CORRECTION

Correction to: Playing to distraction: towards a robust training of CNN classifiers through visual explanation techniques

David Morales^{1,2} (b) · Estefania Talavera³ · Beatriz Remeseiro⁴

Received: 14 August 2021 / Accepted: 14 August 2021 / Published online: 16 September 2021 © Springer-Verlag London Ltd., part of Springer Nature 2021

Correction to: Neural Computing and Applications https://doi.org/10.1007/s00521-021-06282-2

Unfortunately, the article was published with some errors in Tables 1, 3, 5, and 7 and in the captions of Figures 1, 2, and 3 in the online version of the article.

The correct tables and figures are given (Tables 1, 3, 5, and 7 and Figs. 1, 2, and 3).

The original article can be found online at https://doi.org/10.1007/s00521-021-06282-2.

David Morales david.morales@hattec.de

> Estefania Talavera e.talavera.martinez@rug.nl

Beatriz Remeseiro bremeseiro@uniovi.es

- ¹ University of Granada, 18071 Granada, Spain
- ² HAT.tec GmbH. c/o Universität der Bundeswehr, Werner-Heisenberg-Weg 39, 85579 Neubiberg, Germany
- ³ Department of Computer Science, University of Groningen, Nijenborgh 9, 9747 AG Groningen, The Netherlands
- ⁴ Department of Computer Science, Universidad de Oviedo, Campus de Gijón s/n, 33203 Gijón, Spain

Table 1Classificationperformance, averaged acrossfive runs, of the differentapproaches on the Stanford cars[11] and FGVC-Aircraft [12]datasets

	FT-ResNet50	0-occlusion	R-occlusion	1-occlusion
Stanford cars				
Accuracy	0.849 ± 0.009	0.871 ± 0.007	0.860 ± 0.009	0.869 ± 0.008
Precision	0.855 ± 0.007	0.876 ± 0.007	0.866 ± 0.008	0.873 ± 0.008
Recall	0.849 ± 0.009	0.870 ± 0.008	0.860 ± 0.009	0.868 ± 0.009
F1	0.848 ± 0.009	0.870 ± 0.008	0.859 ± 0.009	0.867 ± 0.009
FGVC-Aircraft				
Accuracy	0.731 ± 0.013	0.749 ± 0.005	0.739 ± 0.012	0.743 ± 0.005
Precision	0.746 ± 0.011	0.762 ± 0.005	0.755 ± 0.010	0.759 ± 0.004
Recall	0.731 ± 0.013	0.749 ± 0.005	0.739 ± 0.012	0.743 ± 0.005
F1	0.731 ± 0.014	0.748 ± 0.005	0.739 ± 0.012	0.743 ± 0.005

Best results are in bold

Table 3 Classification
performance, averaged across
five runs, making use of
different backbones on the
Stanford cars [11] and FGVC-
Aircraft [12] datasets

	FT-InceptionV3	0-occlusion-InceptionV3	FT-DenseNet	0-occlusion-DenseNet
Stanford cars	\$			
Accuracy	0.778 ± 0.023	0.791 ± 0.020	0.883 ± 0.010	0.894 ± 0.011
Precision	0.788 ± 0.021	0.798 ± 0.020	0.888 ± 0.009	0.898 ± 0.011
Recall	0.777 ± 0.023	0.791 ± 0.020	0.882 ± 0.010	0.893 ± 0.012
F1	0.776 ± 0.023	0.790 ± 0.021	0.882 ± 0.010	0.893 ± 0.012
FGVC-Aircr	aft			
Accuracy	0.618 ± 0.029	0.633 ± 0.026	0.767 ± 0.026	0.780 ± 0.025
Precision	0.630 ± 0.030	0.641 ± 0.029	0.786 ± 0.024	0.794 ± 0.023
Recall	0.618 ± 0.028	0.633 ± 0.026	0.767 ± 0.026	0.780 ± 0.025
F1	0.616 ± 0.029	0.630 ± 0.026	0.768 ± 0.026	0.780 ± 0.025

Best results per backbone architecture are in bold

Table 5 Classificationperformance, averaged acrossfive runs, of the differentapproaches on theEgoFoodPlaces dataset [15]

	Hierarchical approach [15]	FT-ResNet50	0-occlusion
Macro Precision	0.56	0.59 ± 0.03	0.59 ± 0.05
Macro Recall	0.53	0.55 ± 0.03	0.54 ± 0.06
Macro F1	0.53	0.53 ± 0.04	0.53 ± 0.06
Weighted Precision	0.65	0.67 ± 0.02	0.68 ± 0.03
Weighted Recall	0.68	0.67 ± 0.03	0.68 ± 0.04
Weighted F1	0.65	0.64 ± 0.03	0.66 ± 0.04
Accuracy	0.68	0.67 ± 0.03	0.68 ± 0.04

Best results are in bold

 Table 7
 Classification performance, averaged across five runs, of the baseline method and the proposed training scheme when we randomly hid some regions on the test images

	FT-ResNet50	0-occlusion
Macro Precision	0.53 ± 0.01	0.54 ± 0.02
Macro Recall	0.47 ± 0.02	0.48 ± 0.03
Macro F1	0.47 ± 0.02	0.48 ± 0.05
Weighted Precision	0.63 ± 0.02	0.63 ± 0.03
Weighted Recall	0.59 ± 0.02	0.65 ± 0.03
Weighted F1	0.59 ± 0.02	0.59 ± 0.02
Accuracy	0.59 ± 0.02	0.60 ± 0.02

Best results are in bold

Fig. 1 Workflow of our alternative training scheme, which 1 gets a new mini-batch of input images, 2 applies a visual explanation technique to generate the heat maps, 3 occludes the regions highlighted in the previous step, and 4 trains the CNN classifier

Fig. 2 a Input images from the Stanford cars (top) and FGVC-Aircraft (bottom) datasets, **b** heat maps generated by Grad-CAM for the baseline FT-ResNet50, and heat maps generated by Grad-CAM

for the model trained with the proposed training scheme using c 0-occlusion, d R-occlusion, and e 1-occlusion

Fig. 3 a Input images, **b** heat maps generated by Grad-CAM for the baseline FT-ResNet50, and **c** heat maps generated by Grad-CAM for the model trained with the proposed training scheme (0-occlusion)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.