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Abstract In recent years, Deep Neural Network models have 

been developed in different fields, where they have brought 

many advances. However, they have also started to be used 

in tasks where risk is critical. A misdiagnosis of these mod- 

els can lead to serious accidents or even death. This concern 

has led to an interest among researchers to study possible 

attacks on these models, discovering a long list of vulnera- 

bilities, from which every model should be defended. The 

adversarial example attack is a widely known attack among 

researchers, who have developed several defenses to avoid 

such a threat. However, these defenses are as opaque as a 

deep neural network model, how they work is still unknown. 

This is why visualizing how they change the behavior of the 

target model is interesting in order to understand more pre- 

cisely how the performance of the defended model is being 

modified. For this work, some defenses, against adversar- 

ial example attack, have been selected in order to visualize 

the behavior modification of each of them in the defended 

model. Adversarial training, dimensionality reduction and 

prediction similarity were the selected defenses, which have 

been developed using a model composed by convolution 

neural network layers and dense neural network layers. In 

each defense, the behavior of the original model has been 

compared with the behavior of the defended model, repre- 

senting the target model by a graph in a visualization. 
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1 Introduction 

 
Due to deep neural networks’ computing power requirements, 

it was not until recently that they started being extensively 

studied and implemented in many fields which have a di- 

rect impact in humans’ lives. Some of these fields, such as 

healthcare [9] and autonomous vehicles [23], are critical due 

to any misdiagnosis or decision making error could poten- 

tially lead to major incident which could compromise peo- 

ple’s lives. Because of that, researchers have studied possi- 

ble attacks to deep neural networks models discovering sev- 

eral threats on them. Once these vulnerabilities were stud- 

ied, several defenses were proposed in order to create a model 

that is more robust to the attacks. 

The widely known adversarial example attack has been 

extensively studied and attempts have been made to develop 

different defenses to make models more robust against them 

[1]. Adversaries take advantage of the sensitivity of target 

model by and adding a specifically designed noise to an in- 

put sample. Even if this distortion is imperceptible for hu- 

mans, it is capable of modifying the original output predic- 

tion of the sample. The first adversarial example in deep neu- 

ral network was generated by the algorithm L-BFGS [24]. 

Since then, more efficient and less detectable algorithms have 

been developed for adversarial example generation, such as 

Fast Gradient Sing Method (FGSM) [16], Basic Iterative 

Method (BIM) [14], Projected Gradient Descent Method (PGD), 

Jacobian-based Saliency Map Attack (JSMA) [20] and Deep- 

Fool [18]. Furthermore, some of the algorithms allow to 

generate adversarial attacks that are transferable from other 

models [6] and they are capable to generate them even with 

limited knowledge of the model [11]. 

To defend the system against adversarial attacks, the strat- 

egy pursued can be centered in constructing more robust 

models or adding external layers to the model to detect the 

attacks and block them. 
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This paper is the extension of the previous paper [8], 

which was presented in CISIS 2020 conference1. It presented 

two types of defenses called dimensionality reduction and 

prediction similarity. The dimensionality reduction defenses 

were based on previous defenses developed through autoen- 

coders, but implemented new, more complex models. The 

prediction similarity defense was a new contribution to the 

methods for avoiding an adversary attack. 

On one hand, the model can be modified to reduce its 

vulnerabilities but also maintaining the accuracy. For that 

purpose, adversarial train [24] introduces adversarial exam- 

ples in the training set of the model so that the model learns 

to classify them correctly. Other possibility is to reduce the 

effect of the noise in the model by modifying its structure for 

example by adding autoenconders in the model structure or 

principal component analysis (PCA) algorithm to the input 

data. Autoencoders also can be applied separately in order 

to reconstruct input images adequately [10]. 

