
ORIGINAL ARTICLE

Local-aware spatio-temporal attention network with multi-stage
feature fusion for human action recognition

Yaqing Hou1 • Hua Yu1 • Dongsheng Zhou2 • Pengfei Wang1 • Hongwei Ge1 • Jianxin Zhang3 •

Qiang Zhang1

Received: 13 January 2021 / Accepted: 13 June 2021 / Published online: 11 July 2021
� The Author(s) 2021

Abstract
In the study of human action recognition, two-stream networks have made excellent progress recently. However, there

remain challenges in distinguishing similar human actions in videos. This paper proposes a novel local-aware spatio-

temporal attention network with multi-stage feature fusion based on compact bilinear pooling for human action recog-

nition. To elaborate, taking two-stream networks as our essential backbones, the spatial network first employs multiple

spatial transformer networks in a parallel manner to locate the discriminative regions related to human actions. Then, we

perform feature fusion between the local and global features to enhance the human action representation. Furthermore, the

output of the spatial network and the temporal information are fused at a particular layer to learn the pixel-wise corre-

spondences. After that, we bring together three outputs to generate the global descriptors of human actions. To verify the

efficacy of the proposed approach, comparison experiments are conducted with the traditional hand-engineered IDT

algorithms, the classical machine learning methods (i.e., SVM) and the state-of-the-art deep learning methods (i.e., spatio-

temporal multiplier networks). According to the results, our approach is reported to obtain the best performance among

existing works, with the accuracy of 95.3% and 72.9% on UCF101 and HMDB51, respectively. The experimental results

thus demonstrate the superiority and significance of the proposed architecture in solving the task of human action

recognition.
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1 Introduction

Research on human-robot interactions has attracted

increased attention during the past few years. In the

interaction system, the robot needs to recognize actions of

the human from the available video data, which can be

commonly categorized into 3D skeletons [25, 31] and RGB

video datasets [1, 5, 21, 32]. Notably, the task on RGB

video datasets is usually more difficult since the visual

content is significantly more complicated compared to that

in 3D skeleton datasets. In recent decades, conventional

approaches, i.e., hand-engineered descriptor algorithms

including HOG [20], HOF [24], SIFT [28], MBH [3], have

been carried out for extracting features on RGB datasets.

Nevertheless, these approaches require manual feature

extraction and usually fail in recognition problems with

multiple classes and large-scale training data.

Artificial neural networks, as the biologically inspired

computing paradigm, provide an alternative methodology

for automatically recognizing the underlying relationships

from the available data. With the growth of computing

power from GPUs and distributed computing, deep neural

networks, particularly of the convolutional type (deep

CNNs), have sparked a revolution in artificial intelligence,

triggering many research studies and practical applications.
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More recently, CNNs have been widely applied in human–

computer interaction for human action recognition, where

they have significantly outperformed the conventional

machine learning methods. Existing approaches

[14–16, 33] have shown good performance in capturing the

appearance information of objects from images. Never-

theless, a CNN often fails to model videos precisely based

on the spatial information obtained from actions [19, 35].

Unlike static images, the temporal information of human

actions in videos provides additional cues. Long short-term

memory (LSTM) has been introduced into CNN structures

due to its capacity to preserve long-term information over

time. For example, the long-term recurrent convolutional

network (LRCN) was proposed to model temporal

sequences by connecting the outputs of CNN to the multi-

layer LSTM model [5]. One of the methods of detecting the

activities is modeling the activity using the Activation

Spreading Network (ASN) [27]. This method was inspired

in hierarchical task networks, which is a way to represent

the long-term relationships of a process or activity. Shi

et al. [30] replaced the fully connected layer with the

convolutional layer in LSTM and proposed ConvLSTM

networks to capture the temporal dynamics. Unfortunately,

these approaches fail to consider the interactions between

the spatial and temporal information in feature extraction.

The 3D CNN (C3D) is another extension of the CNN in the

temporal domain and employs 3D convolutional kernels to

extract the temporal evolution information across video

frames [18]. It has shown better performance in extracting

spatial–temporal features than 2D CNNs. For example,

Tran et al. [37] conducted empirical studies on C3D with

multiple configurations of 3D convolutional kernels and

obtained promising performance with a kernel size of

3�3�3. Still, existing C3D approaches are often reported

to suffer from poor scalability and high computational cost

[13, 18, 37].

