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Abstract

Specialized data preparation techniques, ranging from data cleaning, outlier detection, missing value imputation, feature
selection (FS), amongst others, are procedures required to get the most out of data and, consequently, get the optimal
performance of predictive models for classification tasks. FS is a vital and indispensable technique that enables the model
to perform faster, eliminate noisy data, remove redundancy, reduce overfitting, improve precision and increase general-
ization on testing data. While conventional FS techniques have been leveraged for classification tasks in the past few
decades, they fail to optimally reduce the high dimensionality of the feature space of texts, thus breeding inefficient
predictive models. Emerging technologies such as the metaheuristics and hyper-heuristics optimization methods provide a
new paradigm for FS due to their efficiency in improving the accuracy of classification, computational demands, storage, as
well as functioning seamlessly in solving complex optimization problems with less time. However, little details are known
on best practices for case-to-case usage of emerging FS methods. The literature continues to be engulfed with clear and
unclear findings in leveraging effective methods, which, if not performed accurately, alters precision, real-world-use
feasibility, and the predictive model’s overall performance. This paper reviews the present state of FS with respect to
metaheuristics and hyper-heuristic methods. Through a systematic literature review of over 200 articles, we set out the
most recent findings and trends to enlighten analysts, practitioners and researchers in the field of data analytics seeking
clarity in understanding and implementing effective FS optimization methods for improved text classification tasks.
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education, sport, amongst others, can be categorized and
subsequently leveraged for knowledge, insights and
predictions.

A substantial amount of the knowledge available these
days are stored as text [5]. A recent analysis from Forbes
reported that about 2.5 quintillion bytes of data are gen-
erated daily [6]. The report also showed that a large portion
of the generated data was in textual form. For instance,
Facebook records over 20 billion messages in textual,
pictorial, audio and video forms [7, 8]. Likewise, over 15
billion tweets are exchanged on Twitter pages on a monthly
basis [9]. In addition, the English Wikipedia contains about
6,272,058 articles, and it averages around 604 new articles
each day [10].

Data mining, acoustics, pattern recognition and text
analysis specifically aim to recognize peculiarities within
data by simulating and extracting data content. It leverages
a number of methods from the domain of artificial intelli-
gence, statistics and so forth to classify texts in documents,
news, web pages and others from the field that characterize
the problem that is to be resolved. Text classification
consists of preparing the data by transforming the raw data
into a suitable form for modelling. It is a general consensus
in the field of data mining that your model is only as good
as your data. Hence, data preparation techniques are an
essential requirement to get the most out of data and in
turn, generate a predictive model with optimal perfor-
mance. Raw data cannot be utilized directly due to certain
issues. For instance, implementations may require that data
be numeric; raw data may contain errors, algorithms may
mandate explicit requirements, columns or segments may
be repetitive, redundant, irrelevant or insignificant.

Text mining (inclusive of text data mining) techniques
allow the discovery of high-quality information from texts.
It encompasses data cleaning, feature selection, data
transforms, feature engineering, dimensionality reduction
and so forth. Every one of these tasks is an entire field of
study with specialized algorithms. However, this study
focuses specifically on feature selection. The basic steps of
the text classification process are shown in Fig. 1.

Figure 1 depicts the set of processes in the text data
mining process. It begins with text processing which is a
data preparation process encompassing tokenization, word
normalization, stop word removal, filtering, amongst oth-
ers. This is followed by the feature extraction phase and
then the feature selection phase before the interpretation of
the model.

Feature selection (FS) seeks to enhance classification
efficiency by selecting only a tiny subset of appropriate
features from the initial wide range of features. FS attempts
to find an optimal set of features by removing redundant
and unimportant features from the dataset. The removal of
irrelevant and redundant features yields a good text
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representation, a decreased data dimensionality, accelerates
the learning cycle of the model, and boosts the perfor-
mance of the predictive model. Hence, the advantage of
feature selection ranges from minimizing overfitting,
reducing data dimensionality, improving accuracy, elimi-
nating irrelevant data, expediting training to improve
insights and elucidating the intricacies within the data,
amongst many other advantages.

The three main methods of feature selection for text
classification are namely filter-based, wrapper-based and
embedded. Each method of FS has its merits and demerits.
Recent years have seen the progression of research towards
combining two or more methods to produce the hybrid-
based feature selection method for better text classification.

The convoluted and cumbersome nature of the entirety
of most real-world problems requires an ample solution
space due to interdependencies and nonlinear requirements
amongst attributes [11]. Thus, the conventional-based
feature selection techniques are unable to handle such
problems. For instance, the filter-based methods have
critical issues ranging from them being unable to increase
consumption time, deliver satisfactory performance, com-
plexity and others. These challenges and more have man-
dated researchers to explore diverse other methods of
obtaining better performing options during the classifica-
tion task. Hence, the pursuit of better techniques with
optimal performance has led to the discovery of meta-
heuristic-based feature selection methods for text
classification.

Metaheuristic-based algorithms have proven their suit-
ability in diverse areas due to their delivery of practical
solutions in considerable time and their specificity in
overcoming the curse of dimensionality by optimizing the
performance of classification, mitigating high use of
computational resources, storage and the number of fea-
tures. Examples of metaheuristic algorithms include ant
colony optimization [12], genetic algorithms [13], memetic
algorithm [14], particle swarm optimization [15], evolu-
tionary-based algorithm [16], grey wolf optimizer [17],
firefly [18], binary Jaya [19], dragonfly algorithm [20, 21]
and so on.

This study focuses on metaheuristic-based feature
selection algorithms for text classification due to their
favourable characteristics of performing better than tradi-
tional-based feature selection methods. This review is
urgently required because of the lack of accurate infor-
mation on metaheuristic-based feature selection methods,
which currently affects the practice, accuracy and general
performance of most predictive models utilized for text
classification in different domains.
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Fig. 1 Basic steps for text classification
1.1 Contributions

Various overviews of feature selection are available in the
literature. For instance, Chandrashekar & Sahin [22] pro-
vided a general introduction to feature selection methods
and classified them into the filter, wrapper and embedded.
Pereira et al. [23] carried out a comprehensive survey and
novel categorization of the feature selection techniques by
focusing on multi-label classification. Notwithstanding,
these reviews did not consider how metaheuristic algo-
rithms affect or influence the accuracy of text classification
and the analysis of the different methods to handle the high
dimensionality of the feature space.

To the best of our knowledge, after a thorough scrutiny
of the available literature, no work expounded on the
emerging metaheuristic and hyper-heuristic optimizations
for feature selection. Moreover, few articles gave detailed
insights into their present state and prospects, alongside
how flawed feature selection processes impact the practi-
cality of the predictive model for real-world use cases. This
paper serves such a purpose. Thus, the significant contri-
butions of this research are as follows:

1.1.1 Encyclopaedic knowledge of feature selection

This review will serve as a concise encyclopaedia to ana-
lysts, practitioners, researchers and stakeholders in the field
of data analytics seeking clarity in understanding the basic
and advanced techniques of feature selection. It serves as
an all-encompassing referential manual and guide for
selecting effective and efficient feature selection opti-
mization methods for optimal development of predictive
model for text classification. Likewise, it could also serve

Filter, Wrapper, Embedded and
Hybrid

as a fundamental framework to guide newcomers and
interested researchers in the field.

1.1.2 Up-to-date overview

An updated overview of the current methods of feature
selection is discussed in this study. It is an extended effort
that can assist prospective researchers to immediately
understand some essential concepts and know the keyword
in the process of feature selection. The knowledge of the
concept and keyword will help to save time and address
any complexity of the feature selection process by guiding
the potential researchers in designing remarkable fail-proof
frameworks for optimizing their algorithms.

1.1.3 Extensive resources

This study examines the application of metaheuristics for
feature selection. We investigate and assemble many
resources on metaheuristic techniques that handle feature
selection, including state-of-the-art models, real-world use-
cases and characteristics of the benchmark datasets. This
study briefly serves as a hands-on guide for understanding
and generating peculiar feature selection models for cate-
gorizing, characterizing and modelling real-life practical
scenarios.

