and the

corresponding smoothed series for a ¼ 0:1ð0:1Þ0:9.

The main objective of the application of the exponential

smoothing technique is twofold: (i) the development of a

new time series in which every price contains dynamic

knowledge of the all previous prices. (ii) This new

smoothed time series constitutes a de-noised version of the

1/12/2019  11/12/2019  21/12/2019  31/12/2019  

2300

2400

2500
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2700

CCi30
Smoothed (a = 0.9)
Smoothed (a = 0.8)
Smoothed (a = 0.7)
Smoothed (a = 0.6)
Smoothed (a = 0.5)
Smoothed (a = 0.4)
Smoothed (a = 0.3)
Smoothed (a = 0.2)
Smoothed (a = 0.1)

Fig. 1 Daily CCI30 price trend and the corresponding smoothed series for a ¼ 0:1ð0:1Þ0:9
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original series; thus, it is easier for fitting a deep learning

model.

Notice that after a deep learning model is trained with

the smoothed series’ any prediction ŝt can be utilized for

calculating the prediction for the levels of the original time

series ŷt by simply applying the inverse transformation,

defined by

ŷt ¼
1

a
ðŝt þ ða� 1Þst�1Þ:

3.2 Stationarity and model reliability

Although deep learning models constitute an efficient and

widely utilized choice for forecasting time-series prices,

they were proved to develop unreliable forecasts [11, 18].

The reason for this inefficiency is based on some undesired

properties of time series such as noise, high volatility but

mainly to the lack of stationarity of the time series. To

address this problem, Livieris et al. [11] introduced a novel

framework, which takes into account the nature of the time

series and iteratively applies a series transformations and

guarantees that the new transformed series is stationary and

it is ‘‘suitable’’ for fitting a deep learning model. More

specifically, the applied transformations are based on the

first differences

Dyt ¼ yt � yt�1; ð3Þ

or the returns

rt ¼
yt � yt�1

yt�1

; ð4Þ

of the series. It is worth mentioning that the application of

transformations (3) and (4) secures the efficiency and

effectiveness of the model since its able to better capture

possible nonlinearities, explain the data much better and

successfully remove the autocorrelation in the errors [11].

In our proposed framework, we utilized the first differ-

ences transformation instead of the transformations based

on the returns, which reported slightly better overall

performance.

3.3 Proposed framework

In the sequel, we present our proposed framework which

consists of two phases: Smoothing, and Differencing-

Training.

In the ‘‘Smoothing phase,’’ the data are imported and the

smoothing technique is applied (Steps 1–3). In the

‘‘Training phase,’’ the levels of the smoothed series are

examined if they possess a unit root or if the series is

stationary (Step 4). This is performed by the application of

the Augmented Dickey–Fuller (ADF) test [2, 25]. In case,

the smoothed series possess a unit root, the first differences

transformation is iteratively applied, until the new devel-

oped transformed series is stationary (Steps 6–9). Subse-

quently, the new transformed time series is used for fitting

and training the prediction model (Step 10). Notice that

since the series is differenced, the errors of the forecasting

Table 1 Smoothing and stationarity framework to enhance deep learning in time-series forecasting

/* Phase I: Smoothing */

Step 1. Import time-series training data.

Step 2. Select value of smoothing parameter a.

Step 3. Apply smoothing on time-series data using (2).

/* Phase II: Differencing-Training */

Step 4. Apply the ADF unit root test.

Step 5. If (Time series possess a unit root) then /* Time
series is not I(0) */

Step 6. repeat

Step 7. Apply the transformation based on first differences.

Step 8. Apply the ADF unit root test.

Step 9. until (Time series is stationary)

Step 10. Train the deep learning model DL using the transformed time series.

Step 11.
else
/* Time series is I(0) */

Step 12. Train the deep learning model DL using the smoothed time series.

Step 13. Calculate the model’s predictions on the smoothed training data.

Step 14. Calculate the residuals between the smoothed training data and the model’s predictions.

Step 15. If (Residuals possess autocorrelation) then

Step 16. Apply the transformation based on first differences.

Step 17. Re-train the deep learning model DL using the transformed time series.

Step 18. end if

Step 19. end if
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model exhibit no autocorrelation [25]. In contrast, in case

the series does not possess a unit root, then the levels of the

smoothed series are used for training the model (Step 12).

Then, the residuals are examined for exhibiting autocor-

relation (Step 13). In case autocorrelation exists, the first-

differences transformation is applied on the series and the

model is re-trained utilizing the transformed series (Steps

15–18). Notice that if the levels of the smoothed series do

not possess a unit root and the model’s error exhibit no-

autocorrelation there is no need to transform the series and

update the training model, since over-differencing the time

series could lead to a ‘‘non-invertible’’ process [11]. It is

worth mentioning that the additional computational cost of

the proposed framework is negligible (Table 1).

Finally, after the deep learning model is trained with the

new smoothed transformed series, the inverse transforma-

tions are applied for calculating the prediction for the

levels of the original time series ŷt.

4 Data

The datasets used in this research concern daily historical

data from three widely utilized real-world application

domains: cryptocurrency, commodity and finance.

