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A B S T R A C T

The impacts of new real estate developments are strongly associated to its population distribution
(types and compositions of households, incomes, social demographics) conditioned on aspects such
as dwelling typology, price, location, and floor level. This paper presents a Machine Learning based
method to model the population distribution of upcoming developments of new buildings within larger
neighborhood/condo settings.
We use a real data set from Ecopark Township, a real estate development project in Hanoi, Vietnam,
where we study two machine learning algorithms from the deep generative models literature to create
a population of synthetic agents: Conditional Variational Auto-Encoder (CVAE) and Conditional
Generative Adversarial Networks (CGAN). A large experimental study was performed, showing that
the CVAE outperforms both the empirical distribution, a non-trivial baseline model, and the CGAN
in estimating the population distribution of new real estate development projects.

1. Introduction

A crucial component of decision making for sustainable de-
velopment is to forecast impacts of long-lasting interven-
tions, such as policies, infrastructure investment, and new
community areas. Significant work exists, particularly using
Agent Based Model (ABM) simulators applied to di�erent
research areas such as transport, sociology, and ecology [26].
The benefit of ABM approaches is that simulation can repro-
duce complex interactions and decision making chains for
each agent (e.g. location decisions for jobôhouseôschool)
and groups of agents (e.g. tra�c flow).

In the vast majority of cases, ABMs aim towards large spa-
tial contexts (e.g. city, region, country), thus considering
coarse representations at the higher resolution level. For ex-
ample, agents’ home locations are represented at most at the
zone level, instead of specific building location. This is more
than su�cient for policies and investments at the coarser re-
gional/urban level, for example planning for sustainable ur-
ban energy development [32], but becomes inadequate for
planning large investments at a much smaller scale. From
a real estate development and infrastructure planning per-
spective, understanding the specific populations on a basis of
individual building, together with their usage of resources,
mobility, and space becomes a necessity. The main purpose
of knowing the development of a population and its charac-
teristics, is to serve the people properly with the necessary
amenities. Having a good level of service has been proven to
improve life quality in, among others, transport studies [35],
and economic studies [12].

In this work, we focus on the first and fundamental step of
ABMs: population synthesis, which consists of accurately
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modeling the population distribution for the area of study.
Specifically, we focus on the real estate project development
level. This means, in practical terms, that we must synthe-
size agents at a very high level of detail, taking into account
characteristics of, for example, property type and the house
topology.

Just as with urban models, which consider surrounding ar-
eas as exogenous (e.g. other cities, regions, countries), we
will consider our study area in isolation, i.e., we will not ac-
count for other areas in the same region, and hence ignore
overall supply and demand on the real estate market. While
that would ultimately be the most robust and precise method,
because it accounts for all systemic e�ects, it is in practice
unrealistic, due to limited data in our region of study.

Using real data from Ecopark Township, a real estate devel-
opment project in Hanoi, Vietnam, we study two machine
learning algorithms from the deep generative models litera-
ture to create synthetic agents used in ABMs. Particularly,
we use a Conditional Variational Auto-Encoder (CVAE) and
Conditional Generative Adversarial Networks (CGAN).

2. Literature review

For background and contextualization of this paper, we will
focus on two major topics: Population Synthesis techniques
and Machine Learning models for real estate research and
practice.

2.1. Population Synthesis

Historically, population synthesis has been practiced using
a range of di�erent approaches. In this paper, we will fo-
cus on several recent developments in the use of deep gen-
erative models for population synthesis applications. Previ-
ously, iterative algorithms, such as Iterative Proportional Fit-
ting (IPF), have been a practice standard due to their ease of
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implementation [30]. However, they are ultimately a heuris-
tic method that simply reproduces the empirical distribution
through expansion factors, being overly sensitive to the data
distribution of the sample used for synthesis. For example,
if some specific combination of properties is absent or un-
derrepresented (e.g. people above or below a certain age, in-
come, etc.), it will strongly bias the outcome. In other words,
IPF is not in itself a model, given that it cannot generalize be-
yond the data sample.

To address this issue, simulation-based approaches have been
applied, such as a Gibbs-sampling method proposed in Fa-
rooq et al [13], which showed good performance in low di-
mensional problems (e.g. under 10 population characteristic
variables), but having significant computational challenges
with higher dimensionality. High dimensionality was partly
addressed subsequently by the Bayesian Network from Sun
and Erath [34]. However, their work relies on either knowing
the topology of the network graph or on finding it through
some discovery algorithm which does not scale to high di-
mensional data or models with latent variables. The use of
Hidden Markov Models (HMMs) was also proposed by [31]
as another method of synthesizing a population, where each
attribute represents a state, and all attributes are sequentially
sampled for all individuals.

More recently, deep generative models [18] have proven ef-
fective with large-scale generative modeling problems. In
a population synthesis setting, deep generative models have
mainly been proposed to synthesize transport data by [6] and
[8], and medical data by [10] and [39] until now. [7] pro-
poses to use a Variational Auto-Encoder (VAE) to synthe-
size transport data and successfully generate populations in a
high-dimensional setting. Results from [15] show how both
a VAE and a Generative Adversarial Network (GAN) with
Wasserstein distance can generate zero-samples, i.e., create
out-of-sample agents, which makes these types of generative
models even more exceptional. [4] trains a GAN which is ca-
pable of reconstructing agents described by both tabular and
sequential data in a mobility setting. [8] proposes the appli-
cation of a Conditional Variational Auto-Encoder (CVAE)
to estimate the joint distribution of travel preferences con-
ditional on socio-economic and external variables to inves-
tigate how transport preferences evolve. Given the impor-
tance of the VAE and the GAN algorithms for this paper, we
will describe them in more detail in section Methodology.