On the other hand, the target model remains untouched 

and the defense consist on adding another layer in the sys- 

tem such as an adversarial detector [15]. The detectors can 

be generated taking into account the input data properties 

and their effect in the model [17] or by trying to detect when 

certain delivered predictions are asked in order to construct 

the adversarial example [8]. One possibility is learning from 

the original internal behavior (such as activation values of 

neurons) of the model and how is this modified when adver- 

sarial examples are introduced. Other possibility is to detect 

when the adversary is trying to find the vulnerabilities of the 

model for generating the adversarial example, since usually 

multiple similar prediction responses are needed. 

While the purpose of these defenses is clear, it is more 

difficult to know how their behavior is modified compared 

to the original model. Deep neural networks are an opaque 

machine, where decision making is really difficult to under- 

stand and that is the reason why the deep learning defenses 

are also opaque. Therefore, visualizing the behavior of the 

target model would be useful to understand the modification 

of the behavior when each defense is implemented. 

Multiple visualizations have been proposed in order to 

understand what a deep neural network have learnt. Carter 

et al. [4] propose using activation atlases to be capable of 

visualizing multiple activation values of neurons of multi- 

ple images at once. Olah et al. [19] propose a block strategy 

where they visualize the most meaningful activation values 

at each spatial point of the image. With those blocks, they 

are capable to interpret the concepts that the neural network 

is creating in each part of the image. Kahng et al. [13] gener- 

ated a visualization system with multiple coordinated views 

where the user is able to explore localized activation values 

together with model architecture and compare them for mul- 

tiple instances. Selvaraju et al. [22] use gradient weighted 
 

1 http://2020.cisisconference.eu/ 

activation mapping to generate a saliency map indicating 

the most meaningful parts of the image for each prediction 

class. These saliency maps can be interpreted as explana- 

tions indicating what the model is looking for in each image 

to detect which is the suitable class of the input image. 

The rest of the paper is divided as follows: Section 2 

explains the dataset and model selected for the experiments, 

adversarial attacks selected and studied defenses against them 

and the visualization technique used to understand their ef- 

fect. The results are given in Section 3 and Section 4 lists 

the lessons that were learned and future work. 

 

 

2 Methodology 

 
This work studies three defenses: the widely known adver- 

sarial training defense and the previously proposed by the 

authors dimensionality reduction and prediction similarity 

defenses [8]. The contributions of previous paper were the 

implementations of two new defenses: the dimensionality 

reduction defense applied to a more complex deep learn- 

ing model and the implementation of a new adversarial ex- 

amples detector, called prediction similarity. Each defense 

and its particular implementation is detailed next. Finally, 

the visualization used for defense interpretation is described, 

which aims to represent the behavior of the analyzed model 

(the original and the defended version). 

 

 

2.1 Dataset and original model to be protected 

 

These defenses have been tested using breast cancer dataset2, 

which is composed by two type of images: non-cancer im- 

ages (class 0) and cancer images (class 1) [12, 5]. Moreover, 

a model composed by VGG16 and a dense neural network 

(DNN) layer. This structure is shown in Figure 1. 

 

Fig. 1: Our model’s structure. The VGG16 could be replaced 

by any CNN. 

 
Developed defenses could easily be applied to other datasets 

and different deep learning structures as they do not need 

any specific type of layer or type of data. 
 

2 https://www.kaggle.com/paultimothymooney/breast- 

histopathology-images 

VGG16 

DNN 

input data 

Prediction 

http://2020.cisisconference.eu/
http://www.kaggle.com/paultimothymooney/breast-
http://www.kaggle.com/paultimothymooney/breast-
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2.2 Adverarial generation algorithms used 

 
After searching for various adversarial attack methods in the 

literature, the following algorithms have been selected for 

the experiments due to their simplicity and efficiency. 

– Fast Gradient Sing Method (FGSM) [7] 

– Basic Iterative Method (BIM) [14] 

– Projected Gradient Descent Method (PGD) [16] 

The foolbox library3 was used for the generation of the at- 

tacks. 

 

Fig. 2: Advesarial examples 

 

 
For the experiments, the adversarial examples have been 

split in two groups, the known and the new adversarial ex- 

amples. Known adversarial examples have been already com- 

puted before the defense is generated, which do not need 

further predictions to obtain them (they are already known). 