From cryptocurrency domain, we utilized data from

January 1, 2017 to March 31, 2020 of Crypto-Cryptocur-

rency Index (CCI30) which contains the top 30 cryp-

tocurrencies weighted by market capitalization. The data

were obtained from https://cci30.com/ website and were

divided into training set consisting of daily values from

January 1, 2017 to December 31, 2019 (1095 points) and a

testing set consisting of daily prices from January 1, 2020

to March 31, 2020 (103 points). From commodity domain,

we utilized data from January 1, 2016 to March 31, 2020 of

Brent prices in USD from https://www.eia.gov/ website.

The data were divided into training set consisting of daily

Brent prices from January 1, 2016 to December 31, 2019

(1702 points) and a testing set consisting of daily prices

from January 1, 2020 to March 31, 2020 (150 points). From

finance domain, we utilized data from January 1, 2016 to

March 31, 2020 of Dow Jones Industrial Average (DJIA)

prices in USD from http://finance.yahoo.com website. The

data were divided into training set consisting of daily prices

from January 1, 2016 to December 31, 2019 (1702 points)

and a testing set consisting of daily prices from January 1,

2020 to March 31, 2020 (150 points). It is worth noticing

that all utilized datasets contained values that include the

recent COVID-19 crisis in the beginning of 2020, which

are characterized by considerable volatility and deviations

from the regular behavior as well as structural breaks.

Table 2 reports the descriptive statistics for presenting

the nature of the distribution, regarding the training set and

the testing set of DJIA, Brent and CCI30 datasets,

including the measures: minimum, maximum, mean,

standard deviation (Std. dev.), median, skewness and kur-

tosis. Additionally, Table 3 summarizes the up and down

movements in the prices as well as the corresponding

percentages for all datasets.

Finally, it is worth mentioning that all time-series data

contained no missing values, while the outlier prices were

not removed in order not to destroy the dynamics of each

series, even if these prices are the result of exceptional

events.

5 Experimental methodology

In this section, we present a detailed experimental analysis,

regarding the efficiency of our proposed framework which

consists of three distinct phases: In the first phase, we apply

our proposed framework to the CCI30, Brent and DJIA

time series; in the second phase, we compare the perfor-

mance of an efficient deep learning model trained with the

traditional series and with the proposed smoothed series.

Notice that our interest in the experimental analysis is

mainly focused on the identification of the best value of

parameter a; hence, we tested values of a ranging from 0 to

Table 2 Descriptive statistics for CCI30, Brent and DJIA datasets

Data Minimum Maximum Mean Std. Dev. Median Skewness Kurtosis

CCI30

Training set 276.35 20796.64 4316.56 3332.19 3548.02 1.90 4.35

Testing set 1938.49 4760.54 3307.14 738.22 3427.91 -0.10 -1.05

Brent

Training set 26.01 118.90 70.69 24.55 63.57 0.53 -1.06

Testing set 14.85 70.25 57.66 12.12 61.15 -1.97 3.03

DJIA

Training set 13328.85 27359.16 19721.59 3899.00 18041.55 0.47 -1.19

Testing set 18591.93 29551.42 27064.85 2261.92 27576.29 -1.90 3.40
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1 in steps of 0.1. Finally, in the third phase, we perform a

detailed statistical analysis to examine if there exists any

statistical differences between the performance of the uti-

lized prediction model trained with the traditional series

and the proposed smoothed series.

5.1 Application of the proposed framework

In the sequel, we apply our proposed forecasting frame-

work to CCI30, Brent and DJIA time-series data. Firstly,

we examine the acceptance of the null hypothesis H0: ‘‘the

series possess a unit root and are non-stationary,’’ using

the ADF unit root test.

Table 4 reports the t-statistics and the associated p

values of the ADF unit root test, performed on the level

(Levels) of the CCI30, Brent and DJIA series as well as on

the corresponding smoothed (Smoothed) series for every

value of parameter a. Notice that each smoothed series for

a ¼ 1 is identical with the original series. The interpreta-

tion of Table 4 reveals that the null hypothesis H0 is

accepted which implies that all series under consideration

are non-stationary.

Next, according to our proposed framework, we differ-

ence all series under consideration and perform the ADF

test to the transformed time series to examine if the unit

root has been removed. Table 5 presents the results of the

ADF unit root test for the training data of all transformed

time series. Notice that (�) denotes statistical significance at

the 5% critical level. As expected, all p values are practi-

cally zero which implies that the null hypothesis H0 is

rejected and all transformed series are indeed stationary. It

is worth mentioning that the process of differencing the

series solved the unit root problem and the series are

‘‘suitable’’ for fitting a deep learning model.

