
HAL Id: hal-03538448
https://imt-mines-ales.hal.science/hal-03538448

Submitted on 24 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A twin-decoder structure for incompressible laminar
flow reconstruction with uncertainty estimation around

2D obstacles
J. Chen, J. Viquerat, Frederic Heymes, Elie Hachem

To cite this version:
J. Chen, J. Viquerat, Frederic Heymes, Elie Hachem. A twin-decoder structure for incompressible
laminar flow reconstruction with uncertainty estimation around 2D obstacles. Neural Computing and
Applications, 2022, 34, pp.6289-6305. �10.1007/s00521-021-06784-z�. �hal-03538448�

https://imt-mines-ales.hal.science/hal-03538448
https://hal.archives-ouvertes.fr

A twin-decoder structure for incompressible laminar flow
reconstruction with uncertainty estimation around 2D obstacles

J. Chen1 • J. Viquerat1 • F. Heymes2 • E. Hachem1

Abstract
Over the past few years, deep learning methods have proved to be of great interest for the computational fluid dynamics

community, especially when used as surrogate models, either for flow reconstruction, turbulence modeling, or for the

prediction of aerodynamic coefficients. Overall exceptional levels of accuracy have been obtained but the robustness and

reliability of the proposed approaches remain to be explored, particularly outside the confidence region defined by the

training dataset. In this contribution, we present an autoencoder architecture with twin decoder for incompressible laminar

flow reconstruction with uncertainty estimation around 2D obstacles. The proposed architecture is trained over a dataset

composed of numerically-computed laminar flows around 12,000 random shapes, and naturally enforces a quasi-linear

relation between a geometric reconstruction branch and the flow prediction decoder. Based on this feature, two uncertainty

estimation processes are proposed, allowing either a binary decision (accept or reject prediction), or proposing a confidence

interval along with the flow quantities prediction (u, v, p). Results over dataset samples as well as unseen shapes show a

strong positive correlation of this reconstruction score to the mean-squared error of the flow prediction. Such approaches

offer the possibility to warn the user of trained models when provided input shows too large deviation from the training

data, making the produced surrogate model conservative for fast and reliable flow prediction.

Keywords Neural networks � Autoencoders � Anomaly detection � Computational fluid dynamics � Surrogate model

1 Introduction

During the last few years, the computational fluid dynamics

(CFD) community has largely benefited from the fast-

paced development of the machine learning (ML) field, and

more specifically from that of the neural networks (NN)

domain. In many cases, a part of the usual numerical res-

olution process is replaced with a trained NN, in order to

reduce its computational cost. Examples for these appli-

cations are the prediction of closure terms in RANS [1, 2]

or LES [3] computations. In other situations, a supervised

network is trained to directly predict a flow profile: in [4],

an autoencoder is used to obtain steady state flow predic-

tions around elementary and real-life shapes; in [5], a

fusion convolutional neural network (CNN) is trained to

predict velocity snapshots around a cylinder in weakly

turbulent flows, using the time history of pressure around

the cylinder as an input; in [6], a neural network is trained

to predict unsteady flow around a circular cylinder, by

minimizing a physical loss function composed of regres-

sion error and conservation laws. CNNs were also directly

applied to predict lift and drag coefficients of 2D airfoils

[7] or arbitrary shapes [8].

Still, in most of the proposed works, the question of the

reliability of the predictions produced by the trained

models is left out. Indeed, the topological complexity of the

input space can make it hard to determine whether not a

given element, provided by an external user, lies within the

boundaries of the dataset used during training. While very

few approaches were proposed to tackle such issues in the

context of NN-assisted CFD, several outlier detection

techniques have been proposed in other domains. Among

them, unsupervised methods have attracted much attention,

as they do not require labeled data. In particular, several

& J. Viquerat

1

2

jonathan.viquerat@mines-paristech.fr

Mines ParisTech, CEMEF PSL—Research University,
Sophia Antipolis, France

IMT MINES Alès, Institute for Risk Science, Alès,
France

http://orcid.org/0000-0002-6026-9250
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-06784-z&domain=pdf

autoencoder (AE)-based techniques were developed for

medical and industrial applications: in [9], a fully con-

nected AE with three hidden layers is applied to breast

cancer detection; in [10], a convolutional AE (CAE) is

used to detect cracking and spalling defects on concrete

structures; in [11], CAE is used to detect miss-printed logo

images on mobile phones, and in [12], the authors com-

pared several variants of AE on anomaly segmentation in

brain magnetic resonance images.

