
S. I : IWANN 2019

A novel keyframe extraction method for video classification using
deep neural networks

Rukiye Savran Kızıltepe1 • John Q. Gan1 • Juan José Escobar2

Received: 18 January 2020 / Accepted: 8 July 2021 / Published online: 2 August 2021
� The Author(s) 2021

Abstract
Combining convolutional neural networks (CNNs) and recurrent neural networks (RNNs) produces a powerful architecture

for video classification problems as spatial–temporal information can be processed simultaneously and effectively. Using

transfer learning, this paper presents a comparative study to investigate how temporal information can be utilized to

improve the performance of video classification when CNNs and RNNs are combined in various architectures. To enhance

the performance of the identified architecture for effective combination of CNN and RNN, a novel action template-based

keyframe extraction method is proposed by identifying the informative region of each frame and selecting keyframes based

on the similarity between those regions. Extensive experiments on KTH and UCF-101 datasets with ConvLSTM-based

video classifiers have been conducted. Experimental results are evaluated using one-way analysis of variance, which

reveals the effectiveness of the proposed keyframe extraction method in the sense that it can significantly improve video

classification accuracy.

Keywords Deep learning � Convolutional neural networks � Recurrent neural networks � Keyframe extraction �
Video classification

1 Introduction

Video has become more popular in many applications in

recent years due to increased storage capacity, more

advanced network architectures, as well as easy access to

digital cameras, especially in mobile phones. According to

recent statistics, more than 500 h of video is uploaded onto

the Internet every minute and sharp rise in the number of

videos is expected to continue in the coming decades due to

the increase in demand for video content [1]. Therefore,

this increase is a remarkable issue and brings serious

challenges for video indexing, archiving, and retrieval

systems. The main subject of videos on social networking

Web sites is human actions. Automatic classification of

their semantic content is essential for appropriate use and

management of these videos. However, the classification of

video content remains a challenging task owing to the

complexity of video data.

Action recognition problems have been addressed using

deep learning approaches in both image and video

domains. Convolutional neural networks (CNNs) have

achieved state-of-the-art results in the recent decade. CNN

applications to video-based tasks are not so successful as

those in image domains, e.g., object detection [2], seg-

mentation [3], pattern recognition [4], and classification

[5, 6]. Therefore, the power of recurrent neural networks

(RNNs) in sequence learning has been employed to gather

temporal information for improving video classification

performance. Although combining CNNs and RNNs has

achieved good results [7, 8], the representation of temporal

information is still a demanding problem due to complex

variations in actions and dynamic background in videos.

& Rukiye Savran Kızıltepe
rs16419@essex.ac.uk

John Q. Gan

jqgan@essex.ac.uk

Juan José Escobar

jjescobar@ugr.es

1 School of Computer Science and Electronic Engineering,

University of Essex, Colchester CO4 3SQ, UK

2 Department of Computer Architecture and Technology,

CITIC, University of Granada, Granada, Spain

123

Neural Computing and Applications (2023) 35:24513–24524
https://doi.org/10.1007/s00521-021-06322-x(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-3862-7621
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-06322-x&domain=pdf
https://doi.org/10.1007/s00521-021-06322-x

The performance of action recognition has been

improved remarkably by transfer learning and use of extra

training data. Extensive video datasets such as HMDB51

[9], UCF-101 [10], Sports-1M [11], and Youtube-8M [12]

have been published, and the state-of-the-art results have

recently been reported on these benchmarking datasets

[13–17].

The majority of the current video classification methods

classify videos by assigning a label to each frame.

Nonetheless, considering all frames equally weakens the

classification performance as some frames have more dis-

tinctive information than others. We argue that it is

essential to select keyframes for better classification per-

formance. Thus, this paper proposes a novel keyframe

extraction method by identifying an action template to

preserve the succinct content, in which the entire video is

represented in a set of keyframes. The main novelty of this

work is the proposed keyframe extraction algorithm that

employs an action template for each video to extract and

select the most distinctive frames with both static and

dynamic backgrounds, without the need of using complex

procedures.

The main contributions of this work are the identifica-

tion of the best architecture for combining CNNs and

RNNs for video classification and the proposal of the

action template-based keyframe extraction, which aims to

extract more informative frames by calculating the simi-

larity only between action regions, rather than whole

frames. The former was partly presented in [18], which has

been substantially extended and serves as a baseline to test

the newly proposed method. In this paper, extensive

experiments have shown that the action template-based

keyframe extraction method significantly outperformed the

frame selection methods used in our experiments for

comparison purposes.

The rest of the paper is organized as follows: The related

work is reviewed in Sect. 2 and the proposed keyframe

extraction method is described in Sect. 3. Experiments

conducted are detailed in Sect. 4, while the results are

analyzed and summarized in Sect. 5. Conclusions are given

in Sect. 6.

2 Related work

Keyframe extraction approaches can be generally catego-

rized into six groups: uniform sampling-based, shot

boundary-based, shot activity-based, visual content-based,

motion analysis-based, and clustering-based. Although

uniform sampling-based methods are easy and computa-

tionally efficient, these methods may fail to represent the

video in two possible scenarios: no enough keyframes for a

short semantically important video and too many key-

frames with similar content for a long static segment [19].

Early works on keyframe extraction focused on shot

boundary-based techniques [20, 21]. Basically, this tech-

nique employs the first or middle frame of each shot as the

keyframe after shot boundary detection [22]. Video shot

boundary detection methods were reviewed by Dey et al.

[22]. Although shot boundary-based methods are easy to

use and generalize, the extracted keyframe cannot repre-

sent the visual content entirely and it is not stable.

Shot activity-based approach is used to select keyframes

considering the frame with least difference from other

frames in terms of a given similarity measure. Based on

this concept, Lagendijk et al. proposed a keyframe selec-

tion method with the assumption that ‘every keyframe

represents a contiguous interval in a shot’ [23]. In this

work, the limits of intervals and the location of keyframe

within each interval are optimized. Similarly, the Lloyd–

Max algorithm is used in the design of a scalar quantizer in

[24].