The Variational Auto-Encoder (VAE), introduced by [20],
successfully fit and model distributions over large data sets.
Building on the development of the VAE, [33] proposes a
Conditional Variational Auto-Encoder (CVAE). A CVAE mod-
els the distribution of a high-dimensional output space as
a generative process, which generates an output, x, condi-
tioned on additional input features1, c. Since the initial pa-
per on VAEs, many extensions and modifications have been

1In machine learning, the term feature is often used to describe what
other literature refer to as a variable or an attribute.

proposed to optimize performance. As an example, the en-
coder and decoder models can be modified to be other Neural
Network structures like Recurrent Neural Networks (RNNs).
[36] gives an overview of the latest developments in autoencoder-
based learning and describes three mechanisms to ensure la-
tent representation of features and their distributions. Fur-
thermore, [21] gives an overview of di�erent frameworks
and tasks where deep generative models, in particular VAEs,
are proved applicable. Two such areas are representation
learning and artificial creativity. In conclusion, [21] states
that VAEs are one of the few frameworks in current litera-
ture that proves to be e�cient in learning latent variables and
synthesis.

The Generative Adversarial Network (GAN) was introduced
by [19], as an alternative way to train generative models.
Apart from the GAN, a large number of variations have been
proposed. For example, changing the divergence measure
minimized by the GAN loss functions from the Jensen Shan-
non divergence to the Wasserstein distance can improve the
stability during training and relieve common problems, such
as mode collapse [3]. Later, a conditional version of the
GAN was introduced by [25], namely the Conditional Gen-
erative Adversarial Network (CGAN). The CGAN is con-
structed by feeding conditional features to both the generator
and the discriminator.

2.2. Machine learning in real estate

Machine learning (ML) research within the real estate do-
main is mainly focused on two applications; predicting hous-
ing prices and finding investment opportunities. Other re-
search within the real estate domain is focused on assessing
construction speed, mobility patterns, and customer target-
ing, however, not all using machine learning methods. A
few articles were found on occupancy-prediction, however,
mostly using aggregate building features or indoor environ-
mental data.

Housing price prediction is the most common application of
machine learning within real estate. Models range in com-
plexity from regression models to complex architectures like
Convolutional Neural Networks (CNNs) and bi-directional
Long Short Term Memory (bi-LSTM) models. [40] uses a
CNN to score the aesthetics of pictures from online housing
ads and combines this score with basic property attributes
to predict the house price using an eXtreme Gradient Boost-
ing (XGBoost) regression model. [5] claims to outperform
prior state-of-the-art models by including other similar prop-
erties in the neighborhood as model input. They develop
a K-nearest similar house sampling (KNSHS) algorithm to
find similar nearby properties and inputs sequences of the
KNSHS-result and the current to-be-valued property into a
bi-LSTM model. The features extracted from the generated
sequences are used to predict the house price in a fully con-
nected layer.

The research on investment opportunities includes models
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to predict which areas of a city are likely to experience gen-
trification, proposed by [1], and models to predict whether
properties are listed below market price, proposed by [17].
The former uses a Random Forrest Classifier while the latter
assess several di�erent algorithms such as K-nearest neigh-
bor (KNN), Support Vector Machine (SVM), and a Neural
Network (NN).

Creating customer target groups from Social Media profiles
by classifying segments within real estate, parenting, and
sports, is proposed by [24]. The selected targets help mer-
chants to identify target customers and plan social media
strategies. The paper uses a deep Neural Network to classify
the di�erent target customers, given features scraped from a
particular social media platform.

Occupancy prediction and energy usage prediction is a broadly
defined problem which can be solved from many di�erent
perspectives. [28] predicts commercial building energy con-
sumption using descriptive features of buildings, such as the
size of the building and the number of employees working in
the building. [29] develops an indirect-approach-based oc-
cupancy prediction model. This model predicts occupancy
using machine learning and indoor environmental data with
a focus on privacy. Both a decision tree model and a hid-
den Markov model is proposed. A third approach is pre-
sented by [22], who uses a CGAN with Wasserstein dis-
tance as loss function to predict demand-side electricity con-
sumption. They do so, by training the CGAN on electricity
consumption denoted by 30-minute intervals for small and
medium enterprises (SMEs). The generator can generate re-
alistic electricity consumption after training.

2.3. Other existing ML applications in real estate

The academic community has not been exhaustively explor-
ing ML applications within real estate, however, companies
and startups are using ML to provide services and applica-
tions within the industry. Companies provide a range of dif-
ferent applications under the term Property Technology, or
PropTech for short. However, to our knowledge, none of the
services o�ered provides a similar concept to urban resident
modeling for potential customer acquisition and planning, as
proposed in this paper. A brief description of the four most
relevant (yet not similar) applications is provided below. For
a more comprehensive description, [27], [16], and [11] pro-
vide a good overview.

• Compass predicts purchases for agencies: Compass
operates a sales listing site focused on major US cities,
primarily on the East coast. The company claims to
predict when customers are most likely to buy a prop-
erty based on their search history and notifies the sales
agencies whenever a customer is likely to buy[27].

