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Abstract
Our research is devoted to answering whether randomisation-based learning can be fully competitive with the classical

feedforward neural networks trained using backpropagation algorithm for classification and regression tasks. We chose

extreme learning as an example of randomisation-based networks. The models were evaluated in reference to training time

and achieved efficiency. We conducted an extensive comparison of these two methods for various tasks in two scenarios:

� using comparable network capacity and � using network architectures tuned for each model. The comparison was

conducted on multiple datasets from public repositories and some artificial datasets created for this research. Overall, the

experiments covered more than 50 datasets. Suitable statistical tests supported the results. They confirm that for relatively

small datasets, extreme learning machines (ELM) are better than networks trained by the backpropagation algorithm. But

for demanding image datasets, like ImageNet, ELM is not competitive to modern networks trained by backpropagation;

therefore, in order to properly address current practical needs in pattern recognition entirely, ELM needs further devel-

opment. Based on our experience, we postulate to develop smart algorithms for the inverse matrix calculation, so that

determining weights for challenging datasets becomes feasible and memory efficient. There is a need to create specific

mechanisms to avoid keeping the whole dataset in memory to compute weights. These are the most problematic elements

in ELM processing, establishing the main obstacle in the widespread ELM application.

Keywords Randomisation-based learning � Extreme learning � Backpropagation algorithm � Neural networks

1 Introduction

Artificial neural networks are among the fastest-growing

areas of artificial intelligence. Existing deep models can

solve tasks such as visual object recognition or automatic

text translation, often achieving human-level performance.

Frequently, these fantastic results need weeks of training

and require substantial computational power. High training

times are a consequence of the most commonly used

training strategy—numerical optimisation using iterative

methods and the backpropagation algorithm. Its purpose is

to determine the error gradient for each parameter of the

network. We will refer to them as classical or standard

networks. High hardware requirements and long training

times are frequent obstacles in applying neural networks in

practical use. These difficulties explain our interest in

searching for an alternative solution. In this work, we

examine on randomisation-based neural networks, which

offer significantly lower training times and claim to per-

form on par with classical networks. Specifically, we focus

on extreme learning machines (ELM), a special case of

random vector functional-link (RVFL) networks.

1.1 Motivation

Motivation for this research stems from our search for

models useful to solve real problems in classification and

regression tasks which are well suited to be applied in
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Wyspiańskiego 27, 50-370 Wrocław, Poland

123

Neural Computing and Applications (2021) 33:15121–15144
https://doi.org/10.1007/s00521-021-06402-y(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0001-7606-3057
http://orcid.org/0000-0002-2918-0688
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-06402-y&amp;domain=pdf
https://doi.org/10.1007/s00521-021-06402-y


practice. We limited our interests to processing inputs in

the form of vectors and raw images. We do not consider

sequential data.

Random vector functional-link networks were proposed

in [32], and their characteristics were discussed in [33].

Since then, they were developed and evaluated [11, 47, 50].

RVFL is a feedforward network with a single hidden layer

and direct links between input and output layers which

bypass the hidden layer. The most important characteristic

of RVFL is that weights assigned to the hidden layer are set

randomly and are not optimised. Output layer weights are

the only trainable parameters.

Authors of [13] proposed extreme learning machines.

ELM follows the same principle as RVFL. In fact, they are

a special case of RVFL, where the direct input-output links

are disabled [5]. Therefore ELM is architecturally identical

to commonly used classical feedforward networks with a

single hidden layer. The only difference between them is

the training method. Authors of ELM claim that time of

assigning weights for ELM is significantly lower than when

using standard network training methods and with com-

parable or even better performance. Extreme learning

machines were used as a baseline for many further models,

such as stacked ELM [51], on-line sequential ELM [14],

LRF-ELM designed for image classification [17], and

biased dropout ELM [25]. ELM can also be considered as a

non-recurrent equivalent of reservoir computing (RC)

models [40]. Because random units construct features (to

deal with nonlinearly separable tasks) without learning, this

model is a natural candidate to overcome classical neural

networks’ time-consuming training. This allows to find all

remaining weights in a closed form, which means that no

iterative numerical optimisation is required.

The use of random parameters in randomisation-based

networks may raise concerns about deteriorating the per-

formance quality. However, authors of [16] prove that a

sufficiently high number of random hidden features allow

them to learn effectively. This statement sounds very

promising, but our literature survey does not result in an in-

depth comparison of backpropagation and randomisation-

based learning—both ELM and RVFL. There are, how-

ever, detailed comparisons between RVFL and ELM

[9, 43, 50], where these models are compared using mul-

tiple datasets for both classification and regression. These

comparisons show that using direct links between input and

output layers does improve the performance in classifica-

tion and does not have a significant effect on the quality of

regression. Nonetheless, these findings do not show whe-

ther randomisation-based learning offers a true alternative

for commonly used backpropagation-based learning

algorithms.

In the original paper on extreme learning [13], there is a

simple comparison between ELMs and networks trained

with backpropagation. The comparison covers two data-

sets—Diabetes for classification and California Housing

for regression, both from the UCI repository [8]. The study

ensures identical architectures for both models so that the

only properties compared were the training algorithms. A

similar comparison was held on the Forest Type dataset,

but in this case, ELM contained twice the number of hid-

den neurons the regular network had. Thus, this compar-

ison lacks objectivity. Unfortunately, the authors do not

specify hyperparameter set-up, e.g. stopping criterion for

backpropagation-based method. This approach causes that

the results are non-reproducible. Further works on extreme

learning include more comprehensive comparisons [16].

They cover more than 10 datasets for regression obtained

from University of Porto repository [46] and several clas-

sification datasets. Hyperparameter set-up is described in

more detail compared to the original paper on extreme

learning [13].

Methods improving the basic RVFL and ELM models

[25, 47] usually use their immediate predecessors or simple

RVFL and ELM as baselines, omitting backpropagation-

based networks.

When proposing the LRF-ELM model, authors of [17]

conduct a comparison to a regular convolutional network

using only a single dataset—NORB. Therefore, conclu-

sions from such experiments are far from being general.

Papers on the extensions of extreme learning usually do not

present any comparison to other training methods [53].

They are focused on showing the difference between the

proposed extension and the basic ELM. Some other works

comparing ELMs to regular deep learning models often use

outdated or inadequate network architectures. We can cite

the paper [21], where authors performed a comparison in

the task of image classification and did not use convolu-

tional networks. When publishing that work (the year

2013), CNNs were just emerging; however, nowadays, they

are considered the primary choice for image recognition

(classification). Despite the dynamic evolution of CNNs,

studies are scarcely comparing them to ELMs.

None of the referred works covered analysis of the

impact of hyperparameters set-up on the ELM perfor-

mance. Therefore, it seems worthy to explore some basic

hyperparameters (the number of hidden neurons, choice of

an activation function, and the value of regularisation

coefficient), because they can profoundly influence results.

Only [15] mentions that ‘‘Since the input weights and

hidden biases of ELM are randomly generated instead of

being fine-tuned, ELM usually needs more neurons than

other learning algorithms’’. Unfortunately, it is not sup-

ported by extensive research.

To summarise, our choice of using extreme learning

machines for comparison was based on three factors:
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• A common use of ELM as a baseline solution among

random weights networks;

• A 1-to-1 correspondence between ELM and classical

neural networks architecture;

• A scarcity of comparisons between ELM and classical

neural networks.

1.2 Contribution

Our research was inspired by the need for practical neural

network applications in classification and regression tasks.

Training standard neural networks often requires compu-

tational power exceeding the capabilities of most research

and development centres. The natural solution lies in

alternative training methods. Because we did not find any

comprehensive comparison between neither ELM or RVFL

and classical networks, we wanted to objectively verify

whether and to what extent ELM can be competitive for

classical feedforward networks trained with backpropaga-

tion (with applied batch SGD) for demanding classification

and regression tasks.

We performed the comparison twice. In the first series

of experiments following the approach from [13], the

network’s and ELM’s capacities (the number of neurons)

are comparable. In this case, we compare both model

properties in the context of training procedure. In the

second one, we tried to reflect a machine learning practi-

tioner approach to training models on a given dataset. This

means that we tuned the model for a given dataset. For

classical networks, we can make use of the extensive lit-

erature and publicly shared implementations. For ELM’s,

this is usually impossible, but short training times allow us

to optimise hyperparameters efficiently. An essential pre-

mise to all experiments is to cover the vast and varied

selection of datasets. This research limited the datasets to

classification and regression tasks from public repositories

(UCI [8] and University of Porto repository [46]), the

current image classification benchmark datasets and artifi-

cially created tasks, skipping the text and audio domain

datasets. We can summarise our contribution as follows:

• comparison of models’ efficiency for more than 50

datasets using both training methods in terms of the

achieved prediction quality and training times (in two

scenarios: models with comparable capacity and well-

suited (supported by literature) networks’

architectures),

• implementation of both models available at: https://

github.com/mkosturek/extreme-learning-vs-backprop,

• statistical analysis of the results, which ensure that any

conclusions drawn from experiments are credible,

• evaluation of the decision boundaries of both models

for several runs,

• ELM’s hyperparameter sensitivity analysis,

• qualitative comparison focused on the practical appli-

cation of both methods,

• formulation of postulates referring to the development

direction for ELM for current demanding datasets.

The contributions are essential for machine learning

researchers and practitioners to know which model to use

depending on the dataset size, and what results can we

expect regarding training time and the model’s efficiency.