Compared to the approaches based on LSTM and C3D,

two-stream CNNs can easily utilize the new CNN struc-

tures such as residual networks (ResNet) [14] and BN-

Inception [16]. These two-stream CNNs can decompose a

video into spatial and temporal streams for capturing the

appearance and motion features, respectively [32]. Based

on two-stream CNNs, Wang et al. [40] introduced temporal

segment networks, which enforced consensus over differ-

ent short snippets. Qiao et al. [39] proposed a trajectory-

pooled deep-convolutional descriptor (TDD) with a sum-

pooling method to leverage the hand-engineered and deep-

learned information in two-stream CNNs, wherein the

spatial and temporal networks of TDD were trained sepa-

rately. Furthermore, Rohit et al. [11] devised an attention

pooling approach and reported better performance than

first-order pooling in traditional CNNs. Deva et al. [12]

proposed ActionVLAD pooling to aggregate the

information across the entire temporal span of videos.

Different strategies have been investigated to integrate the

signals from two streams, including concat fusion, early

fusion, and late fusion.

However, there remain issues in two-stream CNNs.

First, existing approaches have not yet tackled the precise

relationship between local and global features of human

actions since different regions of the human body have

different degrees of saliency during human action. This

could be exaggerated when similar actions are being rec-

ognized. For example, a ‘‘high jump’’ is a composite action

that could be easily confused with a series of actions such

as ‘‘running’’, ‘‘jumping’’, and ‘‘tumbling’’. Existing two-

stream CNN methods usually fail since the impact of fine-

grained differences between human movements is neglec-

ted. Therefore, in our study, we introduce an attention

model, the spatial transformer network (STN) [17], to

locate attentional local regions of the human body, and

then aggregate these local regions with the global infor-

mation captured from the spatial input image during the

task of recognizing human action.

More effective strategies for fusing spatial attentional

region features and temporal features need to be explored.

Many researchers have investigated how to capture the

interactions between the two streams. In our present study,

we reconsider this problem and introduce a fusion method,

namely compact bilinear pooling (CBP) [9], into two-

stream CNNs to instruct the interaction between spatial and

temporal information. The CBP algorithm was initially

proposed to fuse spatial features in fine-grained recognition

tasks. Here, we investigated the efficacy of fusing the

spatial and temporal features through compact bilinear

pooling. This is possible due to the fusion method’s ability

to markedly reduce the training parameters over competi-

tive methods such as element-wise sum and concatenation

(both of which are investigated in [8]).

In summary, the specific interest of our work lies in

aggregating the beneficial information across entire videos

by proposing a novel spatio-temporal attention network

with multi-stage feature fusion. Our proposed architecture

is shown in Fig. 1. The key contributions of the present

work can be summarized as follows.

1. We propose a local-aware spatio-temporal attention

network with multi-stage feature fusion for human

action recognition. In our approach, we employ a

spatial transformer network (STN) as our attention

model for capturing the meaningful regions from video

frames. Then, the network outputs the discriminative

descriptors for human action recognition through fea-

ture fusion.

2. We improve the feature fusion method by introducing

the enhanced compact bilinear pooling. The feature

fusion is conducted three times in our architecture. The
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first feature fusion is proposed to strengthen the human

action representation through combining the local

attentional regions obtained by the STN with global

features from the original spatial input. We perform the

second feature fusion by fusing the output of the first

feature fusion and the temporal features. In this way,

the pixel-level feature correspondences between the

spatial and temporal streams are learned successfully,

while parameters of our architecture can be reduced.

The third feature fusion is employed to generate the

global descriptors of human action, bringing together

three outputs: the spatial features, temporal features,

and spatio-temporal interaction information.

3. We compare the proposed feature fusion method with

existing alternatives, such as sum, conv, and concate-

nation. The overall architecture is evaluated on two

standard human action recognition datasets: HMDB51

[22] and UCF101 [34]. Experiments demonstrate that

the proposed architecture leads to superior perfor-

mance over both the traditional machine learning

methods as well as the state-of-the-art deep

architectures.

