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Abstract
COVID-19 as a global pandemic has had an unprecedented impact on the entire world. Projecting the future spread of the

virus in relation to its characteristics for a specific suite of countries against a temporal trend can provide public health

guidance to governments and organizations. Therefore, this paper presented an epidemiological comparison of the tra-

ditional SEIR model with an extended and modified version of the same model by splitting the infected compartment into

asymptomatic mild and symptomatic severe. We then exposed our derived layered model into two distinct case studies

with variations in mitigation strategies and non-pharmaceutical interventions (NPIs) as a matter of benchmarking and

comparison. We focused on exploring the United Arab Emirates (a small yet urban centre (where clear sequential stages

NPIs were implemented). Further, we concentrated on extending the models by utilizing the effective reproductive number

(Rt) estimated against time, a more realistic than the static R0, to assess the potential impact of NPIs within each case study.

Compared to the traditional SEIR model, the results supported the modified model as being more sensitive in terms of

peaks of simulated cases and flattening determinations.

Keywords COVID-19 � Simulation � SEIR � Epidemiologic methods � Outbreak � Effective reproductive number

Belal Alsinglawi and Omar Mubin are joint first authors.

& Belal Alsinglawi

b.alsinglawi@westernsydney.edu.au

Omar Mubin

o.mubin@westernsydney.edu.au

Fady Alnajjar

fady.alnajjar@uaeu.ac.ae

1 School of Computer, Data and Mathematical Sciences,

Western Sydney University, Rydalmere, NSW 2116,

Australia

2 College of Information Technology, United Arab Emirates

University, Al Ain, UAE

3 Department of Public Health, Medical School of Jordan

University of Science and Technology, Irbid, Jordan

4 School of Engineering and Technology, Central Queensland

University, Rockhampton, Queensland, Australia

5 School of Built Environment, Western Sydney University,

Rydalmere, NSW 2116, Australia

6 College of Medical Science and Technology, Taipei Medical

University, Taipei 101, Taiwan

7 College of Medicine and Health Sciences, United Arab

Emirates University, Al Ain, UAE

8 Department of Institute of Intelligent Systems, University of

Johannesburg, Johannesburg, South Africa

123

Neural Computing and Applications (2023) 35:22813–22821
https://doi.org/10.1007/s00521-021-06579-2(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-06579-2&amp;domain=pdf
https://doi.org/10.1007/s00521-021-06579-2


1 Introduction

Starting in 2020, humankind has increasingly suffered from

the spread of a new pandemic characterized by acute res-

piratory and vascular symptoms produced by a novel

coronavirus strain known as SARS-CoV-2 [1]. The virus,

which initially emerged in Wuhan, China, in November

2019 later was considered a full-fledged outbreak before

being declared by the World Health Organisation (WHO)

as a public health emergency of international concern [2]

around early 2020. Today, COVID-19 has no known

approved vaccine, and no treatment is considered effective.

Meanwhile, governments and health institutions need

assistance to visualize, simulate and assess effective Non-

pharmaceutical interventions ((NPIs) to mitigate this virus’

unpredictable behaviour and control its spread. Modelling

techniques allow simulation and prediction of Covid-19

growth trends and guide pre-emption and preparation.

However, it is important to properly introduce model

parameters to understand the spread pattern of the infection

under different mitigation strategies [3]. NPIs utilized to

mitigate the spread of the COVID-19, such as lockdown

strategies, have served as effective input to the simulation

and allowed to present a range of multiple output scenarios.

We have also observed a range of data mining as well as

statistical and mathematical approaches. The Susceptible

Exposed Infectious Recovered (SEIR) model is a widely

used mathematical technique to evaluate mitigation

strategies and NPI measures [4]. The SEIR model relies on

various disease outbreak parameters, which the scientific

community understands much better now than at the earlier

stage of the COVID-19 pandemic.