Autoencoder is feedforward neural networks that are

widely applied to dimension reduction and feature extrac-

tion of high-dimensional data [13]. As shown in the sketch

of Fig. 1a, AEs are composed of a contractive path, named

encoder, whose role is to compress input data to a space of

reduced dimension called latent space. The latent space

representation of the input variables is obtained at the

bottleneck of the structure, which is followed by a decoder

branch, mirror of the encoder one, responsible for the

reconstruction of the input. Autoencoders can be trained

both in unsupervised or supervised way, depending on the

application scenario. In the case of unsupervised learning,

AEs are usually exploited to infer the latent space structure

of a given dataset. In the CFD community, this function-

ality makes AE potential candidate tools for model

reduction. In [14], AEs are used in conjunction with con-

volutional layers to learn low-dimensional features of fluid

systems. In [15] and [16], the authors combine recurrent

neural networks with CAE to learn the dynamics of the

extracted low dimensional features. Adversely, in the case

of supervised learning, AEs are exploited to perform var-

ious full-field flow prediction tasks [4–6]. Among the

multiple variations of AE structures, the special case of

U-net [17] must be mentioned. As sketched in Fig. 1b,

U-nets structures contain skip connections from the enco-

der to the decoder, the role of which is to concatenate low-

level features from the contractive path to the expansion

path (here, concatenation means stacking tensors together

along the channel axis). By allowing the mixing of low-

level features with the high-level latent-space representa-

tion, U-nets usually achieve excellent performance levels

on segmentation [17] and regression tasks: in [18], the

authors exploit U-nets to infer the velocity and pressure

fields of turbulent flow around airfoils computed in a

Reynolds-averaged Navier-Stokes framework; in [19], a

U-net-like architecture is used to reconstruct turbulent

flows from extremely coarse flow field images with

remarkable accuracy; in [20], a recurrent U-net architecture

is trained to predict the instationary velocity and pressure

fields in porous membranes.

In the present paper, we introduce an autoencoder

architecture with a twin-decoder as a possible tool for

outlier detection in the context of fluid flow predictions.

New contributions of this work include:

• A novel twin-decoder architecture displaying a strong

correlation between the input reconstruction and the

flow prediction error levels by taking advantage of

proper skip connections between the two decoder

branches. We find that this correlation is almost linear

at the expense of a slightly lower flow prediction

accuracy than that of a U-net with similar structure;

• Two uncertainty estimation procedures taking advan-

tage of the latter property: (i) a qualitative procedure

based on a user-provided error threshold level, provid-

ing binary decisions regarding the prediction (accept or

reject), and (ii) a quantitative procedure, providing the

user with a error level interval on top of the flow

prediction. Results over the considered dataset as well

as unseen shapes proved these methods to be efficient to

detect the applicability limits of the trained model. Both

methods rely on simple concepts, and can be easily

applied to other end-to-end prediction tasks.

(a) (b)

Fig. 1 Sketch of autoencoder architectures. Standard autoencoders

(left) are composed of an encoder and a decoder paths, and can be

exploited either for end-to-end regression tasks (in a supervised way,

with labels), or for the inference of latent space representations (in an

unsupervised way, without labels). U-net autoencoders are a specific

class of AE, in which skip connections are added from the encoder

branch to the decoder one in order to mix high-level features from the

latent space with low-level one from the contractive path. They

usually present a superior level of performance on regression tasks

The paper is organized as follows: the problem settings and

dataset construction are presented in Sect. 2. Insights about

the proposed twin-decoder architecture and its training

procedure are given in Sect. 3. The concepts of both the

qualitative and quantitative trust-level methods are then

described. In Sect. 4, the performance of the method is first

explored through a hyper-parameter calibration, then the

best architecture is selected based on a cost-to-accuracy

ratio. Finally, the correlation levels of the trained model are

presented, and the two trust-level methods are put into

practice. Finally, future perspectives are given. The base

code used in this paper is available at https://github.com/

jviquerat/twin_autoencoder (see Sect. 1 for additional

details).

2 Dataset construction

This section provides insights on the random shape dataset

generation used to train networks in the next sections. This

dataset was initially used in [8] (section 3.5), thus only the

main lines are sketched here. For more details, the reader is

referred to [8]. First, we describe the steps to generate

arbitrary shapes by means of connected Bezier curves.

Then, solving of the Navier-Stokes equations with an

immersed method is presented. Finally, details about the

dataset are given.

2.1 Random shape generation

In the first step, ns random points are drawn in 0; 1½ �2, and
translated so their center of mass is positioned in (0, 0). An

ascending trigonometric angle sort is then performed (see

Fig. 2a), and the angles between consecutive random

points are then computed. An average angle is then com-

puted around each point (see Fig. 2b) using:

h�i ¼ ahi�1;i þ ð1� aÞhi;iþ1;

with a 2 0; 1½ �. The averaging parameter a allows to alter

the sharpness of the curve locally, maximum smoothness

being obtained for a ¼ 0:5. Then, each pair of points is

joined using a cubic Bézier curve, defined by four points:

the first and last points, pi and piþ1, are part of the curve,

while the second and third ones, p�i and p��i , are control

points that define the tangent of the curve at pi and piþ1.

The tangents at pi and piþ1 are respectively controlled by h
�
i

and h�iþ1 (see Fig. 2c). A final sampling of the successive

Bézier curves leads to a boundary description of the shape

(Fig. 2d). Using this method, a wide variety of shapes can

be attained, as shown in Fig. 3.

2.2 Numerical resolution of the Navier-Stokes
equations

The flow motion of incompressible newtonian fluids is

described by the Navier-Stokes (NS) equations:

q ðotvþ v � rvÞ � r � 2g�ðvÞ � pIð Þ ¼ f;

r � v ¼ 0;

(
ð1Þ

where t 2 ½0; T � is the time, vðx; tÞ the velocity, p(x, t) the

pressure, q the fluid density, g the dynamic viscosity and I

the identity tensor. In order to efficiently construct the

dataset, an immersed volume method is used for resolution

instead of the usual body-fitted method, avoiding a sys-

tematic re-meshing of the whole domain for each shape.