2 Related work

2.1 Attention models

The attention mechanism has been widely applied to

existing CNNs over the past decades [31, 41]. Due to its

significance, recent studies have explored the performance

of attention models in various forms for the human action

recognition task. For example, Girdhar et al. [11] devised

an attention pooling model to replace the last pooling layer

of their baseline architecture, but its performance on the

RGB dataset of HMDB51 did not surpass that of the I3D

model. Wang et al. [41] presented non-local operations to

capture long-range dependencies. Specifically, they com-

puted the interactions at any two positions, regardless of

their positional distance. Another way of exploring atten-

tion models was proposed in [6], where the authors com-

bined an attention structure of spatio-temporal networks

with an RNN to recognize human actions from videos.

However, their attention models failed to capture the fine-

grained difference between video frames, which have a

deep impact on recognizing human actions that share high

similarities. Ge et al. [10] proposed an attention mechanism

based on the convolutional LSTM network to improve the

performance of human action recognition by embedding an

LSTM module into a spatial transformer network (STN).

Kuen et al. [23] devised a recurrent attentional convolu-

tional–deconvolution network and combined the STN [17]

with recurrent network units to detect the fine-grained

differences from static images. Despite this progress, the

correlations between the local and global regions of objects

have yet to be considered in the literature.

Therefore, in this work, we investigate the performance

of the STN in more complex tasks, such as video-level

human action recognition, with the aim of capturing the

regions of the human body that are expected to be useful

for fine-grained action recognition. The STN is capable of

extracting the attentional regions of the input with different

spatial transformation methods, including rotation, crop-

ping, transition, and scaling. In addition, we enhance the

human action representation through combining the local

and global regions of objects that are obtained by the STN

and the original spatial input, respectively. The proposed

attention model is expected to yield better performance in

distinguishing human actions that share a high similarity

and to capture the correlations between different frames.

Fig. 1 Overview of our model

architecture
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2.2 Fusion methods

After extracting spatial and temporal features from videos,

we perform feature fusion for human action recognition. In

the past, researchers have studied the effectiveness of dif-

ferent fusion methods across streams in two-stream net-

works. Simonyan et al. [32] proposed fusing the two

streams through averaging the Softmax approximation of

the spatial and temporal streams by late fusion (i.e., fusing

fully connected layers of the two streams), and then

applying a multi-class linearity SVM on L2 regularization.

Although higher recognition accuracies were reported

compared to hand-crafted models, this research neglected

the feature correspondence between the two streams when

extracting the spatio-temporal features. Following this,

Feichtenhofer et al. [8] improved two-stream CNNs

through Conv fusion to stack the spatio-temporal feature

maps by extracting the spatio-temporal features with 3D

convolution and 3D pooling. However, this work came

with the risk of increasing training parameters in the later

stage of the network. Meanwhile, Pinz et al. [7] investi-

gated the fusion of the two streams by multiplicative

motion gating functions, aiming to gain leverage on mul-

tiplicative interactions by utilizing the cross-stream resid-

ual connections. Unfortunately, this method did not yield

much improvement in recognition accuracy.

Our present study explores an alternative fusion method

to capture the correlations between the spatial and temporal

streams while reducing the training parameters. Specifi-

cally, we introduce compact bilinear pooling [9], which

was initially proposed to fuse spatial features in fine-

grained recognition tasks. We further study its effective-

ness for fusing the spatial attentional features and the

temporal features. In particular, the feature fusion is per-

formed in a multiplicative manner to achieve the interac-

tions across the spatial and temporal streams.

3 Approach

This section provides the detailed description of our pro-

posed approach by firstly introducing the overall neural

architecture. In what follows, we discuss the details of STN

for attentional region localization and the feature fusion

method for spatio-temporal information interaction.

