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Abstract
Slope deformation prediction is crucial for early warning of slope failure, which can prevent property damage and save

human life. Existing predictive models focus on predicting the displacement of a single monitoring point based on time

series data, without considering spatial correlations among monitoring points, which makes it difficult to reveal the

displacement changes in the entire monitoring system and ignores the potential threats from nonselected points. To address

the above problem, this paper presents a novel deep learning method for predicting the slope deformation, by considering

the spatial correlations between all points in the entire displacement monitoring system. The essential idea behind the

proposed method is to predict the slope deformation based on the global information (i.e., the correlated displacements of

all points in the entire monitoring system), rather than based on the local information (i.e., the displacements of a specified

single point in the monitoring system). In the proposed method, (1) a weighted adjacency matrix is built to interpret the

spatial correlations between all points, (2) a feature matrix is assembled to store the time-series displacements of all points,

and (3) one of the state-of-the-art deep learning models, i.e., T-GCN, is developed to process the above graph-structured

data consisting of two matrices. The effectiveness of the proposed method is verified by performing predictions based on a

real dataset. The proposed method can be applied to predict time-dependency information in other similar geohazard

scenarios, based on time-series data collected from multiple monitoring points.
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1 Introduction

Geohazard refers to events caused by geological processes

that dramatically change environmental conditions and

present severe threats to human life, built infrastructures,

and even the overall economic system [41]. Slope failures
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are one of the worst types of geohazards, and occur fre-

quently worldwide [19]. The monitoring of slopes is nec-

essary to adopt adequate prevention measures for the

mitigation of human and property damage [7, 40].

Since the 1940s, in-situ monitoring could provide

accurate and real-time information on slopes and has been

widely employed in slope displacement prediction [61].

Currently, an extensive variety of monitoring systems has

been established worldwide [24, 49]. Time-series dis-

placement data collected by monitoring devices generally

reflect the deformation and stability characteristics of the

slope directly, for instance, to determine whether the slope

is accelerating or continuing to slide slowly [8, 20, 34].

These datasets have significant value for developing a

high-performance model for obtaining reasonably accurate

displacement predictions [18].

Displacement prediction of natural and human-induced

slopes, including quarries, open-pit mines, and extensive

road excavations, is a common research objective in

engineering geology [12]. The slope deformation predic-

tion models mainly include two categories: physically-

based models and data-based models [27]. The modeling

processes of data-based models are simpler and more

accurate than those of physically-based models [28].

Nevertheless, accurate prediction of the deformation

behavior of slopes remains a challenge [9, 11]. It is well

known that slope failure is the result of the action of

nonlinear dynamical systems [39], and its deformation and

stability are influenced by multifactorial factors, including

geotechnical properties, hydrogeology, geomorphological

conditions, climate, weathering, vegetation, and human

engineering activities, the interaction, of which renders

slope failure randomness, fuzziness, and variability

[15, 43]. The influence of these factors can be reflected in

the temporal and spatial correlation of slope deformation.

In regards to the temporal correlation of monitoring

displacement data, recently, the machine learning model as

a data-based model has been widely utilized to predict

slope displacements from time-series data. These models

can solve the problems of complexity, dynamism, and

nonlinear characteristics in nonlinear time series, which

thus can be used to predict time-series slope displacement,

including artificial neural networks (ANNs) [3, 16, 29, 56],

extreme learning machine (ELM) [57], fuzzy logic

approach [23], support vector machine (SVM) [32, 42, 52],

deep belief network (DBN) [35], and Gaussian process

(GP) [38]. These models that consider influencing factors

on slope displacement as input and slope displacements as

predicted output, have achieved satisfactory performances.

The workflows of these machine learning methods are

similar. Several monitoring points are first selected for

observation to analyse their deformation, and thus plot the

curve of displacement-time, which can reflect different

displacement stages for the slope displacement, capture

warning indicators of slope failure such as slope dis-

placement falling into the acceleration phase [37, 40].

Subsequently, time-series data from these chosen points

will be adopted for modeling, respectively. In other words,

each curve shows evolution characteristics from a single

monitor point, and each model can predict the displace-

ment of a single monitoring point according to its data.

