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Abstract
Stock index price forecasting is the influential indicator for investors and financial investigators by which decision making

capability to achieve maximum benefit with minimum risk can be improved. So, a robust engine with capability to

administer useful information is desired to achieve the success. The forecasting effectiveness of stock market is improved

in this paper by integrating a modified crow search algorithm (CSA) and extreme learning machine (ELM). The effec-

tiveness of proposed modified CSA entitled as Particle Swarm Optimization (PSO)-based Group oriented CSA (PGCSA) to

outperform other existing algorithms is observed by solving 12 benchmark problems. PGCSA algorithm is used to achieve

relevant weights and biases of ELM to improve the effectiveness of conventional ELM. The impact of hybrid PGCSA

ELM model to predict next day closing price of seven different stock indices is observed by using performance measures,

technical indicators and hypothesis test (paired t-test). The seven stock indices are considered by incorporating data during

COVID-19 outbreak. This model is tested by comparing with existing techniques proposed in published works. The

simulation results provide that PGCSA ELM model can be considered as a suitable tool to predict next day closing price.

Keywords Metaheuristic Algorithm � Extreme Learning Machine � Stock indices forecasting � Modified sharpe ratio

1 Introduction

Stock market (SM) provides a path for companies to make

profit by allowing businesses traded publically which

enhance the financial capital for expansion by selling

shares of the company in public market. The objective of

investment in SM is to raise revenue through purchasing

and holding a portfolio of stocks, mutual funds, bonds and

other instruments. In last few decades, the investors and

traders experience huge risk to invest in stock portfolios

because of its inconsistency and variations. The inconsis-

tency in SM occurs due to the factors such as economic

condition, political activities and trader’s prediction. From

the fluctuating market, traders always try to make trans-

actions over a small time frame to achieve frequent profit.

The key of stock traders to get maximum profits with less

risk is conceivable by establishing an accurate trading

decision making tool with respect to time. The future price

is predicted with better accuracy by concerning the patterns

of historical data (price and volume) [1].

So, the prediction of closing price of highly dynamic

and nonlinear SM is very indispensable. Auto Regressive

Integrated Moving Average (ARIMA) model is used to

interpret the time series data and to forecast the future in

that series [2]. But, this conventional technique is not

adequate enough to forecast the SM price whose move-

ments are influenced by some macro-economic factors

[3, 4]. Singh et al. [5] have proposed a hybrid wavelet
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denoise-ARIMA model to improve the prediction accuracy

of stock market price. The close prediction of SM helps

investors to draw better benefits from SM. In this work,

optimized ELM model is developed to capture the hidden

structural changes in volatility processes of portfolio

returns.

Some researchers have proposed decision making tools

based on artificial intelligence (AI) and deep learning

techniques to enhance the accuracy of the SM forecasting.

Bustos et al. [6] have contributed a brief survey of different

methods implemented to predict stock market price. Arti-

ficial neural network (ANN)-based model is preferred to

forecast SM [7–10], because of its benefits such as organic

learning, nonlinear data processing, fault tolerance and

self-overhaul. Feedforward neural network (FFNN) is a

simple form of ANN, which has very less computational

time to solve simple problems with less complexity [11].

The effectiveness of deep feedforward neural network to

forecast stock indices price is analysed by a comparative

analysis with ANN [12]. Multilayer perceptron (MLP) is a

persuasive ANN to be used for regression and is efficient

enough to predict SM price [13]. Back propagation neural

network (BPNN) is also implemented to solve SM index

forecasting problem [14, 15]. Convolutional neural net-

work (CNN) is a fully connected MLP, which facilitates

less computational complexity without defeating the sub-

stance of the data. The improvement analysis of CNN to

predict intraday price forecasting is studied in [16, 17].

From last few decades, different forms of ANN are

accepted in the field of SM forecasting. All of these forms

of ANN are gradient-based algorithms with certain con-

straints such as high computational time to train and

probability to get trapped in local optima of the problem.

The dilemma of ANN is overwhelmed by support vector

machines (SVM) to predict time series data [18]. A com-

parative analysis between SVM and Adaptive Neuro Fuzzy

Inference System (ANFIS) in terms of finger-vein identi-

fication is portrayed and the SVM is concluded as a

superior technique over ANFIS with less computational

time and robust classifier [19]. Further, the efficacy of

SVM to forecast stock market price is improved by inte-

grating piecewise linear representation with weighted SVM

and optimized SVM techniques in [20] and [21] respec-

tively. Long short-term memory (LSTM) is validated over

ANN and SVM to predict stock index [22]. Huang et al.

[23] have proposed a Single-hidden Layer Feed forward

Neural Network (SLFNN) entitled as ELM. It is required to

regulate the number of neurons & activation function of

ELM as the input weights & hidden layer biases are fixed

during the employment. These properties of ELM enhance

the notoriety to contribute better generalization perfor-

mance with immensely rapid learning. Cheng et al. [24]

have beautifully conferred the supremacy of ELM over

SVM to predict petroleum reservoir permeability. Huang

et al. [25] have implemented ELM for regression and

classification in various fields. From previous decade, ELM

is considerably demonstrated the superiority over tradi-

tional techniques in the field of SM forecasting [26, 27].

Some researchers are considered the optimization tech-

niques to boost the efficiency of existing machine learning

techniques to predict SM with superior accuracy. Genetic

algorithm (GA)-based fuzzy [28], SVM [29], ANN [30],

multi-chanel CNN [31] and Probabilistic Weight Support

Vector Machine (PWSVM) [32] are flourishingly imple-

mented to forecast SM price, return and trend with

improved accuracy. Hegazy et al. [33] have applied particle

swarm optimization (PSO) optimized ANN and Least

Square Support Vector Machine (LS-SVM), respectively,

Fig. 1 Structure of ELM
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to predict SM. Computationally Efficient Functional Link

Artificial Neural Network (CEFLANN) optimized by Dif-

ferential Evolution (DE) algorithm is implemented with

better performance to predict SM [34]. The accuracy of

stock index forecasting is enhanced by Artificial Fish

Swarm Algorithm (AFSA)-based Radial Basis Functional

Neural Network (RBFNN) and Grey Wolf optimization-

based Elman neural network proposed by Shen et al. [35]

and Chander [36] respectively. SM price forecasting

problem is solved with improved accuracy by implement-

ing chaotic Firefly Algorithm (FA)-based Support Vector

Regression (SVR) [37] and Discrete PSO (DPSO)-based

Fully Complex-valued Radial Basis Functional Neural

Network (FCRBFNN) [38]. Hybrid Artificial Bee Colony-

Differential Evolution (ABC-DE) is applied to optimize

weights of Feed Forward Neural Network (FFNN) to pre-

dict foreign exchange rate [39].

The conventional techniques may not efficient enough to

solve high dimension multimodal objective function.

Because of the flexibility and gradient free mechanism,

metaheuristic techniques are mostly preferred methods to

deal with high dimension, nonlinear, complex and multi-

modal problems. Evolutionary based, physics based,

swarm based and nature inspired algorithms are the most

well-known categories of metaheuristic algorithms [40].

Genetic Algorithm (GA) [41], Differential Evolution (DE)

[42], Gravitational Search Algorithm (GSA) [43], Particle

Swarm Optimization (PSO) [44], Artificial Bee Colony

(ABC) [45], Grasshopper Optimisation Algorithm (GOA)

[46] and Symbiotic Organism Search (SOS) [47] etc. are

the most desirable optimization techniques under these

categories mentioned above. CSA is a recent metaheuristic

algorithm proposed by Askarzadeh [48]. This algorithm is

derived by the social behaviour of quick witted and clever

organism of ecosystem. By doing a team work, crows

perform incredible sample of brilliance and gain good

results. The techniques used by crows to memorizing and

recognizing faces are unique. The sluggish convergence

rate and chance of got stuck in local optima are the con-

siderations which motivate researchers to overcome the

dilemma. Chaotic maps are implemented in CSA to over-

come this dilemma and the improvement is realized

favourably by solving engineering and constrained prob-

lems [49, 50]. The ‘flight length’ of CSA is made adaptive

iteratively and applied in economic load dispatch problem

[51]. The hybridization of CSA with Rough Searching

Scheme (RSS) and Sine Cosine Algorithm (SCA) algo-

rithms are endorsed to enhance the proficiency of indi-

vidual algorithms [52, 53].