3.1 Proposed architecture

In the proposed architecture, we first introduce the STN to

locate the meaningful regions of human actions in the

spatial stream. Then, we combine the spatial attentional

features with the original spatial input by compact bilinear

pooling to strengthen the human action representation

between local and global regions. We consider this process

as the first feature fusion. The fusion layer is placed

between the last convolutional layer and the fully con-

nected layer of the backbone network. At the same time,

the optical flow of the temporal stream is pre-computed to

capture the action motions, thereby extracting the trajec-

tory of human action. Furthermore, the spatial and tem-

poral features are fused together to achieve the spatio-

temporal interaction. After the second feature fusion, we

design two convolution layers to produce the weights for

each grid location and then employ a softmax layer to

generate the output feature map for global compact bilinear

pooling. Finally, we aggregate information to obtain the

global descriptors, which encompass all three outputs: the

spatial features, temporal features, and spatio-temporal

interaction information. The three inputs are fused into a

single fixed-length vector through compact bilinear

pooling.

3.2 STN for attentional region localization

In our present study, the STN [17] is introduced to search

for the discriminative regions of the human body in the

recognition task. Notably, the STN is a differentiable

attention network and can be integrated into the CNN

directly without additional supervision. It is capable of

learning the scales of discriminative attentional regions and

cropping them out from video frames automatically. The

STN was originally proposed for handwritten character

recognition in static images [17]. Here, we apply it to

video-level human action recognition by reconstructing its

structure. For a clearer understanding, a detailed descrip-

tion of the STN is provided before diving deep into our

network.

The STN consists of three parts: Localization Net, Grid

Generator, and Sample. The schematic diagram is shown in

Fig. 3. The design of Localization Net in the STN is shown

in Fig. 4. It consists of a network structure with two con-

volutional layers, two pooling layers, and two fully con-

nected layers.

Localization Net generates the matrix of parameters Ah

for spatial affine transformation:

Ah ¼
sx 0 tx

0 sy ty

� �
ð1Þ

where sx; sy; tx, and ty denote the varying parameters that

are used for attention cropping, translation, and isotropic

scaling.

Grid Generator generates a matrix ThðGÞ, which repre-

sents the mapping matrix from the input feature map (U) to

the output feature map (V). We assume that the coordinate
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of each pixel of U and V is (xsi ; y
s
i ) and (xti; y

t
i), respectively.

We now have the point-wise coordinate transformation

from U to V. The calculation process of matrix ThðGÞ is

thereby defined as in Equation (2):

xsi
ysi

� �
¼ ThðGiÞ ¼ Ah

xti
yti
1

0
B@

1
CA ¼

h11 h12 h13
h21 h22 h23

� � xsi
ysi
1

0
B@

1
CA

ð2Þ

Lastly, according to the input feature map U and the

mapping matrix ThðGÞ, Sample generates the output feature

map V for the subsequent feature extraction.

Human actions may vary greatly according to the intra-

class differences in different situations. For example, when

different people perform the same action (e.g., the high

jump), their behavior varies due to their different body

sizes. Human actions are detected by dividing different

parts of the human body, including the head, arms, and

legs, which all possess different degrees of saliency in

human action recognition. To capture the fine-gained

behavior difference across frames in the process of human

action, multiple STNs are employed in a parallel manner.

The performances of these STNs are also investigated in

our study.

Moreover, to enhance human action representation, we

perform the feature fusion through connecting the local

attentional regions obtained by the STN with global fea-

tures from the original spatial input to complement the

information about human action, e.g., the relationship of

local regions of the human body. Details of this building

block are outlined in Fig. 2.

3.3 Spatio-temporal information interaction

In this section, we determine the interaction between the

spatial attentional features and temporal features. Note that

an effective interaction method should preserve spatial and

temporal information maximally and enable the feature

correspondences between the spatial and temporal streams

at the same pixel. Taking this cue, we introduce bilinear

pooling [26], which enables the spatial and temporal fea-

tures in different dimensions to interact with each other in a

multiplicative way. Bilinear pooling is suitable for our

work because the information for feature fusion consists of

spatial attentional features, spatio-temporal features, and

temporal features, which could be in different dimensions.

Firstly, we describe the process of bilinear pooling.

Given the two initialized vectors x 2 Rn and y 2 Rd, which

represent the spatial and temporal features, respectively.