Similarly, the study will serve as a handbook for dis-
covering the suitable statistical and modelling approaches
for feature selection, its significance and choosing the
practical techniques to leverage for various variable types.
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1.1.4 Open issues and future insights

An in-depth investigation, exploration and discussion on
current trends of feature selection patterns, limitations and
prospective future research directions are discussed. Such
exploration serves as an apogee for the contributions and
limitations of the reviewed studies to elucidate novel
practices that could further advance this field.

The structure of the paper is mapped out as follows: (II)
the feature selection process, which explains the concept of
feature selection, (III) the review methodology section
provides full details on how the papers were selected, (IV)
the existing literature on the metaheuristic-based algorithm
presents comprehensive details on the state-of-the-art of
the metaheuristic-based methods, (V) research gaps were
provided in this section, (VI) lessons learned during the
review were discussed in this section, (VII) other issues
and possible solutions contain details of other relevant
information in the feature selection process, (VIII) future
directions give details of potential opportunities (IX) and
conclusion.

2 Feature selection

Feature selection is an essential data preparation technique
performed to characterize the most relevant, pertinent and
significant feature space. It involves selecting the subset of
the most distinct and relevant feature from a large group of
features to represent a record in a dataset for predictive
modelling [24]. It is an aspect of feature engineering where
the attribute or item of a dataset is utilized to reduce the
dimensionality of the problem to be addressed and thus,
facilitate the phase of the classification process. The pri-
mary motivation of the feature selection task is dimension
minimization in a huge multi-dimensional dataset. The
innovation of feature selection is a major step of successful
knowledge discovery in a problem with a large number of
features.

The main challenge of feature selection stems from
picking the smallest number of features from the primary
dataset, which occasionally consists of a large number of
features. Finding specific relationships and arriving at a
conclusion when dealing with a large dataset is quite dif-
ficult because some features are so related to the problem at
hand while some others are not related. If all the features
were selected, it would affect the selection outcome.
Therefore, to find the best solution, it is essential to select
the features that are most related only to the given problem.
Additionally, any one of the features that can affect the
outcome, which will lead to inaccurate results or that may
be time-consuming in the analysis process, should be
avoided. The ideology of minimizing the attributes in the
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large dataset during feature selection is represented in
Fig. 2.

Figure 2 depicts the process where one can manually or
automatically select those features from the original dataset
which contribute most to the prediction variable or output
in which one has an interest. Having irrelevant features in
data can decrease the accuracy of the models and make a
model learn based on irrelevant features. Thus, from the
original dataset, a subset of data is created to eliminate
irrelevant features.

In the feature selection process, attribute elimination can
help in knowing the size of data, reducing computation
time and requirement, minimizing dimensionality and
improving the performance predictor. In addition, the
selection of the features helps the predictive models to
detect hidden intricacies that can improve the performance
of the specific domain in view. For example, in the covid-
19 control model, there is a need for early detection of
covid-19, especially due to the lack of a widely known cure
[25, 26]. The significant features that will be useful in the
prediction are attributes encompassing major details of the
patient’s symptoms, such as if the person is having short-
ness of breath, fever, headache, sore throat, cough, muscle
pain and fatigue. Personal details containing features like
the height, weight of the person, phone number, residential
address, etc., may be irrelevant for the prediction. Thus,
such data clusters will not be included at the feature
selection phase of developing the disease detecting model.
Consequently, the model can be used for early discovery
and prevention of the further spread of the covid-19 dis-
ease. Therefore, the purpose of the feature selection pro-
cess is to reduce the number of features drastically.
However, the reduction needs not jeopardize the accuracy
of the model. Therefore, the success of the selection pro-
cess heavily relies on two critical factors, increasing the
rate of accuracy and minimizing the number of attributes
[27].

The literature classifies the feature selection process into
four, namely filter, wrapper, embedded and hybrid meth-
ods. An overview of the FS methods is given succinctly in
the following subsection. The classification of feature
selection methods is represented in Fig. 3.

2.1 Filter-based method

The filter approach applies an evaluation function to each
element, and subset selection is performed depending on
the score achieved. It evaluates features according to
heuristics based on the general characterization of the data
[28]. Statistical analysis is performed over the feature space
via ranking each feature of the dataset based on some
standard univariate metrics and then selecting the highest
ranking features. Some of the metrics include:
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Fig. 3 Classification of feature selection methods

Correlation coefficients: This metric eliminates dupli-
cated features.

Information gain: It accesses the independent parameter
by predicting the target parameter.

Chi-square: It tests the independence utilized in deciding
the dependency of two variables.

Variance: It eliminates constant features and other quasi
constant features.

The metrics are disintegrated into several specific
measures like Welch T-test [29, 30], Fisher score [31],
Kendall correlation [32, 33], feature similarity [34], Pear-
son correlation [22, 35], correlation [36, 37], amongst
others. The filter-based techniques could be used to select
the best feature by using specific filter criteria or selecting
independent features that have a high correlation with the
target variable, low correlation with other independent
variables and reciprocated information of the independent
variable.

Compared to the wrapper-based method, especially
during their application to large datasets, the filter-based
methods have the advantage of performing faster in com-
putation with minute computational time. Likewise, they
are robust to overfitting and model agnostic as they depend
entirely on the features in the dataset sample. The filter-
based methods also use relations between one input attri-
bute and the output attribute and search locally for attri-
butes that permit good local discrimination [38].
Nevertheless, redundant features might not be filtered as
they work more with discrete classification problems. Such
problems are being resolved in the literature by attaching
other metrics. For instance, Hall [28] presented a fast-

correlation-based FS method suitable for addressing dis-
crete and continuous classification problems.

2.2 Wrapper-based method

The wrapper-based FS method utilizes the learning algo-
rithm itself to assess the usefulness of features. The
wrapper method creates an interaction between the classi-
fication algorithm and the search subset. It implements a
subroutine, which acts as a statistical resampling technique
(for instance, cross-validation) utilizing the actual target
learning algorithm to estimate the accuracy of feature
subsets. The wrapper approach has demonstrated its supe-
riority in classification tasks, as they perform well when
solving the “real world” problem by optimizing the clas-
sifier performance. However, it is prolonged during exe-
cution as the learning algorithm has to be called repeatedly.
Compared to the filter method, they are computationally
more tedious due to the repetitive learning steps and cross-
validation. Wrapper FS methods do not scale well to
enormous datasets containing many features. Although, the
results can be more accurate than in the previous filter-
based method [39]. Nevertheless, this can lead to a longer
time to get results than the previous method since it
requires that the classifier be used severally. Examples of
the “wrapper method” include genetic algorithms,
sequential algorithms and recursive feature elimination
[40]. A particular case of sequential feature selection is a
greedy search algorithm that could locate the “optimal”
feature subset by iteratively selecting features based on the
performance of a classifier. It starts with a null feature
subset and adds one feature one after the other in each
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round. One feature can be selected from the pool of all
features that are not in the original subset, but the results
become the best performance classifier if added. The
general wrapper approach is demonstrated in Fig. 4.

As presented in Fig. 4, the wrapper method utilizes a
predefined classifier to explore a subset of features. It then
applies the classifier to measure the selected subset of
features. The selection and measuring of subsets of features
continue till the desired criterion of quality is achieved.