From the survey, ELM technique is established as an

adequate and admirable technique to predict time series

data. The weights and biases of ELM are an influential

aspect to enhance the performance. In this paper, a strive

approach is introduced to enhance the potential of CSA

entitled as PGCSA. CSA and PGCSA algorithms are used

to optimize the weights and biases of ELM for forecasting

different SMs price. PGCSA ELM is concluded as a

superior technique by contributing a fine comparative

analysis with some published paper MLP, GARCH-DAN2

and BNNMAS techniques [10, 54].

Contributions of the article are as follows:

i. Optimized ELM (with optimized weights and biases)

is proposed to forecast price of seven distinct stock

markets.

ii. Two phases (with and without awareness probabil-

ity) of CSA is altered to enhance the searching

capability of CSA algorithm entitled as PGCSA.

iii. PGCSA and CSA algorithms are substantiated over

some recently published papers by resolving bench-

mark equations and hypothetically tested by using

Wilcoxon signed-rank test.

iv. Comparative analysis of PGCSA-ELM with CSA-

ELM and ELM (randomly fixed weights and biases).

The proposed model predicted closing price is tested
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Fig. 2 Crow position updating a if r1 C AP and b if r1\AP
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by using some technical indicators such as MSE,

MAE, MAPE, MAAPE, CoV, CORR and Theil’s U

of SM forecasting.

v. The accuracy of predicted closing price is tested

hypothetically by using paired t-test and by using

financial indicators such as sharpe ratio, and mod-

ified sharpe ratio.

2 Methodology and data

2.1 Extreme learning machine (ELM)

Huang et al. [23] have introduced a SLFNN entitled as

ELM. Input, hidden and output layers are the basic seg-

ments of ELM. The hidden layer neurons are not to be

optimized during training period. These neurons are dis-

tributed arbitrarily and never refurbished. Inputs are linked

Fig. 3 Flow chat of PGCSA algorithm
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to hidden layers with randomly fixed weights (wi) and the

biases (bj). In this work, CSA and PGCSA algorithms are

administrated to search convenient weights and biases of

the ELM. The structure of ELM is illustrated in Fig. 1.

ELM has immense convergence which is thousand time

faster than BPNN [25]. Non-gradient-based ELM has not

only better generalized performance over gradient-based

techniques but also avoid the local minima, erroneous

learning rate and over fitting. The output function of ELM

with L hidden nodes for a training set R ¼ Xi; tið Þf g; i ¼
1; 2; :::; n is illustrated in Eq. (1).

f Rð Þ ¼
XL

j¼1

bjH Xð Þ ¼ tj ð1Þ

where, b = b1, b2,..., bL is the weight matrix between

hidden and output layer and t = t1, t2,..., tj is the target

matrix of training data. The output of hidden layer is

estimated by Eq. (2).

H ¼

G w1; b1;X1ð Þ � � � G wL; bL;X1ð Þ
G w1; b1;X2ð Þ � � � G wL; bL;X2ð Þ

..

. ..
. ..

.

G w1; b1;Xnð Þ � � � G wL; bL;Xnð Þ

2
6664

3
7775 ð2Þ

b ¼

b1
b2
..
.

bL

2
6664

3
7775 ¼ HTH

� �

�1

HT

‘‘G’’ is the activation function in terms of weight, bias

and inputs. Sigmoidal, Gaussian, Hard limit and Fourier

series functions are adopted as activation functions. In this

work, sigmoidal function is adopted as activation function

as illustrated in Eq. (3).

G wi; bi;Xið Þ ¼ 1

1þ e� wxþbð Þ ð3Þ

The desired output of the ELM is determined by using

Eq. (4).

Ttest ¼ Hb ð4Þ

The ELM is trained by considering intraday open, high

& low prices of stock indices as inputs and closing price as

target. The closing price of stock market is predicted by

conceding open, high & low prices. The weight matrix (wij)

and bias (bj) are optimized by CSA and PGCSA algorithms

to enhance the forecasting capability of ELM. The per-

formance of the forecasting capability of ELM is graded by

the performance measure such as MSE (Mean Squared

Error).

2.2 Crow search algorithm (CSA)

CSA algorithm is derived from the social behavior of

crows [48]. Crows are opted as the ultimate brilliant bird.

Compared to their physical structure they have tremendous

brain. Crows conceal their overabundance food in

undoubted location and when it is essential they recoup it.

Crows acquire food by doing a great team work always.

Hiding foods for the next season is not that much easy for a

crow because some opponent crows can also come after to

follow the food. At that moment, the crow endeavors to

mislead by changing the direction in the territory. Here the

crows can be taken as path finders or searches whereas the

territory can be taken as search area. Every location of the

territory is considered as optimum point and the fitness

value is the quality of the nourishment source. Crows steal

the hiding nourishment of other birds by observing and

following them and at the same time the crows take some

Table 1 Benchmark Equations (Unconstraint)

No Functions Range D Formulation fmin

1 Beale [- 4.5, 4.5] 2 f xð Þ ¼ 1:5� x1 þ x1x2ð Þ2 þ 2:25� x1 þ x1x
2
2

� �2 þ 2:625� x1 þ x1x
3
2

� �2 0

2 Six Hump Camel Back [- 5, 5] 2 f xð Þ ¼ 4x21 � 2:1x41 þ 1
3
x61 þ x1x2 � 4x22 þ 4x42 - 1.0316

3 Zakharov [- 5, 10] 10 f xð Þ ¼
PD

i¼1 x
2
i þ

PD
i¼1 0:5ix

2
i

� �2 þ
PD

i¼1 0:5ix
2
i

� �4 0

4 Step [- 5.12, 5.12] 30 f xð Þ ¼
PD

i¼1ðxi þ 0:5Þ2 0

5 Sphere [- 100, 100] 30 f xð Þ ¼
PD

i¼1 x
2
i

0

6 Rastrigin [- 5.12, 5.12] 30 f xð Þ ¼
PD

i¼1 x2i � 10cos 2pxið Þ þ 10
� �

0

7 Griewank [- 600, 600] 30 f xð Þ ¼ 1
4000

PD
i¼1 ðxi � 100Þ2

� �
�

QD
i¼1 cos

xi�100ffi
i

p
� �� �

þ 1 0

8 Ackley [- 32, 32] 30
f xð Þ ¼ �20exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
p

PD
i¼1 x

2
i

q� �
� exp 1

p

PD
i¼1 cos 2pxið Þ

� �
þ 20þ e

0

9 Egg Holder [- 512, 512] 2 f xð Þ ¼ � x2 þ 47ð Þsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x1

2
þ 47

		 		
q� �

� x1sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � x2 þ 47ð Þj j

p� � - 959.6407
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Table 2 Benchmark Equations (Constraint)

No Functions Range D Formulation fmin

10 Rosenbrock (disk) �1:5� x1 � 1:5

�1:5� x2 � 1:5

2 f xð Þ ¼ 1� x1ð Þ2 þ 100 x2 � x21
� �2

;

subjectedto : x21 þ x22 � 2

0

11 Mishra’s Bird �10� x1 � 0

�6:5� x2 � 0

2 f xð Þ ¼ �sin x2ð Þe 1�cosx1ð Þ2½ � þcos x1ð Þe 1�sinx2ð Þ2½ � þ x1 � x2ð Þ2;
subjectedto : x1 þ 5ð Þ2 þ x2 þ 5ð Þ2\25