The formula for bilinear pooling is denoted by z ¼ vecðx�
yÞ , where � represents the outer product of x and y, and

vec indicates its vectorization. Notably, when the dimen-

sion of the features for fusion becomes rather large, the

effectiveness of this algorithm will inevitably suffer.

Higher dimensionality of parameter representation (e.g.,

when the length of x and y are particularly large) will

eventually limit the algorithm’s effectiveness.

To project the outer product of the two vectors to a low

dimensional space, we propose an enhanced version of

bilinear pooling, called spatial–temporal compact bilinear

pooling. We introduce a projection function, namely the

count sketch function / [2], to project vector m 2 Rn to

m0 2 Rd, where n � d. First, we initialize two vectors

s 2 f�1; 1gn and h 2 f1; :::dgn, and two indices j and k,

where s is an index of either 1 or - 1, and h maps each

index j in the input m to an index k in the output m0. All s
and h obey the uniform distribution and remain constant

Fig. 2 We use UCF101 as an example. For spatial stream, we employ

multiple STNs to locate the attentional regions of the human body; the

local features and the spatial input image are fused by compact

bilinear pooling. For temporal stream, we extract the optical flow to

track the human action trajectory. Then, the spatio-temporal features

are fused through compact bilinear pooling for further feature

extraction. The final human action representations come from three

sources: spatial information, temporal information, and spatio-

temporal attention information
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for future invocations of the count sketch, and m0 is ini-

tialized as a zero vector. Then, for each element m½j�, its
destination ism0½k�, and the index k =h½j� is looked up using
h. We assume the number of feature pathways is v for

feature fusion. Details are shown in lines 1�12 of Algo-

rithm 1. Compared to the bilinear pooling, our proposed

method

The above process projects the outer product of two

vectors to a lower dimensional space, which can reduce the

number of training parameters significantly. In addition,

and to avoid computing the outer product of two vectors

explicitly, we introduce the convolution computation

approach of count sketches [29] to represent the count

sketch of the outer product of the two vectors:

wðx� y; h; sÞ ¼ wðx; h; sÞ � wðy; h; sÞ ð3Þ

where * denotes the convolution operator. According to the

convolution theorem in the temporal domain, x*y can be

rewritten as FFT�1 (FFT (x)
J

FFT (y)), where the

operator
J

represents the element-wise product. The

entire process denotes the compact bilinear representations

of the spatial and temporal information. Details of this

process are outlined in Fig. 5 and described in Algorithm 1.

4 Experiment

We carried out comprehensive experimental studies to

investigate the efficacy of the proposed architecture for

human action recognition. First, the details of experimental

datasets are introduced. This is followed by an analysis of

the effectiveness of different backbone networks, including

VGG-19, ResNet-152, and BN-Inception, for feature

extraction. Then, we discuss the impact of employing

multiple spatial transformers in a parallel way to locate the

fined-grained regions of the human body. Next, the per-

formances of multiple spatio-temporal feature fusion

methods in human action recognition are studied. Multi-

stage feature fusion can enhance the performance of our

approach while maximizing the interaction of the spatio-

temporal information. Therefore, we conducted ablation

studies to test the effectiveness of the proposed module.

Finally, we compared our approach with existing state-of-

the-art approaches.

Fig. 5 Details of fusing spatio-temporal features through compact

bilinear pooling

Table 1 Information of the datasets used in our experiments

Dataset Video clips Training clips Testing clips

UCF101 13320 9590 3730

HMDB51 5100 3762 1338

Fig. 3 Schematic diagram of the STN

Fig. 4 Localization Net structure
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4.1 Datasets and implementation details

We tested the proposed architecture on two standard

human action datasets: HMDB51 and UCF101. UCF101

contains 101 kinds of human actions, and each action is

composed of 130 videos with different backgrounds and

characters; the dataset contains 13,320 videos in total.

