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Abstract Despite the enormous performance of deep

neural networks (DNNs), recent studies have shown their

vulnerability to adversarial examples (AEs), i.e., care-

fully perturbed inputs designed to fool the targeted

DNN. Currently, the literature is rich with many ef-

fective attacks to craft such AEs. Meanwhile, many de-

fenses strategies have been developed to mitigate this

vulnerability. However, these latter showed their effec-

tiveness against specific attacks and does not general-

ize well to different attacks. In this paper, we propose

a framework for defending DNN classifier against ad-

versarial samples. The proposed method is based on a

two-stage framework involving a separate detector and

a denoising block. The detector aims to detect AEs by

characterizing them through the use of natural scene

statistic (NSS), where we demonstrate that these statis-

tical features are altered by the presence of adversarial

perturbations. The denoiser is based on block matching

3D (BM3D) filter fed by an optimum threshold value

estimated by a convolutional neural network (CNN) to

project back the samples detected as AEs into their

data manifold. We conducted a complete evaluation on

three standard datasets namely MNIST, CIFAR-10 and

Tiny-ImageNet. The experimental results show that the

proposed defense method outperforms the state-of-the-

art defense techniques by improving the robustness

against a set of attacks under black-box, gray-box and
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1 Introduction

With the availability of large datasets [1, 2] in addi-

tion to the increase in computational power, the deep

neural networks (DNNs) have shown an outstanding

performance in different tasks, such as image classifi-

cation [3, 4], natural language processing [5, 6], object

detection [7] and speech recognition [8]. Despite their

widespread use and phenomenal success, these networks

have shown that they are vulnerable to adversarial at-

tacks. Szegedy et al. illustrated in [9] that small and al-

most imperceptible perturbations added to a legitimate

input image can easily fool the DNNs models and can

make a misclassification with high confidence. The per-

turbed images are called adversarial examples (AEs).

These adversarial attacks raise an important issue

of the robustness of DNNs against these attacks, which

limits their use and can be an obstacle to deploy them in

sensitive applications such as self-driving cars, health-

care, video surveillance, etc. For instance, in Figure 1,

the initially clean input image is classified correctly as

a stop sign by the DNN model with high confidence.

When carefully crafted perturbations are added to the

input image, this leads it misclassified as a 120km/hr,

which is significantly dangerous and can cause fatal con-

sequences. Therefore, it is of paramount importance to

improve the robustness of DNNs models, especially, if

they are deployed in such critical applications.
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DNN 
model
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Prediction:	Stop	Sign
Probability:	99.85%

Prediction:	120km/hr
Probability:	99.91%

Clean Image

Adversarial
Example
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perturbation

Fig. 1 An example of adversarial attack in the context of
street sign recognition. The introduction of a small impercep-
tible perturbation in the input image fools the DNN classifier.
The original image is classified as a Stop Sign with 99.85%
confidence, while the adversarial example is classified as a
120km/hr with 99.91% confidence.

Overall, unlike usual training, where the aim is to

minimize the loss of DNN classifier, an attacker tries to

carefully craft an adversarial sample x′ by maximizing

the loss with a small amount and thereby produce in-

correct output. In other words, the attack tries to find

the shortest adversarial direction ∆ to inject the benign

sample x from its manifold into another one in order to

mislead the DNN model (see Figure 2).

Various attacks are effective to generate an image-

dependent AEs [17], which limits its transferability to

other images or models. Other methods [10] found some
kind of universal perturbations that can fool a target

classifier using any clean image. As shown in [11], it is

also possible in the physical world to add 3D adversarial

objects that can attack a DNN model, thus creating a

real security risk.

Consequently, several defense methods have been

proposed attempting to correctly classify AEs and

thereby increasing model’s robustness. A defense

method aims to project the malicious sample x′ into it’s

data manifold to make the predicted label the same as

the original sample x. Adversarial training [12–16] is the

most adopted technique that attempts to enhance the

robustness against these vulnerabilities by integrating

AEs to the clean ones into the training phase. However,

such defense strategies do not generalize well against

new/unknown attack models. Other defense methods

try to reconstruct the AEs back to the training dis-

tribution by applying transformation on them. One of

this approach consists to preprocess the AEs before

feeding them to the DNN model. For instance, denois-

Fig. 2 Data distribution over the manifold. We restrict the
manifold of benign samples x between decision boundaries
(the true class), the attacked sample x′ is injected out from
its data manifold by a minimum Lp norm based distance ∆.

ing auto-encoders has been proposed in [44, 45] to re-

move/attenuate the perturbations. Similar approaches

have been proposed based on generative models [68].

These methods provided substantial results, however,

systematically denoising each input image, can nega-

tively impact the performance of clean images. Because,

the denoiser can introduce blur if the denoising is in-

correctly applied, which reduces the classification per-

formance [71]. One of the possible solutions is to cou-

ple a defense strategy with a detection method as re-

alized in the proposed work. Another limitation, gen-

erally these denoising-based approaches apply the de-
noising with a fixed non-adaptive strength, which is not

optimal since certain adversarial perturbations are not

distributed uniformly.

Almost all existing defense methods are effective

against some specific attacks, but fail to defend new or

more powerful ones, especially, when the attacker knows

the details of defense mechanism [17, 19, 20]. There-

fore, many recent works have focused on detecting AEs

[19–29] instead. The detection of AEs may be useful to

warn users or to take security measures in order to avoid

tragedies. Furthermore, for online machine learning ser-

vice providers, the detection can be exploited to identify

malicious clients and reject their inputs [21]. However,

as shown in [20], the existing AEs detection methods re-

ported high detection accuracy, but have also obtained

high false positive rate, meaning that they reject a sig-

nificant amount of clean images, which can be consid-

ered a failure of these detection approaches.