• Sidewalk Labs generate design ideas: The Alphabet
company has created a generative design tool that can
produce "millions of planning scenarios"[37], given a
wide range of foundational information. The tool is

meant to help planners facilitate objectives and trade-
o�s in the best possible manner.

• CityBldr finds the next investment: Finding multi-property
development sites can take anything from days to sev-
eral months. CityBldr uses AI to find suitable real es-
tate sites in seconds and ranks opportunities based on
specific parameters[9].

• Localize provides transparency: Localize mainly op-
erates in New York City using AI to provide trans-
parency for property buyers. The company o�ers de-
tailed knowledge about actual lighting in an apartment,
commuting times, parking facilities, etc.[23].

3. Methodology

In a population synthesis application, the objective is to en-
able sampling of a synthetic target population, ÇX, that re-
sembles a given real and known population, X. Specific
types of models that can generate data, which resembles real
data, are called Generative Models. Deep generative mod-
els have proven to obtain high performance in a wide vari-
ety of generative tasks, from image [38] to text generation
[14]. Generative Adversarial Networks (GANs) and Varia-
tional Auto-Encoders (VAEs) are examples of deep genera-
tive models that have proven to perform well in creating syn-
thetic agents in population synthesis applications. The two
methods fit the full joint distribution for high-dimensional
data sets, in contrast to other traditional generative models.
Building on prior research, we are introducing the CGAN
and CVAE to perform population synthesis on urban resident
features to generate synthesized urban residents conditioned
on property-specific features.

3.1. Generative Models

In contrast to discriminative models, generative models are
built to reconstruct the data of interest. A discriminative
model solving a standard classification problem can be con-
sidered a direct mapping, where an instance of xxx is used to
predict yyy given p(yyyxxx,www). In generative models, we are try-
ing to approximate a mapping using a significantly di�erent
approach. The models are learning an underlying distribu-
tion, represented by latent random variables, from which the
data originates. This enables generating synthetic data that
resembles the real data, potentially being images, text, or ur-
ban residents for a real estate project. The intuition follows
a famous quote by Richard Feynman, "What I cannot create,
I do not understand."[2]

Generative models are characterized by taking samples from
a probability distribution (often Gaussian), z, and transform
them through a generative model, ✓. Using Gaussian ran-
dom variables to generate an approximate distribution, Çp(xxx),
we can compare the models ability to reconstruct the true
data distribution, p(xxx). The loss is the di�erence between
the true distribution, p(xxx), and the approximate distribution,
Çp(xxx).
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The generative properties force the model parameters to rep-
resent some underlying structures of the real world, which
causes the models to encode hidden or latent patterns im-
plicitly. Both models presented in the next sections are a
part of the family of generative models.

3.2. Conditional Generative Adversarial Networks

A new way to train a generative model using the concept of
adversarial training was introduced by [19]. This approach
involves two adversarial models, a generator function G and
a discriminator functionD. These functions are parametrized
by neural networks and are trained simultaneously. The gen-
erator G captures the distribution of the data, and the dis-
criminator D estimates the probability of the sample being
fake (coming from the generator) or real. This way, the gen-
erator learns to generate plausible data, and the discriminator
learns to distinguish between fake and real samples.

For G to learn the distribution pg over data, G is first initi-
ated with a sample from a prior noise distribution p(zzz), then
G transforms the sample to a realistic agent. This way G
builds a mapping function from the prior noise to data space
using a Neural Network.

The adversarial network D, called the discriminator is sim-
ply a binary classifier. D is supplied with an agent, either
one from training data (real) or one generated by G (fake).
Formally, D outputs a value between 0 and 1, representing
the probability D(xxx) of xxx coming from the data. D is trained
to maximize this probability of correctly labeling both the
agents coming from G and training data. Simultaneously, G
is trained to minimize ln(1*D(G(zzz). In game theory termi-
nology, D and G are playing a MinMax game, with a value
function V (G,D), described by:

min
G

max
D

V (D,G) =

ExxxÌpdata(xxx)[lnD(xxx)] + EzzzÌpz(zzz)[ln(1 *D(G(zzz)))] (1)

where the first term: ExxxÌpdata(xxx)[lnD(xxx)] denotes the expected
value of the log-probability that D assigns to real data. This
term is maximized by D. The second term: EzzzÌpz(zzz)[ln(1 *
D(G(zzz)))] expresses the objective of G to minimize the log-
arithm of one minus the probability of D labeling an agent
generated by G to be real. Due to the value function in equa-
tion 1, the loss functions for D to minimize the loss LD can
be extracted as:

LD = *[lnD(xxx(i)) + ln(1 *D(G(zzz(i)))] (2)

while the loss function for G is:

LG = ln(1 *D(G(zzz(i))) (3)

For every data point i, equation 2 and 3 can be maximized
simultaneously.

c

G(z|c)G
z

c

Real    X

c

Fake    D D(x|c)

Figure 1: High-level architecture of the Conditional Generative
Adversarial Network.
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Figure 2: High-level architecture of the Conditional Variational
Auto-Encoder.