Visual content-based approach has been explored for

visual content-based information retrieval and keyframe-

based video summarization. In this approach, visual fea-

tures of video clips are extracted to analyze keyframes in

movie segments. Zhong and Smoliar proposed an inte-

grated system solution using video content information

obtained from a parsing process [25]. Human attention

mechanism has been simulated to produce semantic video

summary based on keyframe extraction. Visual attention of

each frame is quantified using a descriptor named attention

quantifier, which indicates color conspicuousness and the

motion with more attention involved [26]. There have been

many attempts to analyze visual content of video for key-

frame extraction for video partitioning and summarization

[27, 28].

As for motion analysis-based approach, a novel algo-

rithm was proposed for selecting keyframes within shots

from video by employing optical flow computations to

detect local minima of action in a single shot [29]. This

work measures the motion in a shot by utilizing optical

flow analysis, where key frames are selected at the local

minima of the action. Mizher et al. have also proposed an

action keyframe extraction method based on L1-norm and

accumulated optical flows [30]. Similar approach has been

observed for salient region-based keyframe extraction by

using optical flow and calculating mutual information

entropy [31].

Clustering-based methods have been used to extract key

frames. The idea is that frames are grouped based on their

low-level features by using a clustering method like

K-means and the most similar frames with the groups’

centers are selected [23]. Dynamic Delaunay graph clus-

tering through iterative edge pruning technique has also

24514 Neural Computing and Applications (2023) 35:24513–24524

123

been used to extract keyframes [32]. Tan et al. demon-

strated KGAF-means method by adopting K-means and the

artificial fish swarm algorithms to extract keyframe

sequences [33].

The proposed method in this paper aims to tackle some

important limitations of the aforementioned approaches.

Although extracting keyframes using shot-based approa-

ches is easy to use, early approaches are unable to capture

the temporal information. As for clustering-based approa-

ches, they are sensitive to the type of adopted kernel and

the number of clusters, and high in time complexity [34].

Furthermore, video is a special kind of media content that

includes temporal information and complex background.

Another limitation of the mentioned methods is handling

entire frame differences rather than a specific region of

interest. This paper proposes a novel approach based on the

similarity between regions of interest in consecutive frames

to address these limitations. Different from the previous

works, we employ an action template to find the region of

interest for each video.

It is noteworthy that some related work on deep neural

networks for video classification has been presented in our

previous work [18].

3 The proposed method

Keyframe extraction is a principal pre-processing step in

video analysis. The purpose of extracting keyframes is to

get more discriminate information from the video in an

effective manner. Each video has its own unique charac-

teristics such as saturation, brightness, contrast, camera

angle, vibration, blur, location of the action, number of

actors, type of action, length, and background. Considering

a large number of variables in each video and treating all

videos equally bring about a major weakness in keyframe

extraction. Thus, it is necessary to recognize the region of

action in continuous action video. Considering the varia-

tions in the complex video data, it is a challenging task to

find the location of action, based on which this paper

proposes a new method for keyframe extraction.

3.1 The proposed keyframe extraction approach

In general, the location of action in a movie is related to the

point on the screen and camera, to which reviewer’s

attention is paid. It is observed that attention is paid to the

central area mostly while recording and watching. There-

fore, the outside regions of video frames are usually

cropped off before identifying the region of interest. Then,

the area of action is formulated as a region in the center of

video frames, which produces either the biggest difference

or lowest similarity between consecutive frames, leading to

a template for the video to track the action area. Calcu-

lating only the difference in regions of action between

frames throughout the video helps to extract keyframes

more accurately and effectively by reducing the influence

of possible dynamically changing backgrounds..

The proposed keyframe extraction method consists of

four steps: (1) identify an action template; (2) specify the

location of an action; (3) calculate action similarities to

find distinctive frames; and (4) select a preset number of

keyframes in chronological order. The four steps of the

proposed keyframe extraction method can be summarized

as follows:

(1) Action template identification:

• Frame decomposition.

• Frame cropping.

• Define three possible regions for action template.

• Calculate mean squared error (MSE) for each

possible region using the first two frames.

• Choose the region that produces the largest MSE

as an action template.

(2) Action location specification:

• Find the region of interest on each frame by

matching the action template against overlapped

regions in each frame using the correlation

coefficient defined in Eq. (3).

(3) Keyframe extraction:

• Calculate the structural similarity measure ðSiÞ
between regions of interest on consecutive frames

ðfi; fi�1Þ.
• Compare the similarity score with thresholds

T1 ¼ ½0:65; 0:90� and T2 ¼ ½0:65; 0:95� (these

threshold values were chosen by analysis of

significance in action changes in our

experiments):

0:65\Si\0:90 ! add fi to primary listðpf Þ
0:65\Si\0:95 ! add fi to alternative listðaf Þ

• Repeat the above till end of the video, with Npf

frames extracted into pf and Naf frames extracted

in to af .

(4) Keyframe selection:

• Set the number of keyframes ðNkf Þ.
• Find keyframe ratio ðkÞ:

Neural Computing and Applications (2023) 35:24513–24524 24515

123

k ¼

Npf

Nkf

� �
; if Npf �Nkf

Naf

Nkf

� �
; otherwise

8>>><
>>>:

• Return the indexes of keyframes by choosing a

frame from every k frames from keyframe list pf
if Npf �Nkf , or from keyframe list af otherwise.