In this paper, we propose a novel approach for de-

fending against AEs, which is classifier-agnostic, i.e.,
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it is designed in such a way that can be used with any

classifier without any changes. Our method is two-stage

framework comprising a separate detector network and

a denoiser block, where the sample detected as adver-

sarial is fed to the denoiser network in order to denoise

it. However, for the ones that are detected as clean,

they are fed directly to the classifier model. The de-

tector is based on natural scene statistic (NSS), where

we rely on the assumption that the presence of adver-

sarial perturbations alters some statistical properties of

natural images. Thus, quantifying these statistical out-

liers, i.e., deviations from the regularity, using scene

statistics enables the building of a binary classifier ca-

pable of classifying a given image as legitimate or ad-

versarial. For the denoiser, we used the block matching

3D (BM3D) filter in order to clean up the attacked im-

age from the adversarial perturbation. BM3D is one

of the best denoiser algorithm allowing to tackle non-

uniform adversarial perturbations. In addition, we built

a convolutional neural network (CNN) model that pre-

dicts the adequate strength of denoising, i.e., the pa-

rameters filter values, which best mitigate AEs. The

experimental results showed that the proposed detec-

tion method achieves high detection accuracy, while

providing a low false positive rate. In addition, the ob-

tained results showed that the proposed defense method

outperforms the state-of-the-art defense techniques un-

der the strongest black-box, gray-box and white-box

attacks on three datasets namely MNIST, CIFAR-10

and Tiny-ImageNet.

The rest of this paper is organized as follows:

Section 2 reviews some attack techniques and defense

methods that have been proposed in the literature. Sec-

tion 3 describes the proposed approach. The experi-

mental results are presented and analyzed in Section 4.

Finally, Section 5 concludes the paper. Table 1 summa-

rizes most of the notations used in this paper.

2 Related work

Adversarial examples are first introduced in this sec-

tion, then different adversarial attacks are presented,

and finally the state-of-the-art defense techniques are

described.

2.1 Adversarial examples

Given an image space ξ = [0, 1]H×W×C , a target classi-

fication model fθ(·) and a legitimate input image x ∈ ξ,
an adversarial example is a perturbed image x′ ∈ ξ

such that f(x′) 6= f(x) and d(x, x′) ≤ ε, where ε ≥ 0.

d is a distance metric used to measure the similarity

Table 1 Notations used in the paper.

Notations Description

ξ Image space.

I Input image.

H ×W × C Height, width, channels of an image.

x An instance of clean image.

x′ A modified instance of x, adversarial image.

x̃ A filtered instance of x′, denoised image.

c The true class label of an input instance x.

fθ(x)

Output of a classifier model f parameterized

by θ, refers specifically to the predicted

likelihood for class c.

d(x, x′) Distance metric between x and x′.

‖ · ‖p Lp norm.

∇x Derivative with respect to x (gradient).

L Loss function.

D Our detector block.

S Our denoiser block.

Î
The mean subtracted contrast normalized (MSCN)

coefficients of image I.

β The shape parameter.

σ2 The variance of a probability density function.

η The Mean of the AGGD.

τ3D 3D linear transform.

λ3D Threshold parameter of BM3D filter.

fX(x) Probability density function.

between the perturbed and clean (unperturbed) input

images [32]. Three metrics are commonly used in the lit-

erature for generating AEs relying on Lp norms, mainly

L0 distance, the Euclidean distance (L2) and the Cheby-

shev distance (L∞ norm) [17].

2.2 Adversarial Attacks

Adversarial attacks fall into three main categories in-

cluding black-box, gray-box and white-box attacks.

White-box attacks have a full access to both the de-

fense technique and the target model’s architecture and

parameters, while black-box attacks have no access to

the model’s architecture and parameters. In this latter

configuration, the attacker has only information on the

output of the model (label or confidence score) for a

given input. Finally, for gray-box attacks also referred

as semi black-box attacks, the attacker is unaware of

the defense block, but has full access to the architec-

ture and parameters of the model.

In the following, we describe three attacks consid-

ered in the evaluation of our defense method. These

attacks are widely used in the literature to assess the

performance of defense techniques. For more details on

adversarial attacks, the reader can refer to the review

paper on AEs [33].
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2.2.1 Fast gradient sign method attack

Goodfellow et al. [34] introduced a fast attack method

called fast gradient sign method (FGSM). The FGSM

performs only one step gradient update along the di-

rection of the sign of gradient at each pixel as follows

x′ = x+ ε sign(∇xLθ(x, y)), (1)

where θ is the set of model’s parameters and ∇xL com-

putes the first derivative (gradient) of the loss function

L with respect to the input x. The sign(·) function re-

turns the sign of its input and ε is a small scalar value

that controls the perturbation magnitude. The authors

proposed to bound the adversarial perturbation under

the Chebyshev distance ||x− x′||∞ < ε.

2.2.2 Projected gradient descent attack

The projected gradient descent (PGD) attack was in-

troduced by Madry et al. in [35] to build a robust deep

learning models with adversarial training. The authors

formulated the generation of an AE as a composition of

an inner maximization problem and an outer minimiza-

tion problem. Specifically, they introduced the following

saddle point optimization problem

min
θ
ρ(θ),

where ρ(θ) = E(x,y)∼D[max
δ∈S
Lθ(x+ δ, y)],

(2)

with E is a risk function, δ is the magnitude of the

perturbation and S is a set of allowed perturbations.

The inner maximization is the same as attacking a

neural network by finding an adversarial example that

maximizes the loss. On the other hand, the outer min-

imization aims to minimize the adversarial loss.

2.2.3 Carlini and Wagner attack

Carlini and Wagner [17] introduced an attack that can

be used under three different distance metrics: L0, L2

and L∞. The Carlini and Wagner (CW) attack aims

at minimizing a trade-off between the perturbation in-

tensity ||δ||p and the objective function g(x′), with x′ =

x+δ and g(x′) ≤ 0 if and only if f(x′) = c and f(x) 6= c

min
δ
||δ||p + λ g(x+ δ),

such that x+ δ ∈ [0, 1]n,
(3)

where c is the target class and λ > 0 is a constant

calculated empirically through a binary search.

In the case of the L2 norm, the problem in (3) can

be expressed as follows

min
ω

∣∣∣∣∣∣∣∣12 (tanh(ω) + 1)− x
∣∣∣∣∣∣∣∣2
2

+ λ g

(
1

2
(tanh(ω) + 1)

)
,

(4)

A change of variable introduces a new variable ω with

δ = 1
2 (tanh(ω) + 1) − x that removes the constraint

in (3).