The GAN model can be extended by conditioning on a set of
exogenous variables, ccc, as illustrated in figure 1. The con-
ditioning is carried out by feeding ccc as an additional input
to both D and G. For G this is done by combining ccc with
the prior input noise pz(zzz). With this additional input ccc the
objective function of the MinMax game is now:

min
G

max
D

V (D,G) =

ExxxÌpdata(xxx)[lnD(xxxccc)]+EzzzÌpz(zzz)[ln(1*D(G(zzzccc)))]
(4)

3.3. Conditional Variational Auto-Encoder

The architecture of a CVAE is similar to the VAE with an
encoder network and a decoder network. However, in the
CVAE, the encoder and decoder are conditioned on addi-
tional attributes, ccc. The encoder is described by Q✓(zzzxxx,ccc)
and the decoder is described by P�(xxxzzz,ccc). Q✓ and P� are
essentially two composite Neural Networks that mirror each
other. Q projects the input xxx and conditional features ccc, into
a latent space, and P reconstructs a synthetic agent, resem-
bling the true agent, given conditional features and the bot-
tleneck layer, z. The conditional features are hence fed into
the network both at Q and P as figure 2 illustrates.
The bottleneck dimension Dz is oftentimes smaller than the
original input dimension M however, alternative versions
where Dz > M can also be applied. The lower-dimensional
bottleneck should in theory ensure a representation of the
true distribution in a lower-dimensional space, ideally close
to the true underlying dimension. The conditional variables
are included as illustrated in figure 2.
Compared to a VAE, the CVAE is an extension that includes
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additional conditioning variables, ccc, as an input to the net-
work. It a�ects the estimation of the joint probability dis-
tribution since this now includes the conditional variables,
P (xxxccc).

During training, the CVAE is optimized using a loss func-
tion, which combines the cross-entropy loss and Kullback-
Leibler (KL) divergence. The cross-entropy loss, described
by

CE(xxx, ÇxÇxÇx) = *
n…
i=1

⌅
xixixi log ÇxiÇxiÇxi + (1 * xixixi) log (1 * ÇxiÇxiÇxi)

⇧
(5)

measures the reconstruction loss of the decoder, while the
KL divergence, described by

DKL[Q✓(zzz)P�(zzz)] = *1
2

Dz…
k=1

(1+log�k�k�k*�k�k�k2*�k�k�k) (6)

measures the divergence between the latent variable distri-
bution and the Gaussian prior, where Q✓(zzz) = N (�, �) and
P�(zzz) = N (0, IDz

). Note that � and � are outputs of Q and
per definition the approximate posterior.
Equation 5 and 6 lets us define the final loss function as the
minimization problem defined in equation 7.

min
✓,�

L(✓,�) = CE(xxx, ÇxÇxÇx) + �DKL[Q✓(zzz)P�(zzz)] (7)

where � is a hyperparameter weighting the regularization
term, formalized by the KL divergence.

Neural Networks learn through the process of backpropa-
gation. To enable backpropagation through both Q and P ,
the stochasticity has to be separated from the learned param-
eters. This is a technique known as the reparameterization
trick. Technically, the latent variable zzz is created from �,
�, and ✏, where ✏ Ó N (0, IDz

), and hence zzz is not sam-
pled directly, which lets us backpropagate through the full
network.

3.4. Empirical distribution tables

To compare the generative performance of the models de-
veloped in this paper, empirical distribution tables are used
as a baseline model. Empirical distribution tables are essen-
tially the observed distribution, given a combination of con-
ditional features. The distributions are all discrete since the
data is split into discretized categorical features. Typically,
using the empirical distribution on a lower-dimensional data
set will provide a strong baseline model because the number
of possible value combinations becomes small enough to be
fully covered by the original data set.

Empirical distribution tables can be used to assess the gener-
ative performance over the marginal, bivariate, and trivari-
ate distributions of the model outputs. All the distribution
tables are discrete distribution tables with bins equivalent to
the bins defined in the data set. When assessing the perfor-
mance of empirical distribution tables, it is crucial to keep

scalability in mind. On data sets with moderate combina-
tions between conditionals and where test and train data re-
flect the same distribution, the empirical distribution might
perform superior to any model. However, as the number of
combinations increases, they become infeasible and poor in
performance.

Marginals are sampled by making a distribution table con-
taining all combinations of the conditionals in the training
set. Formally, we can describe the marginal probability dis-
tribution as pX(x). Using the computed distribution tables,
we can sample a synthetic population based on the empiri-
cal distributions by drawing samples from the combinatorial
tables. This simple approach is used to generate a baseline
population. Since the combinatorial tables are made from
the training set (68% of the full data set), it is possible to en-
counter combinations of conditionals in the test set not seen
in the training set. If such unknown combinations are met,
the sample is drawn from the overall distribution of the train-
ing set.

Bivariate and trivariate probabilities are computed by con-
sidering the joint probability distribution over two or three
variables, pX,Y (x, y) and pX,Y ,Z (x, y, z) respectively.

4. Experiments

The goal of population synthesis is to enable the generation
of realistic agents characterized by specific attributes within
a given domain. In this paper, we have taken an applied ap-
proach to population synthesis within the urban housing and
real estate domain, which we are describing as urban res-
ident modeling. By using characteristics from real urban
residents in the city of Ecopark, denoted by current prop-
erty owners, we are training generative models to resemble
realistic urban residents. However, we do not only wish to
enable generation of urban residents in the city of Ecopark.
We want to generate urban residents conditioned on specific
property-attributes, such as property type (villa, townhouse,
apartment), size, price, etc. The purpose of such an applica-
tion is to enable city planners and sales teams to have qual-
itative data about residents available for decision support,
on a case-by-case basis, given the real estate project consid-
ered. With the population synthesis application proposed in
this paper, it is possible to generate residents even before a
project is built and occupied, given the conditional aspect of
the models.