Furthermore, the model represents various categories of

symptomatic levels, providing a more accurate simulation

of the pandemic. Prior work in mathematical modelling has

shown the implementation of SEIR for specific regions and

its ability to be modified to model-specific research aims or

scenarios, such as in [5, 6]. In work presented in [7], the

authors discussed a range of parameters that can be intro-

duced to model COVID-19 and improve the accuracy of

SEIR models, as applied to eight countries. We also noted

the explicit application of SEIR modelling to specific

countries. As an example, in [8], for the case of China, a

layer of quarantined patients was incorporated, as well as

those who had passed away, ultimately allowing a pre-

diction of peaks in various regions of China. In [31], the

SEIR model was modified to include domestic passenger

movement data to predict the epidemic’s peak. In [9], the

conventional SEIR model was applied to various social

distancing mitigation strategies, where the sustained

application of NPIs was able to mitigate the spread of

COVID-19 infection. SEIR modelling was also applied to

project the health infrastructure needs, such as ICU beds

and hospitalization needs, in France [10].

In this work, we report on how the effect of NPI mea-

sures can be investigated and compared according to the

change of effective reproductive number (Rt) using simu-

lation techniques. A case study was selected for simulation

from the United Arab Emirates (UAE). The UAE case

represents a growing urban centre with a highly social and

mobile society that has slowly exited its lockdown strate-

gies after an initial outbreak of COVID-19 [11, 12]. It is

also a multi-cultural nation with a diverse diaspora, two

major air transport hubs and a high standard of living.

Therefore, the UAE deserves individual focus concerning

the potential spread of COVID-19 since it can provide

valuable insight to other similar countries. We acknowl-

edge that previous work already discussed NPI measures

undertaken by South Asian and Gulf countries to mitigate

the spread of COVID-19. However, those lack meaningful

modelling results [13].

In sum, the case study of the United Arab Emirates was

chosen due to the following clear differential aspects. UAE

had gradually relaxed its lockdown strategies (such as

reopening of international flights as soon as possible).

Secondly, most of the interventions for UAE were not

publicly available in a clear chronological form to the

authors, for example, via the governmental web-sites.

Recent research reported that the primary information

source for health care workers in the UAE is social media

[14] and not authentic governmental sources [15]. We note

that the utilization of the UAE case study allows us to

judge the suitability and sensitivity of our proposed model

to capture intervention settings and scenarios. The appli-

cation of these simulation models was further considered

by the availability of information regarding mitigation

strategies for each country. As stated in the case of UAE,

no clear or segmented mitigation strategies were available

to the authorship team to guide the model simulation

inputs. As such, this provided further evidence of the

impact of disclosing and inputting mitigation strategies on

simulating COVID-19 spread within different populations.

To reiterate, our study aims to provide future forecasting

estimations about the spread of COVID-19 in the UAE

with different scenarios using the SEIR models. Specifi-

cally, we introduce two additional layers by splitting

infectious into asymptomatic/symptomatic mild and

symptomatic severe. This discretion is integral for the

study of COVID-19 spread because it is established that

many patients can go untested due to no visible symptoms.

However, the virus can transmit from such patients and

many patients diagnosed show mild symptoms [16].
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2 Methods

A country-based case study was simulated in the current

research. The UAE case study evaluated the effects of NPIs

when clear policies are neither publicly communicated nor

publicly available.

2.1 Model description and parameters

A simulated compartmental model was implemented to

measure the spread of COVID-19 using an empirical

population sample (across both case studies). Our simu-

lated model is built upon an extended version of the SEIR

Model [17]. We have used a portion of the UAE population

(2,998,325) which is the total empirical population sample

in GleamViz software in this study into 5 compartmental

state: Susceptible (S), Exposed (E), Infected Asymp-

tomatic-mild (Ia), Infected Symptomatic Severe (Is) and

Recovered (R). The constant N (N = S ? E ? Ia? Is-
? R) denotes the total population (N = 2,998,325 for UAE

(S1). The categories of the compartments are further

described below.

• Susceptible (S) All non-immune susceptible empirical

population samples in our study.

• Exposed (E) latent but not yet infectious or ‘‘have no

symptoms, and they cannot spread the virus yet’’.

• Infected asymptomatic-symptomatic mild (Ia) Refers to

transmission of the virus from a person who does not

develop symptoms or with mild symptoms [18] to

another person (not yet latent but suspected).