2.3 Defenses against adversarial attacks

As for the attacks, several defense techniques have been

proposed in the literature in order to build more ro-

bust and resilient DNNs in AE-prone context. Defend-

ing against adversarial attacks can fall into three cate-

gorizes: (1) adversarial training, (2) preprocessing, and

(3) detecting AEs [18].

2.3.1 Adversarial training

The adversarial training techniques consist in includ-

ing AEs at the training stage of the model to build a

robust classifier. Authors in [36–38] used benign sam-

ples with adversarial samples as data augmentation in

the training process. In practice, different attacks can

be used to generate the AEs. The optimized objective

function can be formalized as a weighted sum of two

classification loss functions as follows

λ Lθ(x, c) + (1− λ) Lθ(x′, c) (5)

where λ is a constant that controls the weighting of the

loss terms between normal and AEs.

In [12], the authors showed that using only the PGD

attack for data augmentation can achieve state-of-the-

art defense performance on both MNIST and CIFAR-10

datasets. However, as demonstrated in [39], achieving a

good generalization under adversarial training is hard

to achieve, especially against an unknown attack.

2.3.2 Preprocessing

The defense techniques in the preprocessing category

process the input sample before its classification by the

model. Authors in [40] proposed a defense based on

random resizing and padding (RRP). The objective of

this method is to attenuate the adversarial perturbation

and introduce randomness through the transformations

applied on the input sample. This randomness at the

inference makes the gradient of the loss with respect

to the input harder to compute. It has been shown
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in [43] that defense techniques relying on randomiza-

tion [46–50] are effective under black-box and gray-box

attacks, but they fail against the worst case scenario of

white-box attack. The total variance minimization and

JPEG compression have been investigated in [51] as

preprocessing transformations to project back the AE

to its original data subspace. To break the effect of these

transformations, Athalye et al. [52] proposed a method

named expectation over transformation (EOT) to cre-

ate adversaries that fool defenses based on such trans-

formations. Other defense techniques rely on denoising

process to remove or alleviate the effect of adversarial

perturbations. The first denoising-based defense tech-

nique was proposed in [53] as a stack of auto-encoders

to mitigate the adversarial perturbations. However, it

has been shown in [54] that this technique is vulnera-

ble to transferable attack generated by CW attack in

black-box setting. Author in [55] introduced PixelDe-

fend defense, which aims to process an input sample

before passing it to the classifier. The PixelDefend tech-

nique trains a generative model such as PixelCNN ar-

chitecture [68] only on clean data in order to approx-

imate the distributions of the data. It has also been

shown in [55] that the generative model can be used

to detect AEs by comparing the input sample to the

clean data under the generative model. Similar to Pix-

elDefend, Defense-GAN method [56] trains a generator

for an ultimate goal to learn the distributions of clean

images. Therefore, at the inference, this method trans-

forms the AEs by finding a close benign image based on

its distribution. Authors in [57] proposed a thermome-

ter encoding to break the linear extrapolation behav-

ior of classifiers by processing the input with an ex-

tremely nonlinear function. ME-Net [58] uses matrix-

estimation techniques to reconstruct the image after

randomly dropping pixels in the input image according

to a probability p. Borkar et al. [59] introduced train-

able feature regeneration units, which regenerate acti-

vations of vulnerable convolutional filters into resilient

features. They have shown that regenerating only the

top 50% ranked adversarial susceptible features in a few

layers is enough to restore their robustness.

The gradient masking and obfuscated gradients have

been explored to design defense techniques robust

against gradient based attacks. Meanwhile, backward

pass differentiable approximation (BPDA) [43] tech-

nique was proposed as a differentiable approximation

for the defended model to obtain meaningful adver-

sarial gradient estimates. The BPDA techniques en-

ables to derive a differentiable approximation for a non-

differentiable preprocessing transformation that can be

explored with any gradient based attack. It has been

shown that BPDA approximation breaks the majority

of these preprocessing based defense techniques.

2.3.3 Detecting adversarial samples

Instead of trying to classify AEs correctly, which is dif-

ficult to achieve, many contributions have focused on

only detecting these AEs. Grosse et al. [26] proposed

a technique that rely on statistical hypothesis on the

input image to detect AEs, where the distribution of

AEs statistically diverges from the data distribution.

This hypothesis is explored to distinguish adversarial

distributions from legitimate ones. Ma et al. [28] ex-

plored the local intrinsic dimensionality (LID) concept

for characterizing the dimensional properties of adver-

sarial regions. The authors empirically showed that LID

of AEs is significantly higher than LID of clean sam-

ples. Thus, they used the LID of images as features

to train a machine learning classifier to detect AEs.

Xu et al. [21] proposed a detection technique called

feature squeezing (FS). Two FS methods were consid-

ered to remove non-relevant features from the input:

color bit-depth reduction and spatial smoothing, both

with local and non-local smoothing. DNN-based predic-

tions of clean and squeezed samples are compared to de-

tect AEs. More specifically, the input sample is labeled

as adversarial when the l1 distance between the two

DNN predictions of squeezed and unsequeezed samples

is higher than a threshold value. Ma et al. [24] proposed

also another detection approach named neural-network

invariant checking (NIC). This latter exploits two in-

variants in the DNN classifier structure: the provenance

channel and the activation value distribution channel.

The NIC detector leverage these inveriants extracted

from the DNN classifier to perform runtime detection

of adversarial samples. Under assumption that adver-

sarial inputs leave activation fingerprints, i.e., the neu-

ron activation values of clean and AEs are different,

Eniser et al. [30] proposed a binary classifier that takes

as inputs the differences in neuron activation values be-

tween clean and AEs inputs to detect if the input is

adversarial or not. In [31], a method for jointly training

a provably robust classifier and detector was proposed.