- 106.7645

12 Simionescu �1:25� x1 � 1:25

�1:25� x2 � 1:25

2 f xð Þ ¼ 0:1x1x2;

subjectedto : x21 þ x22 � 1þ 0:2cos 8arctan x
y

� �h i2
- 0.0726

Table 3 Performance parameters of different algorithms of benchmark equations without constraints

Functions parameters DE PSO TLBO SSA CSA PGCSA

F1 BV 1.3757e-07 7.0633e-06 2.8895e-14 5.1238e-18 2.9758e-18 0

AVG 3.5016e-05 0.0934 0.1778 9.4064e-14 2.9649e-15 8.4282e-16

SD 6.0684e-05 0.2302 0.3278 1.3123e-12 3.3658e-16 3.3311e-16

F2 BV - 1.0316 - 1.0316 - 1.0316 - 1.0316 - 1.0316 - 1.0316

AVG - 1.0313 - 0.8850 - 1.0316 - 1.0316 - 1.0316 - 1.0316

SD 9.0355e-04 0.2956 2.9538e-13 7.6704e-12 1.2340e-04 1.2443e-13

F3 BV 0.0079 0.0018 2.9330e-09 1.5438e-12 1.7241e-07 1.8657e-216

AVG 2.4313 0.0035 3.9057e-08 2.9919e-12 4.2450e-06 4.9540e-188

SD 4.5129 9.6023e-04 7.5544e-08 9.5377e-13 4.7588e-06 0

F4 BV 0.6220 0.0057 4.7529e-04 1.0830e-11 6.8693e-09 1.8797e-31

AVG 1.6084 0.0085 0.0026 1.6452e-11 3.7298e-08 9.1358e-27

SD 0.5904 0.0012 0.0015 3.4048e-12 2.0570e-08 2.5018e-26

F5 BV 9.1213e-04 2.3457e-04 3.3722e-04 2.8919e-09 2.1687e-06 0

AVG 0.0024 3.1331e-04 0.0025 5.3224e-09 9.0129e-06 0

SD 0.0012 5.6029e-05 0.0013 1.3577e-09 4.8453e-06 0

F6 BV 0.2189 2.6564e-04 0 1.0596e-10 4.5475e-13 0

AVG 0.4824 4.1718e-04 6.7214 11.5415 1.4893e-12 0

SD 0.1552 7.3929e-05 33.9646 12.3709 6.9976e-13 0

F7 BV 8.7759e-04 0.0012 2.4047e-13 3.0030e-12 9.7673e-06 0

AVG 0.0023 0.0020 8.4576e-11 0.0033 0.0074 0

SD 9.8201e-04 0.0014 1.4353e-10 0.0061 0.0080 0

F8 BV 0.0243 0.0053 3.5947e-07 1.7137e-05 4.6370e-06 8.8818e-16

AVG 0.0381 0.0066 1.4767e-06 1.3225 1.3240 2.2145e-14

SD 0.0060 5.8767e-04 1.1295e-06 0.9674 0.8112 1.2478e-12

F9 BV - 959.6407 - 956.8922 - 959.6406 - 955.0593 - 959.6407 - 959.6407

AVG - 948.0369 - 893.3701 - 954.5991 - 926.6889 - 950.2151 - 958.5351

SD 25.4528 55.0759 17.4195 30.8477 24.4413 2.4221

Bold values indicate the best value
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supplemental prevention like changing the concealing

places to stay away from becoming an upcoming easy

target. By considering these clever action CSA algorithm

has developed. The ideas of CSA are check listed as given

below:

i. Crows reside like a group.

ii. Crows remember the location of their concealing

places of food.

iii. Crows observe and follow one another to rustle food.

Like other optimization techniques initialization of CSA

is quite similar. In initialization phase, the flock of crows is

initialized randomly by conceding designed variables (D)

and number of crows (NC) by satisfying the constraints as

characterized in Eq. (5). Each row of the matrix represents

one crow in the flock and each column represents one

design variable of the problem. Each crow denotes a fea-

sible solution of the problem.

Crows ¼

X1
1 X1

2 � � � X1
D

X2
1 X2

2 � � � X2
D

..

.
..
. ..

. ..
.

XNC

1 XNC

2 � � � XNC
D

2
66664

3
77775

ð5Þ

X represents the design variable of a crow. In the first

iteration, assume that they have concealed their foods in

the initial position because crows have less experience in

the beginning. The memory (M) of each crow is initialized

as described in Eq. (6).

Memory ¼

M1
1 M1

2 � � � M1
D

M2
1 M2

2 � � � M2
D

..

.
..
. ..

. ..
.

MNC

1 MNC

2 � � � MNC

D

2

66664

3

77775
ð6Þ

The memory matrix represents the best feasible solu-

tions of crows obtained so far. M is the element of memory

matrix which represents the design variable of a memory of

crow. The fitness value can be calculated by putting the

value of designed variables (D) in the objective function.

The crows update their position with the help of other

crow. The ith crow finds their food by following and

observing another jth crow. The jth crow tries to fool the

ith crow by changing the location of the food on the ter-

ritory by knowing the intention of opponent crow. The

updated position of the crow is characterized in Eq. (7).

Xi
new ¼ Xi

old þ r � fli � M j � Xi
old

� �
r1 �AP

LBþ UB� LBð Þ � rand Otherwise



ð7Þ

where, ‘r’ and ‘r1’ are two random numbers within the

range from 0 to 1. ‘AP’ is the awareness probability of

crow. Small value of AP enhances the intensification and

the high value of AP enhances the diversification. The

memory of crow is updated with fitter crow position as

depicted in Eq. (8).

Mi
new ¼

Xi
new f Xi

new

� �
� f Mi

old

� �

Mi
old Otherwise

(
ð8Þ

2.3 Proposed PSO-based group oriented CSA
(PGCSA)

CSA is categorized into two phases (phase-1 and phase-2)

by concerning the awareness probability (AP). In phase-1

(without awareness probability), if the jth crow (Xj) is

unaware that ith crow (Xi) is following it, i.e. r1 C AP, then

the ith crow (Xi) is supposed to follow the food hiding

place of jth crow (Mj) as characterized in (7). If the func-

tional value of Xi is better than the functional value of Mj,

then the crow with better functional value will follow the

worst one. This may downturn the convergence rate of the

algorithm to achieve the optimal solution. In this work, the

entire flock of crows is subdivided into small groups. The

fittest crow of the corresponding group is considered as

leader and the rest of the crows of that group (followers)

Table 4 Performance parameters of different algorithms of benchmark equations with constraints

Functions parameters DE PSO TLBO SSA CSA PGCSA

F10 BV 1.0531e-05 8.0940e-08 1.0686e-07 4.9911e-19 8.3323e-30 0

AVG 2.0621e-04 2.6692e-04 2.6219e-06 5.8949e-16 2.3658e-27 0

SD 3.3081e-04 0.0014 3.7181e-06 1.3688e-15 2.8840e-27 0

F11 BV - 106.7645 - 106.7645 - 106.7645 - 106.7645 - 106.7645 - 106.7645

AVG - 106.7638 - 106.7641 - 106.7619 - 106.7645 - 106.7645 - 106.7645

SD 0.0013 4.4961e-04 0.0041 2.0587e-07 1.9211e-12 2.9504e-14

F12 BV - 0.0720 - 0.0720 - 0.0720 - 0.0720 - 0.0720 - 0.0720

AVG - 0.0716 - 0.0717 - 0.0716 - 0.0720 - 0.0720 - 0.0720

SD 2.9700e-04 5.4975e-04 3.5832e-04 1.9955e-05 4.5950e-11 3.9083e-17

Bold values indicate the best value
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are updated by following the leader crow as characterized

in (9).

Xi
new ¼ Xi

old þ r � fli � Xk
L � Xi

old

� �
; If r1 �AP ð9Þ

k = 1, 2, 3,..., ng. Where, ‘ng’ is the number of groups.

Crows are distributed among the groups by conceding their

weight (W) as characterized in Eq. (10) [55].