Ecopark township focuses on smart city development and
is currently hosting a growing and diverse population of ap-
proximately 21,000 residents from almost 50 di�erent coun-
tries. Figure 3 provides a visual representation of Ecopark
Township of which one third is currently developed.

The experiments are organized as visualized in figure 4. First,
we train a model using data consisting of both conditional
features and output features (the reader is referred to table
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Figure 3: Ecopark township is located approximately 15 km
outside of Hanoi, Vietnam. The total area is 500 Hectares.

Model
Training

Conditional
features

Existing building
projects

Model
Sampling

Conditional
features

New building
projects

Synthesized
urban

residents

Downstream
tasks

Output
Features

Figure 4: Visualization of experiment setup, where white and
grey boxes represent models and data respectively.

1 for a description of conditional and output features). Sec-
ondly, we can sample synthesized urban residents from the
learned distribution using conditional features for a new real
estate project. Lastly, the sampled output features can po-
tentially be used in further downstream tasks.

4.1. Data description

To generate urban residents in Ecopark, the CVAE and CGAN
need a data set consisting of two feature-pairs; features to be
generated and conditional features. Throughout the rest of
the paper, we will refer to the first type of features as out-

put features and the second type of features as conditional

features. For an illustration of how the CGAN and CVAE
are using the output features and conditional features during
training, the reader is referred to figures 1 and 2.

The output features are anonymous demographic informa-
tion on the current property owners in Ecopark. By train-
ing a generative model to generate urban residential property
buyers defined by demographic characteristics, Ecopark will
receive a detailed qualitative overview of the potential resi-
dential buyers, which can be used as support in strategic de-
cisions around new projects. Furthermore, urban residents
can be used as input to later downstream models. Down-
stream models are not implemented in this paper but can be

Feature # Feature Type Categories Description
1 Age Output 8 Age of the customer
2 Gender Output 2 Male or female customer
3 Nationality Output 12 Nationality of the customer
4 Investor Output 2 If the customer owns more than 1 property
5 Prior_home Output 12 District where the customer used to live
6 Distance_phase1 Conditional 4 Distance to city center 1 in Ecopark
7 Distance_phase2 Conditional 4 Distance to city center 2 in Ecopark
8 Distance_greenfield Conditional 4 Distance to Greenfield school in Ecopark
9 Sales_price Conditional 11 Sales price of property
10 Size Conditional 5 Size of property
11 Floor Conditional 5 Apartment floor (only for apartments)
12 Property_type Conditional 3 Type of property; villa, townhouse, apartment

Table 1
Overview of features. Type indicates whether the feature is
a part of the output features or conditional features. During
model sampling, output features are generated for each syn-
thesized urban resident, and conditional features are used as
an input to influence and condition the characteristics of the
urban residents. Note that all features, both output and condi-
tional features, are discretized to categorical features. In total,
6,893 observations are obtained.

valuable for both sales teams and city planners.

The conditional features are not person-specific but rather
property-specific, as the conditional features are supposed to
be input for the models upon generation of new urban resi-
dents. The conditional features consist of essential property
attributes. Intuitively, we would expect future urban resi-
dents to have correlations between certain demographic fea-
tures and specific property attributes, like type, location, etc.
An overview of both output features, conditional features, as
well as a short description, is provided in Table 1.

All features being used in the models, both output and condi-
tional, are discretized to categorical features. There are two
main reasons why categorical features are used throughout
the paper. Intuitively, it makes sense to restrict the model in
terms of the output. If the variables are not categorical, the
model has more freedom to generate unrealistic values. Fur-
thermore, many of the features are already categorical by
nature. In total, 6,893 observations are obtained from real
estate sales in Ecopark from 2008-2019.

As the model-performance can be heavily dependent on the
number of combinations between the variables, we consider
two versions of the data set in the next sections. Di�erent
thresholds of the categorical bins define the two versions.
For example, age intervals and price intervals can be of any
arbitrary size. The two versions hold the same features as
defined in table 1, but with di�erent categorical dimensions:

1. Original data set, which consists of bin sizes as de-
fined in the categories column in table 1. The Orig-
inal data set gives an output dimension of 36 and a
conditional dimension of 36.

2. Extended data set increases the number of categories
in selected features; age, distances, price, size, and
floor. Extending the categories gives an output dimen-
sion of 45 and a conditional dimension of 49.
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Application (5%)
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Figure 5: Visualization of splitting the data set into appli-
cation, test, training and validation. We are using cross-
validation with K = 5 on the training and validation data set,
as illustrated in the figure.

4.2. Results and discussion

Before training, the data is split into four distinct data sets;
training, validation, test, and application as illustrated in fig-
ure 5. An application set is not a requirement. It is, however,
a way to demonstrate the real-world potential of this popula-
tion synthesis application. Suppose Ecopark was to use the
population synthesis application as a tool in new real estate
projects. In that case, Ecopark should be able to input basic
property attributes for a new project, and the model should
generate output features for each unit in that defined project.
For example, Ecopark could define a project consisting of
200 townhouses, and the model would generate urban resi-
dential buyers for each of the 200 townhouses. The defined
application set consists of 440 residential buyers (approxi-
mately 5% of the total data set), from two high-rises called
"Rung Co A" and "Rung Co E." Both high-rises are from the
same real estate project. The rest of the data is split into ap-
proximately 90% training and a 10% test. The defined data
splits leave around 15% of the data unseen across the test and
application set. During training, the training data is split into
80% training and 20% validation in a cross-validation loop
(K = 5). The training set is used to fit the internal parame-
ters to the CGAN and CVAE (weights and biases), while the
validation set is used to choose the hyperparameters yielding
the best performance.