The authors proposed a verification scheme for clas-

sifiers with detection under adversarial settings. They

extend the Interval Bound Propagation (IBP) method

to account for robust objective, which enables verifi-

cation of the network for provable performance guar-

antees. Authors in [41] proposed a detection technique

called Selective and Feature based Adversarial Detec-

tion (SFAD). This latter uses the recent uncertainty

method called SelectiveNet [42] and integrates three

detection modules. The first is selective detection mod-
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Fig. 3 Overview of the proposed defense method workflow composed of detector D and denoiser S blocks.

ule, which is a threshold-based detection derived from

uncertainty of clean training data using SelectiveNet.

The second is confidence detection module, which is

threshold-based detection derived from softmax prob-

abilities of clean training data from SFAD’s classifiers.

SFAD’s classifiers analyze the representative data of

last N -layers as a key point to present robust features

of input data using autoencoding, up/down sampling,

bottleneck, and noise blocks. The last module is en-

semble prediction, which is mismatch based prediction

between the detector and the baseline deep learning

classifiers.

The described detectors showed some limitations

[20], for instance they are effective against some specific

attacks and lack generalization ability against different

types of attacks. Also, they can achieve high accuracy

but at the cost of increasing the false positive rate, thus

rejecting considerable legitimate inputs, which is not

desired in real sensitive applications.

3 Proposed Approach

In this paper, we propose a framework for defending

against AEs in the digital domain, e.g., when attack-

ing a computer vision system. The proposed method

consists of two main components that process the in-

put sample before passing it to the classifier as shown

in Figure 3. First, a detector block D distinguishes be-

tween clean sample x and adversarial sample x′, and

then a denoising block S alleviates perturbations in a

sample detected as AE. In other words, this denoising

block S aims to project the adversarial sample back

into the manifold of x. Finally, the classifier is fed by

a denoised sample in order to predict the sample label.

These two blocks will be explored in more detail in the

next two sections.

3.1 Detector

The detector D block relies on the concept of NSS. We

assume that clean images possess certain regular statis-

tical properties that are altered by adding adversarial

perturbations. Thus, by characterizing these deviations

from the regularity of natural statistics using NSS, it

is possible to determine whether the input image x is

benign or malicious.

In order to extract scene statistics from input sam-

ples, we consider the efficient spatial NSS model [60], re-

ferred to as MSCN coefficients. The MSCN coefficients

of a given input image I are computed as follows

Î(i, j) =
I(i, j)− µ(i, j)

σ(i, j) + c
, (6)

where i and j are the pixel coordinates, and c is a

tiny constant added to avoid division-by-zero. The local

mean µ and local standard deviation σ are computed

by (7) and (8), respectively.

µ(i, j) =

3∑
k=−3

3∑
l=−3

wk,lIk,l(i, j). (7)

σ(i, j) =

√√√√ 3∑
k=−3

3∑
l=−3

wk,l(Ik,l(i, j)− µ(i, j))2. (8)

where w = {wk,l|k = −3, ..., 3, l = −3, ..., 3} is a 2D

circularly-symmetric Gaussian weighting function.

In order to demonstrate that MSCN coefficients are

affected by adversarial perturbations, Figure 4 illus-

trates the MSCN coefficients of the original (clean) im-

age and its associated attacked versions. We consider

three white-box attacks used in the experiments, namely

FGSM, PGD and CW. First, according to the obtained

class label, it is clear that all attacks have succeeded in

fooling the DNN model with high confidence, while the

attacked images are visually very close to the original
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Fig. 4 Illustration of the relationship between natural scene statistics and adversarial perturbations. (a) top: the original
image and different attacked versions. bottom: the MSCN coefficients of the images shown in the top row. (b) Histogram of
MSCN coefficients for the original image and attacked images.
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Fig. 5 Overview of the proposed detection method workflow.

one. From Figure 4(a), we can also see that the MSCN

coefficients of the original image differ significantly from

those of adversarial attacks.

In addition, in order to show how the MSCN coeffi-

cients vary with the presence of AEs, Figure 4(b) plots

the histogram of MSCN coefficients of images shown

in Figure 4(a) (top row). The original image exhibits a

Gaussian-like MSCN distribution, while the same does

not hold for the AEs which produce distributions with

notable differences.

These results show that each attacked sample is

characterized by its own histogram, which does not

follow a Gaussian-like MSCN distributions like for the

clean image. Based on that, we model these coefficients

using the generalized Gaussian distribution (GGD) to

estimate the parameters that are extracted from the

scene statistics. The GGD function is defined as follows

fX(x;β, σ2) =
β

2αΓ (1/β)
e−
(
|x|
α

)β
, (9)

where α = σ

√
Γ
(

1
β

)
Γ
(

3
β

) and Γ (·) is the gamma function:

Γ (a) =
∞∫
0

ta−1e−tdt , a > 0.

The value of β controls the shape and σ2 is the vari-

ance controller parameter. Due to the symmetry prop-

erty of the MSCN coefficients, we used the moment-

matching [61] to estimate the couple (β, σ2). To per-

form more accurate detection, we add the adjacent co-

efficients to model the pairwise products of neighboring

MSCN coefficients along four directions (1) horizon-

tal H, (2) vertical V , (3) main-diagonal D1 and (4)

secondary-diagonal D2 [60]. These orientations com-

puted in Equation (10) have also certain regularities,

which get altered in presence of adversary perturba-

tions.

H(i, j) = Î(i, j)Î(i, j + 1),

V (i, j) = Î(i, j)Î(i+ 1, j),

D1(i, j) = Î(i, j)Î(i+ 1, j + 1),

D2(i, j) = Î(i, j)Î(i+ 1, j − 1).