Our research gives some insights in the decision boundaries

of both models. It is crucial with the growing need to

process massive datasets. The importance of our contri-

butions can also be assistive to the random weights net-

work researchers—by showing current challenges and

obstacles in practical applications of ELM models and the

need to compare enhanced ELM models to classical neural

networks. It is also worth saying that ELM’s hyperpa-

rameter sensitivity analysis is helpful in defining how to set

their values properly.

1.3 Paper structure

The paper consists of six sections. Section 1 presents an

introduction to the topic of this study. In Sect. 2, we

characterise the two compared approaches to training

neural networks—based on backpropagation in Sect. 2.1

and extreme learning in Sect. 2.2. In Sect. 3, we depict the

procedure we adopted to conduct experiments. Section 5

presents experimental results and conclusions derived

directly from them. In Sect. 6, we show our insights from

the experimental study and present postulates about future

development of ELMs. Finally, in Sect. 7, we summarise

all conclusions drawn from this research.

2 Description of compared models

In this section, we briefly present both models describing

their architectures and the method of training. We focus on

classification and regression as they are the two most

common tasks in real applications. It is necessary to pre-

pare the training set used to find parameters h (weights and

biases) of the models to solve these problems. The training

set consists of vector pairs \xi; yi [ , i.e. the input vector

and corresponding output vector (for classification outputs

are encoded using one hot principle). In the case of

regression, the corresponding output is a scalar yi. For-

mally, the task is solved by a function f ðx; hÞ implemented

by a classical neural network or ELM. In the case of ELM,

the parameters h are calculated in one step, in opposite to

classical network where training is an iterative procedure

that optimises a loss function Lðf ð�; hÞ; x; yÞ. Having model

Neural Computing and Applications (2021) 33:15121–15144 15123

123

https://github.com/mkosturek/extreme-learning-vs-backprop
https://github.com/mkosturek/extreme-learning-vs-backprop


parameters, the output ŷðxÞ specifies the predicted class or

predicted value in the case of regression.

2.1 Classical neural networks

The integral part of each neural network is a neuron. The

formal description of its operation is described by Eq. 1.

ŷðxÞ ¼ f
XN

i¼1

wixi þ b

 !
ð1Þ

where ŷ is the neuron’s output, N is the number of inputs, xi
stands for the value of the ith input and wi for the weight

assigned to the ith input, b depicts the bias, and f is an

activation function.

Each neuron has many inputs represented by a vector

x ¼ ½x1; . . .; xN �. The input signals combined by weighted

sum create the total neuron input activity. Weights w ¼
½w1; . . .;wN � are assigned to each neuron input connection

and are tuned during the training process. Bias b is a weight

assigned to additional input, where the signal is always set

to 1. The output signal ŷ is created on the basis of the total

input transformation by the activation function f.

In this paper, we consider layered, feedforward network

architectures. The first one is the multilayer perceptron

(MLP), where neurons are fully connected in neighbouring

layers. Further, we will also describe the convolutional

neural network (CNN).

MLP is composed of an input layer, one or many hidden

layers, and an output layer. The number of hidden layers

and the number of neurons in each layer are hyperparam-

eters of a network. The number of outputs depends on the

problem solved by the network (classification or regres-

sion). For simplicity, in the description below we assume

the simplest MLP network with one hidden layer. The

signal processing in the network can be described as a

sequence of matrix operations for all patterns in the dataset

X given in Eq. 2

HðXÞ ¼ f ðXWðhÞ þ bðhÞÞ ð2Þ

where WðhÞ is a matrix of hidden layer’s parameters, bðhÞ is

a vector of hidden layer’s bias values, and f is an activation

function. The network output is defined by Eq. 3.

ŶðXÞ ¼ f ðHðXÞWðoÞ þ bðoÞÞ ð3Þ

where WðoÞ and bðoÞ are a matrix of weights and vector of

biases in the output layer.

There are many different activation functions, com-

monly used are: sigmoid, hyperbolic tangent, step function,

ReLU [19, 30], linear function, and softmax in the output

layer for classification problems.

Another type of neural network considered in the com-

parison is the convolutional neural network (CNN) [24]. In

the convolutional layers, neurons are not fully connected.

A given neuron is only connected to a defined subset of

neurons in the subsequent layer. Moreover, weights

assigned to these connections are shared between neurons

of a single feature map of the convolutional layer. They are

widely used in image processing because they learn to

extract complex image features that serve the performed

task the most. In each convolutional layer, one defines a

kernel (or a filter)—matrix with assumed sizes, signifi-

cantly lower than the image resolution. Filter values are

tuned during training the network; they correspond to

neurons’ connections weights. A single convolutional layer

may consist of multiple filters, each producing a separate

feature map. While processing an image, convolutional

filters are moved across the image stepwise by a constant

number of pixels, and convolution operation is calculated.

It defines the total activation for one neuron in a convo-

lutional layer, Eq. 4.

ykijðX;WÞ ¼
XP

p¼1

XQ

q¼1

wkpq xiþp;jþq ð4Þ

where X is the input image, W denotes a matrix of con-

volutional filters (size: K � P� Q), K is the number of

filters (feature maps), P� Q is the size of a single con-

volutional filter, and i, j are a single neuron’s coordinates.

Similarly to MLP, convolution output values are pro-

cessed by an activation function, and then pooling is

applied. Its role is to decrease the size of a feature map.

Usually it is implemented as max operation (max-pooling)

or average (average-pooling) from the sliding window.

Pooling allows a convolutional network to be more robust

to small image rotations and translations.

Neural network training is performed as an optimisation

task. We search for the cost (loss) function minimum. It

defines the error the network makes approximating the

target function F . Most commonly used loss functions are:

mean square error, binary cross-entropy, and categorical

cross-entropy.

The primary method of neural network training is the

gradient descent method that is shown in Algorithm 1. It

requires a training dataset D. In each iteration, the network

assigns its output (line 2), and then the model parameters

are corrected by a small value in the direction opposite to

the gradient of cost function L (line 3). As an effect, the

cost value decreases. The procedure lasts until a stopping

criterion is not satisfied.

Long training may cause network overfitting; therefore,

in practice, some other techniques are applied. One of them

is early stopping. It relies on setting aside an additional

validation dataset. In every iteration, it is used to monitor

the cost value. The training is stopped when the validation

cost increases.
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Algorithm 1 Gradient Descent Method for neural network training

Input: D ¼ ðX;YÞ - training data,

Output:w - final weights values

Require: L - the cost function minimised during training,

D ¼ ðX;YÞ - training data,

f - the transformation performed by a network trained with the

weights w,

a - learning coefficient

w initial randomly assigned weights

1: repeat

2: Ŷ f ðX;wÞ

3: Dw oLðŶ;YÞ
ow

4: w w� aDw

5: until stopping criterion is false

6: return w

The gradient descent method requires a calculation of

the loss function gradient value for all network parameters.

For complex, multilayered network architectures it is a

complicated task; therefore, to solve this problem the

Backpropagation algorithm [26] is in everyday use. It

assigns the loss function gradient for the last network layer,

and then using the chain rule, it computes the gradient

value for the weights in the immediately preceding hidden

layer. For a network with more layers, analogously, the

gradient in the nth layer is calculated by propagating the

loss function gradient from ðnþ 1Þth layer. We can cal-

culate the loss function gradient for the weights in the nth

network layer using the following recursive definition.

oL
oWn

¼ fn�1 dn ð5Þ

where: di ¼
Wiþ1diþ1 � f 0i
� �>

i\L

L0 � f 0L
� �>

i ¼ L

(
ð6Þ

where L is the loss function, L denotes the total number of

layers (and the index of the output layer), Wi is the weight

matrix between ði� 1Þth layer and ith layer, fi is the acti-

vation vector in the ith layer, 0 denotes a value of the

derivative (or a gradient), and the operator � is the

Hadamard product.

The method described above is in its simplest form. In

common use is stochastic gradient [2], where in a single

iteration, the network parameters are updated based on a

small portion of the training dataset—a batch. Another

improvement is using momentum. Other advanced meth-

ods apply optimisation methods of learning coefficient as,

for instance, ADAM [22] method. A high level of gener-

alisation is the aim of each machine learning model.

Techniques that increase generalisation are called regu-

larisation. The most popular ones are L2 method and

Dropout.

2.2 Extreme learning machines

ELMs are based on random projections of input feature

space to the hidden features and then on linear regression

as opposed to classical neural networks. ELM hidden

connections can be weighted randomly, and there is no

need to tune them.

The most straightforward ELM architecture is a feed-

forward neural network containing a single hidden layer. It

resembles the MLP architecture, but the weights between

input and hidden layer are randomly assigned, and not

tuned. They perform some random black-box transforma-

tion from input feature space to the hidden features. The

parameters are tuned in the output layer only.