This method rely on a unified fluid-solid Eulerian formu-

lation based on level-set description of the geometry [21],

and leads to the following set of modified equations:

q�ðotvþ v � rvÞ � r � 2g�ðvÞ þ s� pIð Þ ¼ f;

r � v ¼ 0;

(
ð2Þ

where we have introduced the following mixed quantities:

s ¼ HðaÞss;

q� ¼ HðaÞqs þ ð1� HðaÞÞqf ;

where the subscripts f and s respectively refer to the fluid

and the solid, and HðaÞ is the Heaviside function:

HðaÞ ¼
1 if a[0;

0 if a\0:

(
ð3Þ

The reader is referred to [22] for additional details about

formulation (2). Eventually, the modified Eq. (2) are cast

into a stabilized finite element formulation, and solved

using a variational multi-scale (VMS) solver [23–27].

2.3 Dataset

The dataset is composed of 12.000 shapes, along with their

steady-state velocity and pressure fields at Re ¼ 10 (see

Fig. 4). All the labels were computed using CimLib-CFD

[22], following the methods exposed in Sect. 2.2. The input

fields are resized to 2D 100� 150 arrays before being

provided to the network. As is customary in neural net-

works training, a channel-wise normalization is applied,

mapping all the pixels’ value into [0, 1]. In following

sections we use a color scale to visualize the velocity and

pressure fields, but each of them is always a 2D array. For

additional details about the distribution of the elements in

the dataset, the reader is referred to [8] (section 3.5).

https://github.com/jviquerat/twin_autoencoder
https://github.com/jviquerat/twin_autoencoder

blocks using 3� 3 kernel size, stride size equal to 1, and

zero-padding. The convolutional layers exploit rectified

linear unit (ReLU) as activation functions. After every

pooling operation, the number of kernels used for convo-

lutional layers is doubled, until reaching the bottleneck.

The decoder is composed of two branches, hereafter

denoted by ‘‘shape decoder’’ and ‘‘flow decoder’’. Both

decoder branches are composed of deconvolution-convo-

lution-convolution blocks, and share similar structures. The

deconvolution layers use 2� 2 kernel size, stride size equal

to 2, zero padding, and ReLU activation. Symmetrically to

the encoder branch, the number of kernels is halved after

(a) (b)

(c) (d)

Fig. 2 Random shape generation with cubic Bézier curves

3 Network architecture and training

3.1 Twin-decoder architecture

The general autoencoder architecture with twin-decoder
proposed in this contribution is shown in Fig. 5. Its input
consists in a boolean 1-channel 2D tensor containing the
computing domain and the obstacle. Its outputs are (i) a 1-
channel 2D tensor containing the reconstructed input, and
(ii) a 3-channels tensor containing the predicted velocity
components and pressure fields. The encoder branch con-
sists in stacked convolution-convolution-max-pooling

each block in the decoder branches. Finally, a convolu-

tional layer with a 1� 1 kernel is applied to set the final

number of channels (1 for the shape decoder, and 3 for the

flow decoder). The output of our network hence contains

1-channel tensor representing reconstructed input, and a

3-channel tensor representing the velocity and pressure.

The key ingredient of the proposed architecture lies in

the skip connections that link the shape decoder and the

flow decoder. The output of each shape decoder block is

concatenated (along the channel axis, to preserve shape) to

the output of the deconvolution layer of each flow decoder

block. This idea is similar to that of U-net, except that low-

level features do not originate from the encoder branch but

from the reconstruction of the input. Forcing such depen-

dence between the two decoder branches is expected to

induce a strong correlation between their performance

Fig. 3 Shape examples drawn from the dataset. A wide variety of shape is obtained using a restrained number of points (ns 2 4; 6½ �), as well as a
local curvature r and averaging parameter a

(a) (b)

(c) (d)

Fig. 4 Network input, velocity

field, and pressure field for a

dataset element. The shape is

shown in its computational

domain (upper left), along with

the computed velocity field (top

right, lower left), and pressure

field (lower right)

levels. In essence, by enforcing a relation between the

shape reconstruction error and the flow prediction error, the

proposed method allows to reject possible outliers based on

the reconstruction error. As the latter can be computed for

an arbitrary input, the end-user can be warned whether the

network prediction can be trusted or not. More details on

the acceptance/rejection procedure are provided in

Sect. 3.3.

3.2 Training procedure

The loss function used to train the twin-decoder architec-

ture is a weighted sum of the shape and the flow decoder

losses. Both decoders use the regular mean squared error

(MSE) as loss function:

L ¼ 1

hwnc

X
d;i;j

yd;i;j � ŷd;i;j
� �2

; ð4Þ

where h, w and nc represent respectively channel height,

width and the number of channels. Expression (4) repre-

sents the average squared error over all the pixels of a 3D

tensor. The final loss function used for training is:

Ltwin ¼ Lflow þ bLshape; ð5Þ

used to determine the end of the training. The network

parameters are initialized using a truncated Guassian dis-

tribution, following [17]. Training is performed using a

Tesla V100 GPU, using mini-batches of size 128 to limit

the required computational resources. As different models

are evaluated and caompared, their training times are given

in Sect. 4.

3.3 Trust level based on shape reconstruction

Given a trained twin-decoder neural network, it is feasible

to evaluate the trust level of flow prediction by input

reconstruction. As the error levels of the twin decoders are

strongly correlated, a qualitative and a quantitative trust-

level methods are proposed, both based on the recon-

struction error. Their general concepts are proposed in the

following sub-sections, while their applications on trained

networks are presented in Sect. 4.4. In the following, the

MSE for flow and shape reconstructions is respectively

denoted ef and es.