Wi ¼ exp �D
f Xið Þ � f XBestð Þ

PNc

i¼1 f Xið Þ � f XBestð Þ

 !
ð10Þ

Weight (W) is evaluated in such a manner that W of

better functional value is higher. W of the best crow is one

and for other crows are in between 0 to 1. The crows with

highest W are chosen as group leaders. The followers are

distributed among the groups by conceding the weight of

Fig. 4 Convergence plot of PGCSA, CSA, SSA, TLBO, PSO and DE on the benchmark functions without constraint
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Fig. 5 Convergence plot of PGCSA, CSA, SSA, TLBO, PSO and DE on the benchmark functions with constraint

Table 5 p-Values obtained from

the Wilcoxon signed rank test
PGCSA Vs. DE PGCSA Vs. PSO PGCSA Vs. TLBO PGCSA Vs. SSA PGCSA Vs. CSA

F1 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06

F2 1.707E-06 1.92092E-06 1.70729E-06 0.002873 1.7344e-06

F3 1.7344E-06 1.73222E-06 1.7344E-06 1.7344E-06 1.7344E-06

F4 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06

F5 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06

F6 1.7344E-06 1.7344E-06 0.0165 1.7344E-06 1.72351E-06

F7 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.72351E-06

F8 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.72351E-06

F9 0.040475473 1.97295E-05 0.011748106 0.006809395 0.0050

F10 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06

F11 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 NA

F12 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06

Table 6 Rank sum values

obtained from the Wilcoxon

signed rank test

Test Functions F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

PGCSA Vs. CSA R? 465 465 465 465 465 465 465 465 55 465 NA 465

R- 0 0 0 0 0 0 0 0 0 0 NA 0

PGCSA Vs. SSA R? 465 109 465 465 465 465 465 465 364 465 465 465

R- 0 44 0 0 0 0 0 0 101 0 0 0

PGCSA Vs. TLBO R? 465 465 465 465 465 63 465 465 355 465 465 465

R- 0 0 0 0 0 14 0 0 110 0 0 0

PGCSA Vs. PSO R? 465 464 465 465 465 465 465 465 440 465 465 465

R- 0 1 0 0 0 0 0 0 25 0 0 0

PGCSA Vs. DE R? 465 465 465 465 465 465 465 465 325 465 465 465

R- 0 0 0 0 0 0 0 0 140 0 0 0

Bold values indicate the best value
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the crows. The numbers of crows in one group are evalu-

ated by using Eqs. (11) and (12).

ai ¼ WG
iPng

i¼1W
G
i

ð11Þ

NGi
¼ round ai � Nf

� �
ð12Þ

where, Wi
G, NGi

, and Nf are weight of the group leader,

numbers of group members, and numbers of followers

respectively. By this approach, the local search space is

enhanced and explored. In phase-2 (with awareness prob-

ability), if Xj is aware that Xi is following it, i.e. r1\AP,

then the ith crow (Xi) is replaced by a random position as

characterized in (7). Xi may have better functional value

than the random position of crow.

Table 7 Comparison of performance measures of testing period of

IXIC index

Prediction models MAE MSE MAPE

PGCSA-ELM 16.39424 410.5365 0.9264

CSA-ELM 18.02204 534.7980 0.9984

ELM 21.66214 708.8436 1.1807

GARCH-DAN2 [10] 109.626 20,901.198

DAN2 [10] 32.875 1472.278

GARCH-MLP [10] 42.739 3665.8387

MLP [10] 41.153 2478.1468

(a)

(b)

Fig. 6 a Next day predicted and actual closing price of IXIC index, b MAE values

Table 8 Comparison of performance measures of testing period of

GDAXI index

Prediction models MAE MSE MAPE

PGCSA-ELM 114.6448 41,269.5256 1.8264

CSA-ELM 167.1929 48,990.5315 2.6483

ELM 207.0571 85,608.8853 3.1201

GA-NN [54] 3.49

GRNN [54] 10.75

RBE [54] 12.3

BNNMAS [54] 2.84

Bold values indicate the best value
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(a)

(b)

Fig. 7 a Next quarter predicted and actual closing price of GDAXI index, b MAE values

Table 9 Statistical analysis of ELM models with different neurons for

IXIC market

Number of neurons MSE MAE MAPE

5 9235.6564 145.2354 2.8546

6 8123.5545 98.2454 1.8978

7 7849.0144 89.4578 1.6112

8 7852.8978 88.4574 1.5467

9 7596.2542 75.2154 1.3745

10 7516.9972 61.0248 0.9787

11 7529.2145 66.2454 0.9987

12 7654.5215 68.2454 1.1568

13 7894.8754 72.4542 1.3217

14 8017.2459 82.4754 1.6547

15 8178.1476 92.2584 1.8645

Bold values indicate the best value

Table 10 Statistical analysis of ELM models with different activation

functions for IXIC market

Activation functions MSE MAE MAPE

Sigmoid 7516.9972 61.0248 0.9787

Tanh 7517.6245 60.4987 0.9789

Softsign 7519.8455 64.5612 0.9975

ReLU 7517.0148 61.0197 0.9792

Bold values indicate the best value

Table 11 MSE, MAE and MAPE values of PGCSA-ELM, CSA-ELM

and ELM models for various markets

Markets Prediction Model MSE MAE MAPE

DJI PGCSA-ELM 5529.6929 43.7481 0.1954

CSA-ELM 18,933.3649 98.3678 0.4334

ELM 53,801.1195 156.7445 0.6625

HIS PGCSA-ELM 6230.7567 47.8398 0.1871

CSA-ELM 23,388.3681 98.5441 0.3878

ELM 67,974.8043 187.5332 0.7133

IXIC PGCSA-ELM 1113.2869 17.6458 0.2624

CSA-ELM 1442.9564 26.9485 0.3942

ELM 7516.9972 61.0248 0.9787

N100 PGCSA-ELM 7.9853 1.7040 0.1779

CSA-ELM 32.0015 3.7812 0.3872

ELM 80.0999 6.1061 0.6272

NSEI PGCSA-ELM 642.7781 16.3248 0.1709

CSA-ELM 4623.7704 46.0476 0.4599

ELM 12,856.7450 85.9799 0.8878

RUT PGCSA-ELM 24.9143 3.6603 0.2702

CSA-ELM 192.0929 9.5494 0.6751

ELM 319.8097 13.4640 0.9419

GDAXI PGCSA-ELM 837.8737 96.0973 0.1702

CSA-ELM 5636.0005 101.4636 0.4452

ELM 33,374.1955 131.4623 1.1595

Bold values indicate the best value
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Algorithm 1. Pseudo code of PGCSA algorithm.

Pseudo code of PGCSA Algorithm
1 Initialize random population of crows (X), memory of crows (M), numbers of groups (ng), flight length (fl), and awareness

probability (AP).
2 Evaluate the functional value of crows.
3 While (termination criteria)

Evaluate the number of group members (NG) in each group and distribute the crows among the groups.
Determine the group leader of each group (XL) and best crow (XBest).
For i=1:Nc 

if r1≥ AP (Check the awareness of the crow)
Update the positions of crows by using equation (9).

else
Update the velocity of crows by using equation (14).

Update the position of crows by using equation (13).
end of if
Clamp the crows within UB and LB.
Evaluate the functional values of each crow.

end of for
Update the memory of crows
end of while

4.     Repeat step 3 until the termination criteria satisfied.
5.     Evaluate optimal solution.

In the later stage of iteration, there is a higher proba-

bility that fittest Xi may be replaced by random position. In

this work, the second stage of Eq. (7) is modified by con-

ceding the velocity as depicted in (13).