However, spatial correlations among monitoring points

are overlooked by this kind of analysis based on a single

point, and thus it is difficult to reveal the displacement

changes in the entire monitoring system. Moreover, when

some monitoring points are selected for observation, other

points where displacement changes are not significant will

be ignored, which may leave some potential threats to

unnoticed.

To address the above problem, in this paper, we propose

a novel deep learning method for predicting the slope

deformation, by considering the spatial correlations

between all points in the entire displacement monitoring

system. The essential idea behind the proposed method is

to predict the slope deformation based on the global

information (i.e., the correlated displacements of all points

in the entire monitoring system), rather than based on the

local information (i.e., the displacements of a specified

single point in the monitoring system).

First, to obtain the spatial correlation of the monitoring

system, we connected all the monitoring points to construct

a complete graph (i.e., the fully connected graph) in which

each monitoring point serves as a node on the graph, and

every pair of distinct nodes is connected by a unique edge.

Then, we calculate the weight of the edges (i.e., the simi-

larity between these monitoring points) of each pair of

nodes through a spectral clustering method to obtain a

weighted adjacency matrix. We term the constructed graph

structure a fully connected monitoring network (FCMN).

Next, we used a deep learning method to predict the

displacement of the FCMN. Current advances in the deep

learning domain make it possible to model the complex

spatiotemporal correlation in region-based spatiotemporal

prediction [22, 44, 45]. For temporally correlated data,

typical models include long-short term memory (LSTM)

and gated recurrent units (GRU) . For spatially correlated

data, a state-of-the-art model is graph convolutional net-

works (GCN).

The contributions in this paper can be summarized as

follows.

(1) We consider spatial correlation among points in the

monitoring system, and connect all monitoring

points to construct a fully connected graph FCMN,

that is, replace a traditional single-point time series

data with the graph-structured data. Thus, our
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method can predict the displacement in the entire

monitoring system.

(2) We further leverage a deep learning architecture

called the T-GCN that combines the GCN and GRU

[58]. The GCN can capture the spatial correlation

based on the topological structure of FCMN. The

GRU can complete time-series prediction for slope

displacement.

(3) We evaluate the method on a real-world dataset

collected from a monitoring system.

The rest of this paper is organized as follows. Section 2

describes the proposed method in detail. Section 3 applies

the method in a real case and analyses the results. Section 4

discusses the advantages and shortcomings of the proposed

method, and the potential future work. Section 5 concludes

the paper.

2 Methods

2.1 Overview

In this paper, we propose a deep learning method using

GCN to predict slope deformation based on time-series

displacement data; see the workflow of the proposed

method in Fig. 1. First, we obtained data from a monitoring

device and preprocessed it. Second, we divided the pre-

processed data into temporally and spatially correlated data

and processed them separately. Third, with the processed

spatiotemporal data, we developed a novel deep learning

model termed as temporal graph convolutional networks

(T-GCN) to predict displacements. The model combines

GCN, which can be used for handling spatial correlations,

and GRU, which can be used for handling temporal cor-

relations. Finally, we highlighted the motivation for

applying the proposed deep learning method in slope

deformation prediction.

2.2 Step 1: data acquisition and preprocessing

2.2.1 Data acquisition

Slope displacement data are usually collected from moni-

toring systems with the use of various types of devices.

Common types of devices for deformation monitoring

including inclinometer, ground-based synthetic-aperture

radar (GBSAR), light detection and ranging (LiDAR),

global positioning system (GPS), and fiber sensing cables

[5, 13, 17, 53]. The GPS is a radio navigation, timing, and

positioning system that has been used extensively for slope

surface deformation monitoring. Compared with other

devices, GPS devices are more reliable, less expensive,

faster, and easier to utilize [47].

2.2.2 Data preprocessing

Once the raw displacement data are collected through the

monitoring system, it needs to be preprocessed. Regardless

of the method used to build the prediction model, data

preprocessing is an essential step in slope displacement

prediction, which mainly consists of denoising and nor-

malization [62]. Denoising is used to improve data quality

[59, 60]. Normalization makes the data dimensionless [48].

More specifically, the preprocessing of slope displace-

ment data is carried out in three steps. The first step is to

check data quality and detect errors in the monitoring data,

including analysis of displacement trends and looking for

incorrect, inconsistent, missing, or skewed information.