HMDB51 contains 51 kinds of human actions. Each action

is composed of about 100 videos, and the dataset contains a

total of 5100 videos. The information of the datasets is

listed in Table 1. We clipped a single frame with a size of

300 � 224 as the input for the spatial network, while the

temporal network took 20 consecutive optical flow frames

as input. We pre-trained the two networks of the proposed

architecture on ImageNet [4] and fine-tuned them on

standard datasets. The mini-batch stochastic gradient des-

cent algorithm was used for optimization, and the batch

size was set to 128. The learning rate was initially set as

0.01 and then decreased by 10 times every 20 epochs. We

stopped training at 10K iterations. We performed data

augmentation by random flipping and cropping on video

frames to avoid overfitting. All experiments were imple-

mented on TensorFlow. In our present study, we classified

the video in a single forward pass, which took 	200 ms on

two Nvidia Titan V cards (the computational time for one

video sequence is about 200 ms).

4.2 Comparison of different backbone networks

We investigated the effectiveness of different backbone

networks in terms of the accuracy of human action

recognition. VGG-19, ResNet-152, and BN-Inception were

chosen as the backbone networks for video-level human

action recognition as they have reported substantial gains

in image classification [14, 16, 28]. We evaluated their

performance on our proposed architecture and present the

results in Table 2.

For the spatial network, recognition accuracy benefitted

the most with an increased number of convolutional layers;

meanwhile, the performance decreased slightly for the

temporal network. This is because the CNN has a higher

capability to learn spatial features, and deeper CNNs

typically lead to higher recognition accuracy of the net-

work, due to its discriminative representation of the orig-

inal input in image recognition tasks [26, 36]. However, the

CNN fails to capture the long-term information and cannot

learn the optical flow field since temporal data have a

different data distribution. BN-Inception obtained the best

performance among all the backbone networks, reporting a

recognition accuracy of 85.9% for the spatial network and

83.3% for the temporal network. In light of these results,

we selected BN-Inception as our target backbone network

for the human action recognition task.

4.3 Comparison of accuracy based on different
numbers of STNs

We verified the effectiveness of the attention models in

capturing the fine-grained regions of the human body.

Specifically, we employed different numbers of STNs in

parallel to capture the information of human action. As we

can see from Table 3, with the increase in the number of

STNs, the accuracy of recognition improved gradually.

However, when the number of STN reaches a certain level

(seven in our present study), the accuracy decreased

slightly. We conjecture that this result is due to the addi-

tional layers in the localization network of the STN, which

yield more trainable parameters. When the number of

attention regions reaches seven, the lack of a gradient

signal leads to reduced accuracy and, hence, limits the

ability of the STN to capture the meaningful local infor-

mation. Therefore, we set the number of STNs to five and

placed them in the same layer.

The feature fusion between the local regions and global

features obtained from the original input improved the

overall performance of our approach. As shown in Table 3,

the accuracy of 5�STNs with global features was better

than that without global features, and better performance

was reported (0.2 points higher in accuracy). The results

further highlight the efficacy of the global features obtained

from the original input being used to provide more global

spatial information of each local region.

Lastly, we discuss the visualization of our attention

model predicted by 5�STNs on the human body after

performing 10K iterations. As shown in Fig. 6, one STN

(shown in blue) learned to detect the head of the human

body, while the others fixated on the rest of the human

body. We observed some overlaps among several regions

that contained useful information of human actions. Our

approach is capable of locating meaningful regions of the

human body to capture the fine-grained differences

between human actions.

Table 2 Classification accuracy of spatial and temporal networks with

different backbone networks (i.e., VGG-19, ResNet-152 and BN-In-

ception) on UCF101

Backbone network Spatial (%) Temporal (%)

VGG-19 81.2 82.5

ResNet-152 85.1 81.9

BN-Inception 85.9 83.3
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4.4 Different spatio-temporal fusion methods

We studied the performance of different feature fusion

methods in obtaining information interaction between

spatial and temporal features. Note that the fusion layer in

our present study was placed between the last convolution

layer and softmax layer of the backbone network. This is

because the network with a late fusion performed better

than the network with the fusion layer in an earlier stage

since there was much more information of deeper feature

extraction in the CNN [42]. We investigated the efficacy of

fusing the spatial and temporal features through compact

bilinear pooling. As shown in Table 4, compact bilinear

pooling with 1024-d improved the average accuracy by

2.0% compared with the other fusion methods, such as

sum, conv, and concatenation. Therefore, we can conclude

that our method achieves significant improvements com-

pared with other fusion methods.