3.3.1 Qualitative method

In this case, the end-user provides an acceptable MSE level

e�f on the flow prediction. The method consists in selecting

the associated shape reconstruction error e�s that minimizes

the probability of taking wrong decisions when supposing

that the two error levels are linearly correlated. The

threshold shape reconstruction error e�s is the solution to the

following minimization problem:

Fig. 5 Proposed twin-decoder architecture. The encoder is based on a

pattern made of two convolutional layers followed by a max-pooling

layer. At each occurence of the pattern, the image size is divided by

two, while the number of filters, noted m, is doubled. In both decoder

paths, a transposed convolution step is first applied to the input, while

the number of filters is halved. The output of this layer in the flow

decoder is then concatenated with its mirror counterpart in the shape

decoder. Finally, two convolution layers are applied. At the end of the

last layer, a 1� 1 convolution is applied on each decoder to obtain a

final 3D tensor with 4 channels. Every channel has the same

dimension as the input

where b is a weighting parameter that remains to be tuned
(see Sect. 4). The network is trained with the Adam opti-
mizer using an initial learning rate of 1 � 10�3 , which is
reduced to 1 � 10�4 after 600 epochs. To prevent overfit-
ting, the validation loss is monitored, and early stopping is

e�s ¼
1

N
min
e
½card es\e and ef [e�f

� �
þ card es [e and ef\e�f

� �
�;

ð6Þ

where N is the number of MSE scatter points ðes; ef Þ taken
into account. The numerator sums the amount of wrong

decisions as the error of both decoders are assumed to be

positively correlated. Such a formulation prevents the end-

user from making mistakes when accepting or rejecting

predictions. An illustration of the method is shown in

Fig. 6a.

3.3.2 Quantitative method

With the quantitative method, ef and an associated confi-

dence interval df are directly estimated from es using the

following relation:

ef ¼ aes þ bþ �; ð7Þ

where � follows a normal law of the form:

��Nð0; ðcesÞ2Þ: ð8Þ

The assumption is supported by the linear pattern of error

scatter plots. In essence, indexing the standard deviation on

es in (8) represents the growing uncertainty on flow pre-

diction as shape reconstruction turns worse. Under this

formulation, the likelihood of ef on N scatter points is:

YN
i¼1

pðeif jeis;a;b;cÞ¼
YN
i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðceisÞ

2
q exp �

ðeif �aeis�bÞ2

2ðceisÞ
2

!

ð9Þ

The optimal parameters a�, b� and c� are obtained by

minimizing the negative log likelihood:

ða�; b�; c�Þ ¼ min
a;b;c

1

2

X
i

aeise
i
f � b

ceis

!2

þ
X
i

logðceisÞ þ
N

2
logð2pÞ;

ð10Þ

which is achieved using a gradient descent algorithm. An

illustration of the method is shown in Fig. 6b. The mini-

mum is determined by the scatter points of the training and

validation error, then evaluated on the test set. To the

difference of the qualitative method, in which the predic-

tions are either plainly accepted or rejected, such formu-

lation allows one to estimate ef with a confidence interval

df , without a need of pre-selecting a threshold accuracy,

thus providing an additional flexibility. As an example,

given a shape reconstruction error es, the associated flow

prediction accuracy level ef would fall into ½ða� 2cÞes þ
b; ðaþ 2cÞes þ b� with 95% probability.

(a) (b)

Fig. 6 Description of the qualitative and quantitative methods on the

scatter plots of ef versus es on training and validation sets for a

reference twin-decoder architecture. (Left) Qualitative method: given

a threshold e�f , the corresponding optimal e�s is found by solving

problem (6). Then, the end-user rejects predictions that produce shape

reconstruction errors superior to e�s . Only the predictions falling

within the bottom left quarter (in orange) are accepted. (Right)

Quantitative method: ef is modeled as an affine function of es with an

uncertainty interval, as shown in relation (7). Based on es, the method

provides an estimated ef level, along with a confidence interval for the
prediction

4 Results

In this section, the performance of the twin-decoder

architecture is explored. First, a minimal hyper-parameter

calibration is presented that highlights the impact of the

loss weighting parameter b, the number of convolutional

blocks used in the decoder structure, and the number of

kernels used in the convolutional layers. The resulting

architecture is evaluated on the test set, showing good

performance on unseen shapes. Then, the qualitative and

quantitative methods respectively presented in Sects. 3.3.1

and 3.3.2 are put into practice. Finally, a comparison with

two other AE-based architectures is proposed, revealing the

contribution of skip connections between shape and flow

decoders.

4.1 Hyper-parameter calibration

In this section, the impact of three different parameters is

explored: (i) the weighting parameter b, (ii) the number of

convolutional blocks, and (iii) the number of convolutional

kernels. In total, 30 configurations were tested, the network

being evaluated not only on its flow field prediction per-

formance, but also on the correlation coefficient between ef
and es on the validation set. As the different explorations

are detailed below, the corresponding results can be found

in Fig. 7.

4.1.1 Convolution blocks

The number of convolution blocks in the encoder (or

equivalently the number of deconvolution blocks in the

decoders) proved to be determinant regarding the

(a) (b)

Fig. 7 Hyper-parameter calibration. The performance is evaluated on the validation set. To compare the accuracy of flow prediction between

different architectures, the MSE is averaged over the entire dataset

Table 1 Flow prediction performance obtained for architectures of

various complexities

Architecture Best ef Nb. of parameters

5 blocks - 4 kernels 3:3063� 10�05 157,208

5 blocks - 8 kernels 1:7216� 10�05 627,500

5 blocks - 12 kernels 1.4491 3 10205 1,410,880

6 blocks - 4 kernels 3:6089� 10�05 592,024

6 blocks - 8 kernels 2:1178� 10�05 2,365,484

6 blocks - 12 kernels 1:8826� 10�05 5,320,384

A good ratio must be found between the final achievable accuracy and

the total number of learnable parameters, as training time rises dra-

matically with the network complexity. Here, best performance is

obtained using a 5-block architecture and 12 initial kernels, with a

total of 1.4 million parameters

The bold characters are there to emphasize the optimal set of

parameters chosen

Fig. 8 Training history of the model. The training is ceased when the

validation loss does not decrease for 10 successive epochs. A slight

overfitting can be observed on the trained model

performance of the flow decoder. Based on previous

experiments (not shown here), only architectures with 5 or

6 blocks were considered (less blocks showing low per-

formance, while more blocks being too costly to train).