The most common method to inspect the data is data

profiling, which explores the quality of the data through

summary statistics, including checking for missing data

values, calculating correlations between variables and the

distribution of individual variables [2]. Missing values,

outliers, and uncorrelated values are determined from these

statistics.

After identifying these incorrect and/or incomplete data,

the next step is to clean the data (i.e., denoising), including

removing incorrect values and handling missing values.

Finally, to improve the data quality, scaling and normal-

izing the data as well as adjusting the values of the skew

distribution are also required. A common normalization

method for handling slope monitoring data is to employ

max-min normalization [31, 36, 54].

2.3 Step 2: data processing

In this section, we introduce data processing for spatially

and temporally correlated displacement data.

2.3.1 Processing of the spatial correlation data

To represent the spatial correlation among points in the

entire monitoring system, we use a weighted undirected

fully connected graph G ¼ ðV ;E;WÞ, and term it as an

FCMN. Here, V ¼ v1; v2; v3. . .vNf g is a set of nodes (i.e.,

monitoring points), and N is the number of monitoring

points, in which each node is connected to each of the

others (with one edge E between each pair of nodes). The

number of edges E is nðn�1Þ=2. W 2 RN�N is a weighted

adjacency matrix representing the proximity of the nodes

(see Fig. 2).

Considering that the distance between two points in the

monitoring system would affect their spatial correlation in
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the FCMN, we calculate the weighted adjacency matrix

using the Gaussian similarity functions based on spatial

proximity. The weight wij of edge eij is calculated based on

Eq. (1), which represents the spatial correlation between

two nodes (vi, vj).

wði; jÞ ¼ exp �distði; jÞ2=r2
� ��

ð1Þ

where distij denotes the distance between monitoring points

vi and vj, and r is the standard deviation of distances,

which controls the width of the neighborhoods [51].

The weighted adjacent matrix can be represented as

Eq. (2). A larger weight means that the two nodes have a

higher correlation.

Aw ¼

0 wð1; 2Þ � � � wð1;NÞ
wð2; 1Þ 0 � � � wð2;NÞ

..

. ..
. . .

. ..
.

wðN; 1Þ wðN; 2Þ � � � 0

0
BBBB@

1
CCCCA

ð2Þ

2.3.2 Processing of the temporal correlation data

To represent the temporal correlation of monitoring points,

we constructed a feature matrix X 2 RN�P containing node

time-series information, where P denotes the number of

node time-series features (i.e., the length of the historical

time series). X 2 RN�i denotes the displacement on each

monitoring point at time i. The input ½Xt�n; . . .;Xt�1;Xt� is
a sequence of n historical displacement data. The output

½Xtþ1; . . .;XtþT � is the predicted displacement in the next

T moments.

After creating the FCMN and feature matrix X, the

displacement prediction problem converts to learn the

mapping function f that can predict the displacements (see

Eq. (3)).

f FCMN; Xt�n; . . .;Xt�1;Xtð Þð Þ ¼ Xtþ1; . . .;XtþT½ � ð3Þ

2.4 Step 3: data modeling

In this section, we present more details on the data mod-

eling of the proposed deep learning method for displace-

ment prediction. Three deep learning models are utilized in

Fig. 1 The workflow of the

proposed method

14444 Neural Computing and Applications (2021) 33:14441–14457

123



the data modeling. First, we describe the GCN for spatially

correlated data. Second, we describe the GRU for tempo-

rally correlated data. Finally, we describe the T-GCN that

can deal with spatiotemporal data.

2.4.1 Use of the graph convolutional network (GCN)

In this section, we introduce how to use GCN to capture the

spatial correlation from the established FCMN.

Quite recently, GCN has been gaining attentions, which

can extend convolutional operations to non-Euclidean

domains based on spectral graph theory. GCN is an

effective method for capturing spatial correlation in non-

Euclidean structures, which can capture local correlations

well and maintain shift-invariance [25]. With this advan-

tage, GCN has been gradually applied to spatial modeling

in various fields (e.g., traffic road networks).

We describe how GCN extracts spatial correlations from

FCMN by employing graph convolution (GC) operations.