In the first step, each frame is cropped by taking an

appropriate number of pixels out (depending on frame

resolution) from each side of a frame to create a general

action area. As depicted in Fig. 1, the inner area is then

divided into three different candidate templates. It has been

observed that background changes between consecutive

frames result in small structural similarity (SSIM) and

action differences lead to large MSE. The candidate area

having the largest MSE between consecutive frames is

assigned as an action template. The mean squared error

between two regions of frames X and Y is computed as

follows:

MSEðX; YÞ ¼ 1

mn

Xm
i¼1

Xn
j¼1

½Yði; jÞ � Xði; jÞ�2 ð1Þ

where m and n are the number of rows and columns in the

region of interest, respectively. The structural similarity

formulated by Wang et al. [35] is adopted in this paper and

defined as follows:

SSIMðX; YÞ ¼
�
2lXlY þ C1

��
2rXY þ C2

�
�
l2X þ l2Y þ C1

��
r2X þ r2Y þ C2

� ð2Þ

where lX and lY denote the average of pixel values in X

and Y , respectively, rX and rY are the variance of pixel

values in X and Y , respectively, and rXY is the co-variance

of pixel values in X and Y . C1 ¼ ðk1LÞ2 and C2 ¼ ðk2LÞ2
are small constants where L denotes the dynamic range of

pixel values. MSE and SSIM are calculated for each frame

region and used to select frames well representing the

action (Fig. 2).

In the second step, after having determined the action

template for each video, template-based correlation coef-

ficient matching method is used to find at what position the

template most closely matches the data in a region of each

frame. This operation slides throughout each frame and

compares the overlapped patterns of size w� h to the

template, where w and h are width and height of the tem-

plate, respectively. Then, the best matches are found as

global maximums. Regarding color channels, template

summation in the function is done over all channels and

different mean values are used for each channel. The for-

mula for the template-based matching method is:

Rðx; yÞ ¼
X
x0;y0

ðT 0ðx0; y0Þ � I0ðxþ x0; yþ y0ÞÞ ð3Þ

where Rðx; yÞ is the correlation coefficient score for a

single overlapped position of ðx; yÞ representing the coor-

dinates of each pixel in the frame. T 0ðx0; y0Þ is the average

of pixel values of the template T , where ðx0; y0Þ represents
the coordinates of each pixel in the template, given as:

T 0ðx0; y0Þ ¼ Tðx0; y0Þ � 1

ðw � hÞ �
X
x00;y00

Tðx00; y00Þ: ð4Þ

On the other hand, I0ðxþ x0; yþ y0Þ is the average of pixel

values of a given frame I in the region overlapped with the

template T , given as:

I0ðxþ x0; yþ y0Þ ¼ Iðxþ x0; yþ y0Þ

� 1

ðw � hÞ �
X
x00;y00

Iðxþ x00; yþ y00Þ ð5Þ

where x00 ¼ 0; . . .;w� 1 and y00 ¼ 0; . . .; h� 1 which rep-

resent the new coordinates of ðx; yÞ in the template after

moving the center of the template over the frame. Tðx0; y0Þ
is the pixel values for a pixel ðx; yÞ in the template, while

Iðxþ x0; yþ y0Þ is the pixel value for the corresponding

pixel position in the frame. After performing the template

matching procedure, the region of interest on each frame is

localized where the highest matching probability takes

place.

In step 3, it is very challenging to distinguish between

action changes and background changes in consecutive

frames. Through an extensive investigation, it has been

discovered that the structural similarity between two

regions of interest in two consecutive frames is more

sensitive to action changes than background changes. After
Fig. 1 Defining the possible locations of an action template. Red,

green, and blue boxes represent the borders of three possible

templates (Color figure online)

24516 Neural Computing and Applications (2023) 35:24513–24524

123

analyzing both background and action changes in these

areas, two rules are proposed in this paper to specify upper

and lower bounds of similarity range. Action changes are

found mostly important in the interval [0.65, 0.90], and the

lower similarity is mainly due to the dramatic change in

dynamic background. Rarely, the difference between

regions in consecutive frames is not in this range. How-

ever, if there are not enough keyframes extracted using the

above interval, more frames are extracted by extending the

upper bound of the interval up to 0.95.

Finally, keyframes are selected by using a keyframe

ratio in chronological order. The pseudocode of the pro-

posed algorithm is demonstrated in Algorithm 1.

3.2 Deep neural network architectures based
on VGG-16 for video classification

In 2014, Simonyan and Zisserman [6] introduced a VGG-

16 network architecture trained on 1000 image categories

using image data for the ImageNet Large Scale Visual

Recognition Competition (ILSVRC). VGG-16 consists of

16 convolutional layers with relatively small convolution

filters (3x3). We used the pre-trained neural network VGG-

16 to generalize the pre-learnt feature representations using

transfer learning. In our previous work [18], ConvLSTM

and LSTM with local features extracted using VGG-16

outperformed those using global features. Thus, this paper

Neural Computing and Applications (2023) 35:24513–24524 24517

123

uses the ConvLSTM(1) and LSTM(1) architectures used in

[18]. Apart from the newly proposed keyframe extraction

method, we also conducted the experiments using not only

20 but also 101 categories of the UCF-101 dataset and

evaluating the proposed methods on the KTH action

recognition dataset as well. Moreover, we optimized the

parameters of the networks using hold-out validation

method on the validation split of the training dataset. The

two video classification architectures to classify 101 cate-

gories are shown in Fig. 3.

LSTM is one of the most common approaches for

sequence modeling. Previous studies [36–38] have

demonstrated that LSTM is a robust method to represent

long-range dependencies. Its main advantage is that its

memory cell ct accumulates the state information. The cell

is modified by controlling the input gate it and forget gate ft
at timestamp t. Once the cell is fed with a new input xt, it

accumulates input information, provided that the input gate

is on. If the forget gate is activated, the previous cell

information ct�1 could be forgotten. The output gate ot
checks the current cell output ct to decide whether it is

propagated to the final state ht or not. In this study, we

follow the hidden layer function of LSTM described in

[39]:

it ¼ rðWxixt þWhiht�1 þWcict�1 þ biÞ

ft ¼ rðWxf xt þWhf ht�1 þWcf ct�1 þ bf Þ

ct ¼ ft � ct�1 þ it � tanhðWxcxt þWhcht�1 þ bcÞ

ot ¼ rðWxoxt þWhoht�1 þWco � ct þ boÞ

ht ¼ ot � tanhðctÞ

ð6Þ

where ‘�’ denotes the Hadamard product, r represents the

sigmoid function, and tanh denotes the hyperbolic tangent

function. In Eq. (6), Wpq and bq are weight matrix and bias

for the respective gates, where the subscript p can be either

the input x, the cell output c , or the hidden state h and the

subscript q can be either the input gate i, the forget gate f ,

the memory cell c , or the output gate o.