2.3 Embedded method

The embedded feature selection methods are implemented
using algorithms with their own built-in feature selection
methods. It is similar to the wrapper method in which the
same classifier is employed in selecting attributes at the
evaluation phase. However, using the classifier in the
embedded method is achieved at a less computational cost
than the wrapper method [22]. Popular examples of
such methods are decision trees, RIDGE, least absolute
shrinkage and selection operator (LASSO) and regression
with inbuilt penalization functions to reduce overfitting. At
the same time, LASSO regression is a regularization
technique used over regression methods for a more accu-
rate prediction. RIDGE regression is a technique for ana-
lysing  multiple regression data  that suffer from
multicollinearity (correlations between predictor vari-
ables). For instance, to develop a parsimonious model,

Fig. 4 The process of wrapper
model

ridge regression is employed as a strategy to determine if
the number of predictor variables in a set exceeds the
number of observations or when a dataset has
multicollinearity.

LASSO (L1) regression for generalized linear models
might be understood as adding a penalty against com-
plexity to reduce the degree of variance or overfitting of a
model by putting additional bias. That is, adding a penalty
term directly to the cost function,

Regularized cost = regularization penalty + cost.

In L1 regularisation, the penalty term is,

L1:2) kw; = 2w ...()where wisa  k-dimen-
sional feature vector. By adding the L1 term, the objective
function now becomes the minimization of the regularized
cost. Since the penalty term grows with the value of the
weight parameters that is A just a free parameter to fine-
tune the regularisation strength, one can induce sparsity
through this L1 vector norm, which may be considered as
an intrinsic way of feature selection which comprises of the
model training step. Meanwhile, the process of an
embedded method is illustrated in Fig. 5.

2.4 Hybrid method

The hybrid technique utilizes more than one strategy for
selecting a feature to create subsets. It combines multiple
approaches to obtain the best possible feature subset rather
than using an independent method. In the hybrid approach,

Input feature
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Y
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Fig. 5 The process of an Embedded Model

two methods can be combined logically, for instance the
wrapper and filter method. It begins with the filter method
being used to create a subset of features, followed by the
wrapper method being used to select features from the
subset [41]. The hybrid method can take advantage of the
wrapper and filter methods by exploiting their different
evaluation benchmark in different search phases. Then
achieve a relative comparable accuracy to the wrapper
method and also comparable efficiency to the filter method.
It first incorporates the statistical criteria, as the filter
method does, to select various candidate features subsets
with a specific cardinality. Then, it selects the subset with
the highest classification accuracy, just as the wrapper
does.

Combining these methods depends on each person per-
forming the feature selection, given that one has many
methods in the toolbox. For example, the modeller may
begin by performing the filter method (such as removing
constant, duplicated features and quasi-constant). The next
step involves using the wrapper method to select the best
feature subset from the previous step. The hybrid method
builds on the intuition of creating an effective and efficient
model by combining weaker methods, thus, the term
hybrid. The hybrid methods can perform both feature
selection and model training concurrently. A high accuracy
and performance, optimal computational complexity,
robust and flexible models are some of the benefits enjoyed
from the hybrid methods. The hybrid methods can combine

Learning
Algorithms +
Performance

filter and wrapper methods of feature selection simultane-
ously as depicted in Fig. 6.

Although the hybrid methods often offer a superb way
of combining weak feature selection methods to achieve
better selection variables, the drawback is that it can be
expensive and time-consuming when combining different
methods. Some of the merits and demerits of the selection
of features methods are shown in Table 1.

3 Review methodology

This review overviews and reports the current state of the
metaheuristic and hyper-heuristic optimization methods. It
investigates and examines the literature on current feature
selection methods, metaheuristic, hyper-heuristic opti-
mization methods and much more. Detailed studies of
related works from the literature were reviewed to achieve
the objectives of the review. Reviewed works of the liter-
ature were extracted from the vast resources in well-
established and reputable databases containing published
articles from popular journals, conference papers and
proceedings, books, edited volumes, thesis, symposiums,
preprints, grey literature, government and organization
publications, magazines and lecture notes amongst others.

The relevant works in the literature were identified by
querying related search terms such as “Feature Selection”,
“Hyper-heuristics”, “Metaheuristic Algorithm”, “Opti-
mization”, “Text Classification”, “Data Mining” and

@ Springer
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Fig. 6 A hybrid method combining both filter and wrapper methods of feature selection

“Text Data Mining”. Finally, the search keywords used
include: “Problems and Solutions in Meta-Heuristic
Algorithm”, “Problems and Solutions in Hyper-Heuristic
Algorithm”, “Future Prospects in Meta-Heuristic Algo-
rithm”, “Future Prospects in Hyper-Heuristic Algorithm”,
“Optimization Methods” and “Classification Tasks”. The
returned results were downloaded, read and relevant papers
were collated for the final analysis. The scholarly databases
queried for the literature are:

IEEE Xplore,
Science Direct,

ACM Digital Library,
Scopus,

Elsevier,

Springer,

EBSCO Host,

Taylor and Francis,
Research Gate,

And Google Scholar.

The major synthesis of the research concentrated on
recent work between the year 2015-2021. Thus for the
inclusion criteria, we considered:

Studies published from the year 2015-2021 which are
related to metaheuristic-based text feature selection.

@ Springer

Studies that are published strictly in peer-reviewed
journals.

For the exclusion criteria, we considered:
Studies published in unknown journals.
Studies with redundant information. For instance, we
selected the extensive study in a case whereby the same
study is published in a conference and a journal.

Overall, 200 papers were used for the review. The
summary of the articles processed in the review is clearly
explained in Table 2.

Thus, Table 2 shows the summary of the number of
articles processed in the review.

4 Metaheuristic-based algorithms

The intricacies of FS problems emanate from selecting the
most relevant set of features from an abundance of large
possible subsets. FS introduces a combinatorial problem
that is not easily solved using traditional feature selection
and optimization techniques. Thus, heuristics-based algo-
rithms found their way into the picture and have become
more established in the literature in the quest of finding
better solutions for complex challenges.
Metaheuristic-based algorithms are leveraged for
addressing numerous kinds of optimization problems uti-
lizing self-learning operators configured with actors to
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Table 1 Merits and demerits of feature selection methods

Filter-based methods

Merits

Demerits

Wrapper-based
methods
Merits

Wrapper-based methods

Demerits

Operate independently of any learning
algorithm

Undesirable features are filtered out of the
data before induction commences

Lower risk of overfitting

Filter methods are model agnostic

Computationally cheaper compared to the
wrapper and embedded methods

It is computationally very fast

They are scalable as they are based on
different statistical methods

They consider relations between one input
attribute and the output attribute and also
search locally for attributes that allow
good local discrimination

Filter methods rely entirely on the features
in the dataset

Filter methods have the ability of good
generalization

Quickly scale to high-dimensional datasets

No interaction with classification model for
feature selection

Filter methods may miss features which may
be independently irrelevant but are very
useful influencer when combined with
other features

Most existing filter algorithms perform well
only while handling discrete classification
problems

It presents the challenge of finding the
threshold point for ranking to choose only
the required features while excluding noise

It is less accurate when compared to other

advanced feature selection methods like
the hybrid

Wrapper methods have
good generalization
than filter methods

They can be “wrapped”
around any
continuous or discrete
class learner

Wrapper-based
methods retain the
feature set that yields
the best accuracy

Models feature
dependencies
between each of the
input features

Dependent on the
model selected

Interact with the
classifier for feature
selection

More detailed search of
feature set space

The approach is slow as
the algorithm has to be
called repeatedly

As the number of input
features increases, it
becomes
computationally costly

They do not scale well
to large datasets
consisting of
numerous features

It is not model agnostic

The risk of overfitting is
high

Classifier dependent
selection

Longer running time

No guarantee of
optimality of the
solution if predicted
with another

computationally
infeasible with an
increasing number of
features

Embedded methods

Hybrid methods

Merits

Demerits

Merits

Hybrid methods

Demerits

It outperforms the filter method in
generalization error with an
increased number of data points

Provides feature importance for better
accuracy

Less prone to overfitting problems

It takes into consideration the
interaction of features

They are also faster compared to the
filter methods

They can find the feature subset for
the algorithm being trained

Less computational intensive
compared to the wrapper

Considers the
dependence among
features

Classifier dependent
selection
Identification of a small

set of features may be
problematic

Less prone to
overfitting problems

It can find
the feature subset for
the algorithm being
trained

They are also faster in
achieving optimal
solutions

It takes into cognizant
the interaction
of features

The technique of developing hybrid-based
methods may be quite gruesome as it requires
incorporating more than one method

effectively investigate and manoeuvre probable solutions
with an expectancy of arriving at the best solution [42].
They are nature-inspired algorithms based on scientific
principles from biology, ethology, mathematic, physics,
amongst others. Additionally, they are identified as high-
level problem algorithmic schemes that provide a beehive

of strategies, rules or guidelines to design heuristic opti-
mization algorithms [43].