5.2 Numerical experiments

In this section, we evaluate the regression and classification

performance of our proposed framework for forecasting

time series. More specifically, we compare the perfor-

mance of an efficient deep learning forecasting model

trained with the first-differenced series and the Smooth-

edFD series for every selected value of parameter a. The

deep learning model utilized in our study was CNN-LSTM

which consists of two convolutional layers of 16 and 32

filters of size (2; ) with the same padding, followed by a

max pooling layer of size 2, a LSTM layer of 50 units and

an output layer of one neuron. This model was selected

under exhaustive experimentation (using different numbers

and combinations of convolutional, LSTM and dense lay-

ers as well as different number of filters, units and neurons

in these layers, respectively) and reported the best overall

results for all series. The selected training algorithm was

adaptive moment estimation [26] with a batch size equal to

64, utilizing mean-squared loss function. Furthermore, the

CNN-LSTM model was trained with the first-differenced

Table 3 The number of up and down movements of CCI30, Brent and

DJIA datasets

Data Up Down

CCI30

Training set 606 55.39% 488 44.61%

Testing set 55 53.92% 47 46.08%

Brent

Training set 850 49.97% 851 50.03%

Testing set 68 45.64% 81 54.36%

DJIA

Training set 925 54.35% 777 45.65%

Testing set 81 54.36% 68 45.64%

Table 4 ADF unit root test of all time series under consideration

Time series CCI30 Brent DJIA

t stat p value t stat p value t stat p value

Levels -2.217 0.200 -1.695 0.434 -0.784 0.824

Smoothed (a ¼ 0:9) -2.256 0.187 -1.712 0.425 -0.768 0.828

Smoothed (a ¼ 0:8) -2.297 0.173 -1.713 0.424 -0.763 0.830

Smoothed (a ¼ 0:7) -2.339 0.160 -1.715 0.423 -0.759 0.831

Smoothed (a ¼ 0:6) -2.380 0.147 -1.717 0.422 -0.753 0.832

Smoothed (a ¼ 0:5) -2.230 0.195 -1.719 0.421 -0.747 0.834

Smoothed (a ¼ 0:4) -2.217 0.200 -1.724 0.419 -0.738 0.837

Smoothed (a ¼ 0:3) -2.210 0.203 -1.731 0.415 -0.723 0.841

Smoothed (a ¼ 0:2) -2.245 0.190 -1.746 0.408 -0.694 0.848

Smoothed (a ¼ 0:1) -2.372 0.150 -1.788 0.387 -0.614 0.868
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series and the SmoothedFD using two different values of

window size m, i.e. m ¼ 6 and 12. Finally, the imple-

mentation was coded in Python 3.4 programming utilizing

Keras library on a laptop (Intel(R) Core(TM) i7-6700HQ

CPU 2.6 GHz and 16 GB RAM).

Regarding the utilized performance metrics in our

research: mean absolute error (MAE), root mean square

error (RMSE) and R-squared (R2) were selected for eval-

uating the regression accuracy of the proposed model using

all series under consideration. These metrics are respec-

tively defined by

MAE ¼ 1

N

XN
i¼1

jyi � ŷij

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðyi � ŷiÞ2

vuut ;

R2 ¼1 �
PN

i¼1ðyi � �yÞ2

PN
i¼1ðyi � ŷiÞ2

where N is the number of forecasts, yt is the actual value, �y
is the mean of the actual values and ŷt is the predicted

value. Additionally, accuracy (Acc), geometric mean

(GM), sensitivity (Sen) and specificity (Spe), where uti-

lized for evaluating the performance for the binary classi-

fication problem of directional movement (price

increasement or decreasement on the following day with

respect to the today’s price). There metrics are defined by

Acc ¼ TP þ TN

TP þ FP þ FN þ FP
;

GM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP � TN

p
;

Spe ¼ TP

TP þ FN
;

Spe ¼ TN

TN þ FP
;

where TP stands for the number of values which were

correctly identified to be increased, TN stands for the

number of values which were correctly identified to be

decreased, FP (type I error) stands for the number of values

which were misidentified to be increased and FN (type II

error) stands for the number of values which misidentified

to be decreased.

Furthermore, we included the performance metric area

under curve (AUC) in our experimental analysis which is

presented using the receiver operating characteristic (ROC)

curve. Notice that ROC curve is created by plotting the true

positive rate (sensitivity) against the false positive rate

(specificity) at various threshold settings.

Finally, the reliability of the CNN-LSTM forecasting

model was evaluated by examining the existence of auto-

correlation in the errors, utilizing the autocorrelation

function (ACF) plot and the Ljung-Box Q-test [2]. It is

worth noticing that the reliability evaluation was originally

proposed in [11, 18] to advocate the efficiency of its

forecasts. Nevertheless, since the model exhibited no

autocorrelation in the residuals, using any series as training

data, we omitted the presentation of ACF plots and Ljung-

Box Q-test.

5.2.1 CCI30 time series

Tables 6 and 7 present the performance comparison for

CCI30 forecasting problem for m ¼ 6 and m ¼ 12,

respectively. Regarding the regression performance for

m ¼ 6, the CNN-LSTM model reported the best RMSE

score in case trained with SmoothedFD series with a ¼ 0:5

and a ¼ 0:6. For m ¼ 12, the forecasting model trained

with the SmoothedFD series reported slightly better RMSE

score compared to that trained with first-differenced series

for almost all values of parameter a. Moreover, it reported

slightly better MAE score for a ¼ 0:5; 0:6; 0:7 and 0.9 in

Table 5 ADF unit root test of all differenced time series

Time series CCI30 Brent DJIA

t stat p value t stat p value t stat p value

First-differenced �10.925 0.000� �39.455 0.000� �41.983 0.000�

SmoothedFD (a ¼ 0:9) �10.563 0.000� �35.698 0.000� �38.122 0.000�

SmoothedFD (a ¼ 0:8) �10.186 0.000� �32.229 0.000� �34.509 0.000�

SmoothedFD (a ¼ 0:7) �9.791 0.000� �28.963 0.000� �31.085 0.000�

SmoothedFD (a ¼ 0:6) �9.373 0.000� �25.826 0.000� �27.797 0.000�

SmoothedFD (a ¼ 0:5) �9.445 0.000� �22.739 0.000� �24.593 0.000�

SmoothedFD (a ¼ 0:4) �9.146 0.000� �19.618 0.000� �21.404 0.000�

SmoothedFD (a ¼ 0:3) �8.661 0.000� �16.357 0.000� �18.137 0.000�

SmoothedFD (a ¼ 0:2) �7.747 0.000� �12.788 0.000� �14.643 0.000�

SmoothedFD (a ¼ 0:1) �6.047 0.000� �8.500 0.000� �10.561 0.000�
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the same situation. As regards R2 metric, the prediction