Structurally, the GCN constructs a filter in the Fourier

domain that can act on the nodes of the FCMN and their

first-order neighbors to capture the spatial features between

the nodes. For any node in FCMN, the GCN can capture

the topological relationship between it and its surrounding

nodes. Furthermore, the GCN model can encode the

topological structure of FCMN and the attributes on the

nodes (i.e., displacement of each node). The structure of

the GCN is illustrated in Fig. 3. A GCN can stack multiple

layers to model higher-order neighborhood interactions in

the graph [14]. The propagation rule of the GCN can be

expressed as Eq. (4).

f HðlÞ;A
� �

¼ r D̂
�1

2ÂD̂
�1

2HðlÞW ðlÞ
� �

ð4Þ

where HðlÞ 2 RN�P is a node-level output, W ðlÞ is a weight

matrix for the l-th neural network layer, and rð�Þ is a

nonlinear activation function such as the ReLU. A repre-

sents the adjacency matrix, refers to the preprocessing step

and denotes taking the average of neighboring node fea-

tures. Â ¼ Aþ I is a matrix with a self-connection struc-

ture, where I is the identity matrix, and D̂ is the diagonal

node degree matrix of Â, i.e., D̂ ¼
P

j Âij.

2.4.2 Use of the gated recurrent units (GRU)

In this section, we introduce how to use GRU to capture the

temporal correlation from the sequence of feature matrix X.

GRU is a variant of the recurrent neural networks

(RNN) and is commonly utilized to analyse time-series

data and capture their long-term time correlation. Similar

to the RNN structure, GRU has a sequential stepping

mechanism, in which the output of the previous unit is used

as part of the input of the current unit, thus allowing

information to be passed step by step. Using a gating

mechanism, GRU made improvements to address the

problem of vanishing or exploding gradients in RNN [6].

Fig. 2 An example of building a

FCMN in the monitoring

system. Assuming that there are

seven monitoring points on the

slope as shown in the figure, we

use the fully connected network

to represent it as a graph and

then calculate the similarity

between any two connected

nodes using Gaussian similarity

to obtain a weighted adjacency

matrix
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GRU utilizes the so-called update gate and reset gate to

store as much information as possible for as long as pos-

sible [10, 26]. Compared to other variants (e.g., LSTM),

GRU has a simpler structure and therefore involves fewer

parameters, making the training efficient and faster.

The structure of the GRU is illustrated in Fig. 3. Given

the current timestep feature matrix xt as input, ht�1 denotes

a hidden state of the previous time step t � 1. rt is the reset

gate, which is used to determine the degree of ignoring the

status information at the previous moment. ut is the update

gate, which is used to determine how much of the past

information at the previous time is passed along to the

current status. is a candidate hidden state, that represents

the intermediate memory. The governing equations of the

GRU can be expressed as Eq. (5).

ut ¼ r Wxu � xt þWhu � hðt�1Þ þ bu
� �

rt ¼ r Wxr � xt þWhr � hðt�1Þ þ br
� �

~h ¼ tanh Wxh � xt þ rt � hðt�1Þ
� �

�Whh þ bh
� �

h ¼ ut � hðt�1Þ þ 1� utð Þ � ~h

ð5Þ

where the parameters W and b are the weights and devia-

tions in the training process, respectively. The symbol �
indicates pointwise multiplication between tensors. Tanh

denotes the hyperbolic tangent function to ensure that the

values of the hidden states remain in the interval (�1,1).

2.4.3 Use of temporal graph convolutional network (T-
GCN)

To capture the spatial and temporal correlations from the

established FCMN at the same time, we employ a T-GCN

model. The T-GCN model is a deep learning architecture,

including the 2-layer GCN and GRU, which takes the

weighted adjacency matrix Aw and feature matrix X as

input [58]. Figure 4 illustrates the specific structure of a

T-GCN cell and the process of spatiotemporal displace-

ment prediction.

First, the GCN is used to capture spatial correlation in

the FCMN. Here, the graph convolution processes in the 2-

layer GCN are represented as f(X, A).

f ðX;AÞ ¼ r ÂRelu ÂXW0

� �
W1

� �
ð6Þ

where W0 and W1 denote the weight matrix in the first two

layers; Â ¼ Aþ I is a matrix with a self-connection

structure, where I is the identity matrix and D̂ is the

diagonal node degree matrix of Â, i.e., D̂ ¼
P

j Âij; rð�Þ is a
nonlinear activation function such as the ReLU.