Heuristics are strategies such as the rules of thumb,
common sense and error. Metaheuristics are general ideas,
techniques or methods that are not particular to a singular
problem [44, 45]. Metaheuristics are estimating paradigms

in which each algorithm has a different historical
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Table 2 Summary of the number of articles processed in the review

Indexer Results Profiteered Relevant
IEEE Xplore 125 20 70
Science direct 42 17 19
ACM digital library 33 15 17
Scopus 30 18 10
Elsevier 28 9 12
Springer link 28 10 13
EBSCO host 26 9 14
Taylor and Francis 20 7 9
World of science (WoS) 25 8 11
Research gate 20 6 8
Google scholar 29 8 10
Others 28 8 7
Total 434 135 200

background [46, 47]. Likewise, they are seen as a set of
algorithmic concepts utilized for defining heuristic tech-
niques that can be applied to diverse optimization problems
with slight modifications to adapt them to specific prob-
lems [48, 49].

In recent times, metaheuristics have been successfully
utilized for addressing classification problems. Meta-
heuristics are introduced into feature selection in various
fields on account of their excellent global search capability
and performance. They have been applied for many real-
world optimization challenges, including load balancing in
telecommunication networks and flight schedules, eco-
nomic load dispatch problem [50], gene selection in cancer
classification in the medical domain [51], amongst others.

The established literature categorizes the metaheuristic-
based algorithms into a population and local search algo-
rithm [42]. The population-based algorithms examine a
number of search space regions simultaneously and
enhance them iteratively to attain the ideal solution.
Examples of population-based algorithms are genetic
algorithm, ant lion optimizer, firefly, bat algorithm, com-
petitive swarm optimizer, whale optimization algorithm,
differential evolution, crow search [52], etc.

The local search-based algorithms consider one solution
(referred to as the initial solution) at a time. It is remodelled
persistently by utilizing an operator which allows visiting
relatively close values until a peak local value is obtained.
It locates the local optima by exhaustively exploring cer-
tain regions of the initial solution. Notwithstanding, the
inability of exploring multi-search space regions simulta-
neously is a limitation. Thus, some methodologies are
employed to empower the local search-based approach.
Instances of such techniques leveraged in the search are
tabu search [53], stochastic local search method [53],

@ Springer

iterated local search [54], variable neighbourhood search
[55], GRASP [56], etc.

An extensive treatment of various metaheuristic algo-
rithms’ references can be found in the work [42, 52]. A
detailed description of the state of art is given in the fol-
lowing subsection.

4.1 The state of the art: metaheuristics methods
for text classification

Nowadays, feature selection methods based on meta-
heuristics are increasingly studied and applied due to the
importance and necessity of feature selection. Meta-
heuristics methods of feature selection are majorly classi-
fied into swarm intelligence, evolutionary-based and
trajectory-based algorithm. A thorough synthesis and dis-
cussion of each algorithm and their classes of sub-methods
are given as follows:

4.1.1 Swarm intelligence (SI)

Swarm intelligence (SI) is a population-based stochastic
optimization technique that emerged as a family of nature-
inspired algorithms. It describes the aggregate behaviour of
decentralized, coordinated and self-organized frameworks
that can move rapidly in a planned way. The framework
comprises a population of simple agents that can directly or
indirectly communicate locally by acting on their local
environment [57]. Some examples are ant colonies, bee
colonies, animal herding, birds flocking, fish schooling,
hawks hunting, bacterial growth and microbial intelligence
[58]. Generally, they provide robust solutions to different
complex problems.

Examples of the SI-based metaheuristic method for
feature selection are particle swarm optimization (PSO),
artificial bee colony optimization (ABC), ant colony opti-
mization (ACO), bat algorithm (BA), gravitational search
algorithm (GSA), firefly algorithm (FA), cuckoo opti-
mization algorithm (COA), salp swarm algorithm (SSA),
whale optimization algorithm (WOA), grey wolf opti-
mization (GWO), amongst others. Recent researches on
each method are given in the subsequent paragraphs.

The PSO-based algorithm is motivated by the social
behaviour of birds and fish. In the PSO-based method, [59]
put forward a Hamming distance-based binary
PSO(HDBPSO) algorithm to reduce data dimensions. The
technique selects the relevant features by using hamming
distance to update the velocity of particles in a binary PSO
search procedure. [60] proposed an improved multi-ob-
jective PSO method to enhance the searchability of the
PSO-based approach based on the introduction of two new
operators. [61] presented an integration of correlation FS
with a modified binary PSO algorithm to classify cancer
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and select genes. [62] proposed a cross-bred PSO-based FS
to enhance the accuracy of laser-induced breakdown
spectroscopy analysis. Other notable works in the literature
based on the PSO-based approach can be found in [63-68].

The ABC-based method is inspired by the intelligent
behaviour of the simulating food search behaviour of bee
groups/populations. In the ABC-based method [69], put
forward a hybrid of ABC and integrated it with the ACO to
produce a high performing model. A two-archive multi-
objective ABC algorithm was presented by [70]. An
increase in the accuracy and a lesser computational com-
plexity was attained by integrating a multi-objective opti-
mization algorithm with a sample reduction technique
using ABC [71]. [72] presented a variant of ABC called a
multi-hive artificial bee colony for high-dimensional sym-
bolic regression with feature selection. Grover and Chawla
used an intelligent strategy to improve the ABC algorithm
[73]. Other notable contributions using the ABC approach
in the literature can be found in [74-77].

The ACO-based method is motivated by the behaviour
of ants searching the shortest path to get food in between
the nest and the food source and their adaptation to natural
changes. In the ACO-based method, a clustered graph is
utilized to represent the FS problem based on the ACO and
social network analysis [78]. An unsupervised probabilistic
FS that searches for the optimal feature subset in an iter-
ative schedule by leveraging the similarity between the
features using ACO was presented by [79]. [80] improved
the classification accuracy of imbalanced and high-di-
mensional datasets by modifying the ACO using multi-
objective instead of the single-objective fitness function.

The BAT-based method is motivated by the echoloca-
tion behaviour of bats. In the BAT-based method, a com-
posite variant of the BAT and an enhanced PSO algorithm
is presented to improve the performance of the system [81].
The inclusion of the PSO algorithm was to reinforce the
convergence power of the hybrid algorithm. A binary BAT
algorithm was leveraged for feature selection for steg-
analysing of images [82]. An enhanced BAT (EBat) algo-
rithm was presented by [83] to address the challenge of
local optima trapping based on a special mutation operator
that enhances the diversity of the standard BAT method.

The GSA-based method is motivated by Newton’s law
of universal gravitation. In the GSA-based method [84],
presented a strategy where a piecewise linear chaotic map
is explored for feature selection. In [85], GSA algorithms
were enhanced for improving the performance of the
conventional gravitational search algorithm for optimal FS
misclassification task.

The FA-based method is inspired by the optical asso-
ciation in between fireflies, where extraordinary outcomes
is accomplished by the working action and cooperation of
low-performance agents. In the FA-based method, [86]

presented a return-cost-based binary FA-based FS, which
yields a variety of techniques to forestall premature con-
vergence and increase the accuracy of the model. In [18],
prevention of trapping in local optimization and an
enhanced convergence is achieved by modifying the stan-
dard FA. In [87], the FA-based FS method is employed for
classifying Arabic texts based on an SVM classifier [88].
Put forward an FA-based strategy for detecting network
intrusion by utilizing the composition of filter-based and
wrapper-based FS techniques.

