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1 Introduction

The goal of the Adaptive and Learning Agents (ALA)

workshop is to increase awareness of and interest in

adaptive agent research, encourage collaboration, and give

a representative overview of current research in the area of

adaptive and learning agents. It aims at bringing together

not only different areas of computer science (e.g. agent

architectures, reinforcement learning and evolutionary

algorithms) but also different fields studying similar con-

cepts (e.g. game theory, bio-inspired control and mecha-

nism design). The workshop serves as an inclusive forum

for the discussion of ongoing or completed work in adap-

tive and learning agents and multi-agent systems and has

been held annually since 2009 in conjunction with the

International Conference on Autonomous Agents and

Multi-Agent Systems (AAMAS), which attracts a wide

audience working on those fields of interest. This special

issue features selected papers from the 12th Adaptive and

Learning Agents Workshop1 (ALA 2020), which was held

virtually on 9 and 10 May 2020, in conjunction with the

19th International Conference of Autonomous Agents and

Multi-Agent Systems (AAMAS 2020).

2 Contents of the special issue

This special issue contains 8 articles, which were carefully

selected from 45 initial submissions to ALA 2020. Pre-

liminary versions of each article were initially presented at

the workshop, before being extended and peer-reviewed

again for this special issue. The articles in this special issue

provide a comprehensive overview of current research

trends within the ALA community.

In the first paper, Dynamical systems as a level of

cognitive analysis of multi-agent learning, [1], W. Barfuss

provides a multi-level conceptual framework to disentangle

the different levels of analysis one can perform in the

context of multi-agent learning. This framework comprises

computational, algorithmic and implementation levels. The

paper clarifies how dynamical systems can contribute to the

computational and algorithmic levels of multi-agent

learning analysis. To clarify the links between learning

dynamics and multi-agent learning levels, the author

studies dynamics in stochastic games under replicator-like

equations, while also providing a new temporal-difference

batch-learning algorithm that is shown to converge to

deterministic replicator equations in the limit of large

memory batches.

The second paper, Useful policy invariant shaping from

arbitrary advice by Behboudian et al. [2], revisits the idea

of dynamic potential based advice (DPBA), a method that

should allow one to use arbitrary advice to shape the

reward function and speed-up the learning process, without

affecting the optimal policy. They demonstrate that DPBA

does in fact alter the optimal policy and that, when adding a

correction term, the method no longer provides effective

shaping with good advice. The authors then propose policy

invariant explicit shaping (PIES) as an alternative and
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show that PIES can use arbitrary advice and speed-up

learning, while leaving the optimal policy unchanged.

The third paper, Lucid dreaming for experience replay:

refreshing past states with the current policy, [3], proposes

a new framework that allows learning agents to use their

current policy to refresh previous experiences stored in a

replay buffer. Experience replay (ER) can improve off-

policy reinforcement learning by providing agents the

possibility to store and re-use past experiences. It is not

clear, however, what experiences should be used in each

time-step, given that previous experiences may become

useless in the future. LiDER—the proposed framework—

tackles this problem by moving agents to previous states,

re-creating previous trajectories with the up-to-date policy,

and if improved outcomes are observed with the refreshed

trajectories, uses them in training.

The fourth paper, Discrete-to-deep reinforcement

learning methods by Kurniawan et al. [4], combines the

community knowledge from the vast literature on tabular

reinforcement learning (RL) algorithms with the more

recent desire of solving more challenging domains. Their

paper contributes a 2-phase RL algorithm, that first learns a

coarse policy using tabular RL, and then trains a classifier

to map continuous states to actions. The speed with which

the agent is able to learn the tabular policy is combined

with the accuracy of considering continuous states,

enabling agents to benefit from the best of the two worlds.

The fifth paper, Scalable multi-product inventory con-

trol with lead time constraints using reinforcement learn-

ing by Meisheri et al. [5], applies deep RL to multi-

product, multi-period inventory management. It approaches

the inventory problem as a special class of dynamical

system control and has minimal retraining requirements on

the RL agent under system changes through the definition

of an individual product meta-model while efficiently

handling multi-period constraints that stem from different

lead times of different products. Experiments show that the

presented RL-based approaches scale to hundreds of

products while performing better than baseline heuristics

and close to the theoretical optimum.

The sixth paper, Opponent learning awareness and

modelling in multi-objective normal form games by Răd-

ulescu et al. [6], studies the effect of opponent modelling

and learning with opponent learning awareness in a series

of multi-objective normal form games, where agents have

nonlinear utility functions and use the scalarised expected

returns (SER) optimisation criterion. It contributes a set of

learning approaches in the policy gradient family for multi-

objective multi-agent settings, that incorporate opponent

policy estimation, as well as modelling and anticipating the

opponent’s learning step using a Gaussian process. The

authors demonstrate that opponent modelling can confer

advantages to the agents implementing it, in settings where

equilibria are present. For games with no Nash equilibria

under SER, their proposed method allows agents to still

converge to meaningful solutions that approximate

equilibria.

In the seventh paper, The impact of environmental

stochasticity on value-based multiobjective reinforcement

learning [7], Vamplew et al. analyse the role of stochastic

rewards and stochastic state transitions in multi-objective

Q-Learning. Most of the previous empirical evaluations of

multi-objective reinforcement learning and scalarisation

methods assume that environments are deterministic. In

[7], the authors find that stochasticity in rewards/transitions

affects the optimal solution agents which can learn and,

importantly, introduce important differences based on the

choice of optimisation criterion (e.g. expected scalarised

returns or scalarised expected returns). On top of pointing

out limitations of multi-objective RL methods in stochastic

environments, the authors explore a novel approach to

learning optimal policies for environments with stochastic

rewards and discuss potential alternative methods that may

be more suitable for maximising returns under stochastic

transitions.

Finally, in the paper Value targets in off-policy Alpha-

Zero: a new greedy backup, Willemsen et al. [8] present a

detailed exploration of approaches that combine planning

with learning steps such as AlphaZero. Their paper con-

tributes an exploration of how information can be backed-

up when planning to construct training value targets when

learning. This enables a deep understanding of the very

successful Alpha family of algorithms and is very timely

given that such algorithms have recently been successful

when applied to many previously unsolved tasks.
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