Xi
new ¼ Xi

old þ vi ð13Þ

where, vi is the velocity of ith particle evaluated in the

same fashion as in PSO [44]. Velocity (v) is updated by

conceding the memory (M) and best crow as depicted in

(14).

vinew ¼ w� viold þ rand � c1 � Mi � Xi
� �

þ rand � c2
� XBest � Xi
� �

ð14Þ

Weightw ¼ 0:9� 0:5
it

itermax

� �

where, c1 and c2 are the participation factors of M and XBest

respectively. M is memory of crows. This approach is used

to enhance the exploitation. The movement of crows is

illustrated in Fig. 2. The flow chart of proposed PGCSA

algorithm is depicted in Fig. 3. The algorithm is briefly

elaborated through pseudo code in algorithm 1. The main

benefits of this proposed PGCSA algorithm are as follows:

i. In first phase (without awareness probability), the

subdivided groups of crows throughout the search

space will help to explore local optima. So, it

enhances the exploration capability of the algorithm.

ii. In second phase (with awareness probability), the

velocity concept of PSO algorithm enhances the

exploitation capability by contributing a direction

towards optimal point. This approach helps to avoid

the solution trapped into local optima.

iii. PGCSA algorithm enhances the balance between

exploration and exploitation capability of the tech-

nique. The capability to solve high dimensional

problem is enhanced with these two approaches.

2.4 Research data

In this work, the time series historical price of period from

1st January 2004 to 10th May 2020 of seven stock indices

such as Dow Jones Industrial Average (DJI), Hang Seng

Index (HSI), Nasdaq Composite (IXIC), Euronext-100 (N

100), Nifty 50 (NSEI), Russell 2000 (RUT) and DAX

performance index (GDAXI) are considered for SM fore-

casting collected from (https://www.investing.com). Daily

high, low and open prices of these indices are treated as

inputs of ELM to predict the closing price of next day. The

normalized data of open, low, high and closing prices are

determined by employing Eq. (15).

S ¼ x� xmin
xmax � xmin

ð15Þ

The training and testing data are considered in ratio of

7:3, respectively. The actual closing price is determined by

de-normalizing the output of ELM as formulated in (16).

X ¼ S � xmax � xminð Þ þ xmin ð16Þ

where, S, xmax and xmin are the normalized data, maximum

value and minimum value, respectively.
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(b)

(c)

(d)

Fig. 8 PGCSA ELM and CSA ELM models predicted next day closing price of DJI
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(a)

(d)

(c)

(b)

Fig. 9 CSA ELM and ELM models predicted next day closing price of DJI
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2.5 Performance measures

Performance measure is a measurement which numerically

quantifies the closeness of predicted data to actual data.

Mean squared error (MSE), Mean Absolute Error (MAE)

and Mean Absolute Percentage Error (MAPE) are used as

error measurements which indicate error measured from

the origin and accuracy in percentage respectfully. Mini-

mum MSE, MAE and MAPE values indicate better pre-

dicted data. MSE, MAE and MAPE are the performance

measures expressed in Eqs. (17)–(19), respectively.

MSE ¼ 1

Ntest

XNtest

i¼1
si � bsið Þ2 ð17Þ

MAE ¼ 1

Ntest

XNtest

i¼1
si � bsij j ð18Þ

MAPE ¼ 1

Ntest

XNtest

i¼1

si � bsi
bsi

				

				� 100 ð19Þ

where, Ntest is the numbers of data to be tested. si and bsi are
the actual and predicted closing prices, respectively. In this

work, MSE is used as functional value to be minimized by

optimizing the weights and biases of ELM model. The

performance measures used for this purpose are shown in

Eqs. (20)–(23).

Mean Arctangent Absolute Percentage Error MAAPEð Þ
¼ 1

Ntest

XNtest

i¼1
AAPEið Þ

ð20Þ

where, AAPEi ¼ arctan Si�bSi
Si

				

				
� �

CoefficientofVariationðCoVÞ ¼ StandardDeviation

Mean
� 100

ð21Þ

CorelationsðCORRÞ ¼
PNtest

i¼1 Si � mean Sið Þð Þ bSi � mean bSi
� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PNtest

i¼1 Si � mean Sið Þð Þ2
PNtest

i¼1
bSi � mean bSi

� �� �2r

ð22Þ

Theil’s U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ntest

PNtest

i¼1 Si � bSi
� �2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ntest

PNtest

i¼1 Sið Þ2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ntest

PNtest

i¼1
bSi
� �2r ð23Þ

CoV is useful performance measures to interpret a dif-

ference between two predicted data sets. The CoV

demonstrates the variability of data in a sample in relation

to the mean of the population. In this work, CoV is used to

measure the volatility and risk in compare to return.

MAAPE is a scale-independent and interpretability per-

formance measure to estimate forecast accuracy. It

achieves extra balanced penalty of errors over MAPE [56].

CORR is a statistical measure which determines the rela-

tive movements of actual and predicted closing price. The

Fig. 10 absolute error and MAE values of predicted DJI closing price
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(a)

(c)

(d)

(b)

Fig. 11 PGCSA ELM and CSA ELM models predicted next day closing price of HSI
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(b)

(c)

(d)

Fig. 12 CSA ELM and ELM models predicted next day closing price of HSI
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range of correlation coefficient is between -1 to 1. The

positive correlation coefficient near to 1 (CORRk1Þ pro-

vides a strong linear relationship between actual and pre-

dicted closing price. Theil’s U is used as a statistical

measure to determine the forecasting accuracy. The smaller

value of Theil’s U indicates more accuracy of forecast.

2.6 Hypothesis testing (paired t-test)

In this work, paired t-test is used to hypothetically test the

accuracy of predicted closing price. Paired t-test requires

two samples of observations such as predicted price (bSi)
and actual price (Si) with n samples. The t-test performs to

state the acceptance of null (H0) and alternative (H1)

hypotheses. The null and alternative hypotheses adopted

for this work are:

H0—The mean difference is equal to zero (lSi ¼ lbSi ).
H1—The mean difference is not equal to zero

(lSi 6¼ lbSi ).
The paired t-test is mathematically described in

Eqs. (24)–(27).

dif ¼ Si � bSi ð24Þ

dif ¼
P

dif

n
ð25Þ

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
dif � dif
� �2

n� 1

s

ð26Þ

t - value ¼
ffiffiffi
n

p dif

SD
ð27Þ

where, dif, dif , and SD are the difference, mean of dif-

ference, and sample standard deviation, respectively. In

this work, the acceptance/failure of acceptance of null

hypothesis is decided by conceding the significance level

of 5% (0.05).

2.7 Sharpe ratio (SR) and modified sharpe ratio
(MSR)

An investor requires nimble investment to achieve good

return with less risk. For the purpose to help investors to

understand the return of an investment compared to its risk,

sharpe ratio is an useful financial tool. The mathematical

expression of SR is defined in Eq. (28).

SR ¼ RP � RF

rp
ð28Þ

where, RP, RF and rp are the portfolio return, risk free rate

and standard deviation of portfolio return, respectively.

Modified Sharpe ratio (MSR) is a modified tool of SR,

which encourages that any abnormalities (abnormal dis-

tributed assets) are precluded from its calculation. Modified

Sharpe Ratio (MSR) is used for a statistical analysis by

concerning Modified Value at Risk (MVaR). MVaR mea-

sures the level of risk within a portfolio with non-normal

distribution return of a specific time [57]. MSR and MVaR

are determined as illustrated in Eq. (29) and (30).

MSR ¼ RP � RF

MVaR
ð29Þ

MVaR ¼ W l� Zc þ
1

6
Z2
c � 1

� �
Sþ 1

24
Z3
c � 3Zc

� �
�
K

� 1

36
ð2Z3

c � 5ZcÞS2


r

�

ð30Þ

Fig. 13 absolute error and MAE values of predicted HSI closing price
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(b)

(c)

(d)

Fig. 14 PGCSA ELM and CSA ELM models predicted next day closing price of IXIC
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(b)

(c)

(d)

Fig. 15 CSA ELM and ELM models predicted next day closing price of IXIC
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where, Zc = Critical value for probability. S = Skewness.