Extreme learning itself is not necessarily limited to this

simple architecture. It could be incorporated in many well-

known deep learning models. Huang et al. [17] propose a

method based on extreme learning and CNNs to perform

image classification. The model was called local receptive

fields ELM (LRF-ELM). Local receptive fields are a gen-

eral concept. It assumes that a single neuron is responsible

for the aggregating signal from a specific input image

region. However, usually for implementation purposes,

LRF-ELM simplifies a network to a single convolutional

layer with pooling and a fully connected output layer. Only

the weights of the output layer are optimised. The convo-

lutional layer acts as the random feature extractor. In other

words, the values of all convolutional filters are chosen at

random. There are two additional operations specific to

LRF-ELM. The first one is orthogonalisation of filters after

their initialisation. It aims to minimise the risk of produc-

ing redundant features by randomly initialised convolu-

tional filters. The second one is a specific pooling

method—square root pooling, given in Eq. 7, which

enables the data dimensionality reduction and introduces

nonlinearity in the network. This operation is crucial

because there is no activation function after the convolu-

tional layer in LRF-ELM.

Square Root PoolingðXÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XD1

i

XD2

j

x2
ij

vuut ð7Þ

where X is the input feature map (output of convolution

layer) with size D1 � D2. It is a matrix of xij elements.

In order to compute optimal output layer weights b,

Eq. 9 has to be solved—network outputs should match the

expected values Y from the dataset. H represents a matrix

of random features extracted from the training dataset X.

Neural Computing and Applications (2021) 33:15121–15144 15125

123



For single hidden layer networks, they are computed

according to Eq. 8.

H ¼ f ðXW0 þ bÞ ð8Þ

Y�Hb ¼ 0 ð9Þ

where: X, Y,-training inputs and expected outputs,

respectively, W0, b-weights and biases in a hidden layer—

both random,f-activation function.

To find the output layer weights b from Eq. 9, it is

necessary to calculate the inverse of the matrix H, as

presented in Eq. 10, which can be computationally difficult

for high-dimensional or large datasets. To address this

issue, ELM authors proposed to use Moore-Penrose pseu-

doinverse, which leads to the final solution for the optimal

weights, as shown in Eq. 11. It is equivalent to the least

squares optimisation.

b ¼ H�1Y ð10Þ

b ¼ ðHTHÞ�1HTY ð11Þ

This algorithm is called extreme learning. It is also applied

in classification layer in LRF-ELM, which training proce-

dure is presented in Algorithm 2.

Algorithm 2 LRF-ELM training procedure

Input: Training data,

Output: Trained LRF-ELM model

1: Randomly initialise convolutional filter weights

2: Orthogonalise filter weights

3: Calculate a matrix of hidden features H (result of convolution and

pooling)

4: Compute optimal weights for classification layer using Eq. 11

5: return LRF-ELM (with filters set in Step 2 and output weights

from Step 4)

Just as with classical neural networks, there exist some

techniques that improve the performance of ELMs. ELMs

can be regularised using L2 regularisation [12, 17]. Equa-

tion 12 shows regularised solution for optimal ELM

parameters. C denotes regularisation coefficient and 1 is the

identity matrix.

b ¼ ðC1þHTHÞ�1HTY ð12Þ

Even though ELM parameters are chosen at random, the

probability distribution used for sampling them may impact

the model performance. Authors of [45] compare various

distributions with different variances. Authors recommend

an excellent default choice of distribution—Gaussian with

mean equal to 0 and a standard deviation less than or equal

to 0.1.

The presentation of the essential elements of both

models and teaching methods was the aim of this sec-

tion. The next one is devoted to experimental research to

compare both models in terms of learning time and

achieved results.

3 Research methodology

The experiments on ELM hyperparameter sensitivity allow

us to know hyperparameters’ influences on the final ELM’s

results. This analysis is described in A. It enables us to

assess which parameter has a particularly strong impact on

the model responses and to determine good default values

for hyperparameters.

We have designed two series of experiments: in the first

one, models have comparable capacities. In the second one,

they have well-suited architectures based on the literature

review or hyperparameter optimisation.

The first series is designed to compare just the learning

algorithms. Given identical network architectures, we train

them using extreme learning and backpropagation. This

comparison can show whether it is beneficial to choose one

algorithm over the other. This series consists of two parts.

The first part refers to ELM and fully connected networks

trained with backpropagation, performing classification

and regression tasks on data with vector representation.

This part of experimentation utilises well-known, real-life

benchmark datasets, datasets used in [16] and several

artificial datasets described in Sect. 4.

To ensure the objectivity of conclusions, we used

datasets with diverse properties concerning data dimen-

sionality, class balance, the sparsity of features, presence of

continuous and discrete features. Datasets were acquired

from two public repositories: UCI [8] and University of

Porto repository [46]. Tables 1 and 2 present characteristics

of datasets for classification and regression.

The second part of this series is devoted to the image

classification task. We considered two approaches to image

classification: � using external extractor of visual features

and fully connected network, � using convolutional net-

work, which learns features on its own.

Previously mentioned LRF-ELM models [17] allow

researchers to utilise extreme learning for convolutional

networks. Authors of [18] show that ELM for image

classification performs well when using HOG features

(histogram of oriented gradients). The paper considers only

one task—road signs classification. However, it seems

worthy to investigate this approach on more datasets,

described in Table 5. Therefore, the models covered in this

comparison are:
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• LRF-ELM,

• Convolutional network trained with backpropagation,

• ELM using HOG features,

• fully connected network trained with backpropagation

on HOG features.

In the second series, we try to tune the architectures and

hyperparameter set-ups for a given problem, just like a

machine learning practitioner would do. In this task, we

make use of the available literature. This means that for

classical network we often refer to the best found results

reported in other papers, while we perform our own

hyperparameter search for ELMs. This series also consists

of two parts. Analogously, the first part is based on clas-

sification and regression on data with vector representation

(this time however, we do not use synthetic datasets), and

the second concerns image classification. The choice of

image datasets is extended to two variants of ImageNet—

with resolutions of 16� 16 and 32� 32 pixels. We com-

pare training times when possible—for training performed

on our own, and when the time is given in the papers we

refer to. But the main focus lies on the comparison of the

performance measured with various metrics:

• F1-score in the first series of comparison for the

classification tasks. In this series, we performed training

and evaluation of all models on our own. Therefore we

were able to measure the F1-score, which is more

robust to imbalanced classes than accuracy.

Table 1 Characteristics and descriptions of datasets for regression from UCI and University of Porto repositories used for comparisons

Dataset No of

samples

No of

features

Min. value of

target variable

Max. value of

target variable

Description

Auto MPG 392 21 9.0 46.6 Estimation of car fuel consumption. Five input variables are continuous,

remaining 16 features represent one-hot encodings of two discrete

variables

Bank 8192 8 0.0 0.8 Estimation of the number of customers who decide to quit the queue

California

Housing

20,640 8 0.15 5.0 Median prediction of housing prices in a neighbourhood described by 8

input variables. Dataset acquired from StatLib repository [29]

Delta

Ailerons

7129 5 �2:1 �10�3 2.2 �10�3 Prediction of variance of ailerons positioning in the F-16 fighter aircraft

Machine

CPU

209 6 6 1150 Prediction of multiple CPUs performance based on their specifications

Servo 167 19 0.13 7.1 Prediction of latency in a servo system

Table 2 Characteristics and descriptions of datasets for classification from UCI repository used for hyperparameter sensitivity analysis and for

comparisons

Dataset No of

classes

No of

samples

No of

features

Minority

class size

Majority

class size

Description

Breast Cancer

(Ljubljana)

2 277 41 81 196 Prediction of a breast cancer recurrence. All features are one-hot

encoded

Breast Cancer

(Wisconsin)

2 569 30 212 357 Prediction of a breast cancer class (benign or malignant) [28]

CNAE-9 9 1080 856 120 120 Documents represented with bag-of-words; sparse and high-

dimensional encoding, classes are equinumerous

Forest Cover

Type

7 581,000 54 2747 283,000 Forest classification based on cartographic features; large dataset

with imbalanced classes

Glass

Identification

6 214 9 9 76 Classification of glass shards collected as crime evidence. Highly

imbalanced classes

Landsat 6 6435 36 626 1533 Land cover classification using satellite image continuous features.

Classes are imbalanced

Sonar 2 208 60 97 111 Land mines and stones classification based on a sonar spectrogram;

high dimensionality-to-size ratio, classes balanced

Urban Land

Cover

9 675 147 29 122 Land cover recognition using features from aerial images; relatively

small, highly dimensional

Wine 3 178 13 48 71 Classification of 3 types of wine
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• Accuracy in the first series of comparison for the

classification tasks. This time we referred to results

reported in literature which are usually stated using

only the accuracy metric.

• RMSE (normalised) for the regression task.

Their definitions are given below.

F1-score. It is a measure of binary classification quality.

It summarises the number of Type I and Type II errors

made by the classifier. Type I errors are also called false

positives. They correspond to the situations where the

classifier mistakenly predicts a positive class. Type II

errors false negatives mean that the classifier mistakenly

predicted the negative class. F1 score is therefore defined

as stated in Eq. 13

F1 ¼
2 � TP

2 � TPþ FN þ FP
ð13Þ

where: TP- number of true positives (correct predic-

tions of positive class,), FP- number of false positives,

FN- number of false negatives. To use this metric for

multiclass classification, we can simply compute binary

F1-score for each class separately and then evaluate an

average F1-score weighted by the numbers of samples

in each class. The formal description is given in

Eq. 14.

F1 ¼
PK

k¼1 wkF
ðkÞ
1PK

k¼1 wk

ð14Þ

where: F
ðkÞ
1 - F1 score for class k, K- number of classes, wk-

number of samples in class k. For simplicity, we will

denote both binary and multiclass version of this measure

as F1 score.