The CVAE is trained in a grid-search-like style, where a
range of models have been trained on di�erent hyperparam-
eters. 72 experiments have been conducted with varying hy-
perparameters across; batch size, hidden layers, hidden units
across layers, bottleneck size, learning rate, optimizers, beta
values, activation functions, and number of epochs. The best
models are characterized by having one hidden layer and a
bottleneck dimension between 25 and 30. Details of the best
model architecture are provided later. During training, the
validation loss and validation distance measure are calcu-
lated at every 100th iteration.

The CGAN is trained in the same kind of grid-search-like
style as the CVAE. Likewise, a variety of models have been
trained with varying hyperparameters. Varying hyperparam-
eters have been tested across: batch size, hidden layers, hid-

den units, learning rate, activation function, and the number
of epochs. We experiment with 1, 2, or 3 hidden layers in
both the generator and the discriminator. The validation dis-
tance measure is calculated at every 100th iteration to ob-
serve the SRMSE during training.

To compare and assess the models, we calculate the Stan-
dardized Root Mean Squared Error (SRMSE) between the
empirical distribution and the model output. Considering
both marginal, bivariate, and trivariate distributions, it be-
comes apparent which model approximates the marginal and
partial join distributions over the data set best. The SRMSE
is described in[8]:

SRMSE = RMSE
Ñ⇡

=
v…

i
...
…
j
( Ç⇡i..j * ⇡i..j)2Nc (8)

where ⇡i..j are the partial join distributions of variable i..j
and Nc is the total number of bins compared. Two other
standards metrics are also used to assess the performance;
R-squared (R2) and the Pearson correlation coe�cient. In
the following, the best CVAE and CGAN from all conducted
experiments and their performance across the Original and
Extended data set are presented and compared to the base-
line model. Performance is shown for both validation, test,
and application sets, however, the validation performance
decides which model architecture is optimal for the CVAE
and CGAN respectively. In general, the lower SRMSE-score
the better.

The numerous experiments for both the CVAE and CGAN
are evaluated by the SRMSE-score on the validation set in
the best performing K-fold. The SRMSE is calculated over
the marginal distributions for the generated and true sam-
ples. Furthermore, we assess the mean, �, and standard de-
viation, �, of the SRMSE performance over all five K-folds,
and the models’ ability to generate zero-samples. Zero-samples
are defined as a models’ generative ability to create synthetic
urban residents not encountered among the real urban resi-
dents.

From all the conducted experiments using the CGAN, we
find the lowest SRMSE score on validation data using a batch-
size of 64, a learning rate of 0.001, RMSProp optimizer, one
hidden layer containing 1,200 hidden units in both the gen-
erator and the discriminator. The number of hidden units
examined are; 40, 80, 120, 200, 400, 800, 1,200, and 1,400.
Increasing the number of hidden units resulted in a lower
SRMSE, until the number of hidden units was above 1,200.
This model was trained for 51 epochs, as we found a ten-
dency to overfit the validation data when training for more
than 51 epochs. The best performing CGAN is presented in
table 2, showing the SRMSE over marginals, �, and � on
both the Original and Extended data.

From the 72 di�erent experiments performed on the CVAE,
the best architecture is found to be: one hidden layer with 50
hidden units, a bottleneck dimension of 25, batch-size 32,

: Preprint submitted to Elsevier Page 7 of 12



Population synthesis for urban resident modeling using deep generative models

Model Marg. � � zero-samples (pct.)
Original data

CVAE 0.463 0.564 0.084 1.020
CGAN 0.771 0.734 0.031 0.939
Baseline 0.373 - - -

Extended data
CVAE 0.660 0.625 0.062 2.370
CGAN 0.850 0.802 0.047 2.550
Baseline 0.491 - - -

Table 2
Performance of the best CVAE and CGAN on the validation
set. Performance is measured in SRMSE over the marginal
distributions between generated and true samples. Results are
shown for both the Original and Extended data set. � and � is
shown to provide evidence of stable model training. The best
performance in each column is marked in bold.

learning rate of 0.001, RMSProp optimizer, a beta value of
0.5, ELU activation function, and 500 training epochs. More
complex architectures result in decreased SRMSE perfor-
mance. More training epochs result in more zero-samples,
but worse SRMSE performance in later epochs, resulting in
early stopping. The CVAE does, however, not reveal signs
of overfitting, even with many training epochs. The perfor-
mance on both the Original and Extended data set is shown
in table 2.