Second, the matrix multiplications in the GRU are

replaced with the graph convolution (GC). The specific

calculation process is expressed as Eq. (7).

ut ¼r Wu f Xt;Að Þ; ht�1½ � þ buð Þ

rt ¼r Wr f Xt;Að Þ; ht�1½ � þ brð Þ
~h ¼ tanh W f Xt;Að Þ; rt � ht�1ð Þ½ � þ bð Þ

ht ¼ut � ht�1 þ 1� utð Þ � ~h

ð7Þ

where the spatial features of the time step t are denoted as

f Xt;Að Þ and inputted to the GRU; parameters W and b are

the weights and deviations, respectively, in the training

process; the symbol � indicates pointwise multiplication

between tensors; Tanh denotes the hyperbolic tangent

function to ensure that the values of the hidden states

remain in the interval (-1,1).

2.5 Step 4: data application

Slope displacement prediction should be considered as a

spatiotemporal prediction task due to its spatial and tem-

poral correlations.

Fig. 3 Architectures of two deep learning model. a The architecture of the Graph Convolution Networks (GCN). b The architecture of the Gated

Recurrent Units (GRU)
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First, the temporal correlation needs to be carefully

considered in the prediction of slope displacement for the

following reasons. As time passes, a slope continually

deforms under the control of local geological conditions,

including geomorphology and geological structures, which

is mainly reflected in its displacement trend [4]. Typically,

displacements exhibit an approximately monotonically

increasing function on larger time scales due to the com-

bined effect of the weight of the slope or continuous

external forces that persist on the slope for a longer period

of time. Displacements increase dramatically before com-

plete destruction [21, 50].

Second, the spatial correlation needs to also be consid-

ered in the prediction of slope displacement for the fol-

lowing reasons. Neighboring points tend to have similar

displacement trends in an entire monitoring system [55].

This phenomenon implies that the spatial correlation of

displacement trends can be influenced by the topological

structure of the monitoring system that is deployed on the

slope. A reasonable explanation is that the closer the

monitoring points are, the more similar their geographic

and geological conditions are.

In summary, the objective of this paper is to predict the

holistic slope deformation by considering both the spatial

and temporal correlations based on the acquired time-series

displacement data collected from an entire monitoring

system.

3 Results: a real case

In this section, we apply the proposed method to a real-

world dataset collected from a monitoring system and

evaluate the results.

3.1 Data description

The real case is situated in Dongsheng Coal Field, Ordos,

Inner Mongolia, China, where the main coal-bearing strata

are part of the middle and lower sections of the Yan’an

Group, which are Jurassic deposits. No faults or intrusive

magnetite have been found in the mine. According to 2017

Annual Report from the Ordos Municipal Government, the

annual coal production of Dongsheng Coalfield amounted

to 61.31 million tons. Surface displacements are triggered

by mining.

The installation of monitoring devices in the region

began in April 2011 to measure the displacements. The

Fig. 4 The process of spatiotemporal displacement prediction based on Temporal Graph Convolutional Network (T-GCN). GC represents graph

convolution. Aw represents the weighted adjacent matrix (see Fig. 2)
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monitoring system contains four control points and moni-

tored with GPS receiver. Considering data integrity, we

selected 59 monitoring points from the entire monitoring

system and collected 9 months of data ranging from May

8th, 2011, to February 12th, 2012, for the displacement

prediction. Figure 5 illustrates the layout of the selected

monitoring points, which constitute three crossed moni-

toring lines. Monitoring points R01 � R24 constitute the

R-line, monitoring points A01 � A18 constitute the A-

line, and monitoring points B01 � R18 constitute the

B-line. On each line, the distance between two adjacent

points is 20 m. Due to a midway failure at the monitoring

device located at point B08, displacement data were col-

lected from a total of 59 monitoring points. The frequency

of measurements was once a week. The dataset was also

aggregated into a week interval. The dataset contained 29

records for each monitoring device. It should be noted that

the last three records were the results of a monthly test.

3.2 Predication of the spatiotemporal
displacement

In this section, we use the proposed method to predict

displacement based on the real dataset. First, we describe

the manipulation of the acquired real dataset. Second, we

analyse the spatial correlation of the dataset. Third, we

present the metrics for evaluating the prediction model.