The COA-based method is inspired by the extraordinary
way of life of the cuckoo species of bird attitude of laying
eggs and reproducing. In the COA-based method, [89]
utilized a COA-based FS technique to enhance the classi-
fication of cancer classification data by first eliminating the
redundant features and then selecting the final features
using integration wrapper-based FS and the COA algo-
rithm. In [90], the COA was enhanced to aid the quick
diagnosis of disease. [91] employed a composition of the
COA and neural network during the feature selection task
for the detection and classification of heart disease.

The SSA-based method is motivated by the swarming
behaviour of salps during their movement and scavenging
in the seas. In the SSA-based method, [92] presented a
hybrid optimization method that integrates the salp swarm
algorithm with PSO to enhance the efficacy of the explo-
ration and the exploitation steps in FS. [93] put forward the
SSA feature weighting method for the prediction of the
presence of Parkinson, heart and liver disease. In [94], a
composition of an enhanced SSA and a local search algo-
rithm is presented to address sparsity and high dimen-
sionality of data for the FS. Other notable works in the
literature based on the SSA approach can be found in
[95, 96].

The WOA-based method is motivated by the hunting
characteristic of humpback whales. In the WOA-based
method [97], a synthesized WOA alongside a simulated
annealing algorithm is presented for FS to reinforce the
exploration phase by finding the most promising regions. In
[98], a tournament and roulette wheel selection strategy
with hybrid and mutation operators are employed to
upgrade the exploration and exploitation of the search
process based on WOA. [99] put forward a frequency-
based filter FS approach which eliminates irrelevant fea-
tures based on the WOA algorithm.

The GWO-based method is inspired by the natural
hunting method of a pack of grey wolves. Grey wolves
have an extremely intriguing behaviour. They frequently
live and move in a pack and follow an exceptionally
inflexible social hierarchy of strength and dominance. At
the top of the hierarchy are the leaders referred to as the
alphas who dictate rules that the group must obey. Imme-
diately after the alphas are the betas who ensures the alphas
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orders are obeyed and are predestined to succeed the alpha.
The subset of other wolves controlled by the leading
wolves are referred to as omega. Deltas are the remaining
wolves who neither belong to the category of alpha, beta or
omega. In the GWO-based method, [100] introduced a
binary model of the GWO which chooses the ideal feature
subset for classification tasks. The work constrained the
position of the wolves only to binary values by modelling it
in a discrete space to choose between selecting or dis-
carding a given feature in the dataset. A multi-strategy
ensemble GWO was introduced for FS to upgrade the
standard GWO-based technique in [101]. In [102], a
mutation operator is proposed to mitigate the selection of
redundant and irrelevant features based on the GWO
technique.

An extensive treatment of the swarm-based feature
selection method and its categories can be found in the
published article by Rostami et al. [57].

4.1.2 Evolutionary-based algorithm (EBA)

The evolutionary-based algorithm is sometimes sub-cate-
gorized under the swarm-based algorithm as their nature of
behaviour is similar. Also, most recent works usually
combine algorithms from both the SI and EBA to achieve
optimal performance during the classification task. Some
examples are the genetic algorithm (GA), differential
evolution (DE), amongst others.

GAs are advanced algorithms based on the mechanics of
biological and natural genetics, and they are mostly utilized
for generating high-quality solutions for search and opti-
mization issues based on the intuition of biologically
inspired operators. [103] put forward a hybrid approach to
determine the most suitable feature subset combined with a
versatile neuro-fuzzy inference system for forecasting
future electrical energy interest. A modified variant of the
GA called MGA alongside a deep neural network was put
forward for forecasting patients’ demand for different
essential resources in the outpatient department in hospitals
[104]. A novel GA model was presented by [105] for
generating and recognizing children’s activities based on
environmental sound. GARS, a GA-based algorithm for
identifying a robust subset (GARS) and applicable for
multi-class and high-dimensional datasets, is presented by
[106]. It yields a high classification accuracy with rea-
sonable execution time while taking a computation.

DE, which was presented by Storn and Price [107], is a
composition of a parallel direct search technique in which
search is executed in large, complex and multi-modular
scenes to yield optimal solutions for objective or fitness
function (FF) of an optimization problem. The DE algo-
rithm performs mutation, crossover and selection opera-
tions. DE was put forward to mainly address the major
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limitation of the GA, which to be specific is the absence of
local search. Hence, their primary difference is in the
genetic selection operators. [108] presented an upgraded
multi-objective DE algorithm to enhance classification
accuracy and eliminate noisy and redundant features. The
same authors put forward a novel multi-objective DE to
enhance the performance of the clustering algorithm [109].
[110] proposed a self-adaptive DE algorithm called SaDE
to address intrusion detection problems in wireless sensor
networks (WSN). In [70], a multi-objective feature selec-
tion method called binary differential evolution with self-
learning (MOFS-BDE) based on the multi-objective feature
selection approach is presented. An evolutionary compu-
tation-based technique which is a hybrid multi-objective
FS was presented by [111] to identify and select a small
subset of features and achieve higher prediction results
compared to utilizing all features.

As noted in the earlier section, some researchers com-
bined multiple methods from SI, EBA and others to get a
better performing model, for instance the ensemble
method, which combines several ML techniques into one
predictive model to decrease variance (bagging), bias
(boosting) or improve predictions (stacking). Hence,
improve the accuracy by combining the output of many
weak learning classifiers. In improving the accuracy
problem, the authors in [112] proposed a novel approach of
hybrid model (BBO-bagging) for feature selection and
classification. They employed a hybrid combination of
nature-inspired algorithms. That is, biogeography-based
optimization (BBO), particle swarm optimization (PSO)
and genetic algorithm (GA), as a feature selection tech-
nique with the ensemble classifier to achieve an optimal
text classification. They trained and tested the extracted
features on six classifiers, namely: K-nearest neighbour
(kNN), random forest (RF), support vector machine
(SVM), Naive Bayes (NB), decision tree (DT) and
ensemble (Bagging). Based on the obtained results, their
analysis demonstrated that the performance of (BBO) as a
feature selection technique is better than independently
using the (GA), (PSO) and the (BBO). Belazzoug et al.
[113] proposed a new wrapper improved sine cosine
algorithm (ISCA) with a combination of the information
gain (IG) filter to avoid early convergence and reduce the
large dimensionality challenge. The efficiency of this
method was validated by employing nine text collections
consisting of popular benchmark datasets. Based on the
performance measures, the experimental results showed the
ISCA performed higher compared to the original SCA
algorithm. The ISCA used a few parameters set that let the
proposed algorithm to be quite flexible and straightforward
to apply to a broad spectrum of search problems. Likewise,
their proposed algorithm may be combined with other
search algorithms to get better performance.
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4.1.3 Trajectory-based algorithms (TBAS)

Trajectory classification assists in understanding the char-
acter of objects being monitored. However, the raw tra-
jectories might not yield satisfactory classification results.
Hence, features are extracted from raw trajectories to
enhance classification results [114]. Also, all the extracted
features may not be helpful for classification. Therefore, an
automatic selection scheme is vital for finding optimal
features from the pool of handcrafted features such as used
by genetic algorithms and random forests (RF). Trajectory-
reliant models are sometimes classified using random for-
est (RF)-based classifier and then compared with a support
vector machine (SVM). Detecting abnormal trajectories is
a critical task in research and industrial applications.
Industrial applications in video surveillance, maritime,
smart urban transportation and climate change domains
have attracted significant attention in recent times [115].
The trajectory-based FS method is still gaining ground and
more research needs to be done to understand how it pro-
cesses data. A relative comparison of studies that have
applied the metaheuristics-based feature selection approach
for text classification is given in Table 3.