In VGG-16-LSTM, the local features extracted by

VGG-16 from video frames are fed into LSTM to access

spatiotemporal information. The number of units in the

output space was set to 1024, and ReLU was used as the

activation function.

An end-to-end trainable ConvLSTM was proposed by

extending the fully connected LSTM to have convolutional

structures in both the input-to-state and state-to-state tran-

sitions for precipitation nowcasting [40]. The purpose of

precipitation nowcasting is to predict future precipitation

intensity over a relatively short period of time in a local

area, and it can be seen as a video prediction problem with

a fixed camera with the weather radar [41]. It was shown

that ConvLSTM extracts better spatiotemporal correlations

than the fully connected LSTM for precipitation nowcast-

ing [40]. We follow the formulation of ConvLSTM defined

by [40], where ‘~’ and ‘�’ denote the convolution operator

and Hadamard product, respectively:

it ¼ rðWxi~xt þWhi~ht�1 þWci � ct�1 þ biÞ

ft ¼ rðWxf~xt þWhf~ht�1 þWcf � ct�1 þ bf Þ

ct ¼ ft � ct�1 þ it � tanhðWxc~xt þWhc~ht�1 þ bcÞ

ot ¼ rðWxo~xt þWho~ht�1 þWco � ct þ boÞ

ht ¼ ot � tanhðctÞ:

ð7Þ

Inspired by the mentioned study, ConvLSTM was used to

build a new architecture for video classification, which

takes the advantage of its capacity in capturing

Fig. 2 An example of action

template identification

24518 Neural Computing and Applications (2023) 35:24513–24524

123

spatiotemporal information throughout time series. We add

one ConvLSTM layer on top of the spatial feature maps

extracted by VGG-16 and use the hidden states for video

classification. This layer contains 64 hidden states, 7� 7

kernels, and the stride of convolution is set to 1 to perform

the experiments described in Sect. 4.

4 Experiments

In this section, the datasets used, the experimental setup,

and the evaluation method are described.

4.1 Datasets

In this study, the UCF-101 and the KTH datasets are used

to evaluate the neural network architectures with the pro-

posed keyframe extraction method and two more keyframe

extraction methods for classifying human actions from

video clips. The UCF-101 dataset includes 13,320 clips

from 101 non-overlapping classes, with a resolution of

240� 360 pixels. All clips in the UCF-101 have a fixed

frame rate of 25 frames per second (FPS). The minimum

and maximum lengths of the clips are 1.06 s and 71.04 s,

respectively. The KTH action recognition dataset consists

of six types of human actions with over 2300 video

sequences. Clips in this dataset have a fixed frame rate of

25 FPS and resolution of 160� 120 pixels.

The UCF-101 dataset has defined three training–testing

splits, aiming to facilitate benchmarking algorithms. In our

previous experiment [18], only the first 20 categories of the

dataset were used due to limited time and computing

facility, and the first training–testing split was adopted to

generate training and testing data. However, we conducted

the experiments in this paper using all categories with the

three training–testing splits of the UCF-101 and the KTH

datasets.

In the experiments, hold-out method was used to split

training data into two subsets: 70% for training and the

remaining 30% for validation. Testing dataset was never

used during training and validation, but only used for

producing the testing accuracy of each tested method.

4.2 Experiment design

During the training process, parameter tuning is carried out

with the hold-out validation technique. The best parameters

are identified based on the validation scores. After that, the

model with the best parameters is evaluated on testing data

by predicting unseen test videos’ classes.

The proposed network architectures are implemented by

using TensorFlow-gpu v1.12 on an GPU NVIDIA TITAN

X using the CUDA v9.0 toolkit. The batch size is set to

128, and the cost is minimized by using the stochastic

gradient descent (SGD) optimizer. The number of epochs is

determined using early stopping by observing the change in

validation loss. Dropout is used as a regularization method,

disabling some neurons within ConvLSTM and fully con-

nected layers with a probability of 0.5.

4.3 Evaluation method

In the experiments, confusion matrices are produced for

performance analysis and accuracy is used for the com-

parison of the performances achieved by different archi-

tectures. 180 training, validation, and testing accuracy

scores have been collected with the three training–testing

splits released by the UCF-101 organization (10 times per

split and 30 times per classifier). Similarly, 90 accuracy

scores have been collected with the official training, vali-

dation, and test splits of the KTH dataset (15 times per

classifier).

The Kolmogorov–Smirnov test is a normality test which

compares the observed cumulative distribution with the

cumulative distribution that would occur if the data were

normally distributed [42], and it has been used for calcu-

lating numerical means for assessing normality. As for the

test of homogeneity of variances, Levene statistic has been

applied to the dependent variable and shows variances of

groups are homogenous based on mean and median.

Levene’s test is simply a one-way analysis of variance on

the absolute values of the differences between each

observation and the mean of its group and is appropriate for

testing the null hypothesis [43]. Furthermore, ANOVA test

has been conducted to compare the variance differences to

figure out whether the results are significant. Afterward,

Tukey’s honest significant difference (HSD) test has been

run to determine whether the specific groups’ means are

different. The results are presented in Sect. 5.