model reported the best performance in case trained with

the SmoothedFD series for a ¼ 0:5; 0:6; 0:7, relative to

both m values. Summarizing, we can easily conclude that

CNN-LSTM model reported the best performance, trained

with SmoothedFD series with a ¼ 0:5; 0:6 and 0.7. Addi-

tionally, its performance was slightly better compared to

that, in case it was trained with the first-differenced series.

Regarding the classification performance, the forecast-

ing model exhibited higher accuracy and AUC scores, in

case trained with SmoothedFD series compared to that

trained with the traditional first-differenced series. It is

worth noticing that CNN-LSTM model exhibited the best

classification performance when trained with SmoothedFD
with a ¼ 0:5; 0:6 and 0.7, in terms of accuracy and AUC.

Furthermore, it exhibited the best trade of between sensi-

tivity and specificity as well as the highest GM score. This

implies that the CNN-model trained with SmoothedFD
with a ¼ 0:5; 0:6 and 0.7 are considerably less biased and

performed more reliable forecasts compared to that trained

with the first-differenced series, for both values of m.

5.2.2 Brent time series

Tables 8 summarizes the performance comparison for

Brent forecasting problem for m ¼ 6, regarding all utilized

time series as training data. The CNN-LSTM model

reported almost identical performance using any time ser-

ies under consideration for training based on MAE and

RMSE metrics. However, the forecasting model exhibited

slightly better performance in case trained with the

SmoothedFD series for a ¼ 0:4 � 0:8, relative to both m

values. Regarding the classification performance, the

forecasting model presented the best performance in case

trained with SmoothedFD with a ¼ 0:7 in terms of accu-

racy and AUC. Additionally, CNN-LSTM presented the

highest GM score in case trained with SmoothedFD
(a ¼ 0:6 and a ¼ 0:7) and the best trade-off between sen-

sitivity and specificity, in case trained with SmoothedFD

Table 6 Performance comparison for CCI30 dataset (m ¼ 6)

MAE RMSE R2 Acc (%) AUC GM Sen Spe

First-differenced 112.70 190.58 0.931 52.60 0.512 24.754 0.683 0.341

SmoothedFD (a ¼ 0:9) 112.38 192.07 0.931 53.44 0.523 24.538 0.664 0.382

SmoothedFD (a ¼ 0:8) 112.68 191.50 0.929 53.75 0.526 24.829 0.667 0.384

SmoothedFD (a ¼ 0:7) 111.77 190.81 0.934 55.52 0.544 26.016 0.677 0.411

SmoothedFD (a ¼ 0:6) 113.40 190.06 0.934 55.38 0.535 26.761 0.644 0.425

SmoothedFD (a ¼ 0:5) 112.75 190.48 0.934 55.94 0.553 26.717 0.621 0.484

SmoothedFD (a ¼ 0:4) 113.84 190.65 0.933 54.58 0.539 25.785 0.619 0.459

SmoothedFD (a ¼ 0:3) 116.13 192.90 0.929 53.44 0.527 25.079 0.615 0.439

SmoothedFD (a ¼ 0:2) 117.03 192.47 0.929 54.17 0.532 25.641 0.650 0.414

SmoothedFD (a ¼ 0:1) 120.79 195.82 0.927 51.35 0.511 25.742 0.546 0.475

Table 7 Performance comparison for CCI30 dataset (m ¼ 12)

MAE RMSE R2 Acc (%) AUC GM Sen Spe

First-differenced 121.85 197.56 0.919 50.42 0.491 25.123 0.646 0.336

SmoothedFD (a ¼ 0:9) 118.51 196.86 0.919 51.88 0.508 25.060 0.642 0.373

SmoothedFD (a ¼ 0:8) 122.25 200.21 0.919 52.50 0.516 25.925 0.619 0.414

SmoothedFD (a ¼ 0:7) 121.81 196.20 0.924 53.98 0.512 26.381 0.606 0.418

SmoothedFD (a ¼ 0:6) 120.27 195.20 0.928 54.27 0.537 26.713 0.612 0.461

SmoothedFD (a ¼ 0:5) 120.96 195.70 0.927 54.06 0.538 25.923 0.575 0.500

SmoothedFD (a ¼ 0:4) 122.29 195.19 0.924 52.71 0.523 25.875 0.575 0.491

SmoothedFD (a ¼ 0:3) 123.66 195.67 0.924 52.92 0.523 24.773 0.594 0.452

SmoothedFD (a ¼ 0:2) 123.22 196.36 0.921 54.79 0.546 25.249 0.567 0.525

SmoothedFD (a ¼ 0:1) 124.81 194.35 0.922 52.60 0.525 24.871 0.542 0.507
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(a ¼ 0:5 and a ¼ 0:7). Summarizing, the utilization of

SmoothedFD with a ¼ 0:5, 0.6 and 0.7, considerably

improved the classification performance of the forecasting

model while its regression performance was slightly

improved.