Finally, we analyse the prediction results.

3.2.1 Data manipulation

We divided the dataset into two parts for manipulation. For

spatial correlation data, we connected 59 monitoring points

according to the FCMN construction method described

above to obtain a 59 � 59 weighted adjacency matrix Aw,

which depicts the spatial relationship between monitoring

points in a graphical structure. The values in the matrix

represent the similarity among the monitoring points. For

time correlation data, we used the Euclidean norm kxk2 :
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
to integrate the three directions (x, y, z)

data collected by GPS into a single displacement value, and

constructed a feature matrix X with a size of 59 � 29,

which represents the displacement of each point over time.

Each row is one monitoring point; each column is the

displacement value based on the measured frequency.

Furthermore, we performed data preprocessing. First,

we set the data interval to once a week and use linear

interpolation to handle missing values that appear in the

last three months of data. Therefore, the size of the feature

matrix changes to 59 � 41. Second, we apply the min-max

normalization method to scale the displacement values in

the range of [0, 1], according to

x ¼ ðx�minÞ=ðmax�minÞ. Finally, 70% of data is used

for training, and the remaining 30% is used for testing.

Fig. 5 The layout of monitoring

points
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3.2.2 Analysis of the spatial correction in the displacement
data

We analyzed the dataset was not yet been preprocessed to

determine the spatial correlation among the monitoring

points. First, we compared the displacement trends of the

first point (i.e., R01, A01, B01) in the three monitoring

lines. Second, we compared the displacement trends of the

first and last points in each monitoring line separately.

Then, we compared the displacement trends of neighboring

points from the two intersecting regions in the three

monitoring lines. Finally, we compared the displacement

trends of three sets of nodes (R01 � R05, R16 � R17,

and R20 � R24) in the R-line.

The displacement trends of R01, A01, and B01 are

illustrated in Fig. 6. Although the three points R01, A01,

and B01 are relatively farther away in the monitoring

system layout, the displacement trends appeared largely

consistent implying a strong spatial correlation among

them. The most pronounced variation within several points

is R01. One explanation for this is that mining induces

perturbation.

The spatial correlation between the two farthest points in

the entire monitoring system for each line (i.e., R01 and

R24, A01 and A18, B01 and B18) is illustrated in Fig. 7.

The A-line and B-line exhibit a strong spatial correlation,

which is reflected by the remarkable similarity in dis-

placement trends and displacements between the two far-

thest points for each line. One explanation for this is that

both lines have only 18 points, which implies that the

distance between the farthest points is relatively short. The

displacements of R24 were substantially larger than those

of R01 from August 2011 until October 2011, and then the

displacement trends of both points became similar again.

The displacement trends in the two intersecting regions

of the three monitoring lines are illustrated in Fig. 8. In the

Fig. 6 Displacement trends of R01, A01, B01 monitoring points
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first intersecting region, the displacement trends at the four

neighboring points are almost identical, and their dis-

placements are relatively large. In the second intersecting

region, point R24 on the R-line and two points on the

B-line exhibit different displacement trends. However, the

two neighboring points B09 and B10 on the B-line, are

almost identical.

The displacement trends of the three sets of monitoring

points on the R-line, which is the longest monitoring line,

are illustrated in Fig. 9. The displacement trends from the

first set of monitoring points (R01, R02, R03, R04, R05)

exhibit remarkable similarities that imply a strong spatial

correlation among them. Apparently, R05 has a larger

displacements. The displacement trends from the second

set of monitoring points (R16 and R17) that are randomly

selected in the middle of the monitoring line are almost

identical. Similarly, the displacement trends from the third

set of monitoring points (R20, R21, R22, R23, R24) exhibit

remarkable similarities implying a strong spatial correla-

tion among them.

3.2.3 Evaluation metrics of prediction

We evaluate the model performance based on two metrics:

(1) Mean absolute error (MAE) and (2) Mean absolute

scaled error (MASE).

MAE is the mean absolute error produced by the actual

prediction. A smaller MAE value means better perfor-

mance in the prediction model (see Eq. (8)).

MAE ¼ 1

n

Xn
i¼1

Yt � bY t

���
��� ð8Þ

where Yt and bY t denote the actual and predicted

displacements.