In contrast, new adversarial examples are those that are ob- 

tained once the defended model is implemented. 

 

 

2.3 Defenses 

 

2.3.1 Adversarial Training 

 

The idea of adversarial training was introduced in [24]. Once 

the adversarial examples have been added to the training 

data, this defense retrains the targeted model with it, learn- 

ing to classify them correctly. However, this technique only 

guarantees that the previously known adversarial examples 

introduced in the training data will be correctly classified, 

the new model does not achieve competitive robustness against 

new adversarial examples [25, 3]. 

Adversarial examples are obtained and then added to the 

original training data. Then, the new training data is used to 

retrain the DNN part of the model (it becomes the defended 

model, by adversarial training). Although the new model is 
more robust against the added adversarial examples, it is 

easy to obtain new ones and stay in an inexhaustible circle 

of attacking and defending. 

 

Fig. 3: Standard adversarial training. 

 
This defense, is widely known and studied in the liter- 

ature. For known adversarial examples, this defense trains 

the model to make it more robust against them, however 

when we talk about new adversarial examples, this defense 

does not make the target model robust. Adversarial training 

avoids known adversarial examples with a 90% (Tab.2) suc- 

cess rate, while new adversarial examples can be generated 

without much difficulty. With the new examples obtained, 

the model can be retrained again to ensure those vulnera- 

bilities are also taken into account. Therefore, adversarial 

training is a never-ending defense. 

 

2.3.2 Dimensionality Reduction 

 
Different variants of this defense can be implemented, but all 

of them are based in the same idea. The used strategy is to 

add a dimensionality reduction layer (such as autoencoders) 

to remove non natural noise from the input sample. This ex- 

tra process avoids adversarial examples, making the added 

noise in adversarial attack irrelevant. However, depending 

the place where the new dimensionality reduction layers are 

inserted, the robustness of the original model is different. 

The literature has studied the utility of these defenses in or- 

der to avoid adversarial examples [2]. In the particular case 

of deep learning models, there are multiple ways to reduce 

the dimensionality of data, such as adding CNNs and au- 

toencoders layers [21, 10]. This subsection covers two vari- 

ants of dimensionality reduction: middle autoencoder and 

initial autoencoder. 

Once the outputs of data are obtained through CNN (VGG16 

in our case), the middle autoencoder is trained using these 

outputs. After the autoencoder is trained, it is inserted be- 

fore the DNN (Fig. 4), the CNN and DNN are maintained 

with the original structure (original weights). The base idea 

is that the middle autoencoder “cleans” the noise of CNN’s 

outputs before using them as DNN’s input data. 

Otherwise, the initial autoencoder is inserted before the 

  CNN, once the autoencoder is trained using the selected 
3 https://github.com/bethgelab/foolbox dataset. Again, both the CNN and DNN keep the original 

+ adversarial examples 

retrain trained model 

training data 

defended model 
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Fig. 4: Middle autoencoder model. 

 
weights, since they are not retrained (Fig. 5). In this vari- 

ant, the initial autoencoder “cleans” the image noise before 

making predictions with the initial model. 

 

 

 

 
initial autoencoder 

 

 

 
 

 

 

 

Fig. 5: Initial autoencoder model. 

 

Even though both variants are based on the same idea to 

avoid adversarial examples, the results are different. Known 

adversarial examples are avoided with 60.4% success rate 

in middle autoencoder variant, while initial autoencoder de- 

fense avoid them with 70.5% success rate (Tab. 2). However, 

in the initial variant of the autoencoder, the accuracy of the 

original data has been lost, while the defense of the average 

autoencoder has maintained the accuracy of the original data 

similar to the original model (Tab. 1). Otherwise, both vari- 

ants are more robust against new adversarial examples than 

adversarial training defense, as is visible in (Tab. 2), since 

some of the new adversarials become distinguishable for the 

if an input is adversarial or not. Similarity measures are used 

to compare the actual input data with the previous ones. If 

the risk value is high, i.e., if there is a high probability of be- 

ing the actual image an adversarial example, this layer could 

take an action to avoid the adversarial attack. 