Tables 9 summarize the performance comparison of the

forecasting model for Brent forecasting problem for

m ¼ 12. The MAE and RMSE scores were improved in

case the model was trained with SmoothedFD series

instead of the traditional first-differenced series. Addi-

tionally, it exhibited the best regression performance for

a ¼ 0:3. The interpretation of Table 9 presents that the

classification performance of CNN-LSTM model exhibited

the best performance in case trained with SmoothedFD
with a ¼ 0:7 in terms of accuracy and AUC. Additionally,

the best trade-off between specificity and sensitivity was

reported in case the forecasting model was trained with

SmoothedFD series with a ¼ 0:7 as well as the best GM

score. Conclusively, we point out that with the utilization

of SmoothedFD series (a ¼ 0:7) as training data, the

forecasting model reported the best overall classification

performance and developed more reliable forecasts.

5.2.3 Dow Jones industrial average time series

Tables 10 and 11 present the performance evaluation for

DJIA forecasting problem for m ¼ 6 and m ¼ 12, respec-

tively. Regarding the regression performance for m ¼ 6,

the CNN-LSTM model improved its MAE, RMSE and R 2

scores in case trained with SmoothedFD series instead of

first-differenced series, for all values of parameter a.

Additionally, for m ¼ 12, the forecasting model trained

with SmoothedFD series with a ¼ 0:5 � 0:8 reported

slightly better MAE, RMSE and R 2 scores compared to

that trained with first-differenced series. It is worth noticing

that the CNN-LSTM model reported the best overall

regression performance, trained with SmoothedFD series

with a ¼ 0:5; 0:6 and 0.7; however, its performance was

slightly better compared to that in case trained with the

traditional first-differenced series.

As regards the classification performance, the forecast-

ing model exhibited higher accuracy, AUC and GM scores,

in case trained with SmoothedFD series compared to that

trained with the traditional first-differenced series. More

specifically, CNN-LSTM model exhibited the best

Table 8 Performance comparison for Brent dataset (m ¼ 6)

MAE RMSE R 2 Acc (%) AUC GM Sen Spe

First-differenced 1.19 1.80 0.974 54.59 0.538 38.795 0.435 0.640

SmoothedFD (a ¼ 0:9) 1.19 1.80 0.974 54.53 0.537 38.383 0.428 0.645

SmoothedFD (a ¼ 0:8) 1.19 1.78 0.976 54.73 0.542 38.126 0.472 0.611

SmoothedFD (a ¼ 0:7) 1.20 1.79 0.976 56.22 0.556 39.499 0.479 0.633

SmoothedFD (a ¼ 0:6) 1.20 1.78 0.977 55.41 0.543 38.884 0.449 0.634

SmoothedFD (a ¼ 0:5) 1.20 1.79 0.976 54.93 0.543 38.408 0.466 0.630

SmoothedFD (a ¼ 0:4) 1.20 1.79 0.976 55.68 0.550 37.361 0.468 0.633

SmoothedFD (a ¼ 0:3) 1.23 1.82 0.975 54.26 0.533 37.149 0.410 0.655

SmoothedFD (a ¼ 0:2) 1.25 1.87 0.975 51.35 0.507 35.418 0.431 0.584

SmoothedFD (a ¼ 0:1) 1.26 1.91 0.975 51.42 0.506 35.302 0.402 0.610

Table 9 Performance comparison for Brent dataset (m ¼ 12)

MAE RMSE R 2 Acc (%) AUC GM Sen Spe

First-differenced 1.36 2.03 0.971 53.04 0.526 38.470 0.475 0.578

SmoothedFD (a ¼ 0:9) 1.33 1.97 0.972 51.76 0.516 38.806 0.500 0.533

SmoothedFD (a ¼ 0:8) 1.31 1.93 0.974 51.89 0.518 38.983 0.502 0.534

SmoothedFD (a ¼ 0:7) 1.30 1.92 0.974 53.61 0.529 40.122 0.479 0.579

SmoothedFD (a ¼ 0:6) 1.30 1.89 0.974 50.74 0.505 38.340 0.469 0.540

SmoothedFD (a ¼ 0:5) 1.28 1.86 0.974 51.42 0.509 39.116 0.444 0.574

SmoothedFD (a ¼ 0:4) 1.26 1.84 0.973 51.05 0.533 36.368 0.438 0.628

SmoothedFD (a ¼ 0:3) 1.25 1.82 0.975 51.62 0.509 36.496 0.424 0.595

SmoothedFD (a ¼ 0:2) 1.24 1.85 0.973 52.43 0.511 35.964 0.347 0.675

SmoothedFD (a ¼ 0:1) 1.25 1.87 0.973 51.96 0.519 36.496 0.513 0.525
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classification performance in case trained with Smooth-

edFD with a ¼ 0:1 � 0:5, in terms of accuracy and AUC.