• Infected symptomatic severe (Is) The state of COVID-

19 infection can progress to severe disease with

dyspnoea and severe chest symptoms [19].

• Recovered (R) Population showing immunity for

COVID-19 after infection recovery.

In the course of many diseases, there are an unknown

fraction of the in-infected hosts that are still able to spread

the disease while remaining symptoms-free (asymp-

tomatic) [20]. In our model, asymptomatic cases are

combined with mild cases in the same fraction. This con-

firms the reported proportion of the infections according to

WHO [18]. Rationally, splitting the asymptomatic and mild

into Ia compartmental state and the symptomatic severe

into Is compartmental state and the understanding of

spreading growth for each compartment are a worthwhile

attempt. Further, it is deemed as an important research task

to evaluate the behaviour of each compartment in the

pandemic event and for further compartments evaluation in

relation to the NPI mitigation strategies such as social

distancing, lockdown, wearing masks, and more strategies

arise as the pandemic progress (which reinforces our aim to

apply the modelled simulation to two distinct case studies).

Therefore, our proposed epidemiological model is

espousing the asymptomatic mild and severe states

according to the WHO new classification [18] for COVID-

19 infected cases. The (beta) time-based(t) (bt) describes
the transmission rate (vary according to social distancing,

remote working, closing schools, wearing masks, etc.).

Alpha (a) indicates the reduction in the transmission rate of

b in the isolated infectious symptomatic (severe), where

patients are isolated [21]. The incubation period (c) is a

period from the state of the exposure to the disease to

become in-infectious. Our model used the value of (c = 1/

5.2 ‘days’) [22]. The recovery rate (l) in our model indi-

cates the time until an infectious case is recovered. Previ-

ous research [12] tells us the recovery time for COVID-19

is 14 days. We have used this value (recovery rate is

(l = 1/14 days) in our model. More information regarding

the parameters used in our study is discussed in Table 1.

The COVID-19 pandemic transmission in our model can be

described by:

_S ¼ �btSðIa þ IsÞ ð1Þ
_E ¼ btSðIa þ IsÞ � cE ð2Þ
_Ia ¼ cPaE � lIa ð3Þ
_Is ¼ cð1� PaÞE � lIs ð4Þ
_R ¼ lIa þ lIs ð5Þ

where N = S ? E ? Ia ? Is ? R. We have calculated the

beta(t) (bt) according to equation (6):

bt ¼ Rtl=Paaþ ð1� PaÞ ð6Þ

We proposed model on the basis of SEIR Model [4]

(Fig. 1). The traditional SEIR model equation is formed as

the following:

_S ¼ �btSI ð7Þ
_E ¼ btSI � cE ð8Þ
_I ¼ cE � lI ð9Þ
_R ¼ lI ð10Þ

where N = S ? E ? I ? R. Figure 1 represents the tradi-

tional compartments for the SEIR model. The beta(t) (bt) is
time-dependent. Therefore, (bt) is denoted with the fol-

lowing equation:

bt ¼ Rtl ð11Þ

Figures 1 and 2 compare the dissimilarity between (Ia and

Is) compartments of (Fig. 2) to the infected compartment

(I) in Fig. 1. Equations (1–6) are the COVID-19 trans-

mission equations of (Fig. 2) in contrast with SEIR

Eqs. (7–11).
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2.2 Estimating the effective reproductive
number

The Rt (effective reproductive number) measures the

transmission potential of COVID-19, which is also referred

to as the average number of people who will catch the

disease from a single infected individual. When the pan-

demic occurs, the effective reproductive number Rt mea-

sures which will become in-infected per infectious person

at a time (t). The most well-known version of Rt is the basic

reproductive number R0. However, the R0 is a single

measure that does not reflect changes in disease transmis-

sion, behaviours and restrictions in communities over time.

Alternatively, as the pandemic progresses, mitigation

strategies could be tightened, more restrictions imposed, or

relaxed. This enables Rt to vary over time. Therefore, the Rt

value is subject to variation after or before the introduction

of NPIs. To estimate the Rt, we have used a real-time

Bayesian estimation [24] and implementation of work by

[25]. Figure 3 in the results and discussion section provides

the calculated Rt values for UAE with a value of 2.4.