Fig. 3 The architectures of the

networks used in VGG-16-

LSTM and VGG-16-

ConvLSTM experiments

Neural Computing and Applications (2023) 35:24513–24524 24519

123

5 Results and discussion

The VGG-16-ConvLSTM and VGG-16-LSTM architec-

tures presented in our previous work [18] for video clas-

sification are used as baseline methods to evaluate the

proposed method in this paper. One of the findings of the

previous work [18] is that using global features can help

achieve better classification performance over local fea-

tures. It can be highlighted that the fundamental difference

between local and global features is the way of represent-

ing input frames in terms of the whole frame or frame

patches, which provide different information on the input

to the video classifier. Seven different classification net-

works using either local or global features extracted by the

pre-trained VGG-16 were compared in the previous work

[18]. The extracted features were fed into a newly added

fully connected layer in baseline VGG-16-VOTE (a), and

the fully connected layer of VGG-16 was included in

VGG-16-VOTE (b). Similar to the baseline methods,

LSTM was employed to access spatiotemporal information

over the features in VGG-16-LSTM (a) and VGG-16-

LSTM (b). To test the effect of directional connections in

LSTM structure for action recognition, VGG-16-BLSTM

(a) and VGG-16-BLSTM (b) were implemented by using

Bidirectional LSTM. The VGG-16-ConvLSTM architec-

ture was proposed with convolutional structures in state

transitions. Table 1 shows the results obtained from the

earlier study [18] in which VGG-16-ConvLSTM (82.04%)

significantly outperformed the other networks followed by

VGG-16-LSTM (81.27%) with local features at 0.05

Table 3 Average accuracy

scores achieved by LSTM and

ConvLSTM network

architectures on datasets KTH

and UCF-101 (101 categories)

using three keyframe extraction

methods where (1), (2), and (3)

indicate one frame per second

method, the proposed action

template-based method, and

optical flow-based keyframe

extraction method, respectively

Architecture Dataset Training accuracy (%) Validation accuracy (%) Testing accuracy (%)

ConvLSTM(2) KTH 87.41 67.34 71.13

LSTM(2) KTH 65.06 85.50 68.66

ConvLSTM(1) KTH 84.16 69.52 68.27

ConvLSTM(3) KTH 82.02 54.92 66.17

LSTM(1) KTH 58.43 82.26 64.58

LSTM(3) KTH 76.85 45.12 62.83

ConvLSTM(2) UCF-101 94.27 90.02 67.39

ConvLSTM(1) UCF-101 97.19 92.19 65.44

LSTM(2) UCF-101 93.79 86.76 64.27

LSTM(1) UCF-101 94.09 89.64 63.86

ConvLSTM(3) UCF-101 87.71 82.75 60.04

LSTM(3) UCF-101 92.96 85.46 49.62

The highest accuracy scores are highlighted in bold

Table 1 Average accuracy

scores achieved by different

architectures on the UCF-101

dataset with 20 categories [18]

Model Training accuracy (%) Validation accuracy (%) Testing accuracy (%)

VGG-16-ConvLSTM 99.24 97.45 82.04

VGG-16-LSTM(a) 98.86 97.91 81.27

VGG-16-BLSTM(a) 97.76 95.19 76.20

VGG-16-VOTE(a) 78.71 76.55 73.20

VGG-16-LSTM(b) 78.41 79.47 67.62

VGG-16-VOTE(b) 73.70 67.05 64.04

VGG-16-BLSTM(b) 89.17 75.37 61.18

The highest accuracy score is highlighted in bold

Table 2 Average accuracy scores achieved by LSTM and ConvLSTM network architectures based on the UCF-101 (20 categories) using two

keyframe extraction methods where (1) and (2) indicate one frame per second and the proposed method, respectively

Architecture Training accuracy (%) Validation accuracy (%) Testing accuracy (%)

ConvLSTM(2) 98.95 98.37 88.15

LSTM(2) 96.48 95.53 83.10

ConvLSTM(1) 99.24 97.45 82.04

LSTM(1) 98.86 97.91 81.27

The highest accuracy score is highlighted in bold

24520 Neural Computing and Applications (2023) 35:24513–24524

123

significance level ðp ¼ :046Þ. In our previous study, one

frame per second was extracted to reduce the amount of

frames in classification.

In this paper, experiments with the proposed keyframe

extraction method were conducted using the first 20 cate-

gories of the UCF-101 dataset in the first place to inves-

tigate how the proposed keyframe extraction method can

improve the video classification performance of the LSTM-

and ConvLSTM-based network architectures in compar-

ison with our previous work [18].

Table 2 shows the results obtained on the first 20 cate-

gories of UCF-101 in which ConvLSTM(1) and LSTM(1)