Moreover, the model reported higher GM score in case

trained with SmoothedFD with a ¼ 0:4 � 0:7 compared to

that trained with the first-differenced series. Finally, it is

worth noticing that the forecasting model reported the best

trade of between sensitivity and specificity as well as the

best GM in case a ¼ 0:5; 0:6 and 0.7. This implies that the

proposed preprocessing framework considerably improved

the classification performance of the CNN-model for a ¼
0:5; 0:6 and 0.7 since it was less biased and performed

more reliable forecasts, for both values of m.

5.3 Statistical analysis

Next, we attempt to provide statistical evidences about the

efficiency of our proposed preprocessing framework. More

specifically, for rejecting the hypothesis H0 that the fore-

casting model CNN-LSTM performed equally well for a

given level using the first-differenced series or the

SmoothedFD series as training data, we used the

nonparametric Friedman Aligned Ranking (FAR) [27] test.

Furthermore, for examining if the differences in the per-

formance of the utilized prediction model are statistically

significant, we applied the post hoc Finner test [28] with

significance level a ¼ 5%. Therefore, we perform a non-

parametric multiple comparison, regarding the regression

and classification performance of CNN-LSTM trained with

the first-differenced series and the SmoothedFD series.

Notice that three versions of the SmoothedFD series where

selected i.e. a ¼ 0:5; 0:6 and 0.7, which reported the best

overall regression and classification performance.

Tables 12, 13, 14, 15, 16 and 17 report the statistical

analysis, performed by nonparametric multiple compar-

ison, relative to MAE, RMSE, R 2, accuracy, AUC and GM

performance metrics. Additionally, to measure the differ-

ence in the performance regarding the balance of sensi-

tivity and specificity for each series, we used a new metric

defined by the product of sensitivity and specificity, i.e.

Sen�Spe. CNN-LSTM performed equally well using any

time series as training data regarding MAE metric; while

the performance of the forecasting model was improved as

Table 10 Performance comparison for DJIA dataset (m ¼ 6)

MAE RMSE R 2 Acc (%) AUC GM Sen Spe

First-differenced 320.24 594.22 0.928 48.18 0.472 33.495 0.580 0.363

SmoothedFD (a ¼ 0:9) 317.68 589.16 0.930 48.58 0.479 32.292 0.549 0.409

SmoothedFD (a ¼ 0:8) 316.30 585.59 0.931 48.58 0.481 32.057 0.532 0.430

SmoothedFD (a ¼ 0:7) 318.67 588.26 0.930 48.11 0.475 35.161 0.543 0.406

SmoothedFD (a ¼ 0:6) 318.56 586.56 0.931 48.72 0.482 35.825 0.533 0.431

SmoothedFD (a ¼ 0:5) 317.16 591.56 0.930 51.55 0.503 36.847 0.552 0.419

SmoothedFD (a ¼ 0:4) 316.83 588.37 0.931 50.74 0.498 34.674 0.594 0.403

SmoothedFD (a ¼ 0:3) 316.85 589.08 0.930 51.49 0.513 33.413 0.533 0.493

SmoothedFD (a ¼ 0:2) 315.21 588.47 0.931 51.62 0.504 33.790 0.631 0.378

SmoothedFD (a ¼ 0:1) 315.78 587.02 0.930 50.20 0.494 33.753 0.575 0.354

Table 11 Performance comparison for DJIA dataset (m ¼ 12)

MAE RMSE R 2 Acc (%) AUC GM Sen Spe

First-differenced 328.08 602.64 0.927 47.23 0.463 34.583 0.551 0.348

SmoothedFD (a ¼ 0:9) 331.26 613.32 0.924 48.38 0.471 35.821 0.535 0.379

SmoothedFD (a ¼ 0:8) 326.80 600.03 0.928 49.53 0.486 35.191 0.540 0.379

SmoothedFD (a ¼ 0:7) 323.17 595.67 0.929 48.85 0.484 37.211 0.516 0.463

SmoothedFD (a ¼ 0:6) 326.95 600.71 0.929 48.92 0.486 36.510 0.528 0.430

SmoothedFD (a ¼ 0:5) 322.70 598.46 0.929 49.19 0.491 36.874 0.533 0.460

SmoothedFD (a ¼ 0:4) 326.72 610.53 0.926 48.65 0.483 36.221 0.474 0.512

SmoothedFD (a ¼ 0:3) 330.66 615.92 0.924 51.76 0.514 36.221 0.512 0.482

SmoothedFD (a ¼ 0:2) 321.74 595.43 0.922 52.57 0.526 34.797 0.532 0.466

SmoothedFD (a ¼ 0:1) 334.46 647.65 0.925 49.39 0.488 34.452 0.498 0.510
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confirmed by the statistical test, regarding RMSE and R 2

metrics. In contrast, the classification performance of

CNN-LSTM was considerably improved in case it was

trained with the SmoothedFD series instead of the first-

differenced series as confirmed statistically by the FAR and

Finner tests. It is worth mentioning that CNN-LSTM

exhibited the best performance in case it was trained with

SmoothedFD series (a ¼ 0:5), regarding the accuracy and

AUC performance metrics (Table 18).

6 Discussion

In this section, we conduct a comprehensive discussion

regarding the theoretical and experimental contribution of

this research.