Accuracy. It is the most basic measure of classification

performance. It is simply a ratio of correctly classified

samples and the number of all data samples in the dataset,

as stated in Eq. 15.

Accuracy ¼ #of correct predictions

#of all test data samples
ð15Þ

RMSE. Root mean square error is a measure of

regression quality. It is defined in Eq. 16.

RMSEðŶ;YÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i ðŷi � yiÞ2

N

s
ð16Þ

where: Y-vector of expected model responses for N data

samples, Ŷ-vector of actual model responses for N data

samples, N-number of samples in the testing dataset. In

this paper, we present normalised values of RMSE.

Normalisation is performed by dividing the value of

RMSE by the range of the target variable (the difference

between the greatest and the lowest value). It makes a

more straightforward interpretation of the model error

magnitude without any domain knowledge about the

target variable.

4 Datasets used

In selecting datasets for experimental research, we were

guided by the diversity of the data in terms of class bal-

ancing, data dimensions, number of classes, continuous and

discrete data, and sparsity of features. Datasets were

acquired from two public repositories: UCI [8] and

University of Porto repository [46]. Table 1 presents

characteristics of datasets for regression and Table 2 for

classification. Moreover, some synthetic datasets were

considered.

We also propose three types of artificial classification

datasets and several datasets for regression. They are

characterised in Tables 3 and 4, and described in detail in

Appendix B.

Image classification datasets. None of the available

ELM studies presents results obtained on benchmark image

classification datasets, such as MNIST OCR and CIFAR-

10. For this reason, we included them in the experiments.

In addition, we use the NORB dataset, which was used in

[17], and the GTSRB set, used in [18]. All image datasets

are characterised in Table 5.

5 Experimental study

We conducted all experiments on a computer with a

specification presented in Table 6.

For the needs of the study, the ELM and LRF-ELM

models were implemented using Python 3.6 and PyTorch

1.4 library [34]. All the reference models (fully connected

and convolutional networks with backpropagation) were

also implemented based on the following libraries: sci-

kit-learn, scipy, scikit-posthocs, OpenCV.

Our implementation is available at: github.com/mkosturek/

extreme-learning-vs-backprop.

The first experiment compares ELM models and neural

networks trained using backpropagation (also referred to as

MLP) in each series. The next one focuses on image

datasets recognition. The simple ELM and MLP models

working on HOG features extracted from images are

compared. We also examine models dedicated to image

classification: LRF-ELM and convolutional neural

networks.

5.1 Models with comparable capacity

In this series, we compare models with the same archi-

tecture and comparable number of neurons.
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Table 3 Characteristics of artificial datasets for classification used for hyperparameter sensitivity analysis and for comparisons

Dataset No of classes No of samples No of features Minority class size Majority class size

Nested hyperspheres 2 2000 2–1000 50% 50%

Hypercube vertices 2 2000 2–10 � 50% � 50%

Intertwined spirals 2D 2 2000 2 50% 50%

Intertwined spirals 3D 2 2000 3 50% 50%

Table 4 Characteristics of artificial datasets for regression used for comparisons

Dataset No of samples No of features Min. value of target variable Max. value of target variable

Linear function 2000 1–1000 0 0

Second degree polynomial of multiple variables 2000 1–1000 0 0

Sine and cosine 2000 1 -1 1

SinC 2000 1 -0.2 1

Friedman spline I 2000 5–1000 � 0 � 30

Friedman spline II 2000 4 � 0 � 1760

Friedman spline III 2000 4 � 0 � 1760

Table 5 Specifications and descriptions of image classification datasets used in this study

Dataset Size Images examples Description

MNIST

OCR

70,000 Recognition of handwritten digits. Image resolution: 28�28 px, Black and white images,

Number of classes: 10

CIFAR-

10

60,000 Recognition of 10 various classes of objects on photographs. Image resolution: 32�32 px,

RGB colour images, Number of classes: 10

Small

NORB

48,600 Classification of objects photographed from various angles and with varying lighting. Image
resolution: 96�96 px, Grayscale images, Number of classes: 5

GTSRB 51,839 Recognition of German road signs. Image resolution: various, we rescaled them to the

median resolution: 43�43 px, RGB colour images, Number of classes: 43

ImageNet 1.2

mln

Classification of various objects. Image resolution: 224�224, rescaled to two variants:

16�16 px and 32�32 px, RGB colour images, Number of classes: 1000

Neural Computing and Applications (2021) 33:15121–15144 15129

123



5.1.1 Experiment 1: comparison of ELM and neural
networks performance and training times for input
data with vector representation

The purpose of the study is to conduct a comparison of the

performance and training time of ELM models and neural

networks characterised by similar capacities using datasets

with the vector representation for regression and classifi-

cation tasks. We based the choice of values of 3 hyper-

parameters (regularisation coefficient, activation function,

and hidden layer size coefficient) on the hyperparameter

sensitivity analysis (Appendix A). We chose values that

resulted in decent performances on average on various

datasets. Eventually, the following hyperparameter values

were applied:

Regularisation - L2 was applied for both ELM and MLP

with C ¼ 0:01,

Activation function - ReLU for both MLP and ELM,

Optimisation algorithm - ADAM algorithm [22] was

used while training by backpropagation,

Batch size - set to 16 while training by backpropagation,

Learning rate - set to 0.001 while training by

backpropagation,

Training stopping criteria - early stopping with patience

set to 3 epochs and maximum number of epochs set to

200,

Hidden layer size coefficient - based on the analysis of

the hyperparameter sensitivity in A, h ¼ 10. It applies

for both ELM and backpropagation trained network. (It

is in contrast to the comparison presented in [16], where

the number of neurons in ELM was usually about twice

as high as the MLP).

Significance level - a ¼ 0:05

The experiment was conducted on 23 classification

datasets and 30 datasets for regression presented in

Tables 1 and 2, respectively. Moreover, synthetic datasets

were used. They are described in detail in Appendix B. We

generated data in multiple variants with different dimen-

sions, varying from 1 up to 1000 dimensions. Each syn-

thetic dataset contained 2000 examples.

Each model was evaluated on every dataset using a

fivefold cross-validation, repeated 10 times, giving a

sample of 50 results for each model on each dataset. In the

classification task, the F1 measure was used to compare the

performance. For the regression task, we used normalised

RMSE. Normalisation was performed by dividing the

RMSE measure by the range of the target variable (the

difference between the maximum and minimum). To

evaluate the training speed, we measured the training time

in seconds. To ensure the reliability of the comparison of

the average values, we used the dependent t-test for paired

samples, but, as indicated in [3], in the case of repeated

cross-validation, the basic form of this t-test may lead to

false and non-reproducible results. Therefore we used a

modified paired-samples t-test, called corrected repeated

k-fold cross-validation test.

Tables 7 and 8 show the results of comparison of per-

formance and training times in classification and regression

tasks. Whenever a p-value from the statistical test was

below the significance level a ¼ 0:05, the better model’s

result was presented in bold, denoting a significant differ-

ence between compared models.

Discussion Considering classification performance in

terms of F1 measure, the results presented in Table 7 show

that for most sets (15 out of 23) the statistical test did not

show any significant difference between the average results

of the models. On 8 sets, where the differences were sta-

tistically significant, better results were achieved by ELM.

It is worth noting that the differences between the models

were found to be significant on high-dimensional synthetic

sets rather than on their low-dimensional counterparts.

A qualitative comparison of decision regions of sample

ELM and MLP models is also interesting. For the simplest,

two-dimensional datasets, they are visualised in Figs. 1, 2,

3. It is worth underlining the significant differences in the

shapes of the decision regions for different runs of the

ELM model.

Although the identified decision regions usually cor-

rectly cover the training set’s observations, these areas

undergo significant shape changes just beyond the con-

centration areas of observations in the case of ELM. It is

particularly noticeable for a dataset of nested hyperspheres,

where the inner circle class region also appears outside

both circles. Decision boundaries for MLP seem to be

much simpler than for ELM. It can be seen that the deci-

sion boundaries for ELM vary for each of the 15 runs of the

method. This phenomenon suggests better generalisation

Table 6 Specification of the

computer on which the

experiments were conducted

Parameter Value

Processor (CPU) Intel i7-4790K

Memory size 24 GB

Graphical processor (GPU) NVidia AORUS GeForce GTX 1080 Ti 11G

Operating system Ubuntu 18.04
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capabilities of MLPs. For most regression datasets, the

statistical test showed significant differences in the quality

of model performance (22 out of 30 sets).

Of these 22 comparisons, only 8 indicated better results

of ELM model, and 14 indicated better results on MLP.

This effect is different from the classification comparison

result. However, in Table 8, it can be seen that the MLP

achieved significantly better results on only one real-life

set, Servo, and three synthetic sets: linear function, 2nd

degree polynomial, Friedman I, but with a majority of their

possible dimensions. ELM proved to be significantly better

on three real sets, on synthetic sets based on trigonometric

functions and Friedman II and III functions. It should be

noted that all of these 8 sets are low-dimensional, e.g.

dimensionality did not exceed 10.

The obtained results indicate that ELM models achieve

better results in low-dimensional and nonlinear regression

problems, which occur in many real-life tasks, in sets based

on trigonometric functions and Friedman II and III curves

based on physical phenomena. MLP, on the other hand,

achieves better results for high-dimensional problems and

those with linear or polynomial dependencies.