(10)
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It is clear that the results of these pairwise products

lead to an asymmetric distribution, so instead of using

GGD, we chose the asymmetric generalized Gaussian

distribution (AGGD), which is defined as follows

fX(x; ν, σ2
l , σ

2
r) =


ν

(αl+αr)Γ
(

1
ν

)e(−(−xαl )ν) x < 0

ν

(αl+αr)Γ
(

1
ν

)e(−( x
αr

)ν)
x ≥ 0

(11)

where αside = σside

√
Γ
(

1
ν

)
Γ
(

3
ν

) where side can be either

r or l, ν represents the shape parameter and σ2
side ex-

presses the left or the right variance parameters. So

to estimate (ν, σl
2, σr

2), we use the moment-matching

as described in [62]. Another parameter that is not re-

flected in the previous formula is the mean which is

defined as follows

η = (αr − αl)
Γ
(
2
ν

)
Γ
(
1
ν

) (12)

The AGGD can be characterized by 4 features -

(η, ν, σ2
l , σ

2
r) for each of the four pairwise products. The

concatenation of the two GGD parameters with the 16

AGGD ones results in 18 features f per image

f = {β, σ2, ηH , νH , σ
2
lH , σ

2
rH , ηV , νV , σ

2
lV , σ

2
rV ,

ηD1, νD1, σ
2
lD1
, σ2

rD1
, ηD2, νD2, σ

2
lD2
, σ2

rD2
}

This low number of considered features motivates

the choice to train a support vector machine (SVM)

binary classification model for the detector as shown in

Figure 5. Thus, the SVM classifies each input image as

either benign or AE, where the sample detected as AE

is first processed by the denoiser, as detailed in the next

section.

3.2 Denoiser

The aim of the denoiser block S is to alleviate the adver-

sarial perturbations and thus project back the AE into

its original data manifold. In other words, the denoiser

S tries to reconstruct from an adversarial example x′ a

new sample x̃ such that fθ(x̃) = fθ(x).

The denoiser block processes only input samples de-

tected as AE, whereas, the samples detected as clean

are directly passed to the classifier. In this way, we en-

hance the robustness against these adversarial attacks

without affecting the classification accuracy of clean

samples.

The denoiser relies on the block matching 3D (BM3D)

filter initially proposed in [63]. This denoiser is consid-

ered to be one of the best non-learning-based denois-

ing methods, furthermore, some work has shown that

BM3D even out-performs deep learning-based denois-

ing approaches for some real-world applications [67]. In

addition, the BM3D allows locally adaptive parameter

tuning based on block or region, making it suitable for

non-uniform adversarial perturbations distribution.

The BM3D filter first gathers similar 2D patches P

of an image in a 3D-block denoted P(P ). For a given

patch P of size κ × κ, the filter searches for similar

patches Q within a window of size n × n in the im-

age, where n > κ. The search window is extracted such

that the patch P is the window center. The similarity

between two patches is measured as follows

P(P ) = {Q : d(P,Q) ≤ τ} , (13)

where d is the normalized quadratic distance and τ is

a threshold value set to check whether two patches are

similar or not. In order to speed up the process, from

the similar Q patches within the 3D-block P(P ), only

the N closest patches to P are selected to get the P̃(P )

3D group, where P is included.

After the grouping step, a 3D linear transform τ3D is

applied on each 3D pile of correlated patches, followed

by a shrinkage. Finally, the inverse of this isometric

transform is applied to give an estimation of each patch

as follows

P̃(P ) = τ−13D

[
γ
(
τ3D

[
P̃(P )

])]
, (14)

where γ is a thresholding that depends on λ3D:

γ(x) =

{
0 if |x| ≤ λ3D
x otherwise

(15)

The above grouping and filtering procedures are im-

proved in a second step using Wiener filtering. This

step is nearly the same as the first one, with only two

differences. The first difference consists in comparing

the filtered patches instead of the original ones at the

grouping step. The second difference relies in using the

Wiener filtering to process the new 3D groups, instead

of using linear transform and thresholding. For further

details about the filtering process, the reader is referred

to [63].

The performance of the BM3D depends on its pa-

rameter settings. However, studies conducted in [64–

66] showed that the threshold λ3D is the most crucial

and significant parameter in BM3D’s denoising process.
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(c) Tiny-ImageNet

Fig. 6 The proposed CNN architectures used in the prediction of BM3D parameters λ3D for (a) MNIST, (b) CIFAR-10 and
(c) Tiny-ImageNet datasets. The GlobalAveragePooling2D layer calculates the average of its input and outputs a single scalar
value for each feature map.

Since AEs can contain different levels of adversarial per-

turbations, it is therefore important to choose the ap-

propriate λ3D parameter to mitigate each level of per-

turbation. To reach this goal, in this work, we use a

CNN to automatically predict the best λ3D suited to

each AE.

Inspired by the extension of BM3D for color images

initially investigated in [63], we propose to perform the

grouping step relying only on the luminance component

Y after a color transformation from RGB color space

to a luminance-chrominance color space, where Y de-

notes luminance channel, while U and V refer to the

two chrominance components. After building the 3D

block on the Y channel, we used it for all three chan-

nels, then the remaining BM3D’s processes are applied

to each channel separately. Therefore, three parame-

ters of the thresholding λ3D must be predicted, one per

channel.

Thus, we performed the prediction of these thresh-

olds under the RGB color space using a CNN trained to

derive, for each channel, an optimum value of λ3D. Fig-

ures 6(a), 6(b) and 6(c) illustrate the three proposed ar-

chitectures used to predict the optimal thresholding pa-

rameters for the three different image datasets, namely

MNIST, CIFAR-10 and Tiny-ImageNet, respectively.

These three different architectures have been proposed

to adapt the CNN to the complexity of parameters

prediction which depends on the characteristics of the

dataset including the dataset size, the color space and

image resolution. The first architecture illustrated in

Figure 6(a) is fed with a grayscale image to predict

a single λ3D parameter, while architectures in Figures

6(b) and 6(c) are fed with the three RGB components

of a color image to predict the three associated thresh-

olding parameters, i.e., three λ3D values.

The three networks are trained in a supervised learn-

ing fashion by minimizing a mean squared error loss

function between the network output and the ground

truth. The ground truth consists of a set of adversarial

samples and the optimal denoising parameters enabling

to back project an attacked image into its data mani-

fold. To build the ground truth, an exhaustive denoising

approach is conducted to denoise a set of adversarial

samples perturbed by the PGD attack at different ε

magnitudes. The PGD attack is selected based on the

fact that adversarial training with PGD attack tends

to generalize well across a wide range of attacks [35].