6.1 Discussion of the proposed methodology

Most real-world time-series data are considered as chaotic

and noisy by nature and are often characterized by high

volatility, high fluctuations in prices and large variations in

the variance. This implies that the process of developing an

accurate and reliable deep learning forecasting model is a

challenging problem. Generally, deep learning networks

constitute powerful time-series prediction models in terms

of prediction accuracy, but are usually unstable and

sometimes unreliable in sense that even small variations in

their training data as well as noisy features could consid-

erably affect their performance.

In this research, we proposed a complete theoretical

framework regarding the problem of time-series

Table 12 FAR test and Finner post hoc test based on MAE metric

Series Friedman Finner post hoc test

Ranking p value H0

SmoothedFD (a ¼ 0:7) 9.917 - -

SmoothedFD (a ¼ 0:5) 10 0.9837 Accepted

SmoothedFD (a ¼ 0:6) 12.417 0.6883 Accepted

First differenced 17.667 0.1632 Accepted

Table 13 FAR test and Finner post hoc test based on RMSE metric

Series Friedman Finner post hoc test

Ranking p value H0

SmoothedFD (a ¼ 0:6) 9.5 - -

SmoothedFD (a ¼ 0:5) 10.583 0.8820 Accepted

SmoothedFD (a ¼ 0:7) 10.75 0.8820 Accepted

First differenced 19.167 0.0497 Rejected

Table 16 FAR test and Finner post hoc test based on AUC metric

Series Friedman Finner post hoc test

Ranking p value H0

SmoothedFD (a ¼ 0:5) 7.917 - -

SmoothedFD (a ¼ 0:7) 11 0.4501 Accepted

SmoothedFD (a ¼ 0:6) 12.25 0.3998 Accepted

First differenced 18.833 0.0223 Rejected

Table 14 FAR test and Finner post hoc test based on R 2 metric

Series Friedman Finner post hoc test

Ranking p value H0

SmoothedFD (a ¼ 0:5) 7.5 - -

SmoothedFD (a ¼ 0:6) 10.167 0.551661 Accepted

SmoothedFD (a ¼ 0:6) 10.833 0.551661 Accepted

First differenced 21.5 0.001814 Rejected

Table 15 FAR test and Finner post hoc test based on accuracy metric

Series Friedman Finner post hoc test

Ranking p value H0

SmoothedFD (a ¼ 0:5) 9 - -

SmoothedFD (a ¼ 0:7) 9.5 0.9025 Accepted

SmoothedFD (a ¼ 0:6) 13 0.4481 Accepted

First differenced 18.5 0.0487 Rejected

Table 17 FAR test and Finner post hoc test based on GM metric

Series Friedman Finner post hoc test

Ranking p value H0

SmoothedFD (a ¼ 0:7) 8.833 - -

SmoothedFD (a ¼ 0:5) 10.167 0.8465 Accepted

SmoothedFD (a ¼ 0:6) 10.333 0.8465 Accepted

First differenced 20.667 0.0112 Rejected

Table 18 FAR test and Finner post hoc test based on Sen�Spe metric

Series Friedman Finner post hoc test

Ranking p value H0

SmoothedFD (a ¼ 0:5) 7.667 - -

SmoothedFD (a ¼ 0:7) 12.833 0.5676 Accepted

SmoothedFD (a ¼ 0:6) 10 0.2920 Accepted

First differenced 19.5 0.0112 Rejected
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forecasting price and movement as well as the reliability of

the prediction model’s forecasts. The motivation of our

approach rises from the necessity of transforming the

original low-quality time-series data to high-quality time-

series data, suitable for efficiently training and fitting a

deep learning model. More specifically, the transformation

based on the smoothing technique develops a new time

series in which every price contains dynamic knowledge of

the all previous prices and constitutes a de-noised version

of the original series. As a result, this new smoothed time

series can be easily fitted by a deep learning model. The

advantage of the exponential smoothing over other

smoothing techniques based on moving average is that

every price contains information from all previous values

and not from a subset of them, and provides significant

importance to the most recent values. Additionally, the

process of differencing the series makes the series sta-

tionary and transforms it to be suitable for training a deep

learning model, which will provide reliable and

stable prediction performances.

It is worth mentioning that our proposed framework

performs an efficient preprocessing process, through a

series of transformations based on the smoothing and the

differencing techniques, for exploiting the internal repre-

sentation of any times-series data. Therefore, it possesses

the attractive property that it can be easily applied to a wide

area of real-world time-series forecasting problems without

the imposition of any additional modifications and extra

constraints.

6.2 Discussion of the experimental results

In this work, we conducted a series of experiments using

three time series from the application domains of cryp-

tocurrency market, energy sector and financial stock mar-

ket. To evaluate the efficiency and robustness of the

proposed framework, we selected a state-of-the-art deep

learning model, called CNN-LSTM. The performance of

the utilized deep learning model trained with the differ-

enced series and with the smoothed differenced series was

evaluated on both forecasting time-series price (regression)

and directional movement (classification) problems.

The presented numerical experiments demonstrated that

the proposed framework can considerably improve and

enhance the overall performance of the deep learning

model. More specifically, the regression performance of

CNN-LSTM trained with the smoothed differenced series

was improved but not significantly, presenting lower MAE

and RMSE scores and higher R 2 score. In contrast, its

classification performance was considerably improved,

which resulted that the smoothing technique property

handled the noisy original data. Additionally, the

performance metrics GM, Sen and Spe revealed that our

framework developed deep learning models which were

less biased on average than the ones trained with the first

differenced series. These findings were confirmed statisti-

cally by the Friedman Aligned Ranks nonparametric test

and the Finner post hoc test.