The comparison shows that ELM models are signifi-

cantly faster than neural networks trained by backpropa-

gation. On each of the 53 sets, for both classification and

regression tasks, the statistical test showed a significant

difference in processing times, always in favour of ELM.

Typically, learning times for MLP turn out to be 4 orders of

magnitude higher than for ELM.

5.1.2 Experiment 2: comparison of ELM and neural
networks performance in image classification

The aim of the experiment is to compare networks trained

with extreme learning and backpropagation in the task of

image classification. We compare F1-measure and training

times. The following hyperparameter values were set after

preliminary studies:

Table 7 Comparison of the average F1-measure and training times (in seconds) for ELM and MLP

Dataset F1-measure Training time

ELM MLP ELM MLP

Breast Cancer (Ljubljana) 0.4722 0.4755 0.0010 0.1013

Breast Cancer (Wisconsin) 0.9729 0.9699 0.0015 0.4296

CNAE-9 0.9261 0.9306 0.1278 28.5683

Forest Cover Type 0.7140 0.6395 2.1873 292.6776

Glass 0.6418 0.5197 0.0004 0.2415

Landsat 0.8613 0.7762 0.0104 1.7258

Sonar 0.7767 0.7387 0.0009 0.1666

Urban Land Cover 0.7824 0.7559 0.0075 0.6181

Wine 0.9787 0.9820 0.0004 0.3228

Hypercube vertices (2 dim.) 1.0000 1.0000 0.0008 1.1139

Hypercube vertices (3 d.) 1.0000 1.0000 0.0004 1.9344

Hypercube vertices (5 d.) 0.9859 0.9545 0.0004 3.7209

Hypercube vertices (7 d.) 0.7575 0.7140 0.0006 1.9322

Hypercube vertices (10 d.) 0.5672 0.4536 0.0011 0.3202

Hyperspheres (2 d.) 0.7828 0.9154 0.0003 5.5755

Hyperspheres (3 d.) 0.9144 0.9142 0.0004 4.3765

Hyperspheres (10 d.) 0.9272 0.7180 0.0009 1.6621

Hyperspheres (30 d.) 0.9362 0.4153 0.0040 0.2685

Hyperspheres (100 d.) 0.8683 0.4789 0.0312 0.6166

Hyperspheres (300 d.) 0.6671 0.3035 0.1288 3.3525

Hyperspheres (1000 d.) 0.5480 0.4274 0.4061 46.9665

Spirals (2 d.) 0.6960 0.6655 0.0004 0.7449

Spirals (3 d.) 0.6195 0.5705 0.0004 0.5910

Number of outcomes with results significantly

better than the competing model’s

8 0 23 0

When p-value from statistical test is below the significance level a ¼ 0:05, indicating significant difference in models’ average performance, the

better result is presented in bold
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Regularisation coefficient - C ¼ 0:01. It was set based on

the preliminary experiment, which is not shown here.

Hidden layer size coefficient - for models based on HOG:

h ¼ 10,

Activation function - ReLU,

Architecture of convolutional networks - one convolu-

tional layer, one pooling layer, with no activation

function for both CNN and LRF-ELM. A flattened

feature map after pooling is the input to the fully

connected classification layer,

Number and size of convolutional filters - 10 filters, with

a size of 5�5 pixels, the stride is 1 pixel for both LRF-

ELM and CNN,

Pooling method and window size - Square Root Pooling

for LRF-ELM and CNN. Window size is 5�5 pixels,

with the stride equal to 2 pixels,

Optimisation algorithm when using backpropagation -

ADAM [22],

Batch size while training by backpropagation - for MLP

model with HOG features: 32; for CNNs, the batch size

was 128,

Table 8 Comparison of the average RMSE and training times (in seconds) for ELM and MLP

Dataset RMSE Training time

ELM MLP ELM MLP

Auto MPG 0.0784 0.0746 0.0010 0.9232

Bank 0.0474 0.0796 0.0028 1.4651

California Housing 0.1456 0.1494 0.0072 5.5622

Delta Ailerons 0.0394 0.0716 0.0012 1.1028

Machine CPU 0.0409 0.0813 0.0003 0.6753

Servo 0.1247 0.0795 0.0006 0.2217

Linear function (1 dim.) 0.0107 0.0078 0.0004 2.1336

Linear function (3 d.) 0.0021 0.0012 0.0005 1.0053

Linear function (10 d.) 0.0037 0.0018 0.0012 1.6946

Linear function (30 d.) 0.0056 0.0046 0.0040 2.2008

Linear function (100 d.) 0.0099 0.0050 0.0317 1.4333

Linear function (300 d.) 0.0216 0.0063 0.1311 6.3831

Linear function (1000 d.) 0.0366 0.0053 0.4212 138.9691

2nd deg. polynomial (1 d.) 0.1214 0.0078 0.0003 3.0669

2nd deg. polynomial (3 d.) 0.0721 0.0061 0.0004 6.1652

2nd deg. polynomial (10 d.) 0.0872 0.0073 0.0010 7.1019

2nd deg. polynomial (30 d.) 0.1202 0.1056 0.0042 4.7240

2nd deg. polynomial (100 d.) 0.2132 0.0010 0.0312 0.6630

2nd deg. polynomial (300 d.) 0.2600 0.1011 0.1291 2.9807

2nd deg. polynomial (1000 d.) 0.2297 0.0544 0.4217 44.3745

Sin 0.0570 0.2078 0.0010 3.1900

Cos 0.0522 0.2314 0.0013 4.5293

SinC 0.0608 0.1303 0.0013 0.7917

Friedman I (5 d.) 0.0596 0.0423 0.0014 4.5284

Friedman I (30 d.) 0.0963 0.0813 0.0047 1.5832

Friedman I (100 d.) 0.1326 0.0974 0.0330 1.2921

Friedman I (300 d.) 0.1651 0.1073 0.1353 7.2085

Friedman I (1000 d.) 0.1443 0.1401 0.4193 107.4185

Friedman II 0.0165 0.0405 0.0011 7.6029

Friedman III 0.0768 0.0949 0.0010 1.1100

Number of outcomes with results significantly better than the competing model’s 8 14 30 0

When p-value from statistical test is below the significance level a ¼ 0:05, indicating significant difference in models’ average performance, the

better result is presented in bold
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Learning rate - set to 0.001 while training by

backpropagation,

Training stopping criteria - early stopping with patience

set to 3 epochs and maximum number of epochs set to

200,

Significance level for statistical testing - a ¼ 0:05,

HOG descriptor set-up - the number of gradient orien-

tations is 9, the block size is 2�2 cells, each cell is 8�8

pixels.

The experiment was conducted on 4 datasets, the char-

acteristics of which are presented in Table 5. CIFAR-10

dataset was used in its original form, the HOG vector for

(a) (b)

Fig. 1 Visualisation of decision regions of sample models on the nested circles dataset (two-dimensional hyperspheres)

(a) (b)

Fig. 2 Visualisation of decision regions of sample models on the XOR classification dataset (two-dimensional hypercube vertices)

(a) (b)

Fig. 3 Visualisation of decision regions of sample models on the intertwined spirals dataset
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this set consists of 324 features. GTSRB dataset consists of

various sizes of images therefore, for the LRF-ELM

models and convolutional networks, all images were scaled

to 32�32 pixels. The HOG features were calculated on

images scaled to a resolution of 43�43 pixels. This size is

a median size of all images in the set. The HOG vector for

this set consists of 576 features. MNIST dataset was used in

its original form. The vector of the HOG features for this

set consists of 144 features. All images in the NORB

dataset are 96�96 pixels. Due to hardware limitations, for

networks using convolutional layers, the images were

scaled to a resolution of 32�32. HOG features were

determined for images scaled to 48�48 pixels. The HOG

vector for this set consists of 900 features.

On every dataset, a fivefold cross-validation was repe-

ated five times for each of the tested models. Comparison is

then based on performance measures averaged over these

repetitions. For performance comparison, F1 measure was

used, while the time measured in seconds was used to

assess the training speed. Time measurement includes only

model training and not HOG features extraction.

Figure 4 shows the results of the performance compar-

ison for each of the four datasets. We performed the cor-

rected repeated cross-validation t-test pairwise for all

models, we assumed significance level a ¼ 0:05. These

tests allowed us to determine that on CIFAR-10 and

GTSRB datasets, both CNN and HOG?ELM approach

resulted in the best performances without significant dif-

ferences between them; on MNIST dataset, CNN was

solely the best performing model; on NORB the best

results were achieved with HOG?ELM approach. More-

over, these tests show that the performance results of CNN

models trained on CPU and GPU do not differ, so they are

only used to compare training times.

Figure 5 shows a comparison of the training times.

Corrected repeated cross-validation tests were also per-

formed. They showed that each of the average training

times was significantly different from the others.

Discussion Figure 4 shows that CNN and ELM models

using HOG features provide the best classification perfor-

mance the same number of times. On CIFAR and GTSRB

sets, these two models achieved results that did not differ

significantly. On the MNIST set, convolutional networks

using backpropagation proved to be better, and on the

NORB set, the ELM model achieved the best results.

LRF-ELM achieved a result comparable to CNN only

on NORB and GTSRB, while in the two other cases net-

works trained by backpropagation were superior.

A surprisingly high improvement in classification per-

formance was achieved by the use of extreme learning

instead of backpropagation when using HOG features.

Three out of four ELM models using these features also

proved superior to the LRF-ELM model, which has been

designed for image processing.