MASE was substituted for the use of percentage error in

evaluating the accuracy of time-series predictions [30]. For

time-series data, it is typical to scale the errors using a

simple prediction [see Eq. (9)].

MASE ¼ ej
1
N

PN
i¼1 Yi � Ŷ
�� ��

�����

�����

 !
ð9Þ

where the numerator ej is the prediction error for a given

period, defined as the actual value Yt minus the actual value

from the prior period as the prediction Yt�1: ej ¼ Yt � Yt�1.

An important threshold for MASE is 1. MASE ¼ 1 implies

that the model has the same MAE as a naive prediction (the

metric is ej). MASE [ 1 implies that the actual prediction

does worse than a naive prediction. MASE \ 1 implies

that the actual prediction is better than the naive prediction.

3.2.4 Predicted results

The prediction process includes the determination of model

parameters and model training, as well as model perfor-

mance evaluation. The hyperparameters of the model

include the learning rate, batch size, training period, and

number of hidden layers. We set the learning rate to 0.01,

the batch size to 64, and the training period to 1000. Given

the small sample size of our model, there is only one

hidden layer with 100 hidden units. We use ReLU as the

activation in the GCN and employ the Adam optimizer for

bFig. 7 Displacement trends of the two farthest points in the

monitoring area for each line. a Comparison of displacement trends

at monitoring points A01 and A18. b Comparison of displacement

trends at monitoring points B01 and B18. c Comparison of

displacement trends at monitoring points R01 and R24

Fig. 8 Displacement trends in the two intersecting regions of the three

monitoring lines. a Comparison of displacement trends at adjacent

points in the first intersecting regions. b Comparison of displacement

trends at adjacent points in the second intersecting regions
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minimizing the loss function [33]. All neural network-

based approaches are implemented using TensorFlow [1].

The training process of the model was performed on a

laptop equipped with the Intel Core i7-8550U CPU and 8

GB of RAM. The input set we used consisted of 5 historical

records that were used to predict the displacement over the

next 4 weeks.

It should be noted that we used two datasets. One dataset

was the uninterpolated dataset Dataset_1; and the other

dataset was the interpolated dataset Dataset_2. In Data-

set_1, we sampled only the first 26 weeks of data; its

feature matrix shape was (59 � 26). The feature matrix

shape of Dataset_2 was (59 � 41). We compared the

performance of the model in both datasets. The results are

listed in Table 1.

As illustrated in Table 1, the uninterpolated dataset

performs better than the interpolated dataset in terms of

evaluation metrics. The MASE of the uninterpolated

dataset is less than 1, while the interpolated dataset is more

than 1.

We focused on the predicted displacement trends based

on the displacement data collected from the entire moni-

toring system, and compared these trends with the observed

trends as follows.

The predicted results of Dataset_1 are illustrated in

Fig. 10. On 13th November 2011, several monitoring

points (R19, R20, R21, R22, R23, R24) had larger mea-

sured displacements than the predicted results. On 20th

November 2011, the measured displacement of several

monitoring points decreased. At the time, their predicted

results were similar to the measured displacements. For

most points in the entire monitoring system, the prediction

results were similar to the measured displacements, which

indicates that the results of the prediction of the proposed

method were effective. Moreover, the spatial distribution

of displacement changes was consistent for the entire

monitoring system.

The predicted results of Dataset_2 are illustrated in

Fig. 11. Excluding the anomalies in the prediction result at

point R11, the spatial distribution of displacement changes

is consistent for the entire monitoring system. The pre-

diction results are usually larger than measured

displacements.

Fig. 9 Displacement evolution trends for the three sets of monitoring

points on the R-line. a Comparison of displacement trends at

monitoring points R01 to R05. b Comparison of displacement trends

at monitoring points R16 and R17. c Comparison of displacement

trends at monitoring points R20 to R24

Table 1 Evaluations of the pre-

dicted results
Dataset Metrics Value

Dataset_1 MAE 2.17

MASE 0.68

Dataset_2 MAE 3.03

MASE 2.88
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4 Discussion

The predicted results demonstrate the effectiveness of our

proposed method of using deep learning to predict slope

deformation based on time-series displacement data. The

following section discusses its advantages and some

problems and how it can be improved to address the

shortcomings.