refer to the previous method selecting one frame per sec-

ond, whereas ConvLSTM(2) and LSTM(2) indicate the

proposed method. It can be seen that the architectures using

keyframes extracted by the proposed method,

ConvLSTM(2) and LSTM(2), outperformed the previous

Table 4 One-way ANOVA of performance achieved by different

network architectures where df, SS, MS, and F refer to degrees of

freedom, sum of squares, mean sum of squares, and F score,

respectively

df SS MS F p value

Between groups 11 0.847 0.077 304.725 .000*

Within groups 258 0.065 0.000

Total 269 0.913

The values are significant at the 0.05 level

Table 5 Post hoc comparisons using Tukey’s HSD on KTH dataset

Method Mean difference ðI � JÞ SE p value 95% confidence interval

(I) (J) Lower bound Upper bound

LSTM(1) ConvLSTM(1) - 0.016* 0.003 .000 - 0.023 - 0.008

LSTM(2) - 0.004 0.003 .612 - 0.012 0.003

ConvLSTM(2) - 0.035* 0.003 .000 - 0.043 - 0.028

LSTM(3) 0.142* 0.003 .000 0.135 0.150

ConvLSTM(3) 0.038* 0.003 .000 0.031 0.046

ConvLSTM(1) LSTM(1) 0.016* 0.003 .000 0.008 0.023

LSTM(2) 0.012* 0.003 .000 0.004 0.019

ConvLSTM(2) - 0.020* 0.003 .000 - 0.027 - 0.012

LSTM(3) 0.158* 0.003 .000 0.151 0.166

ConvLSTM(3) 0.054* 0.003 .000 0.046 0.062

LSTM(2) LSTM(1) 0.004 0.003 .612 - 0.003 0.012

ConvLSTM(1) - 0.012* 0.003 .000 - 0.019 - 0.004

ConvLSTM(2) - 0.031* 0.003 .000 - 0.039 - 0.024

LSTM(3) 0.147* 0.003 .000 0.139 0.154

ConvLSTM(3) 0.042* 0.003 .000 0.035 0.050

ConvLSTM(2) LSTM(1) 0.035* 0.003 .000 0.028 0.043

ConvLSTM(1) 0.020* 0.003 .000 0.012 0.027

LSTM(2) 0.031* 0.003 .000 0.024 0.039

LSTM(3) 0.178* 0.003 .000 0.170 0.185

ConvLSTM(3) 0.074* 0.003 .000 0.066 0.081

LSTM(3) LSTM(1) - 0.142* 0.003 .000 - 0.150 - 0.135

ConvLSTM(1) - 0.158* 0.003 .000 - 0.166 - 0.151

LSTM(2) - 0.147* 0.003 .000 - 0.154 - 0.139

ConvLSTM(2) - 0.178* 0.003 .000 - 0.185 - 0.170

ConvLSTM(3) - 0.104* 0.003 .000 - 0.112 - 0.097

ConvLSTM(3) LSTM(1) - 0.038* 0.003 .000 - 0.046 - 0.031

ConvLSTM(1) - 0.054* 0.003 .000 - 0.062 - 0.046

LSTM(2) - 0.042* 0.003 .000 - 0.050 - 0.035

ConvLSTM(2) - 0.074* 0.003 .000 - 0.081 - 0.066

LSTM(3) 0.104* 0.003 .000 0.097 0.112

The values are significant at the 0.05 level

Neural Computing and Applications (2023) 35:24513–24524 24521

123

method, achieving accuracy scores of 88.15% and 83.10%,

respectively.

In order to draw more convincing conclusions, further

experiments were conducted with the proposed method (2)

using all the 101 categories of the UCF-101 dataset and the

KTH dataset in comparison with two commonly used

keyframe extraction methods: Method (1) is a baseline

method that extracts one frame for each second until the

end of the video and method (3) is a motion-based key-

frame extraction method that selects keyframes considering

the local minima of action between optical flows [29]. The

results are summarized in Table 3, in which ConvLSTM(2)

achieved the best classification accuracy (71.13%) fol-

lowed by LSTM(2), ConvLSTM(1), ConvLSTM(3),

LSTM(1), and LSTM(3) on the KTH dataset, respectively.

Similarly, ConvLSTM(2) outperformed the other methods

on the UCF-101 dataset with 67.39% accuracy score. As

shown in Table 4, there is a statistically significant dif-

ference between classifier groups in terms of one-way

ANOVA ðFð11:258Þ ¼ 304:725; p ¼ :000Þ.
The Tukey’s HSD post hoc test results on the KTH

dataset, as shown in Table 5, show that the classification

performance achieved by ConvLSTM(2) is statistically

significantly higher than LSTM(1), ConvLSTM(1),

LSTM(2), LSTM(3), and ConvLSTM(3) (p\:05) on the

KTH dataset. There is a statistically significant difference

between all methods except for LSTM(1) and LSTM(2).

Table 6 Post hoc comparisons using Tukey’s HSD on UCF-101 dataset

Method Mean difference ðI � JÞ SE p value 95% confidence interval

(I) (J) Lower bound Upper bound

LSTM(1) ConvLSTM(1) - 0.037* 0.009 .001 - 0.062 - 0.012

LSTM(2) - 0.041* 0.009 .000 - 0.066 - 0.016

ConvLSTM(2) - 0.065* 0.009 .000 - 0.091 - 0.040

LSTM(3) 0.017 0.009 .340 - 0.008 0.043

ConvLSTM(3) - 0.016 0.009 .450 - 0.041 0.009

ConvLSTM(1) LSTM(1) 0.037* 0.009 .001 0.012 0.062

LSTM(2) - 0.004 0.009 .998 - 0.029 0.021

ConvLSTM(2) - 0.029* 0.009 .017 - 0.054 - 0.003

LSTM(3) 0.054* 0.009 .000 0.029 0.080

ConvLSTM(3) 0.021 0.009 .159 - 0.004 0.046

LSTM(2) LSTM(1) 0.041* 0.009 .000 0.016 0.066

ConvLSTM(1) 0.004 0.009 .998 - 0.021 0.029

ConvLSTM(2) - 0.025 0.009 .059 - 0.050 0.001

LSTM(3) 0.058* 0.009 .000 0.033 0.083

ConvLSTM(3) 0.025 0.009 .055 0.000 0.050

ConvLSTM(2) LSTM(1) 0.065* 0.009 .000 0.040 0.091

ConvLSTM(1) 0.029* 0.009 .017 0.003 0.054

LSTM(2) 0.025 0.009 .059 - 0.001 0.050

LSTM(3) 0.083* 0.009 .000 0.058 0.108

ConvLSTM(3) 0.050* 0.009 .000 0.024 0.075

LSTM(3) LSTM(1) - 0.017 0.009 .340 - 0.043 0.008

ConvLSTM(1) - 0.054 0.009 .000 - 0.080 - 0.029

LSTM(2) - 0.058* 0.009 .000 - 0.083 - 0.033

ConvLSTM(2) - 0.083* 0.009 .000 - 0.108 - 0.058

ConvLSTM(3) - 0.033* 0.009 .003 - 0.059 - 0.008

ConvLSTM(3) LSTM(1) 0.016 0.009 .450 - 0.009 0.041

ConvLSTM(1) - 0.021 0.009 .159 - 0.046 0.004

LSTM(2) - 0.025 0.009 .055 - 0.050 0.000

ConvLSTM(2) - 0.050* 0.009 .000 - 0.075 - 0.024

LSTM(3) 0.033* 0.009 .003 0.008 0.059

The values are significant at the 0.05 level

24522 Neural Computing and Applications (2023) 35:24513–24524

123

The Tukey’s HSD post hoc test results on the UCF-101

dataset are presented in Table 6, which demonstrate that

ConvLSTM(2) significantly outperformed LSTM(1),

ConvLSTM(1), LSTM(3), and ConvLSTM(3) ðp\:05Þ.
The keyframe extraction method proposed in this paper