It should be noted that the architecture of the convolu-

tional networks used in this experiment was very limited in

comparison with the usual design of such networks; for

example, the number of filters was limited to 10. This is

due to the high memory requirements of the LRF-ELM

model and hardware limitations. In the case of convolu-

tional networks with backpropagation, the size of the net-

work could be greatly increased. Therefore, drawing

conclusions from a comparison of image-based models

with those using HOG features may not be fully justified.

The superiority of a simple extractor over the use of a

NORBMNISTGTSRBCIFAR
Dataset
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Fig. 4 Comparison of the

classification performance of

tested models on 4 datasets for

image classification. Average

and standard deviation of results

obtained from five repetitions of

fivefold cross-validation are

presented
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dedicated image network architecture cannot be undeniably

confirmed.

Again, the comparison showed that extreme learning is

significantly faster than backpropagation. On three out of

four sets, LRF-ELM proved to be the fastest, while ELM

using the HOG feature extractor was the fastest on a single

set. The use of the GPU allowed to accelerate backpropa-

gation training more than a hundred times to a level

comparable to ELM models using HOG features. However,

it did not achieve learning times as short as LRF-ELM.

5.2 Models with well-suited architectures
for a given dataset

In this series, we conduct experiments using machine

learning practitioner’s approach. Following this assump-

tion, the experiments compare both methods’ performance

using models with hyperparameter values tuned to achieve

the best possible results or, if available, using reference to

state-of-the-art results.

5.2.1 Experiment 1: comparison of ELM and neural
networks performance and training times for input
data with vector representation

In this scenario, the goal is to find a solution that performs

the best. Therefore we utilise the hyperparameter search for

ELMs and make use of works published throughout the

years of classical networks development. Then we compare

the best solutions found on datasets for regression and

classification tasks with vector representation. Tables 9 and

10 show the best ELM hyperparameter set-ups found for

each dataset. Due to some discrepancy in literature

concerning metrics used for evaluating regression models,

we decided to perform hyperparameter search for classical

networks on our own. Table 11 shows the best hyperpa-

rameters found for each regression dataset. Tables 12 and

13 present the best results achieved with ELMs and clas-

sical networks.

Discussion This experiment shows that both extreme

learning and backpropagation are able to produce a model

best fitting a given task. However, classical networks

proved to be superior on majority of tested datasets in both

classification (6 out of 9 datasets) and regression (4 out of 6

datasets). It must be noted nonetheless that there are some

cases when ELMs go behind standard networks only by a

small margin (e.g. Machine CPU and Auto MPG datasets)

and when they surpass classical networks significantly (e.g.

Sonar and Bank datasets).

Overall, this experiment demonstrates that the many

years of extensive research on backpropagation-based

networks were beneficial. Classical networks are a solid,

robust framework allowing very efficient modelling.

However, ELMs seem to be a good complement for clas-

sical networks—easy and quick to train, having a potential

of producing very competitive results. Considering the

disproportion in the amount of research on ELMs com-

pared to backpropagation, extreme learning seems to be

promising approach, which is worth further development.

5.2.2 Experiment 2: comparison of ELM and neural
networks performance in image classification

Just like in the previous experiment, the aim of this study is

to achieve the best possible performance with each method

in the image classification task. This comparison covers a
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Fig. 5 Comparison of training

times of the tested models on 4

image classification datasets.

Average and standard deviation

of results from five repetitions

of fivefold cross-validation are

presented. Times are shown on a

logarithmic scale due to their

considerable range
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large-scale dataset—ImageNet. It was constrained to two

variants, with 16�16 and 32�32 resolution, due to the high

memory complexity of ELMs. Again, we performed

hyperparameter search for ELM-based classifiers and

supported the comparison with results achieved with clas-

sical networks reported in the literature. Table 14 presents

the best hyperparameter set-ups found for LRF-ELM

models for each dataset. Table 15 shows the performance

and time comparison of ELMs and backpropagation-based

models.

In this experiment, we modified the preprocessing steps

on the NORB dataset to match [37] to whom we compare

our ELM’s results.

Discussion Comparing current state-of-the-art deep

learning models for image classification to the LRF-ELM

clearly demonstrates classical deep learning superiority.

LRF-ELM was inferior on every dataset considered, often

by a great margin. This outcome was expected because

LRF-ELM corresponds to a very simple CNN, whereas

modern deep learning architectures are significantly more

complex. In the case of image classification, it is hard to

argue that the training speed is an advantage of ELMs,

because the performance decrease is too high. Presently,

extreme learning is not a competitive alternative for deep

learning-based image classification.

Again, this experiment shows a high disproportion in the

development of extreme learning-based architectures

compared to backpropagation. Extending ELMs into a

framework allowing efficient implementation and training

of more complex network architectures could render

valuable.

6 Findings based on the performed research

As mentioned before, extreme learning machines are

highly memory-consuming. This is because of the need to

compute the inverse of the latent representation of the

Table 9 Hyperparameter set-up

for the best found ELM models

for each classification dataset

Dataset Hidden layer size Activation function Regularisation coefficient

Breast cancer (Wisconsin) 3000 ReLU 10

Breast cancer (Ljubljana) 300 Threshold 10

Wine 100 Sigmoid 0.1

Urban land cover 10,000 Threshold 0.1

Sonar 1000 Threshold 0.1

Glass 1000 Tanh 0.01

Landsat 10,000 ReLU 0.3

CNAE-9 10,000 Tanh 10

Forest cover type 3000 ReLU 1

Table 10 Hyperparameter set-

up for the best found ELM

models for each regression

dataset

Dataset Hidden layer size Activation function Regularisation coefficient

Servo 10 Tanh 10

Machine CPU 10,000 Tanh 0.1

Auto MPG 100 Tanh 0.003

Delta ailerons 10 ReLU 0.001

Bank 10 ReLU 0.001

California housing 300 ReLU 10

Table 11 Hyperparameter set-up for the best found MLP models for each regression dataset

Dataset Hidden layer size # of layers Batch size Early stopping patience Activ. func. Regul. coeff.

Servo 256 4 32 8 ReLU 0.001

Machine CPU 256 8 32 8 ReLU 10

Auto MPG 32 4 16 8 ReLU 0.1

Delta Ailer. 256 1 32 4 ReLU 0.001

Bank 256 1 16 8 ReLU 0.01

California H. 128 4 32 8 ReLU 0.01
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entire training dataset. This process requires storing the

hidden features matrix in memory. One could argue that it

is possible to implement ELMs so that this matrix is cached

on disk. However, the main advantage of extreme learn-

ing—short training times—would suffer significantly. Here

we present a short theoretical study of memory require-

ments that one needs to train ELM on a 224�224 Ima-

geNet dataset that consists of roughly 14 mln images. Let

us presume the following assumptions:

• the training is performed on ImageNet’s 1 mln images

subset, used in popular challenges such as ILSVRC,

• all images are resized to constant 224�224 px size,

• the LRF-ELM architecture is configured as follows:

• 16 convolutional filters only,

• filter size: 5�5,

• pooling size: 5�5,

• pooling stride: 2.

Table 13 Comparison of the RMSE (normalised) and training times

for best found ELM and MLP solutions for given regression datasets

Dataset Model RMSE Training time1

Auto MPG ELM (own) 0.0751 1.5 min

MLP (own) 0.0692 1.5 h

Bank ELM (own) 0.0000 19 min

MLP (own) 0.0692 7.5 h

California housing ELM (own) 0.1627 1 h

MLP (own) 0.1307 20 h

Delta ailerons ELM (own) 0.0000 15 min

MLP (own) 0.0437 7 h

Machine CPU ELM (own) 0.1116 1.5 min

MLP (own) 0.1015 1 h

Servo ELM (own) 0.1433 1.5 min

MLP (own) 0.0373 30 min

For each dataset, the result obtained by the better model is presented

in bold

Training times include the hyperparameter search
1Including the hyperparameter search time

Table 14 Hyperparameter set-

up for the best found ELM

models for each classification

dataset

Dataset Number of kernels Kernel size Pooling size Regularisation coefficient

CIFAR-10 64 3 5 10

MNIST 64 5 7 10

NORB 48 3 3 3

GTSRB 64 7 3 3

ImageNet16 48 3 3 3

ImageNet32 8 3 3 1

Table 12 Comparison of the

accuracy for the best found

ELM and MLP solutions for

given classification datasets

Dataset Model Accuracy (%)

Breast cancer wisconsin) ELM (own) 93.02

MLP [48] 96.30

Breast cancer (Ljubljana) ELM (own) 71.43

MLP [48] 73.50

Wine ELM (own) 96.30

MLP [48] 98.30

Urban land cover ELM (own) 87.25

MLP (own) 83.33

Sonar ELM (own) 84.38

MLP [48] 76.40

Glass ELM (own) 54.55

MLP [48] 68.70

Landsat ELM (own) 89.23

MLP [44] 91.00

CNAE-9 ELM (own) 98.15

CoPACoRSET-MLP [35] 95.95

Forest cover type ELM (own) 77.75

MLP [27] 84.78

For each dataset, the result obtained by the better model is presented in bold
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• standard 32-bit precision floating-point numbers are

used.

The assumed image size and network architecture produce

hidden feature maps of size 108�108�16 for each image,

LRF-ELM flattens such feature maps; hence, a hidden

representation is a vector of 186624 elements. Therefore

the hidden representation matrix H size is 1mln�186624.