Architectures with 5 blocks proved to outperform deeper

ones in terms of flow prediction, probably due to a too high

compression rate in the latent space when using 6 blocks.

Adversely, architectures with 6 blocks presented a slightly

better correlation coefficient between the two decoder

errors.

4.1.2 Convolution kernels

The flow prediction accuracy was highly dependent on the

number of convolution kernels used in each blocks. Since

the architecture is symmetric and scalable, we use the

number of kernels in the first convolutional layer to rep-

resent this hyper-parameter. Results show a clear advan-

tage of using 8 kernels over 4, while increasing from 8 to

12 is not as beneficial. Hence, it is not necessary to use too

many kernels, as a CNN complexity scales with the square

of the kernel number. Similar conclusions hold for the

correlation coefficient.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 9 Flow and shape predictions around an obstacle from the test

set. On this instance, the flow prediction error is ef ¼ 1:57� 10�5,

with most of the error concentrated on the boundary of the shape,

i.e. in the area of large pressure and velocity gradients. For the u,
v and p predictions, the pixels’ value range is still [0, 1]. An RGB

colormap is used for better visualization

On the test set, the proposed model reaches a flow

reconstruction accuracy ef ¼ 1:38� 10�5, thus showing

good generalization capabilities on unseen data. In Fig. 9, a

prediction example from the test set is shown, along with

the associated exact solution and a pixel-wise error map.

As can be seen, the velocity and pressure fields are well

recovered by the network, the error being concentrated in

the vicinity of the obstacle, i.e. in the area of large pres-

sure and velocity gradients. As the obstacle itself only

represents a small portion of the predicted field, a second

metric is proposed: for each element of the test set, the

mean pixel-wise relative error is computed on a smaller

area surrounding the obstacle. The corresponding error

distributions are plotted in Fig. 10. Overall, the average

relative error is 3.92% for horizontal velocity, 3.57% for

vertical velocity, and 3.55% for pressure, with very few

elements exceeding 6% of relative error, showing again

decent generalization capabilities.

4.3 Correlation levels

In this section, the correlation levels obtained between the

shape reconstruction and the flow prediction errors are

commented. To further show the interest of the autoen-

coder architecture with twin-decoder (twin-AE), two close

network architectures are considered, namely the dual

autoencoder (dual-AE), and the U-net dual autoencoder (U-

dual-AE). The dual-AE architecture is simply obtained by

(a)

(b) (c) (d)

Fig. 10 Relative error for flow predictions over test set. The black rectangle around the obstacle indicates the area on which the u, v and p relative
errors are computed. The histograms indicate the error levels obtained when comparing predictions to labels on the 1200 elements of the test set

4.1.3 Weighting parameter

The b parameter in the loss function (5) proved to have a
crucial impact on correlation of the two decoder errors.
Five different values were considered (from 0.1 to 5), with
larger values giving more weight to the shape decoder
during the training process. We found that small b values
were very beneficial to the correlation level, while allevi-
ating the differences caused by different number of con-
volutional blocks. With b ¼ 0:1, a 5-block architecture
with 12 kernels in the first convolutional layer obtained a
correlation level of 93%, which represents a strong linear
relation. The impact of b on the flow prediction accuracy is
not as clear according to the obtained results.

4.2 Prediction cost and accuracy

In order to evaluate the computational cost of the training,
we provide the best performance attained by each combi-

nation with respect to the number of learnable parameters

in Table 1. Each point represents the smallest ef value

obtained by tuning b. By using the 5-block architecture
with 12 kernels, ef values as low as 1:4 � 10�5 can be
reached, requiring 1.4 million parameters, making it

architecture choice with the best cost-accuracy ratio.

Learning time on a Tesla V100 GPU is approximately 0.7
hours. The training curves for the training and validation
subsets are presented in Fig. 8.

(a) (b) (c)

(d) (e)

Fig. 11 Comparison of scatter plots of ef versus es for different sets
and architectures. Top row: the correlation levels obtained with the

twin AE on the training, validation, and test sets are respectively

0.772, 0.931, and 0.954. Bottom row: dual AE and U-dual AE

architectures show weaker correlation levels on the test set, with

respective levels of 0.830 and 0.385

(a) (b)

Fig. 12 Trust level identification based on the es indicator. (Left) The
optimal threshold is obtained by minimizing the mistaken classifica-

tion rate on the training and the validation sets. (Right) The mistake

rate rises significantly on all three subsets when decreasing the

threshold e�f value. For the optimal e�s value, the mistake rate on the

validation and test sets is approximately 1%

removing the skip connections of the twin-AE, while the

U-dual-AE exploits skip connections coming from the

encoder path instead of the reconstruction path. To ensure a

fair comparison, the same configuration is used for all three

architectures. A concatenation with constant tensor is

applied to the flow decoder of the dual-AE, so its number

of parameters is equal to that of the U-dual-AE and the

twin-AE.