uses action templates to identify most important regions

related to actions in video frames. The experimental results

have demonstrated that this action template-based

approach to keyframe extraction can extract frames with

distinctive actions to significantly improve the performance

of deep convolutional neural networks for action recogni-

tion from videos. Keyframe extraction methods have been

investigated due to their adaptability to video summariza-

tion systems and performance improvement in video clas-

sification approaches. Keyframe extraction methods enable

using more informative input representation while reducing

the number of frames. With the advantage of using fewer

but more informative frames, the input dimension is

reduced and training time is shortened. Moreover, using

selected keyframes can effectively improve the accuracy in

video classification.

6 Conclusion

In this paper, a template-based keyframe extraction method

is proposed which employs action template-based similar-

ity to extract keyframes for video classification tasks.

Combining pre-trained CNN with ConvLSTM has

achieved the highest classification accuracy among the

other architectures. It can be seen that calculating structural

similarity between two relevant regions of consecutive

frames effectively prevents dynamic background noise

from being treated as actions in keyframe selection. The

experimental results and the conducted analysis show that

the proposed keyframe extraction method can select

informative frames reliably and thus significantly improve

the performance of deep neural network architectures for

video classification. Finally, when finding the relevant area

using the extracted action template, the proposed method

successfully extracts proper keyframes from human action

videos for video classification using deep neural networks.

Although the proposed method has outperformed the two

commonly used keyframe extraction methods, this study

has a few limitations. One of the limitations is that CNN

architecture used in the evaluation of the proposed method

was not the state-of-the-art architecture. This means that it

did not produce the best results. The second limitation of

the study is that the technical infrastructure of the experi-

ment was weak with one GPU machine only and could not

conduct more comprehensive experiments with larger

batches. However, the proposed keyframe extraction

method has significantly outperformed the commonly used

keyframe extraction methods on two different datasets.

Therefore, future work could be focused the on application

of the proposed algorithm using more powerful architec-

tures for real-world video classification and video sum-

marizing problems.

Acknowledgements This paper was funded by (1) the Turkish Min-

istry of National Education, (2) the Spanish Ministry of Science,

Innovation, and Universities under Grant PGC2018-098813-B-C31,

and (3) ERDF fund.

Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Clement J (2020) Hours of video uploaded to YouTube every

minute 2007–2019. https://www.statista.com/statistics/259477/

hours-of-video-uploaded-to-youtube-every-minute. Accessed

May 25, 2021

2. Ren S, He K, Girshick R, Sun J (2015) Faster R-NN: towards

real-time object detection with region proposal networks. In:

Advances in neural information processing systems, pp 91–99

3. Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature

hierarchies for accurate object detection and semantic segmen-

tation. In: Proceedings of the IEEE conference on computer

vision and pattern recognition, pp 580–587

4. Yin X, Liu X (2018) Multi-task convolutional neural network for

pose-invariant face recognition. IEEE Trans Image Process

27(2):964–975

5. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classi-

fication with deep convolutional neural networks. In: Advances in

neural information processing systems, pp 1097–1105

6. Simonyan K, Zisserman A (2014) Very deep convolutional net-

works for large-scale image recognition. arXiv:1409.1556

7. Ballas N, Yao L, Pal C, Courville A (2015) Delving deeper into

convolutional networks for learning video representations. arXiv:

1511.06432

8. Donahue J, Anne Hendricks L, Guadarrama S, Rohrbach M,

Venugopalan S, Saenko K, Darrell T (2015) Long-term recurrent

convolutional networks for visual recognition and description. In:

Proceedings of the IEEE conference on computer vision and

pattern recognition, pp 2625–2634

9. Kuehne H, Jhuang H, Garrote E, Poggio T, Serre T (2011)

HMDB: a large video database for human motion recognition. In:

Neural Computing and Applications (2023) 35:24513–24524 24523

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.statista.com/statistics/259477/hours-of-video-uploaded-to-youtube-every-minute
https://www.statista.com/statistics/259477/hours-of-video-uploaded-to-youtube-every-minute
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1511.06432
http://arxiv.org/abs/1511.06432

2011 international conference on computer vision. IEEE,

pp 2556–2563

10. Soomro K, Zamir AR, Shah M (2012) Ucf101: a dataset of 101

human actions classes from videos in the wild. arXiv preprint

arXiv:12120402

11. Karpathy A, Toderici G, Shetty S, Leung T, Sukthankar R, Fei-

Fei L (2014) Large-scale video classification with convolutional

neural networks. In: Proceedings of the IEEE conference on

computer vision and pattern recognition, pp 1725–1732

12. Abu-El-Haija S, Kothari N, Lee J, Natsev P, Toderici G,

Varadarajan B, Vijayanarasimhan S (2016) Youtube-8m: a large-

scale video classification benchmark. arXiv preprint arXiv:

160908675

13. Carreira J, Zisserman A (2017) Quo vadis, action recognition? A

new model and the kinetics dataset. In: Proceedings of the IEEE

conference on computer vision and pattern recognition,

pp 4724–4733

14. Duan H, Zhao Y, Xiong Y, Liu W, Lin D (2020) Omni-sourced

webly-supervised learning for video recognition. arXiv preprint

arXiv:200313042

15. Kalfaoglu M, Kalkan S, Alatan AA (2020) Late temporal mod-

eling in 3D CNN architectures with BERT for action recognition.

arXiv preprint arXiv:200801232

16. Mao F, Wu X, Xue H, Zhang R (2018) Hierarchical video frame

sequence representation with deep convolutional graph network.