So each sample is denoised with a set of λ3D parame-

ters in the interval [0.0, 1.0] with a step of 0.125. This

denoising process can result in several samples that

are correctly classified. Among these samples, only one

maximizing the Structural SIMilarity (SSIM) [76] im-

age quality metric is retained in the ground truth. The

SSIM metric is computed between the original image x

and the denoised one x̃.

The SSIM image quality metric assesses the qual-

ity of the denoised image with respect to the original

one by exploring the structural similarity. Preserving

the structural similarity after denoising will contribute

to achieve a correct classification by the model with

a high confidence score. The λ3D parameters selected

for each attacked sample with the highest SSIM score

are assigned as the training labels for that adversarial

sample.
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4 Experimental results

We describe in this section the evaluation process of our

defense method with respect to the state-of-the-art de-

fense techniques on three well known datasets: MNIST,

CIFAR-10 and Tiny-ImageNet. First, we describe the

selected datasets and the training stage, then the ro-

bustness of the proposed approach is assessed under

three types of attacks, namely black-box, gray-box and

white-box attacks.

4.1 Datasets

We evaluated the robustness of our defense technique

on CNNs models trained on three standard datasets,

namely:

– MNIST dataset consists of grayscale hand-written

10 digits images of size 28 × 28. This dataset con-

tains 70,000 images split into training, validation

and testing sets with 50,000, 10,000 and 10,000 im-

ages, respectively.

– CIFAR-10 dataset contains color images of size

32 × 32. It has ten classes and 60,000 images di-

vided into training and testing sets with 50,000 and

10,000 images, respectively.

– Tiny-ImageNet dataset includes also color images

of size 64× 64 with a greater number of 200 classes.

Each class includes 500, 50 and 50 images used for

training, validation and testing, respectively.

We built our own CNN classifier for MNIST dataset

resulting in a state-of-the-art accuracy of 99.4%. For

CIFAR-10 and Tiny-ImageNet datasets, we considered

existing models achieving accuracy scores of 98.5% [69]

and 69.2% [70], respectively.

4.2 Training process

Detector The detector is trained with a blend of clean

and attacked samples. For MNIST dataset, we have se-

lected 1,000 clean samples and generated adversarial

samples with the PGD attack. These 1,000 adversarial

images with the associated 1,000 clean images are used

for the training. The same process is carried-out for

CIFAR-10 and Tiny-ImageNet datasets. The obtained

features from each sample are provided as inputs to the

SVM classifier. The Sigmoid kernel is used in the SVM

model since it achieves a good accuracy for non-linear

binary classification problems.

Denoiser A separate CNN model is trained to esti-

mate the denoising parameters for each dataset. As de-

scribed previously, the denoiser block deals only with

attacked samples, based on that, we generated 10,000

samples with the PGD attack. The three CNN architec-

tures for MNIST, CIFAR-10 and Tiny-ImageNet datasets

are shown in Figures 6(a), 6(b) and 6(c), respectively.

We used the rectified linear unit (ReLU) as an activa-

tion function after each convolution layer. Some dropout

layers are added to networks of color image datasets, i.e,

CIFAR-10 and Tiny-ImageNet, with different rate to

prevent over-fitting. The CNNs of CIFAR-10 and Tiny-

ImageNet datasets include batch normalization layers

to stabilize and accelerate the learning process. We used

for the three architectures a learning rate of 0.01 and

a large momentum of 0.9. Finally, the architectures are

trained using 64 epochs with a batch-size of 128 for

MNIST and CIFAR-10 datasets, while 128 epochs with

a batch-size of 32 for Tiny-ImageNet dataset.

4.3 Results and analysis

The performance of the proposed defense method are

evaluated under l∞ bounded attacks [12,57,58,72]. We

compare our method with three state-of-the-art defense

techniques on the three considered datasets under black-

box, gray-box and white-box attacks, as recommended

in [74]. The chosen defense techniques include one of the

best performing adversarial training defenses developed

by Madry et al. [12] and two prepossessing methods in-

cluding Thermometer [57] and ME-Net [58]. Further-

more, we investigate the effectiveness of the proposed

detector block to detect the AEs.

4.3.1 Defense block performance

The robustness of the proposed defense method is as-

sessed against three attacks: fast gradient sign method

(FGSM), projected gradient descent (PGD) and Carlini

and Wagner (CW). The CW implementation [17] pro-

vided by the authors is used, while the implementations

of FGSM and PGD attacks are from the open-source

CleverHans library [73].

Black-box attacks This kind of attack is performed to

fool a classifier model when an attacker can not perform

back propagation to generate adversarial samples from

the network model. Based on this, we train substitute

networks for MNIST, CIFAR-10 and Tiny-ImageNet

datasets to generate AEs with FGSM, PGD and CW

attacks. We set the attacks hyper-parameters as in [58],

where we use for MNIST a perturbation magnitude ε

of 0.3 for both FGSM and PGD. This latter is used

with two iteration configurations: 40 and 100 steps.

Regarding CIFAR-10 and Tiny-ImageNet datasets, the

PGD attack is used with a magnitude perturbation ε

of 0.03 and four iteration configurations: 7, 20, 40 and
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Table 2 Performance of the proposed defense method under black-box attacks.

Dataset Method FGSM
PGD CW

7 steps 20 steps 40 steps 100 steps κ = 20 κ = 50

MNIST

Madry [12] 96.8% - - 96.0% 95.7% 96.4% 97.0%

Thermometer [57] - - - 41.1% - - -

ME-Net [58] 93.2% - - 92.8% 92.2% 98.8% 98.7%

Our method 97.6% 99.4% 99.4% 99.4% 99.4% 99.2% 98.9%

CIFAR-10

Madry [12] 67.0% 64.2% - - - 78.7% -

Thermometer [57] - 77.7% - - - - -

ME-Net [58] 92.2% 91.8% 91.8% 91.3% - 93.6% 93.6%

Our method 95.7% 98.3% 98.2% 98.2% 97.9% 93.8% 92.8%

Tiny-ImageNet
ME-Net [58] 67.1% 66.3% 60.0% 65.8% - 67.6% 67.4%

Our method 67.7% 68.8% 69.1% 69.1% 68.9% 68.3% 67.2%

100 steps. For the CW attack, we consider two different

confidence values of κ = 20 and κ = 50.