Modelling software we have utilized is GLEAMviz client

simulator [26], which combines world data such as

countries populations and human mobility. The GLEAM-

viz simulator elaborates compartmental stochastic models

[27] for disease transmission in a global epidemic event.

To forecast the number of estimated future compartments

for the COVID-19 epidemic in the UAE, we have exploited

a previous model, ‘‘Global Epidemic and Mobility GLEaM

H1N1 schematic’’ [26] depicts the spread of such as an

epidemic disease. We considerably modified the model to

include the compartment of asymptomatic mild and

symptomatic severe layers. Noting that Ia represents the

asymptomatic mild cohort and the Is represents the symp-

tomatic severe cohort in the study. Figure 2 represents the

schematic for our proposed epidemiological model

compartments.

3 Results and discussion

Currently, there is no cure or effective vaccine for Covid-

19 while the pandemic continues to spread, and there are

more daily confirmed positive cases and deaths recorded

Table 1 Model parameters and description

Parameter Description Value(s) and Ref

c The incubation period from the state of exposure to the disease to become

infectious for S1

5.2 days [22]

Pa Probability of being asymptomatic–symptomatic (Mild) 0.8 [18]

Ps Probability of being severe symptomatic requiring hospitalization = (1 - Pa) 0.2 [18]

bt Beta(t) or transmission rate describes the spread of disease in the community Equation 6 for S1 and Eq. 11 for S1 (given

above)

a Alpha: reduction in transmission rate (severe) 0.5 [21]

l The recovery rate for (S1): Indicates the time until the infectious case becomes re-

covered

14 days [12, 23] l (1/14 days = 0.07

‘‘day-1’’)

Fig. 1 SEIR model

Fig. 2 Architecture of the proposed SEIaIsR model (S1)

Fig. 3 Real-time Rt for UAE from 23/3/2020 to 2/8/2020
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worldwide. Aptly, it is necessary to maintain and measure

NPIs effectiveness and figure out how to flatten the pan-

demic curve with long term interventions until the time that

successful vaccines are widely available or effective

treatment is available. This section reflects on findings

from the UAE case study, particularly where detailed NPIs

are not publicly available. Our model is sensitive to the

contact rate t that determines the change of the Rt value,

which is the essential entry to our simulation to reflect the

policy outcomes in real-time Rt measurement. The

GLEAMviz simulation was run to initialize the spread of

COVID-19 in the UAE starting on the 29th of January

2020. Since the GleamViz is limited to 365 days, our

simulation ends on 28/1/2021 for UAE. Then, we simulated

our proposed model SEIaIsR (S1) for the situation of UAE.

After that, we demonstrated the results of the S1 simulation

on an empirical portion of the population of the UAE. The

S1 simulation considered the changes in the Rt according to

the changes (tightening or easing) in policies in UAE,

between 29/1/2020 and 2/8/2020. The data used to calcu-

late the Rt were fetched from the Github repository of ‘‘Our

World in Data’’ [28] for the UAE case. Furthermore, the

data preprocessing step was applied to get the daily new

cases from the John Hopkins official Github. The data

attributes are the date, name of the country and the number

of new daily cases (k) for the UAE. This step is essential in

measuring Rt [24, 25]. We have decided to change Rt for

simulation inputs by 0.5 points of Rt each increase in the Rt

or increment. This is assuming the 0.5 value has a

noticeable impact on the simulation results.

3.1 COVID-19 simulation in undisclosed public
health strategy for the public (UAE)

Figure 3 shows the real-time Rt for UAE. Since UAE went

through different levels of social distancing, restrictions

and easing of restrictions strategies, estimating the Rt is an

essential task to measure and reflect the policy outcomes on

empirical data of (Fig. 2) over time. The simulation

parameters values (Table 1) are the input for extended

SEIR (Fig. 2) simulation. Our strategy was to update the

extended SEIR upon each 0.5 difference in Rt value to

adopt the changes of a policy at a point of time. We have

fed the model with Rt values in the GleamViz‘s exception

layer, indicating the policy measured at a time (t). Since we

were limited to the new COVID-19 daily cases obtained by

the Github repository of Our World in Data [2], the Rt

measure started on 23/3/2020. However, we kept the value

of R0 constant from 29/1/2020 until 23/3/2020. We

assumed that the R0 = 2.5 in our model based on infor-

mation from the WHO [18] since there was no available

data about Rt at the beginning of the pandemic.