An examination of table 2 reveals that the baseline is beating
the generative models, CVAE and CGAN, on the marginal
SRMSE over the validation set in the best K-fold. This is
true for both the Original and Extended data set, however,
several reasons for this behavior can be found in the inher-
ent size of the data set. In high-dimensional problems, the
number of combinations between features can be in the mil-
lions. A combination is defined as the composition of an
agent, given the available feature categories. Table 1 repre-
sents the features and the number of categories in the Orig-
inal data set. Multiplying the number of categories in the
output variables gives a total of 4,608 theoretical combina-
tions. In the Extended data set, there are 7,488 theoretical
combinations. Given this relatively small number of com-
binations, the empirical distribution (and thus the baseline)
is expected to do very well. As the amount of features in-
creases, the amount of possible combinations increases as
well. With a significant number of combinations, the em-
pirical distributions will be practically infeasible. However,
for smaller data sets, the empirical distributions will be ac-
curate. With this in mind, the models show a good perfor-
mance relative to the baseline, as we can consider the base-
line to be a non-trivial model in terms of performance. There
are two primary reasons for why the generative models are
preferable over the baseline, given the results in table 2; first,
the generative models are scalable, meaning that Ecopark
can add more features while they continue to digitize dif-
ferent services. More features would potentially increase
the application-value without decreasing the performance,
as would eventually happen with the baseline. Second, both

Test Application
Model Marg. Bivar. Trivar. 1 Trivar. 2 Marg. Bivar. Trivar. 1 Trivar. 2

Original Original
CVAE 0.609 0.326 0.422 0.361 0.691 0.187 0.414 0.342
CGAN 0.855 0.434 0.595 0.475 0.810 0.208 0.592 0.442
Baseline 0.663 0.383 0.498 0.444 0.712 0.275 0.352 0.271

Extended Extended
CVAE 0.796 0.412 0.462 0.418 0.861 0.456 0.517 0.421
CGAN 1.102 0.527 0.801 0.662 0.955 0.600 0.770 0.618
Baseline 0.746 0.347 0.477 0.443 0.868 0.404 0.546 0.451

Table 3
Performance of the best CVAE and best CGAN when sampling
on the test and application data set. The models are compared
to each other and the baseline using the SRMSE distance over
the marginal, bivariate, and trivariate distributions. The bi-
variate distribution is between age and nationality. Trivariate
distribution 1 is between age, nationality, and prior home dis-
trict. Trivariate distribution 2 is between age, prior home dis-
trict, and investor. The best performance in each column is
marked in bold.

of the generative models can generate zero-samples, which
is impossible for the baseline.

Another critical observation is that the models are signif-
icantly better at generating the desired zero-samples on the
Extended data set, while not losing SRMSE, compared to the
baseline across the two data sets. Higher zero-samples with-
out losing too much performance favor the Extended data set
over the Original data set in further discussions of model per-
formance and results.

To further analyze model performance, we are looking at
the generative performance over the test set and application
set, which have not been fitted during training. The per-
formance is extended to include partial joint distributions,
namely the bivariate and trivariate distributions in addition
to the marginals. Note that testing model performance on
the application set demonstrates how Ecopark could use the
model in a real-world setting, as we are practically synthe-
sizing future urban residents for a fully defined unseen real
estate project. Table 3 provides an overview of the perfor-
mance over test and application set, across both the Original
and Extended data set.

From table 3, it is apparent that the CVAE is on par with the
baseline, and even outperforms it on the Extended data on
the two trivariate SRMSE metrics. On both the validation,
test, and application data set (table 2 and 3), the CVAE is
superior to the CGAN. Exactly what is causing this sub-par
performance of the CGAN is not immediately clear, how-
ever, GANs are in general known to be di�cult to train.
Training a GAN is akin to a blind search, as there is no
perfect indicator of when performance is converging during
training. Furthermore, both the GAN and the CGAN are
known to su�er from the problem of mode-collapse. Mode-
collapse is best described as the CGAN learning a too simpli-
fied distribution, where the generator maps multiple inputs
to a single output accepted by the discriminator. This causes
the CGAN to fail in learning the real distribution, and gen-
erate samples with low variety.
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Figure 6: Marginal distributions of the five output variables
shown on a log scale to emphasize low probability areas. The
performance is shown for the test set of the Extended data set.

From table 2 and 3, it is clear that the Extended data in-
deed results in a higher SRMSE on both the validation, test,
and application data. This is expected, as the Extended data
set has a significantly higher dimensionality compared to the
Original data set. With the increased dimensionality of the
Extended data, the CVAE appears to slightly outperform the
baseline on the two trivariate distributions on both the test
and application data. The fact that SRMSE on the test and
application data is more or less on par (except for the bi-
variate distribution) indicates that the CVAE can generate
meaningful residents in a real-world setting.

The marginal distributions are further investigated and vi-
sualized in figure 6, showing the samples produced by the
CGAN, CVAE, and baseline conditioned on the test set con-
ditionals, and compared to true marginal distribution of the
test set. All further plots are shown for the test set of the Ex-
tended data set.

In figure 6, all the five output variables are visualized with
good approximated marginal distributions across most at-
tributes. Inconsistencies are most evident for the Nationality-
attribute, where the low probability values, namely the na-
tionalities US and IT, are not captured by the CGAN or CVAE.
It is most likely a general problem with the Nationality-attribute,
as many of the nationalities are considerably underrepre-
sented in the data. It is also notable that the baseline samples
Chinese (CN) residents without then being present in the test
set (true distribution bar). A possible solution to this prob-
lem could be to collapse low-frequency nationalities, such as
IT and US, into one category, for example, “western coun-
tries”. Another apparent inconsistency is the CVAE model’s
inability to generate "80+" year-old residents given the test
set conditionals. The inability to generate "80+" character-
istics might be a consequence of the same problem as no-
ticed in the low-frequency nationality category. The distri-
butions are plotted on a log-scale, hence the "80+" year seg-

(a) Conditional Variational Auto-Encoder

(b) Conditional Generative Adversarial Network

(c) Baseline

Figure 7: From left to right; 1) the bivariate distribution be-
tween age and nationality, 2) the trivariate distribution between
age, nationality, and prior home district, and 3) the trivari-
ate distribution between age, prior home district, and investor.
The scatter plot represents the partial joint distribution be-
tween the sampled agents from the Extended test set against
the real agents from the Extended test set. The axes are de-
noted in normalized bin frequencies on both the vertical and
the horizontal axis.

ment is, when not plotting on a log-scale, significantly un-
derrepresented in the data. A solution could be to include the
low probability age-values in the closest interval, decreasing
low-frequency intervals in the tails.