The scatter plots obtained with the twin-AE on the

training, the validation and the test sets are respectively

shown in Fig. 11a, b, and c. Associated correlation levels

are 0.772, 0.931, and 0.954, meaning that strong linear

relations are observed on the validation and test set.

Regarding the training set, the weaker correlation is

interpreted as a consequence of the slight overfitting

observed during training (see Fig. 8). In comparison, the

obtained correlation level of the dual AE on the test set is

0.830, which is significantly weaker than that of the twin

AE, thus proving the interest of the skip connections

between the two decoder branches (see Fig. 11d). The

twin-AE also has slightly lower relative errors than its

dual-AE counterpart (3.92%, 3.57% and 3.55% respec-

tively for u, v, p, against 4.30%, 4.05%, and 4.00%).

Finally, the U-dual-AE architecture exhibits almost no

correlation between es and ef , with a computed correlation

level of 0.385 (see Fig. 11e). Adversely, the relative error

levels of the U-dual-AE are significantly lower (3.01%,

1.94%, and 1.94%), which is in line with results from the

literature [28].

4.4 Trust level based on input reconstruction

This section presents the application of the trust level

methods detailed in Sect. 3.3. Again, the underlying

Fig. 13 Minimization of the negative log-likelihood problem (10)

using the BFGS algorithm

(a) (b)

Fig. 14 Representations of the qualitative and quantitative methods along with the test set scatter plot

Table 2 Estimating ef for given es values

es ef (1r interval) ef (2r interval)

1� 10�5 ½3:76� 10�6; 5:88� 10�6� ½2:70� 10�6; 6:94� 10�6�
2� 10�5 ½5:27� 10�6; 9:51� 10�6� ½3:16� 10�6; 1:16� 10�5�
4� 10�5 ½8:30� 10�6; 1:68� 10�5� ½4:07� 10�6; 2:10� 10�5�
8� 10�5 ½1:44� 10�5; 3:13� 10�5� ½5:89� 10�6; 3:98� 10�5�
1:6� 10�4 ½2:65� 10�5; 6:03� 10�5� ½9:52� 10�6; 7:73� 10�5�
3:2� 10�4 ½5:07� 10�5; 1:18� 10�4� ½1:68� 10�5; 1:52� 10�4�

concept is to take advantage of the strong correlation

between shape and flow reconstruction error levels (see

Sect. 4.3) to propose an uncertainty estimation (either

qualitative or quantitative) along with the flow prediction.

4.4.1 Qualitative method

A threshold mean squared error tolerance for the flow

reconstruction is provided by the user, and is here chosen to

be e�f ¼ 5� 10�5. The corresponding threshold shape

reconstruction error e�s is obtained by solving the mini-

mization problem (6). As the dataset size is relatively

limited, the problem is solved by an exhaustive search, the

results of which are shown in Fig. 12a. One observes that

choosing e�s ¼ 1:9� 10�4 minimizes the risks of accepting

bad predictions and rejecting good predictions. When

testing the procedure on the elements of the validation and

testing sets, it is observed that the mistake rate is close to

1% in both cases. In Fig. 12b, the false classification rate

on the three subsets is plotted as a function of e�f , showing

that stricter e�f choices inevitably lead to worse perfor-

mances with this method. The area of accepted predictions

is plotted in Fig. 14a, along with a representation of the

elements of the test set.

4.4.2 Quantitative method

A gradient descent algorithm is used to minimize the

negative log-likelihood problem (10) over the training set,

in order to obtain the optimal parameter set ða�; b�; c�Þ.
With an initial value ða0; b0; c0Þ ¼ ð0:1; 0; 0:1Þ, the algo-

rithm converges after 6 iterations (see Fig. 13). The

(a) (b)

(c) (d)

Fig. 15 Outlier examples for

model evaluation. Polygons are

generated with fewer sampling

points and sharper edges than

the dataset shapes. Misplaced

and enlarged shapes have the

same curve characteristics as the

original data set but are ill-

positioned, or significantly

larger than those of the dataset

Table 3 Model performance on

test set and polygons
Shape rel. error (%) u rel. error (%) v rel. error (%) p rel. error (%)

Bezier Test Set 3:43 3:92 3:57 3:55

Polygons 4:16 6:11 4:74 4:70

Lower right 16:4 13:5 17:1 16:2

Upper right 16:9 11:4 18:2 14:3

Enlarged 214 244 153 146

The comparison is based on the average pixel-level relative error in the 30� 45 rectangular zone around

the obstacles

The bold characters are there to emphasize the optimal set of parameters chosen

prediction errors for misplaced shapes are systematically

superior to 10%. Enlarged shapes present extremely high

reconstruction and prediction errors, higher than 100%. An

example of prediction on enlarged Bezier shape is shown in

Fig. 17, illustrating the interest of incorporating uncer-

tainty estimation and outlier detection processes in neural

network architectures.