Rt in the UAE fluctuated between zero at the beginning

of the pandemic and 3, during the first two weeks of the

pandemic. After that, a decline in the Rt was noted,

reaching around one around the 40th day. Around the 50th

day of the pandemic, Rt increased to around 2 and declined

after that to less than one between the 60th and 90th day of

the pandemic. The sharpest decrease in Rt was observed

between day 110 and 120 of the pandemic. By the end of

the simulation, Rt was noted as 1.08.

As of 23/05/2020, the median rate (95% CI) of

asymptomatic mild cases was 11.25 (5.62–12.26) per1000

population with a cumulative median of 356.64

(173.07–540.17) per 1000 population (Fig. 4a). In the

severe COVID-19, cases peaked by 20/5/2020 and the

simulation predicted that there will be no severe cases after

16/12/2020. The median rate was simulated at 2.83

(1.35–3.02) per 1000 population and a cumulative median

of 81.36 (39.02–126.22) per 1000 population, as shown in

Fig. 5b. Simulated severe COVID-19 cases are essential to

estimate the population that may require advanced health

services, critical care services or even hospitalization care.

Simulation of severe cases will facilitate estimating the

needs for health services and identifying anticipated needs

for patients with the severe diagnosis. After that, a simple

comparison of estimated numbers and availability of health

services will provide a valuable need assessment and

identify potential gaps in medical services. However, the

lack of healthcare indicators from the UAE limited such

comparison and restricted our abilities to anticipate the gap

as mentioned above.

Recovered cases in S1 followed the same trends of

Asymptomatic-mild and severe cases. Figure 4c illustrates

that the peak median recovered cases reached 12.98 per

1000 (6.92–13.41), and median Cumulative was

418.15(206.55–622.50) per 1000 population, as shown in

Fig. 4c. The simulation, according (Fig. 2), estimated

recovered cases to flattened by 27/1/2021. With reference

to the flattening of the curve, in general, we observed that

our results are in line with prior literature [29], where it

was shown that lockdown and stringency measures are

required to be sustained for anywhere between 3 and 5

months to flatten the curve (albeit for the case of UK). With

the increased global concerns of COVID-19, strict NPI

measures become necessary to mitigate the risks associated

with COVID-19. Citizens’ commitment is critical to con-

trol the epidemic.When citizens adapt to the NPI measures,

a reduction in the spread of the epidemic is expected. The

combined efforts from both governments and citizens are

then critical for designing and adapting effective NPI

measures. This is reflected in the epidemic curve of the

pandemic. In the current study, the effect of NPIs was

assessed utilizing Rt using advanced simulation models for

UAE. The model established potential evidence of
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effective NPIs to control the spread of COVID-19, espe-