Table 2 gives the performance of our defense method

compared to the selected defenses under black-box at-

tacks on the three datasets. We can notice that the

proposed defense achieves the highest accuracy perfor-

mance on the three datasets, except against CW attack

under κ = 50 on the two color datasets. Moreover, most

defense techniques are robust against the considered

attacks on MNIST dataset, except the Thermometer

defense which achieved the lowest accuracy of 41.1%.

We can also note, in MNIST dataset, that Madry’s

defense performs better than ME-Net which obtained

92.8% and 92.2% accuracy against PGD attack at 40

and 100 steps, respectively. This can be explained by

the fact that the PGD AEs were included in the train-

ing set of the Madry defense. However, the preprocess-

ing conducted in the ME-Net allows this method to

achieve relatively higher classification accuracy for CW

attack compared to Madry’s method. This is particu-

larly true for CIFAR-10 dataset where ME-Net outper-

forms Madry’s defense for all attacks considered. Fi-

nally, it is clear that our defense outperforms the con-

sidered defenses, for instance, it obtained the highest

accuracies of 97.6% and 98.9% against FGSM and CW

(κ = 50) attacks, respectively. In addition, the proposed

method achieves a constant accuracy of 99.4% against

PGD attack despite the change in the number of itera-

tions.

Gray-box attacks In this setting, an adversary has

knowledge of the hyper-parameters of the classifier with-

out any information on the defense technique. This kind

of attacks are much stronger than black-box attacks in

reducing the robustness of the defense mechanism. Ta-

ble 3 compares the accuracy performance of the pro-

posed defense against gray-box attacks with respect to

ME-Net technique on the three datasets. We can first

of all notice that the accuracy is lower compared to

the black-box attacks. However, our defense method

outperforms the ME-Net defense at all attacks, except

against CW attack where similar performance is re-

ported.

White-box attacks In white-box attacks, an adver-

sary has a full access to all hyper-parameters of the

classifier architecture and the defense technique. We

assessed the robustness of our defense method against

such strong attacks using the backward pass differen-

tiable approximation (BPDA) attack [43]. The proposed

defense technique consists of a preprocessing method

which is independent from the classifier model as shown

in Figure 3. This causes gradient masking for gradient-

based attacks. In other words, on the backward pass the

gradient of the preprocessing step is non-differentiable

and therefore useless for gradient-based attacks. The

BPDA approximates the gradient of non-differentiable

blocks, which makes it useful for evaluating our defense

technique against white-box attacks.

Thereby, we approximate the denoiser block with

the identity function g(x) = x, which is often effec-

tive as reported in [75]. This approach enables to ap-

proximate the true gradient and thus to bypass the de-

fense, which allows using a standard gradient-based at-

tack based on BPDA. Similar to [58], we selected the

BPDA-based PGD attack to assess the efficiency of

our method. Table 4 gives the accuracy performance

on the three datasets for different steps of the BPDA-

based PGD attack. We can notice that our defense

outperforms Madry and ME-Net defense techniques on

MNIST dataset. On CIFAR-10 and Tiny-ImageNet

datasets, the accuracy scores of our defense technique

are higher than those of Madry and ME-Net defenses,

except in the 7 iterations configuration. At this config-

uration, ME-Net defense outperforms our solution by

around 3% benefiting mainly from its randomness oper-

ation. However, the ME-Net defense performance would
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Table 3 Performance of the proposed defense method under gray-box attacks.

Dataset Method FGSM
PGD CW

7 steps 20 steps 40 steps 100 steps κ = 20 κ = 50

MNIST
ME-Net [58] - - 96.2% 95.9% 95.3% 98.8% 98.7%

Our method 97.4% 99.4% 99.3% 99.3% 99.3% 99.1% 98.5%

CIFAR-10
ME-Net [58] 85.1% 84.9% 84.0% 82.9% - 84.0% 77.1%

Our method 88.4% 95.0% 94.8% 94.8% 94.5% 83.7% 75.8%

Tiny-ImageNet
ME-Net [58] 66.5% 64.0% 62.6% 59.2% - 58.3% 58.2%

Our method 67.7% 69.0% 68.9% 68.9% 68.5% 61.2% 60.1%

Table 4 Performance of the proposed defense method against BPDA-based PGD under white-box attack at up to 1000 steps
on the three datasets.

Dataset Method
Attack steps

7 20 40 100 1000

MNIST

Madry [12] - - 93.2% 91.8% 91.6%

ME-Net [58] - - 94.0% 91.8% 91.0%

Our method - - 95.3% 94.9% 94.7%

CIFAR-10

Madry [12] 50.0% 47.1% 47.0% 46.9% 46.8%

ME-Net [58] 74.1% 61.6% 57.4% 55.9% 55.1%

Our method 71.2% 70.6% 70.3% 69.9% 69.6%

Tiny-ImageNet

Madry [12] 23.3% 22.4% 22.4% 22.3% 22.1%

ME-Net [58] 38.8% 30.6% 29.4% 29.0% 28.5%

Our method 36.0% 35.8% 35.7% 35.2% 34.8%

Fig. 7 Visual illustration of MNIST images sorted from top
to bottom as clean images, attacked images using BPDA-
based PGD under white-box attack at 1000 steps with
ε = 0.3, and denoised images by the proposed defense method.
The predicted class label and its corresponding probability
are provided for each image.

be lower against the EOT technique that estimates the

gradient of random components [43].

Fig. 8 Visual illustration of CIFAR-10 images sorted from
top to bottom as clean images, attacked images using BPDA-
based PGD under white-box attack at 1000 steps with
ε = 0.3, and denoised by the proposed defense method. The
predicted class label and its corresponding probability are
provided for each image.

Figures 7, 8 and 9 illustrate four images from MNIST,

CIFAR-10 and Tiny-ImageNet datasets, respectively.