Nevertheless, the limitation of this work is that it is still

not clear which is the optimal value of parameter a. In our

preliminary experimental results, we observed that a value

within the interval [0.5, 0.7] reported the best overall

performance. However, we cannot draw safe conclusions

and more experiments are needed, since this is not a gen-

eral case. Therefore, its determination is considered a

rather difficult task. At this point, it is worth mentioning

that due to the sensitivity of various hyper-parameters as

well as the high complexity of the deep learning models, it

is possible that their prediction ability could be further

improved by performing additional optimized configura-

tion (see [29–31] and the references therein).

However, although we provide thorough experimental

results revealing that the proposed methodology can

enhance the performance of a deep learning model, there is

no clear indication why trend prediction efforts, might not

necessarily translate into profits. In other words, even

though the presented experimental results are promising,

we have no evidence that the proposed framework can

actually develop a prediction model to assist cryptocur-

rency investors for making proper investment decisions

based on our model predictions in order to achieve prof-

itable investment returns. This is mainly based on the fact

that time series from application domains such as cryp-

tocurrency area, energy sector and financial market are

highly affected by time evolution and external changes;

therefore, an efficient prediction model may be temporally

accurate but not in ‘‘depth of time’’ [11].

However, this research is dedicated to present a com-

plete framework which enhances the forecasting perfor-

mance and reliability of a deep learning model and less on

the design and implementation of profitable trading system.

It is worth noticing that the development of such software

system would require the control of a number of aspects in

addition to the implementation of a decision support sys-

tem. Therefore, a possible improvement of our prediction

framework could be the incorporation of trading simula-

tions in order to identify potential profitable investment

returns. This is to be certainly investigated in our future

research.

Finally, it is worth mentioning that in certain times of

global instability, outliers are frequently presented, espe-

cially in time series from the domains of cryptocurrency,

commodity and finance. In this research, the outlier prices

in all used series data were not removed in order not to

destroy the dynamics of each series, even if these prices are
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the result of exceptional events. Our proposed framework

develops a smoothed series which constitutes a denoised

version of the original series in which every value contains

dynamic knowledge of all previous values. One issue

which we should thoroughly investigate in the future is the

possibility of enhancing our framework by the adoption of

robust filtering techniques [32–35] in order to ‘‘deal’’ with

outliers or other rare signals which could indicate fore-

casting instability.

7 Conclusions and future research

In this work, we proposed a new complete and novel

framework which is based on a preprocessing process for

enhancing deep learning time-series models. The novelty

of the proposed framework focuses on getting high-quality

time-series data, suitable for efficiently training and fitting

a deep learning model, utilizing a transformation of the

original low-quality time-series data. The transformation

based on the smoothing technique which develops a new

de-noised version of the original series in which every

price contains dynamic knowledge of the all previous

values. Moreover, the new series is differenced in order to

be stationary and therefore suitable for training a deep

learning model. A series of numerical experiments were

conducted using three time-series datasets from the cryp-

tocurrency market, energy sector and financial stock mar-

ket application domains on both regression and

classification problems. The detailed and comprehensive

analysis demonstrated that the proposed framework con-

siderably improved the forecasting performance of a deep

learning model, especially in terms of classification

accuracy.

Therefore, it can be utilized as a reference for devel-

oping efficient and reliable deep learning forecasting

models Finally, a considerable advantage of the proposed

methodology is that it can be easily utilized to cover a

wider scientific area of time-series applications without any

special requirements as well as adopted with any time-

series forecasting model [36–39]. In our future work, we

intend to evaluate how the proposed framework can

enhance the performance of several forecasting models.

Nevertheless, one issue which we should thoroughly

investigate in our future research is to evaluate other

smoothing techniques based on moving average and double

exponential smoothing. Another interesting direction for

future research for the development of robust time-series

models could be the incorporation of ensemble method-

ologies for combining deep learning models trained with

different smoothed series relative to the value of parameter

a together with base learners based on sophisticated

architectures [40].

These could further improve both the regression and

classification performance and develop more accurate and

reliable forecasts. Furthermore, since our experiments are

quite encouraging, a promising idea to enhance our propose

framework with elegant and advanced techniques for

detecting communities of connectivity in a time series [41].
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23. Site A, Birant D, Işık Z Stock market forecasting using machine

learning models. In: 2019 Innovations in intelligent systems and

applications conference (ASYU), IEEE, pp 1–6

24. Hyndman RJ, Athanasopoulos G (2018) Forecasting: principles

and practice

25. Montgomery Douglas C, Jennings Cheryl L, Murat Kulahci

(2015) Introduction to time series analysis and forecasting.

Wiley, New York

26. Kingma DP, Adam JB (2015) A method for stochastic opti-

mization. In: 2015 International conference on learning

representations

27. Hodges Joseph L, Lehmann Erich L (1962) Rank methods for

combination of independent experiments in analysis of variance.

Ann Math Stat 33(2):482–497

28. Helmut F (1993) On a monotonicity problem in step-down

multiple test procedures. J Am Stat Assoc 88(423):920–923

29. Bergstra J, Bardenet R, Bengio Y, Kégl B (2011)Algorithms for
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