Fig. 10 The predicted results of Dataset_1
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4.1 Advantage of the proposed deep learning
method

The advantage of the proposed method is to consider the

spatial correlation of slope displacement predictions. More

specifically, in this paper, we consider the spatial correla-

tion of the entire monitoring system and propose a novel

method that can predict the displacement of all points with

graph-structured data instead of the traditional single point

time-series data as input.

Fig. 11 The predicted results of Dataset_2
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To the best of the authors’ knowledge, there is currently

no related research work focusing on addressing the pre-

diction of the monitoring system from a holistic perspec-

tive. In this paper, we represent the spatial correlation of

the entire monitoring system using FCMN and capture its

spatial correlation using GCN, which is a state-of-the-art

deep learning model. The holistic analysis can predict the

deformation based on data collected from the entire mon-

itoring system over time. In addition, the method elimi-

nates the need to select monitoring points, thus increasing

efficiency and saving time. It also avoids the selection of a

few monitoring points at the expense of others that may

pose a potential threat.

4.2 Shortcoming of the proposed deep learning
method

The shortcoming of this paper is that the employed dis-

placement datasets are limited. The frequency with which

we acquired the datasets was with a weekly; hence, there

were only 26 weeks of data. According to the prediction

results, for the small sample, a typical interpolation method

could deteriorate the performance of the prediction results

of the model. Additionally, we did not factor in external

influences. When the slope is influenced by irregular fac-

tors, e.g., human activities, it may interfere with the pre-

dicted results.

4.3 Outlook and future work

In the future, we plan to (1) evaluate the applicability of the

proposed deep learning method in other geohazard sce-

narios for spatiotemporal predictions based on time-series

data from an entire monitoring system containing multiple

points, (2) handle limited datasets from monitoring systems

using different approaches to meet prediction requirements,

and (3) consider the effect of influencing factors to extend

our method that can learn the correlations between abnor-

mal events and displacement change. Moreover, we will

primarily focus on handling small sample datasets.

Limited datasets in geohazard domains might be a

prevalent phenomenon. In practice, for some countries or

regions, the collection of large geohazard datasets proves to

be costly or impracticable. As a consequence, there is often

no choice except to utilize a limited dataset with the

attempt to achieve as accurate a prediction as possible. For

example, a time series analysis may be performed with

only records for a specific time period.

Several solutions have emerged in other domains for

these limited datasets, including data augmentation, syn-

thetic data, and transfer learning. First, data augmentation

refers to increasing the number of data points without

changing the data label. For time-series data, variability

factors including random noise and active time features can

be introduced to increase the length of the time-series [46].

Second, synthetic data are fake data that contain the same

patterns and statistical properties as real data. For example,

a deep learning model called generative adversarial net-

works (GAN) can be utilized to generate synthetic data.

Finally, transfer learning refers to a framework for using

existing relevant data or models in the construction of new

models. Transfer learning techniques are useful on the

ground that they enable the model to make predictions

about new domains or tasks (called target domains) using

knowledge learned from another dataset or from an exist-

ing model (source domain).

5 Conclusion

In this paper, by considering the spatial correlations

between all points in the entire displacement monitoring

system, we proposed a novel deep learning method for

predicting the slope deformation. The essential idea behind

the proposed method is to predict the slope deformation

based on the global information (i.e., the correlated dis-

placements of all points in the entire monitoring system),

rather than based on the local information (i.e., the dis-

placements of a specified single point in the monitoring

system). In the proposed method, (1) a weighted adjacency

matrix is built to interpret the spatial correlations between

all points; (2) a feature matrix is assembled to store the

time-series displacements of all points; (3) one of the state-

of-the-art deep learning models, i.e., T-GCN, is developed

to process the above graph-structured data consisting of

two matrices. To evaluate the effectiveness of the proposed

method, we performed predictions based on a real dataset.

The results show that: (1) the predicted displacement val-

ues for most of the monitoring points are close to the

measured displacement values, which verifies the effec-

tiveness of the proposed method; (2) the smaller the mea-

sured displacement value, the closer the prediction is to the

measured value; and (3) the trend in the spatial distribution

of the displacement of the monitoring system remains

substantially similar over the different periods of the pre-

diction. Future work is planned to achieve better results for

a sufficient sized dataset.
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