The number of studies and the percentage of publi-
cation per publication date is shown in Table 4

The linear distribution of publication forecast in the year
under review is presented in Fig. 7.

Figure 7 depicts the distribution of the publications
linear forecast between year 2015 and June 2021. The
R-square (R2) explains the accuracy of linear forecast on
the reviewed articles concerning FS which is 67.23%. It is
clear from Fig. 7 that the published articles increase
annually. That means the topic attract more researchers
yearly. Therefore, many solutions were proposed to the
issue of feature selection optimization methods for optimal
text classification.

Additionally, Table 3 discusses recent work spanning
the year 2015 to 2021. Other forms of algorithms have been
classified in some cases under SI and in other cases as
EBA. For instance, the Pigeon-Inspired Optimization
(PIO) algorithm is an intelligent algorithm spurred by the
behaviour of pigeons where every pigeon of the swarm has
a position, a speed, and an individual best historical posi-
tion, as per its movement in the search space. PIOs have
reportedly performed well in solving continuous opti-
mization problems [133]. A discrete pigeon-inspired opti-
mization algorithm that employs the Metropolis acceptance
criterion of simulated annealing algorithm was put forward
by [133] to address large-scale travelling salesman prob-
lems. They improved the discrete PIO exploration ability
by developing a new map and compass operator with a
comprehensive learning ability. The algorithm reinforces

its capability to escape from premature convergence by
utilizing the Metropolis acceptance criterion to decide
whether to accept newly produced solutions. Duan and
Qiao in [134] presented a PIO which served as an intelli-
gence optimizer for addressing air robot path planning
problems. The algorithm improved the convergence speed
and also enhanced the superiority of global search in
diverse use-cases. A hybrid algorithm that is fast, stable,
and able to universally optimize the maximum power point
tracking algorithm was presented by [135]. The algorithm
is a composition of a new pigeon population algorithm
called parallel and compact pigeon-inspired optimization
(PCPIO) with maximum power point tracking (MPPT),
which can address the problem MPPT cannot reach the
near-global maximum power point. The quadrotor swarm
formation control problem was addressed by [136] using a
binary pigeon-inspired optimization (BPIO) model. The
model solves the combination problem in the binary solu-
tion space using a special fitness function to avoid a crash
and converge quickly.

The Fish Migration Optimization (FMO) algorithm,
inspired by migratory greying, incorporates migration
models and swim into the optimization process [137]. The
binary fish migration optimization is a variant of FMO with
the capability of converging quickly. FMO guides the
evolution of the fish swarm (similar to PSO) based on the
global optimal solution by utilizing the parameter to help
the FMO carefully search the known space. To address the
challenge of stagnation and falling into local traps, [137]
proposed an advanced binary FMO. The algorithm
improved the search ability of the BFMO by using the
transfer function to map the continuous search space to the
binary space.

Other recent work by [138] addresses the knapsack
problem by utilizing a binary gaining sharing knowledge-
based optimization algorithm. The Gaining Sharing
Knowledge-based (GSK) optimization algorithm addresses
binary optimization problems based on the concept of
acquisition and sharing of knowledge of humans during
their lifetime. The list of algorithms is all-encompassing as
diverse metaheuristic-based optimization algorithms are
coined by researchers daily based on the behaviour of the
concept they intend to use for their algorithm. Some of
them are the Binary Monkey Algorithm [139], discrete
shuffled frog leaping algorithm [140], amongst others.

4.2 Evaluation measures

Evaluation of a predictive model is a critical phase in the
classification task. This is after the model has been built
and trained on some data. The modeller’s concern becomes
finding out how well the model is doing, how useful is the
model, are more features needed, is there a need to train the
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Table 4 Distribution of publications per year

Year Number of studies Publications in percentage
2015 15 7%

2016 20 10%

2017 25 12%

2018 30 15%

2019 35 18%

2020 45 23%

2021 30 15%

Total 200 100%

model to improve its overall performance, can its perfor-
mance be generalized, etc.

In the general classification task, the overall outcome is
usually measured using the following:

e True positives mean that the model’s prediction is
positive and in reality, it is positive.

e True negatives mean that the model’s prediction is
negative and in reality, it is negative.

e False positives mean that the model’s prediction is
positive and in reality, it is negative.

e False negatives mean that the model’s prediction is
negative and in reality, it is positive.

A confusion matrix is often used to plot and display the
outcome in a matrix format. The outcomes postulate the
metrics used for evaluation. Some of the metrics often used
are precision, recall, accuracy, specificity, F-measure,
mean squared error, area under curve, logarithmic loss,
ROC (Receiver Operating Characteristics) curve, mean
absolute error, etc. The metric to use for evaluation
depends hugely on the task at hand.

The Precision metric postulates the number of correct
positive results divided by the number of positive results
predicted by the classifier.

True Positives

Precision = — — (1)
True Positives + False Positives

Fig. 7 Distribution of the
Publications in the Years under

. 50
Review

45
40
35
30
25
20
15
10

Number of studies per year

2014 2016

The Recall metric postulates the percentage of positive
instances out of the fotal actual positive instances.

True Positives
Recall = 2
eca True Positives + False Negatives @)

The Accuracy metric postulates the ratio of the number
of predictions that are correct to the total number of input
samples.

Number of Correct Predictions

A = :
ccuracy Total Number of Predictions performed ( )

The Specificity metric postulates the percentage of
negative instances out of thetotal actual
negative instances.

True Negatives

Specificity = 4)

True Negatives + False Positives

The F-measure metric postulates the harmonic mean of
precision and recall.
Precision x Recall

F— =2 5
fmeasure % Precision + Recall ()

The Mean Squared Error essentially characterizes the
average of squared differences between the actual output
and the predicted output.

The Area Under Curve estimates the capability of a
binary classifier to discriminate between positive and
negative classes.

The Logarithmic Loss estimates the model’s perfor-
mance where the prediction input is a probability value in
the range of 0 and 1.

The variants of evaluation metrics are quite exhaustive,
and thus, only the main ones were briefly discussed. In
summary, evaluation measures delineate the performance
of a model. The intuition behind the development of pre-
dictive models works on a constructive feedback principle.
A model is fabricated, followed by getting feedback from
metrics, improvements are made and repeated until the
desired outcome is accomplished. From the main papers
reviewed in Table 3, most researchers focused on using

Distribution of publication between 2015 and June 2021 year

y =3.75x-7538.9
R?=0.6723

Number of Studies

Linear (Number of Studies)

2018 2020 2022
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accuracy, precision and recall metrics. Several researchers
estimated the F-measure too.

4.3 Datasets

Dataset is the core of every predictive model. Some of the
frequently used models for testing and training textual data
as found in the literature are 20 Newsgroups, Reuters-
21578 and so forth. 20 Newsgroups was developed by
Carnegie Mellon University. It is a collection of about
18,000 newsgroups posts on 20 different topics. It has
several sub-categories of datasets each of which is split into
two sections; one is used for training and the other is uti-
lized for testing the model [141]. The rule for splitting the
training and test subsets usually depends on the posting
date been a previous or following a particular day. The 20
Newsgroups dataset has become popular for researching
predictive models. The news is categorized based on its
contents. The Reuters-21578 is a text dataset and its doc-
uments are organized in a hierarchical structure containing
21,578 news articles, each belonging to a category or more
through different points of view [142]. Based on the
analysed data, most of the works in the literature used the
Reuters-21578, 20 Newsgroups amongst others.
Dataset-related challenges are the primary reason why
optimal performing real-model seems unachievable. To
avoid overfitting the model to the data, small datasets
require models that have high bias or low complexity.