In: Proceedings of the European conference on computer vision

(ECCV)

17. Qiu Z, Yao T, Ngo CW, Tian X, Mei T (2019) Learning spatio-

temporal representation with local and global diffusion. In: Pro-

ceedings of the IEEE conference on computer vision and pattern

recognition, pp 12056–12065

18. Kızıltepe RS, Gan JQ, Escobar JJ (2019) Combining very deep

convolutional neural networks and recurrent neural networks for

video classification. In: International work-conference on artifi-

cial neural networks. Springer, pp 811–822

19. Truong BT, Venkatesh S (2007) Video abstraction: a systematic

review and classification. ACM Trans Multimed Comput Com-

mun Appl (TOMM) 3(1):3

20. Boreczky JS, Rowe LA (1996) Comparison of video shot

boundary detection techniques. J Electron Imaging 5(2):122–129

21. Nagasaka A, Tanaka Y (1992) Automatic video indexing and

full-video search for object appearances. In: Proceedings of the

IFIP TC2/WG 2.6 second working conference on visual database

systems II, pp 113–127

22. Pal G, Rudrapaul D, Acharjee S, Ray R, Chakraborty S, Dey N

(2015) Video shot boundary detection: a review. In: Advances in

intelligent systems and computing. Springer, pp 119–127

23. Zhuang Y, Rui Y, Huang TS, Mehrotra S (1998) Adaptive key

frame extraction using unsupervised clustering. Proc IEEE Int

Conf Image Process 1:866–870

24. Gresle P, Huang T (1997) Gisting of video documents: a key

frames selection algorithm using relative activity measure. In:

The 2nd international conference on visual information systems,

pp 279–286

25. Zhang HJ, Wu J, Zhong D, Smoliar SW (1997) An integrated

system for content-based video retrieval and browsing. Pattern

Recognit 30(4):643–658

26. Geetha P, Pandeeswari ST, Mohanan S (2012) Visual attention

based keyframes extraction and video summarization. In:

Computer science conference proceedings in computer science &

information technology (CS&IT). Citeseer, pp 179–190

27. Barhoumi W, Zagrouba E (2013) On-the-fly extraction of key

frames for efficient video summarization. Proc AASRI Conf

Intell Syst Control 4:78–84

28. Thakre K, Rajurkar A, Manthalkar R (2016) Video partitioning

and secured keyframe extraction of MPEG video. Phys Proc

78:790–798

29. Wolf W (1996) Key frame selection by motion analysis. Proc

IEEE Int Conf Acoust Speech Signal Process 2:1228–1231

30. Abdullah SNHS, Ng KW (2017) Action key frames extraction

using L1-norm and accumulative optical flow for compact video

shot summarisation. In: Advances in visual informatics: 5th

international visual informatics conference, IVIC 2017, Bangi,

Malaysia, November 28–30, 2017, proceedings, vol 10645.

Springer, p 364

31. Bao G, Li D, Mei Y (2020) Key frames extraction based on

optical-flow and mutual information entropy. J Phys Conf Ser

1646(1):012–112

32. Kuanar SK, Panda R, Chowdhury AS (2013) Video key frame

extraction through dynamic Delaunay clustering with a structural

constraint. J Vis Commun Image Represent 24(7):1212–1227

33. Tan L, Song Y, Ma Z, Lv X, Dong X (2020) Deep learning video

action recognition method based on key frame algorithm. In: Sun

X, Wang J, Bertino E (eds) Artificial intelligence and security.

Springer, Cham, pp 62–73

34. Xu D, Tian Y (2015) A comprehensive survey of clustering

algorithms. Ann Data Sci 2(2):165–193

35. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP et al (2004)

Image quality assessment: from error visibility to structural

similarity. IEEE Trans Image Process 13(4):600–612

36. Hochreiter S, Schmidhuber J (1997) Long short-term memory.

Neural Comput 9(8):1735–1780

37. Ogawa T, Sasaka Y, Maeda K, Haseyama M (2018) Favorite

video classification based on multimodal bidirectional LSTM.

IEEE Access 6:61401–61409

38. Yue-Hei Ng J, Hausknecht M, Vijayanarasimhan S, Vinyals O,

Monga R, Toderici G (2015) Beyond short snippets: deep net-

works for video classification. In: Proceedings of the IEEE con-

ference on computer vision and pattern recognition,

pp 4694–4702

39. Graves A (2013) Generating sequences with recurrent neural

networks. arXiv:1308.0850

40. Xingjian S, Chen Z, Wang H, Yeung DY, Wong WK, Woo WC

(2015) Convolutional LSTM network: a machine learning

approach for precipitation nowcasting. In: Advances in neural

information processing systems, pp 802–810

41. Shi X, Gao Z, Lausen L, Wang H, Yeung DY, Wong Wk, Woo

Wc (2017) Deep learning for precipitation nowcasting: a

benchmark and a new model. In: Advances in neural information

processing systems, pp 5617–5627

42. Freund RJ, Mohr D, Wilson WJ (2010) Statistical methods.

Academic Press, Cambridge

43. Glass GV (1966) Testing homogeneity of variances. Am Educ

Res J 3(3):187–190

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

24524 Neural Computing and Applications (2023) 35:24513–24524

123

http://arxiv.org/abs/12120402
http://arxiv.org/abs/160908675
http://arxiv.org/abs/160908675
http://arxiv.org/abs/200313042
http://arxiv.org/abs/200801232
http://arxiv.org/abs/1308.0850

	A novel keyframe extraction method for video classification using deep neural networks
	Abstract
	Introduction
	Related work
	The proposed method
	The proposed keyframe extraction approach
	Deep neural network architectures based on VGG-16 for video classification

	Experiments
	Datasets
	Experiment design
	Evaluation method

	Results and discussion
	Conclusion
	Acknowledgements
	References