Considering illustrations of the marginal distributions alone
is, however, not enough. We also need to assess the par-
tial joint distributions. Figure 7 illustrates the performance
of the partial joint distributions to stress-test the generative
performance of the models.

In figure 7, the models are assessed on their ability to gen-
erate agents across partial joint distributions. Each of the
plots represents one model’s ability to create agents across
two or three variables on the test set. The dots represent
a combination between the variables and the frequency of
that combination. For example, figure 7 (a), the left-most
plot; each dot represents a combination of age and nation-
ality, e.g., 30-35 years and Vietnamese, and the amount of
sampled and true agents in each combination. The amount
of sampled and true agents in each combination is denoted
on the normalized axis. If the amount of sampled and true
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agents are equal across the two variables compared in the
bivariate case, the dots will lie on the dashed diagonal, indi-
cating favorable generative performance. The performance
is shown for the Extended test set.

An examination of figures (a), (b), and (c) confirms that the
CVAE is superior at capturing the partial joint distributions
compared to the CGAN. Both the CVAE and the baseline are
scattered systematically around the diagonal, and the CVAE
is, as reported in table 3, best across both trivariate distribu-
tions. The partial joint distributions are plotted for the appli-
cation set in appendix Partial joints in the Extended appli-

cation data set Figure 8. Some of the plots show a grid-like
structure for the dots, resulting from low-dimensional data
with few combinations between variables.

We can generally state that the model performance is sat-
isfying given the various performance metrics; pct. zero-
samples and SRMSE across marginal, bivariate, and trivari-
ate distributions. The CVAE is outperforming the baseline
in the higher-dimensional Extended data set across the test
and application sets. The zero-sampling ability, the scalabil-
ity, and the generative performance of the CVAE on the Ex-
tended data set provide proof for why we conclude the CVAE
as the best choice of model for urban resident modeling in
a population synthesis application. The best model can be
used to generate synthesized urban residents over the ap-
plication conditionals and demonstrate further downstream
tasks. Downstream tasks can be built around the following
concepts; mobility-prediction of urban residents, i.e., public
transportation patterns and vehicle ownership, occupancy-
prediction, i.e. predictive models assessing how many urban
residential buyers will move into the property, and clustering
models of the urban residents to identify relevant residential
groups. These models are, however, left out for future work.

5. Conclusion and future work

We have found that deep generative models are a powerful
tool to model joint distributions and, therefore, create syn-
thetic agents for Agent Based Models. One of the key ele-
ments of our proposed approach is its scalability to higher-
dimensional data sets. A researcher or practitioner could
eventually have samples from a population with hundreds
of characteristics and, given a big enough sample size and
proper training of the neural networks, generate samples from
the population distribution.

The best performing model was the Conditional Variational
Auto-Encoder (CVAE) with an architecture consisting of one
hidden layer with 50 hidden units and a bottleneck dimension
of 25. The results from table 3 confirm that the CVAE is
good at generalizing to test and application data, by beating
the baseline model which represents the empirical distribu-
tion. The baseline is superior in its generative performance
on the marginal distributions on the validation set. How-
ever, when considering the performance on test and applica-

tion set, the baseline is outperformed by the CVAE on the
partial joint distributions, which demonstrates the superior-
ity of deep generative models, and in particular the CVAE.
On the Extended application set, the CVAE outperforms the
baseline on three out of four SRMSE distance metrics and
particularly on partial joint distributions. The results also
provide evidence that deep generative models are improved
when discretizing the inputted variables, in contrast to the
baseline. Improved performance on higher-dimensional data
indicates that the models are scalable when increasing the
data dimensions, which is a highly regarded property in a
variety of problems, including urban resident modeling de-
scribed in this paper.

In further work, we would like to explore how do these agents
perform when used in ABMs. Preliminary results of mod-
els in transport demand and energy modeling show that they
can e�ectively be used in such tasks. Other interesting ar-
eas of possible future work are related to e�cient and stable
training of the models here presented. The goal of having
stable training is to make this process less of a "black-box"
for practitioners, who do not know all the specifics of neural
network modeling. This future direction can be leveraged
by continuous feedback with the machine learning literature
where these problems are of vital importance.
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A. Appendix

A.1. Partial joints in the Extended application

data set

(a) Conditional Variational Auto-Encoder

(b) Conditional Generative Adversarial Network

(c) Baseline

Figure 8: Performance of the partial joints in the Extended ap-
plication data set. From left to right; 1) the bivariate distribu-
tion between age and nationality, 2) the trivariate distribution
between age, nationality, and prior home district, and 3) the
trivariate distribution between age, prior home district, and in-
vestor. The scatter plot represents the partial joint distribution
between the sampled agents from the Extended application set
against the real agents from the Extended application set. The
axes are denoted in normalized bin frequencies on both the ver-
tical and the horizontal axis.
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