4.4 Research gaps
4.4.1 Confusion of evaluation metrics to be used

The assessment of the performance of a model discloses
how well it executes on unseen data. In practice, making
predictions on future data is what the model is built for.
Thus, it is a major problem that the predictive model wants
to solve. Therefore, there is a dire need to understand the
context prior to choosing a metric in light of the fact that
each model attempts to address a problem with a different
objective using a different dataset. For instance, most
researches focused on precision, recall and accuracy.
However, precision and recall are effective metrics mostly
in cases where classes are not evenly distributed.

4.4.2 Specificity of data types and domain agreement

Data types narrowed to specific domains to solve gener-
alised problems in the domain in view are a gap in the
literature. Having a grouping of specific data types to work
in an agreed and generalized domain will lead to a fitting
and good predictive model with little or no challenge when
deployed on unseen data. Such lapses in the field of data
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mining have continued to produce models that only
memorize and fail to generalize accurately on unseen data.
Such an idea was presented by [143] in the bioinformatics
domain. However, other domains remain unexplored in
such regard.

4.4.3 Dataset issue

In most of the reviewed articles, it is observed that a
considerable number of researchers used the Reuters-
21578, meanwhile others used different datasets. Subse-
quently, the performance evaluation is subject to the
specific dataset, classes and classifiers used, which brings
about the challenge of a benchmark. A comparison
between the feature selection algorithms needs to be car-
ried out using a single dataset and the same group of
classifiers. In that way, a standard can be reached in terms
of comparison of the distinct datasets using dissimilar
metaheuristic algorithms.

4.4.4 Established benchmarks

There is an urgent need to institute an established bench-
mark. This is important so that the correctness of any
model can also be validated through the use of bench-
marks. The specific algorithm can then be quickly evalu-
ated. The current way of selecting different datasets,
classifiers and evaluation criteria by an individual
researcher makes it almost impossible to ascertain which
metaheuristic algorithm performs better than the others
when classifying text even in the same domains.

4.4.5 Hybrid search issues

Previous works by Ghareb et al. [144]; Lee et al. [145]
have established the notion of improving the search space
through hybridizing with a filter using evolutionary-based
algorithms. Likewise, there is still the issue of the fitness of
a feature subset requiring improvement after modification.
It results to wastage when performing computations fitness
of the algorithm and evaluation. Although, the study by
Lee et al. [123] attempted to bridge the gap by selectively
applying a single operator to minimize the number of
feature subsets to increase the number of times the fitness is
improved. However, their approach was applied only to
multi-label text feature selection. This is a prospective
topic for research that will be recommended in the future
work section.

4.4.6 Relevancy of a feature issue

In recent times, the relevancy of a feature was raised by
some researchers [22], like how to measure the relevancy
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of a feature to the data or the output. Many publica-
tions have presented various definitions and measurements

for the relevance of a variable

in feature selection

[22, 35, 146]. There is a need for research exploration into
resolving the issue of relevancy and irrelevancy of a vari-
able in the feature selection process.

5 Lessons learnt during this review

ii.

iii.

iv.

As shown in Table 1 and the limitations highlighted
in Table 2, feature selection is highly context and
data-reliance. Therefore, there is no one-fits-all
solution or one-stop for feature selection during the
classification process. The strategy is to understand
the process of each technique and deplore it when
required.

Each metaheuristic paradigm has its own set of
merits and shortfall that makes it more suitable to a
specific application. Nevertheless, finding the best-
suited metaheuristic algorithm is a complex task as
metaheuristic algorithms do not totally guarantee
optimum solutions, which is due to the issue of
theoretically establishing the efficiency of algo-
rithms. Typically, studies rely on the empirical
results to prove the same kind of solutions. Addi-
tionally, the task of designing some metaheuristic
framework before its application for solving the
problem in view may be so challenging.

An important observation in the application of the
metaheuristic-based approach is the discrepancy in
finding remarkable solution to the problem at hand.
Researchers validated their algorithms using differ-
ent evaluation metrics and different datasets. This
variation in the researcher’s report makes it quite
challenging to generalize the performance of one
algorithm and the other. Successful deployment of
standardized systems of a metric format will be
helpful to a newcomer in the field. Especially to
quickly look through algorithms that least perform
and use the shortcoming to make progress faster in
discovering new solutions that yield better results.
As noted by Jiao and DU [143], a proficient approach
to interpreting the performance values during com-
parison is to perform a thorough and rigorous
analysis utilizing an identical testing dataset, iden-
tical training dataset and identical evaluation proto-
cols, though they highlighted that such requirements
might be practically difficult to satisfy. Notwith-
standing, analysts should note that better perfor-
mance measures may not guarantee Dbetter
performance in practical, real-world applications as

long as the comparison is not performed in the
approach as mentioned earlier.

The FS ought to be envisioned as part of the training
procedures. In the event that the FS procedure
utilizes the entire dataset, and cross-validation is
performed after that on the same entire dataset with
selected features, the predictive performance has a
high likelihood of being overestimated, as such
procedures occur in a rigorous mathematical way.
Subsequently, making analysts think that some
information of the testing sample has slipped into
the training dataset by helping to decide which
features are selected. Therefore, it is safer to leave
the testing sample out before the FS cycle during the
evaluation stage [143].

6 Other issues and possible solutions

Other challenges in using metaheuristics for text classifi-
cation are highlighted as follows.

L.

ii.

iii.

Time delay Processing is still a weakness in the
application of metaheuristic-based algorithms. For
example, in ACO, due to dimension and significant
data size problem, it often takes a long time to
process [147]. Designing algorithms in a short
amount of time is required to curb diverse classifi-
cation problems used in real-world settings. Hence,
research is urgently needed to construct process
algorithms that can be fast in handling feature
selection and classification.

Overlapping of features: The increase in feature
size often causes overlapping of features [131, 148].
It is necessary to consider potential metaheuristic
techniques or hyper-heuristics optimization tech-
niques that can minimize feature size by eliminating
overlapping features during the development of the
system.

High accuracy problem: Many classification issues,
such as real-world classifications, encounter low
accuracy performance. While most researcher’s
claim that their algorithms achieves higher accuracy
and outperform other existing algorithms, the lack of
standard domain-specific metrics, a benchmark of
evaluation and a dataset makes it difficult to
conclude on their claims and findings. Also, in cases
of practical use and significance of many classifica-
tion problems, for example, in the real-time appli-
cation of crime detection. Several algorithms need to
be developed to tackle the challenges in the classi-
fication with high accuracy to really curtail the
problem at hand, specifically, where the application
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To strategically prepare data
to eliminate leakage

To identify and resolve

Input of
raw data

To utilize normalization and
standardization approaches
to scale the range of input
parameters

To encode classic variables

challenges of muddy data
like outliers, missing values
and anomalies

The Significance of data
preparation for predictive
modelling in a real-world

as numeric variables as
classics

Fig. 8 Referential guide for developing good models

is in real-time. Hence, there is a need to address the
challenge of applying metaheuristic-based algo-
rithms that produce low accuracy during their
application or performance.

iv. Evaluation Challenges: Taking cognizance of how
a model generalizes on unseen data is a critical phase
that must be overviewed in every predictive model’s
pipeline. In this manner, it is imperative to outwardly
alongside visually inspect the data and the corre-
sponding predictive model while assessing its per-
formance. It is advisable to reduce the dataset into
two dimensions and afterwards, plot the observations
and decision boundary.

v. Specificity and generalization of model challenge:
Each project is different because the specific data
used in each undertaking are unique. Notwithstand-
ing, the path to a good outcome is generally the same
from project to project. This is alluded chiefly to the
applied ML process [149, 150]. Knowing what data
preparation techniques to use are often a difficult
task. However, looking at the data preparation step
regarding the context of the whole project makes it
straightforward and more manageable.

@ Springer
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based on data types of the \ parameters into a lower-
variables [& Output model ,I dimensional space

Given the diverse methods, each of which may have
their own setup and prerequisites. Nevertheless, the ML
process steps before and after data preparation can help to
inform what techniques to consider. Discovering how to
best uncover the learning algorithms to the unknown
underlying structure of the prediction problem in view
requires a detailed data preparation process. This becomes
less cumbersome and viable when the designer knows the
types of data preparation to consider, the algorithms for
each class of technique, how and when to configure tech-
niques. A modelling manual/referential guide to develop-
ing a good model as a feature selection process is given in
Fig. 8.