K = Excess kurtosis. l = Rate of drift of asset value.

W = Amount at risk or portfolio.

3 Result and discussion

3.1 Validation of proposed algorithm through
benchmark test functions

The novelty of CSA is favorably demonstrated in various

engineering applications. This algorithm has certain kind of

scarcity to solve complex problems. CSA largely depends

on random position of crows and randomly selected crow.

The position of a crow may be updated by conceding unfit

and worst crow which is not acceptable. The sluggish

convergence rate and probability to trap into local optima

may be caused by this dilemma. The competence of CSA

algorithm is enhanced by modifying the mathematical

expression of the algorithm. The proposed PGCSA algo-

rithm is demonstrated in this work in contrast with DE [42],

PSO [44], Teaching Learning-Based Optimization (TLBO)

[58], Salp Swarm Algorithm (SSA) [59] and CSA [48]

algorithms. The competence of PGCSA algorithm to pluck

optimum point, convergence rate and evading from local

optima is portrayed by an admirable comparative analysis

among recently proposed algorithms. The comparative

analysis is observed by solving 9 benchmark functions

without constraint and 3 benchmark functions with con-

straints. All the algorithms are executed individually for

individual benchmark equations with same population and

termination criteria.

For all algorithms, population size and maximum iter-

ations are chosen as 20 and 1000, respectively. The solu-

tions of each benchmark equations are evaluated by

executing each algorithm for 50 times. The best solution

among 50 runs is considered as the solution of the corre-

sponding algorithms. The benchmark functions adopted for

this work are categorized as unimodal separable/non-sep-

arable (US/UN) and multimodal separable/non separable

(MS/MN). The constraint and unconstraint benchmark

equations are tabulated in Tables 1 and 2 respectively. The

different categories of functions are adopted to contribute a

fine validation of proposed algorithm in different envi-

ronments. The Best value (BV), Average value (Avg) and

Standard Deviation (SD) of the solution are opted as per-

formance parameters. The comparative analysis is graded

by conceding these parameters. All the adopted benchmark

functions are minimization problems. The solutions of

benchmark problems without constraints are portrayed in

Table 3 and the solutions of benchmark problems with

constraints are portrayed in Table 4. The convergence plots

of each algorithm of benchmark problems without con-

straints are illustrated in Fig. 4 and the convergence of

benchmark problems with constraints are portrayed in

Fig. 5. From Figs. 4, 5 and Tables 3, 4, the proficiency of

proposed PGCSA algorithm along with faster convergence

and capability to escape from local optima are validated

over CSA, SSA, TLBO, PSO and DE algorithms. From

Tables 3 and 4, the performance parameters contributed by

PGCSA of almost all benchmark functions are favorably

less. The convergence rate of PGCSA algorithm is also

validated from Figs. 4 and 5 for first 100 iterations.

The better standard deviation and mean values of an

algorithm demonstrate that the average performance and

Fig. 16 Absolute error and MAE values of predicted IXIC closing price
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(b)
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Fig. 17 PGCSA ELM and CSA ELM models predicted next day closing price of N100
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(a)

(b)

(c)

(d)

Fig. 18 CSA ELM and ELM models predicted next day closing price of N100
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stability of proposed PGCSA algorithm is better over other

considered algorithms. In addition to mean and standard

deviation, a pairwise hypothesis test is conducted by using

Wilcoxon signed-rank test. Null hypothesis (H0) and

alternative hypothesis (H1) are considered to interpret the

superiority of PGCSA algorithm.

H0 : Mean difference is zero

H1 : Mean difference is not zero

(

The main concerns to reject or accept the null hypoth-

esis are p-value and significance level (a = 0.05). A p-

value larger than significance level fails to reject null

hypothesis, while a p-value smaller than significance level

reject the null hypothesis. The p-values have been deter-

mined and portrayed in Table 5. From Table 5, all p-values

are less than 0.05 which indicates the evidence to reject

null hypothesis with a significance level of 95%.The rank

sum values have been calculated between PGCSA and

other algorithms which are shown in Table 6. R ? is the

sum of positive ranks which indicates the PGCSA algo-

rithm outperformed the other algorithm and R - is the sum

of negative ranks which indicates the failure of PGCSA

algorithm to outperform the other algorithm. From Table 6,

the sum of positive ranks for all benchmark functions is

higher than the sum of negative ranks which substantiates

that the PGCSA outperforms other algorithms in each

comparison.

3.2 Simulation experiments for validation
of proposed technique of stock market
forecasting

In previous section, the evidence to validate the efficacy of

proposed PGCSA is achieved by outperforming other

existing techniques. In this section, the proposed PGCSA-

ELM technique is executed in stock market index price

forecasting for analysing the effectiveness of proposed

technique with some existing techniques. IXIC stock index

is considered for the comparative analysis with existing

techniques such as multilayer perceptron (MLP), hybrid

GARCH-MLP, dynamic architecture for artificial neural

networks (DAN2), GARCH-DAN2 [10]. GDAXI index is

considered to achieve a performance comparison of pro-

posed technique with existing techniques such as GA-NN,

GRNN, RBE and BNNMAS proposed by Hafezi et al. [54].

The two indices are considered with exactly same data as

considered in [10, 54]. The performance measures (MAE,

MSE, and MAPE) of different techniques for IXIC stock

index forecasting testing period are tabulated in Table 7.

The PGCSA-ELM, CSA-ELM and ELM predicted IXIC

index testing data are portrayed in Fig. 6a and MAE values

of prediction is portrayed in Fig. 6b. The performance

indices and predicted quarterly GDAXI index are portrayed

in Table 8 and Fig. 7a. The MAE values of predicted

closing price by different models are portrayed in Fig. 7b.

From this analysis, the effectiveness of PGCSA ELM

techniques is substantiated with minimum performance

measures. The testing results of GDAXI index predicted by

different models are portrayed in appendix. The superiority

of proposed PGCSA ELM model over CSA ELM and ELM

models predicted can be concluded from this analysis.

Fig. 19 Absolute error and MAE values of predicted N100 closing price
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Fig. 20 PGCSA ELM and CSA ELM models predicted next day closing price of NSEI
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(c)

(d)

Fig. 21 CSA ELM and ELM models predicted next day closing price of NSEI
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3.3 Simulation experiments of stock market
forecasting

For each stock index, CSA and PGCSA algorithm are

executed individually with 100 populations to optimize

ELM with ten neurons for 1000 iterations. The prime

objective of optimization technique is to minimize Mean

Squared Error (MSE). The competence of ELM model is

influenced by the numbers of neurons of hidden layer.

Initially, the ELM model is executed by varying the neu-

rons of hidden layer. MSE, MAE and MAPE of ELM

predicted closing price of IXIC are tabulated in Table 9

with different neurons. From Table 9, the CSA-ELM model

with ten neurons is realized with better performance

parameters. So, the ELM with ten hidden neurons is exe-

cuted for all indices to predict closing price. The activation

function of ELM is also a decisive factor by which the

performance is influenced. The selection of relevant acti-

vation function for this work is done by a comparative

analysis. The activation functions considered for the

comparative analysis are sigmoid, hyperbolic tangent

(tanh), softsign and rectified linear unit (ReLU) activation

functions. The performance measures of forecasted closing

price of IXIC with different activation functions are por-

trayed in Table 10. From Table 10, sigmoid activation

function is concluded as a better activation function with

better overall performance.

The performance parameters (MSE, MAE and MAPE)

of stock indices with PGCSA-ELM, CSA-ELM and ELM

models are tabulated in Table 11. PGCSA-ELM, CSA-

ELM and ELM models predicted closing price with respect

to actual closing price, absolute error, and MAE are por-

trayed in Figs. 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 24, 25, 26, 27, 28. The testing results of

different models are illustrated by splitting into four parts

to portray a clear comparative analysis. The comparative

analysis is portrayed to validate proposed PGCSA ELM

over CSA ELM and CSA ELM over ELM in these figures.