We also validated that different dimensions of compact

bilinear pooling greatly affect recognition accuracy. As

shown in Table 4, we observed that with the increase in the

output’s dimension, recognition accuracy improved

accordingly, as more information of the spatial and tem-

poral features was captured. However, a larger dimen-

sionality will produce a much larger number of training

parameters. As we can see, when the number of dimensions

reached 16,000, the training parameters increased dramat-

ically compared with 4096-d (174.48M vs 213.06M),

thereby incurring additional difficulties in the training

Table 3 Effectiveness of

placing multiple STNs on

UCF101 dataset for the spatial

input and recognition accuracy

of feature fusion

Number of STNs Accuracy�without global features(%) Accuracy�with global features(%)

1 86.2 86.3

3 86.8 86.3

5 87.3 87.5

7 87.0 87.3

Fig. 6 Visualization of the attentional regions using our method

Table 4 Accuracy (%) of different fusion methods on UCF101

dataset

Fusion method Accuracy (%) Training parameters (M)

Sum 90.7 201.06

conv 91.4 220.48

Concatenation 91.2 340.48

CBP (d=1024) 93.1 150.16

CBP (d=2048) 93.6 169.06

CBP (d=4096) 94.2 174.48

CBP (d=8192) 94.2 198.96

CBP (d=16000) 94.1 213.06
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process. To sum up, the 4096-d vector turns out to be an

appropriate choice for compact bilinear pooling in our

present study. The obtained results highlight the efficiency

of the feature fusion method.

4.5 Ablation results

Ablation studies were conducted to testify the effectiveness

of our proposed architecture. The complete experimental

results are shown in Table 5. First, we measured the per-

formance of spatial and temporal streams to perform the

task of human action recognition on UCF101. The results

show that the spatial stream and temporal stream achieved

accuracy of 90.8% and 82.6%, respectively. By taking into

consideration the fusion of the two streams, our approach

boosted the classification performance significantly and

reported a higher accuracy of 95.3%. Moreover, the

effectiveness of multi-stage feature fusion was estimated in

detail. Specifically, the first stage feature fusion, denoted

by ‘‘spatial compact bilinear’’, reported a higher accuracy

of 90.8% and was 2.8 points higher than the 88% of the

original two-stream CNNs [32]. After involving the second

stage feature fusion, the ‘‘spatio-temporal compact bilin-

ear’’, which integrates both temporal and spatial features,

obtained an increased accuracy of 2.3 points compared

with that of the first stage feature fusion. Finally, by

aggregating the spatial features, temporal features, and the

output of the spatio-temporal compact bilinear pooling, the

performance of the ‘‘global compact bilinear’’ was

improved by 2.2 points, and the overall highest accuracy

rate was obtained (95.3%).

Thus, the experimental results verify the effectiveness of

our proposed architecture for video-level human action

classification.

4.6 Comparison to state-of-the-art methods

Table 6 summarizes the complete results in terms of pre-

diction accuracy of our proposed architecture against

existing works on UCF101 and HMDB51 datasets.

Specifically, when comparing the trajectory-based hand-

crafted IDT [38] features, our approach improved the

accuracy by 8.9% and 11.2% on UCF101 and HMDB51,

respectively. Furthermore, considering the classical clas-

sification methods in machine learning, such as SVM and

ELM, we can see that our approach with softmax provided

a consistent performance gain of around 3% on both

datasets. When compared with deep learning methods,

such as C3D [38], Two-stream ? LSTM [40], TSN [40],

and spatio-temporal multiplier [7], our approach obtained

the highest prediction accuracies of 95.3% and 72.9% for

UCF101 and HMDB51, respectively, which were 0.4% and

0.7% higher than the state-of-the-art method, spatio-tem-

poral multiplier. This result thus clearly underlines the

significance of the proposed approach.