These images are illustrated in three configurations:
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Fig. 9 Visual illustration of Tiny-ImageNet images sorted from top to bottom as clean images, attacked images using BPDA-
based PGD under white-box attack at 1000 steps with ε = 0.03, and denoised images by the proposed defense method. The
predicted class label and its corresponding probability are provided for each image.

clean, attacked with BPDA-based PGD attack and de-

noised with the proposed denoiser block. We can notice

that the adversarial perturbations are filtered by the

denoiser block, while a slight blur is introduced to the

denoised images. However, through the use of CNN-

guided BM3D, the filtering is performed so that the

introduced blur does not affect the classification per-

formance.

Furthermore, in order to assess the performance of

our defense technique in the worst case scenario, we

changed the PGD attack hyper-parameters under a white-

box attack to see how the proposed method behaves

against these perturbations. Figure 10 illustrates the

classification accuracy of the proposed technique against

BPDA-based PGD attack at different steps and pertur-

bation magnitudes ε. These figures clearly demonstrate

the robustness of the proposed defense method vis-à-

vis the increasing in both the number of steps and the

magnitude of perturbation. The accuracy of the pro-

posed method slightly decreases when increasing the

number of steps, while it remains robust regarding the

magnitude increase. For MNIST dataset, the classifier

performs very well even at high perturbation magni-

tudes, especially when ε > 0.4 which generates a very

noisy image, making its classification difficult even by a

human eye. Despite these hard conditions, our defense

method achieves more than 86% accuracy in the case of

ε = 0.5 and 1000 steps under white-box attack. For the

color datasets, which are much more challenging to de-

fend, our technique allows to increase the classification

accuracy by approximately more than 40% and 25% for

CIFAR-10 and Tiny-ImageNet, respectively.

4.3.2 Detector block performance

The performance of the detector block is evaluated un-

der the same conditions as the defense technique, while

half of the images are benign and the other half are

crafted using three white-box attacks including FGSM,

PGD and CW. Figure 11 summarizes the performance

of our detector using receiver operating characteristic

(ROC) curves for different detection thresholds. The

ROC curves are plotted with true positive rate (TPR)

versus the false positive rate (FPR). The area under
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(b) CIFAR-10, without defense
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(c) Tiny-ImageNet, without defense

0.01 0.05 0.1 0.2 0.3 0.4 0.5
 (corruption severity)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)  9

9.
26

%

 9
8.

94
%

 9
7.

36
%

 9
6.

57
%

 9
5.

34
%

 9
2.

77
%

 8
9.

61
%

 9
9.

17
%

 9
8.

15
%

 9
6.

55
%

 9
5.

32
%

 9
4.

93
%

 9
2.

38
%

 8
8.

97
%

 9
9.

05
%

 9
7.

86
%

 9
6.

37
%

 9
5.

19
%

 9
4.

75
%

 9
2.

08
%

 8
6.

65
%

40 steps 100 steps 1000 steps

(d) MNIST, with defense
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(e) CIFAR-10, with defense
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(f) Tiny-ImageNet, with defense

Fig. 10 Accuracy of the classifier against BPDA-based PGD attack at three different steps for the three considered datasets.
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(a) FGSM attack
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(b) PGD attack
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(c) CW attack

Fig. 11 ROC performance of the detector block against three attacks under white-box settings.

the ROC curve (AUC) denotes the value measured by

the entire two-dimensional area below the entire ROC

curve. The higher the AUC, the better the model is to

predict clean images as clean and AEs as attacked. In

the evaluation of the detector, we only selected images

that were successfully attacked, i.e., fθ(x
′) 6= fθ(x) ,

with their benign state. We reach an AUC of about over

0.9970 for all datasets against the three used attacks,

which is not far from an ideal detector.

Furthermore, Table 5 reports the detection accuracy

against the three attacks under white-box settings, as

well as the false positive (FP), i.e, the detector classifies

a benign input as an AE. An efficient and robust detec-

tor must achieve high accuracy and at the same time

a low FP. Our detector achieves 100% detection accu-

racy for all white-box attacks and considered datasets,

except for Tiny-ImageNet dataset against the strongest

iterative CW attack, where an accuracy of 98% is re-

Table 5 Accuracy and FP of the detector against three at-
tacks under white-box settings.

Dataset FGSM PGD CW FP(%)

MNIST 100% 100% 100% 1.9%

CIFAR-10 100% 100% 100% 2.0%

Tiny-ImageNet 100% 100% 98% 2.3%

ported. The later is an acceptable score because it is

associated with a very low FP of 2.3%.

5 Conclusion

In this paper, we have proposed a novel two-stage frame-

work to defend against AEs involving detection of AEs

followed by denoising. The detector relies on NSS of the

input image, which are altered by the presence of adver-

sarial perturbations. The samples detected as malicious
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are then processed by the denoiser with an adaptive

BM3D filter to project them back into there original

manifold. The parameters of the BM3D filter used to

process the attacked image are estimated by a CNN.

The performance of the proposed defense method is

extensively evaluated against black-box, grey-box and

white-box attacks on three standard datasets. The ex-

perimental results showed the effectiveness of our de-

fense method in improving the robustness of DNNs in

the presence of AEs. Moreover, the efficiency of the de-

tector with high detection accuracy and low FP helps to

preserve the classification accuracy of the DNN model

on clean images. As future work, we plan to extend

the proposed defense method to deal with adversarial

attacks in the physical world.

Conflict of interest

The authors declare that they have no conflict of inter-

est.

References

1. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei,
L.: Imagenet: A large-scale hierarchical image database.
In: 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee (2009)

2. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft coco:
Common objects in context. In: European conference on
computer vision, pp. 740–755. Springer (2014)

3. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet
classification with deep convolutional neural networks pp.
1097–1105 (2012)

4. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-
based learning applied to document recognition. Pro-
ceedings of the IEEE 86(11), 2278–2324 (1998)

5. Andor, D., Alberti, C., Weiss, D., Severyn, A., Presta, A.,
Ganchev, K., Collins, M.: Globally normalized transition-
based neural networks. arXiv preprint arXiv:1603.06042
(2016)
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