Thus, Fig. 8 shows the process of feature selection by
highlighting the modelling manual/referential guide to
developing a good model.

7 Challenges and future directions

i. No doubt, the current literature on metaheuristic-
based feature selection is evolving. Therefore,
future work can consider reducing some of the
drawbacks of stand-alone methods by hybridizing
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ii.

iii.

1v.

vi.

Vii.

metaheuristics. While such methods may be
demanding during the development of the frame-
work, it will undoubtedly present very effective
and satisfactory results. Such models will be more
suited to problems with multiple local minima
than exact methods that have higher chances of
being stuck at the local optimum.

Potential researchers who want to avoid the
challenge of (i) may consider exploring the idea
of hyper-heuristics-based feature selection opti-
mization method. The hyper-heuristics-based opti-
mization method can help decide on an optimum
sequence of metaheuristic algorithms. Therefore,
combining the advantages of each in obtaining the
best feasible solution.

The trajectory metaheuristics deal with only one
solution at a time. In such a method, the search
process explains a trajectory in the search space
[18, 46—151]. In the last few years, there have
been an emergency of many algorithms that do not
entirely follow the paradigm of a pure metaheuris-
tic. They combine algorithmic components origi-
nating from various optimization algorithms to
provide outstanding solutions to real-world chal-
lenges. There are very few applications of the
trajectory-based metaheuristics of optimizing fea-
ture selection for text classification. This is
another area that future researchers may want to
explore.

As discussed in Section V and item (iii), there is a
need to strike a balance and has a standard
benchmark dataset, metrics for each category of
algorithms which is another avenue for future
work.

Future work may also consider expanding the
study by Lee et al., [145] to enhance hybrid search
and apply it to a single-labelled text using
evolutionary-based algorithms. This is due to the
outstanding outcome of it increasing the number
of times the fitness is improved and without
additional computations when used on multi-
labelled text.

A combination of deep learning, along with
metaheuristic or hyper-heuristic methods, might
produce the outstanding results, which is a poten-
tial area for future research.

One of the major problems of the ML intrusion
detection system (IDS) is the expensive computa-
tion time due to the incomplete, and unrelated
features and redundant contents in the IDS
datasets. To overcome such problems and ensure
building efficient and more accurate IDS models,
many researchers utilize pre-processing techniques

like feature selection, normalization and a hybrid
modelling technique is usually applied. Therefore,
there is need to propose more future work on
hybrid IDS modelling method with an algorithm
for creating the IDS and feature selection with
high predictive ability.

viii. One of the key issues observed in all the models
developed in the literature to address network
intrusion detection system (IDS) is the high
number of false alert rate [152, 153]. Aside a high
detection rate, a good IDS model should possess a
very low false alert rate, and hence, more future
work can be performed focusing specifically on
reducing high false alert rate in metaheuristic
models of feature selection.

ix. To maximize predictive ability, there is need to
focus on metaheuristic optimization algorithm that
will address many problems in modelling on
feature selection and text -classification. For
instance, using Kernel partial least squares regres-
sion (KPLS) technique could optimize predictive
ability [154].

X. Moreover, prospective area of research is to
determine the control parameters or hyperparam-
eters for metaheuristic algorithms. There are no
enough works in the literature which explored that
specific area. Hyperparameters for metaheuristic
algorithms are an area that can help in testing
different values of control parameters during the
evaluation phase of estimating the viability of the
algorithm [155]. The accuracy of network for a
specific task greatly depends on the hyperparam-
eters’ configuration [156].

xi. Furthermore, hyper-heuristics is another green
area of research that can help in resolving complex
computational search and feature selection prob-
lems [157, 158]. The definition of hyper-heuristics
was recently extended to mean a learning mech-
anism or search method for generating or selecting
heuristics to address computational search chal-
lenges. Thus, more future work can be carried out
to tackle complex computational search problems
using hyper-heuristics models of feature selection.

8 Conclusion

Recent developments in knowledge discovery in informa-
tion technology have put data mining as an extremely
active and evolving area. Data mining helps human in
finding, deciphering and interpreting hidden information
from enormous raw data. Such research has brought about
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text classification techniques that are vastly used for
facilitating multimedia data processing in many applica-
tions, such as image tagging, e-mail processing, multime-
dia recommendation, and so forth. In addition, the surge of
the amount of digital data from diverse sources such as web
pages, social media, emails, online advertisements, blogs
and e-libraries shows the improving value of text
classification.

To an increasing extent, this rapid creation, share and
exchange of data make undertaking the task of data anal-
ysis, extraction and knowledge retrieval very challenging.
To be able to extract knowledge and gain insight from data,
there is a need to first decrease the dimensionality of the
data. Feature selection process is an indispensable data
preparation phase that helps to reduce the dimensionality of
data of a predictive model. However, it is a very complex
and computationally demanding task which, if not appro-
priately performed defeats the main aim of extracting
knowledge and the usability of any predictive model in
real-world applications.

Feature selection is a significant task that enables the
model to perform faster, eliminate noisy, less informative
data, improve the model’s precision and accuracy, remove
redundant features, reduce overfitting of the model, and
increase generalization on testing data. While the conven-
tional feature selection techniques have been leveraged for
classification tasks in the past few decades, they fail to
optimally reduce the high dimensionality of the feature
space of texts, thus breeding inaccurate and inefficient
predictive models. Emerging technologies such as meta-
heuristic and hyper-heuristic optimization methods provide
a new paradigm for feature selection because they produce
impressive results which are accurate for optimal classifi-
cation compared to conventional techniques. Metaheuristic
methods can efficiently enhance the accuracy of compu-
tation demands, classification and storage; thus, it has been
applied increasingly in diverse fields. However, little
details are known on best practices for case-to-case usage
of emerging feature selection methods. The literature
continues to be engulfed with clear and unclear findings in
leveraging the most effective method, which, if not per-
formed accurately, alters precision, real-world-use feasi-
bility and the predictive model’s overall performance.

In this study, a systematic review of the metaheuristic-
based feature selection methods for enhancing text classi-
fication was performed. The review answered many ques-
tions, such as the sub-field of metaheuristics, how it affects
the accuracy of text classification, datasets, amongst others.
Therefore, this paper provides a high-level snapshot of the
research landscape in selecting metaheuristics, focusing on
current progress made in the field and new areas to address
for better solutions to feature selection challenges. This
study is a matter of urgency due to the absence of precise
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details and subtleties on metaheuristic-based feature
selection methods, which influences the accuracy, practi-
cality and overall performance of predictive models.
Hence, perceiving the impact, recognizing the effect and
significance of FS in text classification, identifying the best
techniques for selecting informative and relevant features
from the context using metaheuristics methods implies
researching, investigating and exploring the current litera-
ture to comprehend where each method stands at present.

Competitive performances on previous and current
studies on the metaheuristics-based feature selection
method were investigated. The review was then extended
to additional related issues such as research gaps, lessons
learned, as well as other issues and how they can be sur-
mounted for the design of robust metaheuristic algorithms.

While proposing that metaheuristic methods can be
employed in selecting features for text classification, one
can also recommend using hybrid metaheuristics. More
also, one can harness hyper-heuristics to provide an effi-
cient strategy of dealing with highly complex optimizations
challenges for feature selection in industrial and scientific-
based domains for text classification.

Furthermore, the review indicates that using a method
like metaheuristics-based optimization for feature selection
and its hybridized version is a promising and fast-devel-
oping field. It can offer exciting opportunities and present
many challenges. In conclusion, feature selection is an
essential stage in text classification that should be studied
comprehensively to navigate businesses towards a future
with high performing algorithms to address real-world
challenges.
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