In Fig. 16b, the ðes; ef Þ scatter plot of the test set is

shown, along with the position of the 120 outliers, both for

the qualitative and the quantitative methods. As can be

seen, most polygons are located in the accepted region of

the qualitative method, indicating that the higher average

relative error shown in Table 3 is caused by a few polygon

outliers with large relative errors. When inspecting the

polygons set, it was found out that those with largest ef
errors were presenting edges features that were consider-

ably sharper than the others. Almost all the misplaced and

enlarged shapes fall into the rejected area of the qualitative

method, while also matching well the �2r interval of the

quantitative method (27 enlarged shapes out of 30 are not

shown due to their out-of-range MSE.). Still, a handful of

outliers presenting low es with large ef are noticed, indi-

cating that the proposed methods are still missing a small

amount of outliers. Overall, the qualitative method effi-

ciently detects most of the outliers, with only 10 out of 120

bad predictions not detected (i.e. 91.6% of outliers

detected). The �1r interval of the quantitative method

covers 85 out of 120 (70.8%) outliers, while �2r interval

covers 106 out of 120 (88.3%) outlier predictions. The

results of Fig. 16b also indicate that the uncertainty levels

of misplaced and enlarged inputs are partly under-

estimated.

(a) (b)

Fig. 16 Prediction and reconstruction error on the outliers. The qualitative and quantitative methods are illustrated in a and b

optimal parameters retained are

ða�; b�; c�Þ ¼ ð0:257157; 2:24820 � 10�6; 0:105841Þ,
which minimize the negative log likelihood over the vali-
dation set. Hence, ef can be estimated from es as:

ef ¼0:257157es þ2:24820�10�6þN ð0;ð0:105841esÞ2Þ:
ð11Þ

As shown in Fig. 14b, the regression line and its 1r con-
fidence interval matches well with the distribution of the
test set, with only a handful of ðef ; esÞ couples falling
outside of the range. The fact that the confidence interval
widens with larger values of es translates the increasing
scarcity of samples in the test set when es rises. For the
majority of predictions, though, it provides a good grasp of
the flow prediction quality. The 1r (68% probability) and
2r (95% probability) confidence intervals for sampled es
values are provided in Table 2.

4.5 Flow prediction on outliers

In this section, the capabilities of the qualitative and
quantitative methods to detect invalid inputs and outliers are
evaluated. To do so, multiple shapes are generated that do
not fit within the dataset, including polygons with sharp
edges (see Fig. 15), shapes included in the dataset but
misplaced in the input domain (i.e. moved away from the
position used in the dataset), and enlarged shapes from the
dataset. In total, 120 outliers are tested. In Table 3, one can
see that the relative errors on the different classes of out-
liers are systematically larger than those obtained on the
dataset shapes. While the prediction errors on polygons are
only slightly higher that those from the test set, field

Overall, the qualitative method efficiently diminishes

the risk of mis-use of the trained model, by catching more

than 90% of the bad inputs. Still, it remains a limited,

binary method, and by construction approximately discards

1% of the dataset points. Conversely, the quantitative

method also provides adequate confidence range for almost

all the elements from the test set, and for nearly 90% of the

outliers. However, the provided error intervals for inputs

leading to very large ef errors are underestimated. Finally,

similarly to the qualitative one, the quantitative method

cannot account for a handful of points presenting large ef
values in conjunction with small es values.

5 Conclusion

In the present contribution, a twin-AE architecture for 2D

incompressible laminar flow prediction with embedded

uncertainty estimation was presented. The underlying

motivation was to propose a method to naturally incorpo-

rate outlier detection and uncertainty estimation in the

training procedure, in order to provide a decisional tool to

the potential end-user. The embedded uncertainty estima-

tion relies on the coupling of the autoencoder for flow

prediction with a second autoencoder for input recon-

struction, using well-chosen skip connections. Doing so

naturally enforces a quasi-linear relation between the flow

prediction error and the input reconstruction error. Building

on this particular trait, simple yet effective qualitative and

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 17 Flow and shape predictions around an enlarged Bezier shape. As this input shape is an outlier, the shape reconstruction is poor, and is

associated with large prediction errors (ef ¼ 1:316� 10�2). For the u, v and p predictions, the color scales are the same as for Fig. 4

quantitative techniques were proposed to detect outliers
and provide uncertainty prediction on any input provided to
the trained network.

The proposed architecture was trained on a dataset of
12000 laminar flows around random 2D shapes, generated
using Bezier curves. After hyper-parameter calibration, the
correlation coefficient between the reconstruction error and
flow prediction error reached 0.95 on the test set. The two
methods were then tested on true outliers presenting dif-
ferent flaws (polygonal shapes that did not belong to the
dataset, shapes from the dataset misplaced in the input
domain, shapes significantly larger than those of the data-
set), and proved efficient to either reject shapes with high
flow prediction errors, or provide adequate uncertainty
range. Still, a handful of outliers remained undetected, or
their associated uncertainty range was under-estimated.
Possible improvements could be brought to these methods,
either by improving the network architecture to improve
the flow error/reconstruction error correlation level, or by
gaining more control on the dataset generation, in order to
avoid the inclusion of possible outliers.

These results underline the potential of the proposed
approach. Indeed, the implementation of such methods in
prediction tasks can significantly lower the risk of the end-
user taking decisions based on network predictions using
inadequate inputs. Efforts shall be pursued for more
accurate input reconstruction. From the experiments on
U-Dual-AE, low-level features from its encoder bring great
benefits to flow prediction. If the shape decoder of twin-AE
provides equivalently beneficial features, we expect an
improved flow prediction while keeping the strong corre-
lation between its twin decoders.

A Open source code

The code of this project is available on the following github
repository: https://github.com/jviquerat/twin_autoencoder.

Acknowledgments This work is supported by the Carnot M.I.N.E.S.
Institute through the M.I.N.D.S. project.