The zoomed part of predicted closing price is illustrated to

contribute a fair comparative analysis. Figures 8, 9, 10, 11,

12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,

28 represent the performance of prediction to substantiate

PGCSA ELM over CSA ELM and ELM model in terms of

prediction of closing price. From Table 11 and Figs. 8, 9,

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,

26, 27, 28, PGCSA-ELM model to predict SM closing

price is favourably affirmed as a superior model in com-

parison with CSA-ELM, and ELM models.

Further, the comparison between actual closing price

and predicted closing price in terms of statistical measures

(MAAPE, CoV, CORR and Theil’s U) is portrayed in

Table 12. The PGCSA-ELM predicted model is substan-

tiated with better performance measures in comparison to

CSA-ELM and ELM models. From Table 12, PGCSA-

ELM predicted closing price is substantiated as better

forecast over CSA-ELM predicted closing price.

The computational time of ELM, CSA-ELM and

PGCSA-ELM models evaluated during the training period

is portrayed in Table 13. The weights and biases of ELM

are evaluated by optimization techniques during training

period and the evaluated parameters are fixed to test the

prediction ability. So, the computational time is evaluated

during training period. The increased computational com-

plexity of the metaheuristic-based ELM models are

observed to possess a higher computational time. However,

the computational time can be compensated with a sig-

nificant improvement in prediction performance.

The evidence to substantiate the integration of proposed

PGCSA algorithm and optimized ELM has been depicted

by simulation results as portrayed in previous sections.

Seven different stock market indices are considered for the

analysis. The improvement (in percentage) of

Fig. 22 Absolute error and MAE values of predicted NSEI closing price
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(c)

(d)

Fig. 23 PGCSA ELM and CSA ELM models predicted next day closing price of RUT
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(b)

(c)

(d)

Fig. 24 CSA ELM and ELM models predicted next day closing price of RUT
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performances in terms of measures of PGCSA ELM over

CSA ELM and ELM methods is portrayed in Table 14.

3.3.1 Verification of SM price prediction by Paired t-test

The accuracy of prediction of closing price of SM is

hypothetically tested by employing paired t-test. This test

substantiates the proposed algorithm to contribute mean

difference between predicted closing price and actual

closing price. The statistical measure (paired t-test)

requires two samples of observations of n numbers popu-

lation. In this work, actual closing price (Si) and predicted

closing price (bSi) are considered as two samples for paired

t-test. The paired t-test results are tabulated in Table 15.

The significance level of 5% (0.05) is adopted to accept the

paired t-test. From Table 15, it is clearly realized

|t|\|tcritical| and q[ 0.05 for all seven markets. The abso-

lute value of t-value contributed by proposed algorithm is

less as compared with CSA-ELM and ELM models.

3.3.2 Verification of SM price prediction by sharpe ratio
and modified sharpe ratio

In previous section, the predicted data administered by

proposed method is hypothetically tested by paired t-test.

In this section, the predicted closing price is tested through

financial indicators such as annual return (AR), Sharpe

ratio (SR) and modified sharpe ratio (MSR). AR is the

yearly profit in percentage as defined in Eq. (31).

AR ¼ Return

capital

� � 1
nt

� 1

 !
� 100 ð31Þ

where, ‘nt’ is the number of trading days of a year. The

AR, SR and MSR of actual & predicted closing price of

stock markets have been portrayed in Table 16. These

financial indicators of PGCSA-ELM predicted closing

price are higher in comparison with CSA-ELM and ELM

predicted closing price.

From Table 16, PGCSA-ELM predicted closing price is

more sensitivity to non-normal distribution of return and

financial indicators. PGCSA-ELM predicted price is close

to the indicators of actual closing price of an index which

means, the proposed model predicts price close enough to

the actual trading cost.

4 Conclusion

Accurate forecasting of the stock markets price is the

subject of extreme concern, especially in recent years. This

study proposed a novel approach based on PGCSA and

ELM for forecasting stock market closing price precisely.

The proposed technique is also substantiated by including

the data of seven indices during COVID-19 outbreak.

First, PGCSA algorithm is mainly based upon the

awareness probability of a crow. Without awareness

probability, the flock of crows are splited into different

groups to explore the search space. The crows with

awareness probability are updated with velocity by con-

cerning each group’s best crow. The proficiency of pro-

posed PGCSA algorithm to solve 9 benchmark equations

without constraints and 3 benchmark equations with con-

straints is substantiated over CSA, SSA, TLBO, PSO and

DE algorithms. The effectiveness of proposed algorithm to

resolve benchmark equations are acknowledged by con-

ceding best value, mean and standard deviation as perfor-

mance parameters. In addition to that, Wilcoxon test is

considered for the hypothetical validation of the proposed

approach.

Moreover, the CSA and proposed PGCSA algorithms

are enforced individually to optimize the weight and bias of

ELM to forecast next day closing price of seven different

stock indices. MSE, MAE and MAPE are considered as

Fig. 25 Absolute error and MAE values of predicted NSEI closing price
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(b)

(c)

(d)

Fig. 26 PGCSA ELM and CSA ELM models predicted next day closing price of GDAXI
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(b)

(c)

(d)

Fig. 27 CSA ELM and ELM models predicted next day closing price of GDAXI
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Fig. 28 Absolute error and MAE values of predicted GDAXI closing price

Table 12 Comparison of

performance measures
Markets Prediction Model MAAPE CoV CORR Theil’s U

DJI PGCSA-ELM 0.0019 16.7981 0.9998 0.0016

CSA-ELM 0.0043 16.7857 0.9993 0.0030

ELM 0.0066 16.7645 0.9981 0.0051

HSI PGCSA-ELM 0.0018 12.5717 0.9997 0.0015

CSA-ELM 0.0038 12.5696 0.9988 0.0029

ELM 0.0071 12.5443 0.9967 0.0050

IXIC PGCSA-ELM 0.0026 20.4819 0.9996 0.0024

CSA-ELM 0.0039 20.4687 0.9997 0.0028

ELM 0.0097 20.4437 0.9979 0.0064

N100 PGCSA-ELM 0.0017 8.9728 0.9995 0.0014

CSA-ELM 0.0038 8.9537 0.9979 0.0028

ELM 0.0062 8.9323 0.9949 0.0045

NSEI PGCSA-ELM 0.0017 14.7303 0.9998 0.0012

CSA-ELM 0.0045 14.7120 0.9988 0.0034

ELM 0.0088 14.6778 0.9969 0.0057

RUT PGCSA-ELM 0.0027 13.7106 0.9996 0.0017

CSA-ELM 0.0067 13.6755 0.9974 0.0048

ELM 0.0094 13.6614 0.9957 0.0063

GDAXI PGCSA-ELM 0.0017 9.7939 0.9997 0.0012

CSA-ELM 0.0044 9.7768 0.9978 0.0032

ELM 0.0115 9.7398 0.9872 0.0078

Bold values indicate the best value

Table 13 Computational time

of different models in seconds
Models DJI HSI IXIC N100 NSEI RUT GDAXI

PGCSA ELM 34.82 34.21 34.81 35.21 35.02 35.29 35.16

CSA ELM 34.51 34.11 34.51 35.16 34.77 35.11 34.57

ELM 8.74 9.23 9.47 8.64 8.41 9.02 8.79
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Table 14 Improvement of

performance measures of

PGCSA ELM in percentage

Markets Prediction Model MSE MAE MAPE MAAPE CoV CORR Theil’s U

DJI CSA-ELM 70.79 55.52 54.91 55.81 0.07 0.05 46.66

ELM 89.72 72.08 70.50 71.21 0.20 0.17 68.62

HIS CSA-ELM 73.35 51.45 51.75 52.63 0.01 0.09 48.27

ELM 90.83 74.49 73.77 74.64 0.21 0.3 70.00

IXIC CSA-ELM 22.84 34.52 33.43 33.33 0.06 0.01 14.28

ELM 85.18 71.08 73.18 73.19 0.18 0.17 62.50

N100 CSA-ELM 75.04 54.93 54.05 55.26 0.21 0.16 50

ELM 90.03 72.09 71.63 72.58 0.45 0.46 68.88

NSEI CSA-ELM 86.09 64.54 62.83 62.22 0.12 0.10 64.70

ELM 95.00 81.01 80.75 80.68 0.35 0.29 78.94

RUT CSA-ELM 87.03 61.66 59.97 59.70 0.25 0.22 64.58

ELM 92.21 72.81 71.31 71.27 0.36 0.39 73.01

GDAXI CSA-ELM 85.13 5.28 61.77 61.36 0.17 0.19 62.50

ELM 97.48 26.90 85.32 85.21 0.55 1.06 84.61

Table 15 The paired t-test result

Markets Prediction Model t-value tcritical P-value Degree of freedom Remark

DJI PGCSA-ELM -0.0297 ± 1.9618 0.9763 1233 Null hypotheses accepted
for all case studies |t|\|tcritical|CSA-ELM - 0.0300 0.9761