To elaborate, Fig. 7 shows some typical actions from

UCF101 and presents the comparison results obtained

using the STM network and our proposed architecture. As

we can see from the comparisons, target actions with

similar backgrounds can easily lead to misclassification

with the STM network. For example, the STM network

mistook the action ‘‘high jump’’ for ‘‘pole vault’’ since the

image backgrounds are both stadiums. However, these

human actions with ambiguous spatial features can be

Table 5 Results of ablation studies on UCF101 (Split1)

Fusion method Original two-stream CNNs[6] Temporal stream Spatial stream Two-stream fusion Final result

Spatial compact bilinear(]1) – – U U U

Spatial compact bilinear(]2) – – – U U

Global compact bilinear(]3) – – – – U

Accuracy 88% 82.6% 90.8% 93.1% 95.3%

Table 6 Average classification accuracy of state-of-the-art methods

on HMDB51 and UCF101

Method UCF101 (%) HMDB51

IDT [38] 86.4 61.7%

C3D [1] 85.2 –

C3D ?IDT [1] 90.4 –

Two-stream (VGG) [32] 88.0 59.4%

TDD?IDT [39] 91.5 65.9%

Two-stream ?LSTM[19] 88.6 –

Convolutional two-stream [8] 93.5 69.2%

TSN [40] 94.2 69.0%

ActionVLAD (VGG-16) [12] 93.6 69.8%

Spatio-temporal ResNet[34] 94.6 70.3%

Spatio-temporal multiplier [7] 94.9% 72.2%

Ours ? SVM 92.1 70.6%

Ours ? softmax 95.3 72.9%
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easily classified through our attentional mechanism to

locate the fine-grained difference. Moreover, owing to our

multi-stage feature fusion, the proposed architecture can

generate global descriptors of human action over long-term

action sequences and can correctly distinguish the actions

that have similar spatial features in the short term.

In addition, Fig. 8 presents the comparison results of

human action recognition accuracy between the STM

network and our approach on the first 20 samples of the

HMDB51 dataset. We can see that our approach produces a

consistent improvement in accuracy of around 2% on these

human actions. For some human actions that are difficult to

differentiate, such as ‘‘clap’’ and ‘‘dribble’’, the perfor-

mance of our approach is superior to that of the STM

network in terms of action classification accuracy. The

improved performance obtained by our approach thus

Fig. 7 We compare our approach with existing state-of-the-art

approaches and test several actions that are easily misclassified on

the UCF101 dataset. Finally, we select the first five classification

results for presentation: the blue area represents correct classification,

the orange area represents error classification, and the length

represents the confidence of the classification

Fig. 8 Comparison between our approach and the STM network on the first 20 samples of the HMDB51 dataset. The vertical axis represents the

recognition accuracy, and the horizontal axis represents the action type
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demonstrates the effectiveness of combining an attentional

model and multi-stage feature fusion. In addition, the

multi-stage feature fusion provides more useful cues for

human action recognition. The consistent improvements

indicate the superiority of our proposed architecture.

5 Conclusion

In this paper, we propose a local-aware spatio-temporal

attention network with multi-stage feature fusion for video-

level human action recognition; this network is trainable in

an end-to-end manner. First, to capture the meaningful

regions of human actions from video frames, we utilize

multiple STNs to locate the attentional regions of the

human body, and then feature fusion is carried out between

local and global features to enhance the human action

representation. The experimental results, which showed an

accuracy of 90.8% on the UCF101 dataset, demonstrate

that the proposed attention model can significantly improve

the recognition performance of our proposed architecture.

Moreover, we employ compact bilinear pooling with a

dimensionality of the 4096-d vector to learn the feature

correspondences between the spatial and temporal streams.

Our approach boosts the classification performance sig-

nificantly and reports an accuracy of 93.1%. Finally, when

we aggregated the spatial features, temporal features, and

the output of the spatio-temporal compact bilinear pooling,

we obtained accuracy rates of 95.3% on UCF101 and

72.9% on HMDB51. These results verify the superiority of

our proposed architecture for performing the task of human

action recognition. Still, the existing work could be time-

consuming when preprocessing the input data of temporal

network for human action recognition. Therefore, our

future work might focus on exploring more efficient

approaches to further reduce the time complexity while

avoid loss in accuracy.
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