Such matrix consists of 1:87� 1011 numbers. Each of them

is stored on 4 bytes, so the total size of the matrix H is

equal to approximately 746 GB.

Using such limited number of convolutional filters leads

to memory requirements that are beyond abilities of most

systems. Let us assume changing convolution and pooling

configuration in order to produce feature maps compressed

to 32�32 size. Even in this case the matrix H takes more

than 60 GB. Further scaling down introduces a high risk

that such compressed features extracted randomly contain

too little information for ELM output layer to train prop-

erly. This effect is clearly seen in the experiment results in

Table 15. Using classical convolutional networks trained

with backpropagation, the memory requirements are sev-

eral orders of magnitude lower. There is no need to keep

the entire dataset in memory; training requires loading only

one mini-batch at time.

Our experience from conducting this study is described

in Table 16, which shows a qualitative comparison between

ELM and classical neural networks in the current state of

their development.

We can sum up its content as follows:

• The number of hyperparameters is much higher in the

classical neural networks, but selecting their values can

be supported by the extensive literature review and help

of active community members on public forums. It is

easy to find heuristics on how to set hyperparameters

values in the case of classical neural networks.

• The number of parameters in the classical deep

networks is huge, but because the models are popular,

we can use transfer learning that speeds up training. In

Table 15 Comparison of the accuracy and training times for the best found ELM and BP solutions for given image classification datasets

Dataset Model Accuracy (%) Training time2

MNIST LRF-ELM (own) 98.85 1 min

Branching and merging CNN with homogeneous filter capsules [4] 99.79 N/A

CIFAR-10 LRF-ELM (own) 58.63 1 min

TResNet-XL [38] 99.00 Around 1 h

NORB LRF-ELM (own) 92.61 15 s

VB-Routing CapsuleNet [37] 98.40 N/A

GTSRB LRF-ELM (own) 92.80 40 s

Spatial transformer [1] 99.71 Around 1.5 h

ImageNet16 LRF-ELM (own) 4.91 1.5 min

Wide ResNet-20, width 10 [6] 40.06 2.7 days

ImageNet32 LRF-ELM (own) 3.07 4 min

Wide ResNet-28, width 10 [6] 59.04 13.8 days

For each dataset, the result obtained by the better model is presented in bold

Training times do not include hyperparameter search as it was not given in any referenced work
2Excluding the hyperparameter search time

Table 16 Qualitative

comparison of ELM models and

classical neural networks

Criterion BP ELM

# of hyperparameters High Low

# of trainable parameters Very high Lower

Training time High Low

Memory requirements Low High

Popularity High Low

Supplementary techniques Many Few

Community support High Low

Big gamer’s interest Very high Low

Model’s implementations Numerous, up-to-date Few, poorly supported
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ELM models, the number of parameters is lower, but in

challenging image data, memory requirements are so

vast that it is not possible to calculate weights assuming

typical hardware equipment.

• There are few publicly available ELM implementa-

tions; existing ones are usually simple and non-generic

or are written in Matlab, which makes them hard to

utilise in more complex use cases and popular, well-

supported frameworks such as Python and PyTorch or

TensorFlow.

Summing up, in this paper we referred only to the classical

methods in ELMs conducting experiments on image and

vector representation datasets. It should be noticed, how-

ever, that there exist some new approaches which propose

promising solutions. Here, we can mention incremental

learning [42], multilayer extreme learning machine (ML-

ELM), and hierarchical extreme learning machine (H-

ELM) described in [20], and non-iterative and fast learning

algorithms for deep ELM [49]. It is a good prognostic for

further development of ELM, but none of them has pre-

sented results using a challenging dataset as ImageNet nor

has compared their performance to the mainstream deep

learning methods.

7 Final conclusion

Based on presented research, we can sum up that the tested

ELM models do not offer a real alternative compared to

classical neural networks for contemporary problems

characterised by complex patterns and huge datasets. The

first series of experiments shows that their superiority to

classical neural networks about training times is visible for

networks with capacity corresponding to the time before

the deep learning era. The demand for models that are

trained quickly for tough image, video, or audio problems

is enormous. ELM models transforming input space to

high-dimensional hidden neuron space with random

weights are attractive and essential when one wants to train

the model quickly. But to achieve this state, we postulate to

develop smart algorithms for the inverse matrix calcula-

tion, so that determining weights in the output layer for

challenging datasets becomes feasible and memory effi-

cient. There is a need to create specific mechanisms to

avoid keeping the whole dataset in memory to compute

weights. Although we noticed new approaches to solve

these problems [20, 42, 49], contemporary demanding

datasets used in classical deep neural networks are still a

challenge for ELMs. Also, it seems necessary to develop

generic frameworks that enable practitioners simple access

to ELM models and easy development of new architectures

efficiently utilising this training algorithm. Ultimately,

sharing implementations should be a common practice

among ELM researchers. In future works, we plan to pre-

pare comparison with other random networks like RVFL or

its extended version. There are also other promising solu-

tions to consider—self-normalising networks that outper-

formed all competing methods [23].

Appendix A ELM hyperparameter sensitivity
analysis

ELM are significantly less popular than classical networks.

Numerous studies on training based on backpropagation

allowed to establish intuitions and heuristics on how neural

networks react to changes of hyperparameters. In this

study, we aim to gain insight and build similar intuitions on

ELMs’ sensitivity to hyperparameters’ values. We con-

ducted experiments to evaluate the level of contribution

that each hyperparameter has on the response variance, as

defined in [39] and [52]. A theoretical model has been

defined. The analysed hyperparameters are the input vari-

ables of the model. The output corresponds to the classi-

fication quality measure on a given dataset. Variance-based

sensitivity analysis [41] can be performed using such

model. Sensitivity indices are calculated by using decom-

position of variance VarðYÞ of model response Y ¼ f ðXÞ.
In our case, the sensitivity indices were estimated based on

repeated measurements within the experiments.

Sensitivity indices can be interpreted as the distribution

of each parameter’s impact on the variance of the model

response. I-st order indices are defined for every single

parameter. They indicate the share of the total model

variance the variations of this single parameter have. II-nd

order indices are defined for each pair of parameters. They

specify how much the variance of joint changes of a pair

affects the variance of the model response. To identify

hyperparameter values that allow reaching high perfor-

mance on multiple various datasets we utilised a pair of

statistical tests used to compare classifiers [7]—Friedman’s

test [10] and Nemenyi’s post-hoc test [31].

We performed a repeated K-fold cross-validation on

every dataset. The use of cross-validation implies a lack of

independence of observations in the test samples. This

suggests using the dependent t-test for paired samples.

However, as indicated in [3], in the case of a repeated

cross-validation, the basic form of this t-test may lead to

false and non-reproducible results. They proposed a mod-

ified paired-samples t-test, called corrected repeated k-fold

cross-validation test. Therefore, we utilised this test to

compare the average performance measures of the models.

Three ELM hyperparameters are considered:
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• Regularisation coefficient C (Eq. 12): { 1
10000

, 3
10000

, 1
1000

,
3

1000
, 1

100
, 3

100
, 1

10
, 3

10
, 1, 3, 10, 30, 100, 300},

• Activation function f: Sigmoid, Tanh, ReLU, Threshold

as it was proposed in [15],

• Hidden layer size coefficient h: f0:1; 0:3; 1; 3; 10; 30g.

In the experiment, 17 datasets for classification task were

used. The values of sensitivity indices are shown in

Table 17. Table 18 shows the p-values from Friedman

tests. All of them are below the assumed significance level

of a ¼ 0:05, so it can be stated that the rankings for dif-

ferent values of hyperparameters on different datasets dif-

fer significantly. For this reason, Nemenyi tests were

conducted in order to evaluate the pairs of hyperparameter

values yielding particularly differing results. The results

are presented in Tables 19, 20, and 21. The p-values that

are below the assumed significance level are expressed in

bold. In addition, the tables present the average ranking

values that are useful for the derivation of conclusions.