ELM - 0.0308 0.9754

HIS PGCSA-ELM 0.0166 ± 1.9619 0.9867 1205

CSA-ELM 0.0177 0.9859

ELM 0.0198 0.9842

IXIC PGCSA-ELM 2 0.0582 ± 1.9618 0.9536 1233

CSA-ELM - 0.0586 0.9533

ELM - 0.0587 0.9532

N100 PGCSA-ELM 0.0146 ± 1.9618 0.9883 1253

CSA-ELM 0.0164 0.9869

ELM 0.0203 0.9838

NSEI PGCSA-ELM 2 0.0131 ± 1.9619 0.9896 1211

CSA-ELM - 0.0151 0.9880

ELM 0.0155 0.9876

RUT PGCSA-ELM 2 0.0011 ± 1.9618 0.9991 1233

CSA-ELM - 0.0037 0.9970

ELM 0.0271 0.9784

GDAXI PGCSA-ELM 0.0016 ± 1.9618 0.9815 1242

CSA-ELM 0.0089 0.9929

ELM 0.0073 0.9942

Bold values indicate the best value

Table 16 Comparison of financial indicators

Indices Actual closing price PGCSA ELM predicted price CSA ELM predicted price ELM predicted price

AR SR MSR AR SR MSR AR SR MSR AR SR MSR

DJI 0.6250 0.3966 0.5948 0.5793 0.4460 0.6380 0.6317 0.3909 0.5273 0.5384 0.3829 0.5050

HSI - 0.0837 - 0.0537 0.4976 - 0.0843 - 0.0542 0.4971 - 0.0758 - 0.0476 0.4835 - 0.0072 - 0.0035 0.3896

IXIC 1.0859 0.6541 0.4748 1.0946 0.6303 0.4728 1.0491 0.7265 0.5474 1.0083 0.6027 0.4675

N100 0.0252 0.0174 0.5051 0.0358 0.0229 0.4923 0.0128 0.0086 0.4694 0.0829 0.0465 0.4597

NSEI 0.5988 0.3909 0.5868 0.5842 0.4020 0.6151 0.5364 0.3797 0.5414 0.4528 0.3468 0.4844

RUT 0.2142 1.1666 0.4290 0.1707 1.0754 0.4745 0.1372 0.9591 0.5137 0.1074 0.7026 0.5352

GDAXI 0.1226 0.0753 0.4926 0.0994 0.0457 0.4626 0.0727 0.0581 0.4584 0.0358 0.0423 0.5657
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statistical weighs to contribute a fair comparative analysis

to demonstrate the supremacy of PGCSA-ELM over CSA-

ELM and ELM predicted models. Further, MAAPE, CoV,

CORR and Theil’s U are used as statistical measures to

substantiate PGCSA-ELM over CSA-ELM and ELM

forecasting models with maximum CORR and minimum

MAAPE, CoV & Theil’s U. From this work, it is corrob-

orated that PGCSA-ELM forecasting model outperforms

CSA-ELM and ELM forecasting models to predict next

day closing price.

Finally, the mean difference between actual and forecasted

closing price is hypothetically substantiated by adopting

paired sample t-test. The risk adjusted basis relevant measures

like AR, SR, MSR of actual and predicted closing price is

also considered to achieve good return with less risk.

Appendix

See Table 17.

Table 17 Comparative analysis of GDAXI predicted value

Actual PGCSA

ELM

CSA

ELM

ELM Error of

PGCSA ELM

Model

Error of CSA

ELM Model

Error of

ELM

Model

Win or Loss of PGCSA

ELM over CSA ELM

Win or Loss of

PGCSA ELM over

ELM

3994.96 3994.95 3997.96 3994.94 0.0100 3.0044 0.0155 ? ?

4291.53 4291.25 4299.57 4291.54 0.2715 8.0429 0.0160 ? -

4373.53 4373.50 4345.78 4373.02 0.0263 27.7429 0.5050 ? ?

4617.07 4617.20 4578.74 4617.84 0.1360 38.3218 0.7726 ? ?

5082.07 5080.73 5013.86 5081.85 1.3359 68.2045 0.2166 ? -

5449.98 5382.94 5395.95 5317.32 67.03677 54.0245 132.6507 - ?

6024.05 6005.86 5903.56 5952.88 18.1880 120.4836 71.1653 ? ?

5712.69 5792.81 5613.61 6330.08 80.1287 99.0789 617.3962 ? ?

5999.46 5998.24 5772.12 5777.31 1.2130 227.3399 222.1488 ? ?

6681.13 6316.24 6317.02 6244.96 364.8848 364.1007 436.1635 - ?

6937.17 6608.13 6691.007 6638.62 329.0316 246.1626 298.5432 - -

7958.24 7795.44 7921.81 7774.88 162.7985 36.4263 183.3591 - ?

7922.42 7934.86 8001.68 7922.46 12.4480 79.2670 0.0484 ? -

7949.11 7954.50 8058.53 7949.14 5.3978 109.4239 0.0311 ? -

6720.33 6702.97 6525.43 6720.37 17.3544 194.8961 0.0431 ? -

6315.94 6675.48 6799.16 6666.11 359.5484 483.2279 350.1748 ? -

5806.33 5898.74 5703.78 5590.71 92.4171 102.5419 215.619 ? ?

4973.07 5632.47 5322.44 5824.05 659.4067 349.3711 850.9858 - ?

4131.07 4156.89 3987.19 4221.30 25.8212 143.8741 90.2388 ? ?

4905.44 4905.20 4896.99 4905.51 0.2099 8.447161 0.0702 ? -

5554.55 5557.90 5504.41 5516.18 3.3556 50.1370 38.3643 ? ?

6048.3 6094.46 6078.93 5843.70 46.1691 30.6334 204.5911 - ?

6235.56 6393.12 6380.95 6417.14 157.5647 145.3985 181.585 - ?

5857.43 6034.26 6173.76 6476.56 176.8377 316.339 619.1399 ? ?

6211.34 6132.02 5683.61 5888.92 79.3136 527.7254 322.4199 ? ?

6989.74 6435.23 6520.31 6627.23 554.5076 469.425 362.5005 - -

7179.81 7245.89 7355.39 7391.08 66.0854 175.5832 211.2766 ? ?

7419.44 7410.90 7502.10 7423.29 8.5352 82.6620 3.8566 ? -

5216.71 5216.64 5215.83 5216.75 0.0660 0.8761 0.0426 ? -

6075.52 6124.44 5985.79 6255.77 48.9203 89.7295 180.2516 ? ?

7056.65 6760.442 6662.09 6514.37 296.2076 394.5538 542.2783 ? ?

6496.08 6529.27 6357.13 7000 33.1974 138.9411 503.92 ? ?

Wins(24) Loss (8) Wins(21) Loss (11)

‘ ? ’ indicates wins and ‘-’ indicates losses in comparative analysis
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