cially when model modifications were introduced to meet

the characteristics of the pandemic. Adopted NPIs in UAE

geographic locations effectively reduced the effective

reproduction number below one. Further, the results indi-

cated that the rapid introduction of NPIs has a more

effective reduction in the spread of the epidemic.Multiple

models evaluated the effectiveness of state measures to

control COVID-19 spread. A direct link was established

between the effectiveness of NPIs [11] on reducing the

reproduction rate (Rt). Our results are in line with the lit-

erature. They indicate that effective implementation of NPI

measures has potentially profound consequences on the

epidemic curve of COVID-19 by reducing the number of

newly reported or simulated cases and reducing the effec-

tive reproduction number. The message behind such results

is a cornerstone for communicating public health policies

and the implementation of NPIs. The sensitivity of Rt to the

contact rate is critical in spreading or containing the spread

of COVID-19.The effect of contact rates is, in turn,

dependent on NPIs, which then are critical for mitigating

the disease. Regardless, our study provides evidence that

the effect of NPI measures could be evaluated and dis-

cussed using the effective reproductive rate. This is an

added value to public health professionals and could be

used when designing and implementing mitigation strate-

gies, such as discussing whether suppression or control is

more appropriate. On the other hand, traditional SEIR

models seem to be limited in assessing the effect of NPI

measures on the epidemic curves of COVID-19 [30]. This

note is directly related to the need to consider the charac-

teristics of the disease, with COVID-19 representing itself

uniquely as asymptomatic cases that needed to be fine-

tuned when designing the model compartments. Disease

severity, therefore, is deemed critical for modelling and

simulating the transmission of COVID-19 within

Fig. 4 a–c Median, lower 95%CI, upper 95%CI) for asymptomatic mild, severe and recovered estimated cases (S1)
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populations. Within the uncertainties associated with

COVID-19, time will tell if these asymptomatic mild cases

are of more significant concern for disease transmission.

Regardless, modelling and simulation techniques should

consider modifying the traditional SEIR to present the

epidemic curve better. A vital research implication of our

work is that estimating the proportion of severe cases

requiring hospitalization using SEIR extended epidemio-

logical models may help healthcare decision-makers during

the pandemics. For instance, hospital healthcare decision-

makers such as beds managers, clinicians, and healthcare

managers can work more effectively and plan the beds and

staffing. Moreover, the healthcare assessments systems

such as the clinical decision systems to predict patients’

length of stays in ICU or COVID-intensive care units,

including ventilators, are utilized. This is an essential task

for hospitals to manage beds scarcity, especially in

uncertainties such as pandemics.

4 Study limitations

Our study provides an interesting outlook on the compu-

tation of Rt concerning stated interventions; however, there

are some limitations also associated with the simulation.

Our model is evaluated on empirical population data. We

did not examine our model on real confirmed cases due to

the lack of many variables necessary for stochastic com-

partment models. Transmission data may simply not be

available or is made private by the authorities, which has

ultimately limited our potential to run the model on real-

world data and evaluate the predictions of the simulated

model against (Asymptomatic-Mild) and real severe cases.

We have also assumed that the entire population of the

sample country (in our case UAE) is susceptible. Prior

work has utilized other ranges, such as 70% [23]. Further,

we have not executed any complementary logistic mod-

elling on our scenarios for the UAE.Furthermore, we did

not study and report the severe cases that require

Fig. 5 a–c Cumulative (median, lower 95%CI, upper 95%CI) for asymptomatic-mild, severe and recovered estimated cases (S1)
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hospitalizations. Therefore, a future study should include

forecasting severe cases that may require hospitalizations

in the model. Finally, the Glemaviz software application

does not allow accessing the mathematical equations used

to run the model. This limits our abilities to adjust disease

characteristics within the equations. This may be a reason

behind discrepancies in S1 and SEIR models. Still, Gle-

maviz is a user-friendly application that allows public

health professionals to run simulation models without an

in-depth understanding of advanced mathematical

equations.

5 Conclusions

Our study attempted to extend the SEIR model by forking

the infectious compartment into two subcategories, namely

asymptomatic mild or symptomatic severe. We have also

illustrated how the effective reproductive number (and its

change over time) can be computed using available

parameters, despite the lack of realistic data. This com-

putation has allowed us to forecast and predict the outlook

of COVID-19 in the UAE as our sample country of an

investigation by using the two variations in the SEIR

model. Our results show us that the modified SEIR model

is more sensitive and can also determine when the diffusion

will flatten.We also summarize certain limitations of our

modelling; the most concerning is the lack of real empirical

data. Nevertheless, with the comfort of prior literature [31]

where it is highlighted that the SEIR modelling is appro-

priate for longer-term projections, and it provides a range

of parameters for specific contexts, we ascertain that our

determinations can drive public health policy in small to

mid-size countries such as the UAE. In future work, we

will predict hospital length of stay for COVID-19 inpa-

tients admitted into hospital departments such as intensive

care unit (ICU) by using the advancement of machine

learning models [32] and deep neural networks models [33]

to assist hospital beds managers and clinical practitioners

with resources utilizations during the time of uncertainties

such as pandemic.
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