Table 17 Sensitivity indices for

the F1 measure
Dataset rF1 I-st order indices II-nd order indices

SðCÞ SðhÞ Sðf Þ SðC;hÞ SðC;f Þ Sðh;f Þ SðC;h;f Þ

Wine 0.27 0.12 0.63 0.03 0.07 0.07 0.02 0.06

Breast cancer (W.) 0.12 0.10 0.30 0.03 0.20 0.05 0.13 0.18

Glass identification 0.16 0.16 0.42 0.03 0.24 0.07 0.03 0.05

Breast cancer (L.) 0.14 0.28 0.26 0.06 0.19 0.07 0.04 0.11

Sonar 0.21 0.35 0.26 0.06 0.11 0.10 0.02 0.10

Urban land cover 0.21 0.16 0.12 0.07 0.30 0.07 0.11 0.17

Landsat 0.21 0.18 0.25 0.06 0.30 0.07 0.06 0.09

CNAE-9 0.29 0.28 0.02 0.08 0.28 0.13 0.05 0.16

Forest cover type 0.16 0.17 0.19 0.11 0.24 0.06 0.12 0.11

2D hypercube 0.24 0.04 0.71 0.02 0.10 0.05 0.02 0.06

3D hypercube 0.40 0.12 0.52 0.04 0.15 0.08 0.03 0.06

10D hypercube 0.04 0.10 0.12 0.14 0.08 0.05 0.40 0.10

2D hyperspheres 0.25 0.11 0.58 0.04 0.08 0.09 0.05 0.05

3D hyperspheres 0.24 0.12 0.58 0.05 0.06 0.09 0.05 0.04

10D hyperspheres 0.21 0.11 0.55 0.09 0.04 0.06 0.11 0.05

100D hyperspheres 0.15 0.07 0.14 0.45 0.09 0.05 0.15 0.05

200D hyperspheres 0.12 0.05 0.11 0.51 0.02 0.06 0.21 0.05

Mean 0.20 0.15 0.34 0.11 0.15 0.07 0.09 0.09

Median 0.21 0.12 0.28 0.06 0.13 0.07 0.06 0.07

r–overall standard deviation of results

Table 18 p-values from Friedman tests for every hyperparameter

considered in the experiment

Hyperparameter p-value

Activation function f 2:00 � 10�5

Hidden layer size coeff. h 5:65 � 10�11

Regularisation coefficient C 3:07 � 10�15

Table 19 p-value from Nemenyi test for activation function f, for F1-

measure

Activation function ReLU Sigmoid Tanh Threshold

ReLU

Sigmoid 0.001

Tanh 0.900 0.001

Threshold 0.079 0.191 0.191

Average ranking 1.706 3.647 1.882 2.765

The p-values that are below the assumed significance level are

expressed in bold

Table 20 p-value from Nemenyi test for hidden layer size coefficient

h, for F1-measure

Size coefficient 0.1 0.3 1.0 3.0 10.0 30.0

0.1

0.3 0.283

1.0 0.001 0.333

3.0 0.001 0.005 0.609

10.0 0.001 0.002 0.503 0.900

30.0 0.001 0.007 0.662 0.900 0.900

Average ranking 6.000 4.647 3.353 2.353 2.235 2.412

The p-values that are below the assumed significance level are

expressed in bold
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Analysing Table 17, we can observe that among the

selected hyperparameters, variations in the size of the

hidden layer have the greatest impact on the variance of the

model performance. This phenomenon is demonstrated by

the values of the SðhÞ index.

It can be noted that the values of the Sðf Þ index

(Table 17) increase significantly as the dimensionality of

the hypersphere classification problem increases. The same

can be observed for hypercube vertices classification.

Simultaneously, the values of the Sðh;f Þ index increase,

which means that the importance of properly choosing the

activation function increases when increasing the problem

dimensionality.

The changes of the C and f hyperparameters demonstrate

a comparable contribution to the overall variance consid-

ering the first order interaction. Among the second order

indices, the index SðC;f Þ is usually the one with the lowest

value. Thus, the optimisation of the regularisation coeffi-

cient and the activation function can be carried out

independently.

Nemenyi test for activation function f revealed the

existence of two pairs of activation functions, which differ

significantly with regard to the results achieved on various

datasets. Both pairs include the sigmoid function. Consid-

ering the average ranking positions (approximately 3.5 for

the sigmoid and about 2 for the others), it can be concluded

that the sigmoid function contributes least to the

improvement of the classification results.

Nemenyi test revealed significant differences between

the smallest two values of h (0.1 and 0.3) and the four

largest values (1, 3, 10, and 30). Just like in the case of the

activation function, it can be concluded that small values of

the h hyperparameter have a little positive effect on the

performance quality. There are no indications to exclude

h ¼ 0:1 and h ¼ 0:3 from the process of hyperparameter

tuning.

Based on the Nemenyi test for the regularisation coef-

ficient C (Table 21), it is easy to observe that even the

lowest values of the average ranking position (approxi-

mately 4) are noticeably higher than the ranking values of

the other hyperparameters (approximately 2). This may

indicate a high sensitivity to this hyperparameter and a lack

of values that are clearly better for multiple datasets. The

best ranking positions were obtained for C values in the

range from 0.01 to 0.3.

Appendix B Artificial datasets
for classification

In the experiments we have used three types of artificial

classification datasets:

Nested hyperspheres Dataset consists of points lying on

two concentric hyperspheres with different radii, which

represent two classes. To generate random points uni-

formly distributed on a hypersphere we used the procedure

shown in [36]. We added a Gaussian noise to all points.

Hypercube vertices This is a generalisation of the XOR

classification task. In this dataset, each hypercube vertex is

assigned one of two labels in such a way that the classes are

not linearly separable. Knowing that a linear SVM achieves

100% accuracy for linearly separable classes, we repeat

Table 21 p-values from Nemenyi test for regularisation coefficient C, for F1-measure

Regularisation coefficient 0.0001 0.0003 0.001 0.003 0.01 0.03 0.1 0.3 1 3 10 30 100 300

0.0001

0.0003 0.900

0.001 0.325 0.900

0.003 0.022 0.497 0.900

0.01 0.002 0.140 0.900 0.900

0.03 0.001 0.016 0.550 0.900 0.900

0.1 0.001 0.014 0.523 0.900 0.900 0.900

0.3 0.001 0.071 0.838 0.900 0.900 0.900 0.900

1 0.019 0.470 0.900 0.900 0.900 0.900 0.900 0.900

3 0.382 0.900 0.900 0.900 0.900 0.497 0.470 0.785 0.900

10 0.838 0.900 0.900 0.890 0.497 0.114 0.101 0.325 0.864 0.900

30 0.900 0.900 0.890 0.252 0.049 0.004 0.003 0.022 0.231 0.900 0.900

100 0.900 0.900 0.353 0.025 0.002 0.001 0.001 0.001 0.022 0.411 0.864 0.900

300 0.900 0.707 0.038 0.001 0.001 0.001 0.001 0.001 0.001 0.049 0.300 0.900 0.900

Average ranking 11.000 9.235 7.235 5.824 4.941 3.941 3.882 4.588 5.765 7.353 8.353 9.765 10.941 12.176

The p-values that are below the assumed significance level are expressed in bold
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random vertex-class assignments until the SVM is unable

to fit the data. Once a linearly non-separable labelling is

obtained, the vertices are sampled to the dataset and

Gaussian noise is added. Figure 6 shows a visualisation of

the dataset generated in 3-D space.

Intertwined spirals This is a binary classification task.

Samples of a single class lie on a 2-D Archimedean spiral

or on a 3-D conical spiral. Data points of the other class lie

on a similar rotated spiral. 2-D spirals were generated using

formulas in Eqs. 17 and 18 defined in polar coordinates.

We converted points to Cartesian coordinates and added

Gaussian noise. We used the following values of coeffi-

cients: a1 ¼ a2 ¼ 1 and b1 ¼ b2 ¼ 0:5. Figure 7 presents

visualisations of such datasets.

r ¼a1 � hþ b1 ð17Þ

r ¼� a2 � hþ b2 ð18Þ

where ðh; rÞ are the polar coordinates (angle and radius)

and a, b are parameters of Archimedean spiral.

3-D spirals were generated according to the Eqs. 19 and

20 in the cylindrical space. The following values of

parameters were used in this study. a1 ¼ a2 ¼ 1, b1 ¼ 0:5,

c1 ¼ 1:2, b2 ¼ 3:75 � b1, c2 ¼ 3 � c1.

r ¼ a1 � hþ b1

h ¼ c1 � h

�
ð19Þ

r ¼ a2 � hþ b2

h ¼ c2 � h

�
ð20Þ

where ðh; r; hÞ are the cylindrical coordinates (angle,

radius, and height) and a, b, c are the parameters of the

spiral.

Regression datasets are generated similarly. They are

designed to embed into the data important properties of

real-valued functions: periodicity and trend.

Linear func-

tion

y ¼ a>xþ b.:

It is the simplest approach to trend

modelling. It is possible to generate a set

in a space of any dimensionality. The

values of the slope a and the bias b are

drawn randomly from the ½�5; 5� range.

Second degree

polynomial of

many

variables.:

Coefficients and the bias are randomly

drawn from the ½�5; 5� range. There may

be correlations between variables, which

must be correctly reproduced by the

model.

Sine, cosine: Periodicity modelling. Data generated on

the ½�2p; 2p� domain.

SinC: Function expressed by Eq. 21. It is a

mixture of periodicity and trend.

y ¼
sinðxÞ
x

; x 6¼ 0

1; x ¼ 0

8
<

: ð21Þ

Fig. 6 Visualisation of the hypercube vertices binary classification

dataset

Class 0
Class 1

−10 −5 0 5 10
−10

−5

0

5

10
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Fig. 7 Visualisation of the

intertwined spirals datasets in

2D and 3D spaces
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Friedman

splines

I, II, and III:

The splines were proposed as reference

functions for the study of performance of

regression models. The first one is a

synthetic curve, designed to test the

ability to detect relationships between

variables. The remaining two correspond

to physical phenomena. The splines are

defined by Eqs. 22, 23, and 24 . � denotes

a random noise. Spline I has an interest-

ing characteristic—it is defined using

only 5 variables, however the dataset

consists of more variables, so the func-

tion values depend only on some of the

features.

f1ðxÞ ¼ 10 sinðpx1x2Þ þ 20ðx3 � 1
2
Þ2

þ 10x4 þ 5x5 þ �

ð22Þ

f2ðxÞ ¼ ðx2
1 þ ðx2x3 � ð 1

x2x4
Þ2Þ

1
2Þ þ �

ð23Þ

f3ðxÞ ¼ arctan
x2x3 � 1

x2x4

x1

 !
þ � ð24Þ
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