References

1. Ling J, Kurzawski A, Templeton J (2016) Reynolds averaged

turbulence modelling using deep neural networks with embedded

invariance. J Fluid Mech 807:155–166

2. Tracey BD, Duraisamy K, Alonso JJ (2015) A machine learning

strategy to assist turbulence model development. In: 53rd AIAA

aerospace sciences meeting. pp 1–23

3. Beck AD, Flad DG, Munz CD (2018) Deep neural networks for

data-driven turbulence models. arXiv arXiv:1806.04482

4. Guo X, Li W, Iorio F (2016) Convolutional neural networks for

steady flow approximation. In: 22nd ACM SIGKDD international

conference on knowledge discovery and data mining. pp 481–490

5. Jin X, Cheng P, Chen WL, Li H (2018) Prediction model of

velocity field around circular cylinder over various reynolds

numbers by fusion convolutional neural networks based on

pressure on the cylinder. Phys Fluids 30(4):047105

6. Lee S, You D (2019) Data-driven prediction of unsteady flow

over a circular cylinder using deep learning. J Fluid Mech

879:217–254

7. Zhang Y, Sung WJ, Mavris DN (2018) Application of convolu-

tional neural network to predict airfoil lift coefficient. In: 2018

AIAA/ASCE/AHS/ASC structures, structural dynamics, and

materials conference

8. Viquerat J, Hachem E (2020) A supervised neural network for

drag prediction of arbitrary 2d shapes in laminar flows at low

reynolds number. Comput Fluids 210:104645

9. Hawkins S, He H, Williams G, Baxter R (2002) Outlier detection

using replicator neural networks. Data warehousing and knowl-

edge discovery. Springer, Berlin, Heidelberg, pp 170–180

10. Chow JK, Su Z, Wu J, Tan PS, Mao X, Wang YH (2020) Ano-

maly detection of defects on concrete structures with the con-

volutional autoencoder. Adv Eng Inform 45:101105

11. Ke M, Lin C, Huang Q (2017) Anomaly detection of logo images

in the mobile phone using convolutional autoencoder. In: 4th

international conference on systems and informatics (ICSAI).

pp 1163–1168

12. Baur C, Wiestler B, Albarqouni S, Navab N (2018) Deep

autoencoding models for unsupervised anomaly segmentation in

brain MR images. Brainlesion: glioma, multiple sclerosis, stroke

and traumatic brain injuries. Springer, New York, pp 161–169

13. Hinton GE, Salakhutdinov R (2006) Reducing the dimensionality

of data with neural networks. Science 313:504–507

14. Lee K, Carlberg KT (2020) Model reduction of dynamical sys-

tems on nonlinear manifolds using deep convolutional autoen-

coders. J Comput Phys 404:108973

15. Bukka SR, Magee AR, Jaiman RK (2020) Deep convolutional

recurrent autoencoders for flow field prediction. arXiv preprint

arXiv:2003.12147

16. Gonzalez FJ, Balajewicz M (2018) Deep convolutional recurrent

autoencoders for learning low-dimensional feature dynamics of

fluid systems. arXiv preprint arXiv:1808.01346

17. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional

networks for biomedical image segmentation. Med Image Com-

put Comput-Assist Interv MICCAI 2015:234–241

18. Thuerey N, Weißenow K, Prantl L, Hu X (2020) Deep learning

methods for reynolds-averaged navier-stokes simulations of air-

foil flows. AIAA J 58(1):25–36

19. Fukami K, Fukagata K, Taira K (2018) Super-resolution recon-

struction of turbulent flows with machine learning. J Fluid Mech

870:106–120

20. Kamrava S, Tahmasebi P, Sahimi M (2021) Physics- and image-

based prediction of fluid flow and transport in complex porous

membranes and materials by deep learning. J Membr Sci

622:119050

21. Bruchon J, Digonnet H, Coupez T (2009) Using a signed distance

function for the simulation of metal forming processes: formu-

lation of the contact condition and mesh adaptation. Int J Numer

Meth Eng 78(8):980–1008

22. Hachem E, Feghali S, Codina R, Coupez T (2013) Immersed

stress method for fluid structure interaction using anisotropic

mesh adaptation. Int J Numer Meth Eng 94:805–825

23. Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible

flow computations with stabilized bilinear and linear equal-order-

https://github.com/jviquerat/twin_autoencoder
http://arxiv.org/abs/1806.04482
https://arxiv.org/abs/2003.12147
https://arxiv.org/abs/1808.01346

interpolation velocity-pressure elements. Comput Methods Appl

Mech Eng 95(2):221–242

24. Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scov-

azzi G (2007) Variational multiscale residual-based turbulence

modeling for large eddy simulation of incompressible flows.

Comput Methods Appl Mech Eng 197(1):173–201

25. Takizawa K, Tezduyar TE, Otoguro Y (2018) Stabilization and

discontinuity-capturing parameters for space-time flow compu-

tations with finite element and isogeometric discretizations.

Comput Mech 62(5):1169–1186

26. Otoguro Y, Takizawa K, Tezduyar TE, Nagaoka K, Avsar R,

Zhang Y (2019) Space-time vms flow analysis of a turbocharger

turbine with isogeometric discretization: computations with time-

dependent and steady-inflow representations of the intake/exhaust

cycle. Comput Mech 64(5):1403–1419

27. Otoguro Y, Takizawa K, Tezduyar TE (2020) Element length

calculation in b-spline meshes for complex geometries. Comput

Mech 65:1085–1103

28. Chen J, Viquerat J, Hachem E (2019) U-net architectures for fast

prediction of incompressible laminar flows. arXiv:1910.13532

https://arxiv.org/abs/1910.13532