User, image, prediction value (the class and the proba- 

bility of this class), minimum distance (to all previous im- 

ages), prediction alarm (number of times the percentage of 

the class is smaller) and distance alarm (number of images 

with distance less than threshold) have been selected as fea- 

tures saved in each prediction. 

There are several algorithms to compute the similarity 

value between two images. The most widely used metrics 

are the mean squared error (MSE) and peak signal to noise 

ratio (PSNR). However, in the last three decades, different 

complex metrics have been developed inspired by the human 

vision perception [28]. Some of these metrics are structure 

similarity metric (SSIM) [30] and feature similarity metric 

(FSIM) [27]. 

Once the adversarial attack is detected, the action takes 

part to avoid this attack. In our case, it returns the opposite 

(or another) class, if the detector detects something suspi- 

cious. This makes the adversary believe that he/she has al- 

ready achieved the adversarial example, when in fact it is 

not. However, there are more possible actions that the out- 

put layer could take, such as blocking or predicting with a 

secundary model. 

 

Fig. 6: Generalization of the prediction similarity defense. 
 

 

 

Table 1: Results of the implemented defenses 

human-eye. This means that it is more difficult to obtain new   

adversarial examples in the models which are defended with 

the dimensionality reduction defense. 

 

2.3.3 Prediction Similarity 

 
This defense does not modify the model directly, an exter- 

nal layer is added to the original model. This layer saves the 

history of inputs, predictions and specifically designed fea- 

tures. The features are inspired by the idea that adversarial 

attacks need several predictions of similar images to gener- 

ate an adversarial example. From the data obtained in this 

layer, a risk assessment feature can be generated to evaluate 

This defense is focused on the detection of the process to 

get an adversarial example. That is why, the already obtained 

adversarial examples (i.e., known adversarial examples) are 

impossible to detect with this technique. However, the new 

VGG16 

DNN 

Prediction 

input data 

 

 

 
VGG16 

 

 

 

defenses Original test data Prediction impact 

Without defense 85.1%  

With adversarial training 84.3% Very low 

With middle autoencoder 82.4% Low 

With encoder 82.1% Low 

With initial autoencoder 70.0% Medium 

With prediction similarity 85.1% No impact 

 

input data 

model predict 

prediction take action 

history 

Parameter 1 
Parameter 2 

Parameter 3 
Parameter 4 

alarm 
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Table 2: Results of the implemented defenses 

 
defenses Known adversarials New adversarials 

Adversarial training 90% does not detect them. 

Middle autoencoder 60.4% some of them distinguishable  to the human eye. 

Initial autoencoder 70.5% some of them distinguishable  to the human eye. 

Prediction similarity 0% detects the generation process 99.5% of the time. 

 
adversarial examples, which need a process to be obtained, 

are detected with a 99.5% success rate (Tab. 2). Moreover, it 

does not modify the accuracy of the original test data, since 

this defense is only the addition of a detection layer which 

does not take part in model’s prediction process, it makes its 

function in parallel. 

 

 

2.4 Visualization 

 
These visualizations represent the behavior of the targeted 

model processing a input sample. In these graphs each ver- 

tex is a neuron from deep neural network and each edge is 

the connection between two neurons. The behavior has been 

represented though color in each vertex according to its rel- 

evance in the model’s decision making. The mentioned be- 

havior visualizations have been implemented only in model’s 

dense part (770 neurons), due to the number of neurons in 

the complete model is 4694, that it would imply seven times 

more effort to study it completely. Moreover, it has to be 

taken into account that the VGG16 model is a pre-trained 

model and it is not specific of the resolution of the problem. 

As it can be seen in the Figure 7, the visualizations are 

composed by three groups of nodes. Each set represents a 

layer from the dense neural network of the model. The nodes 

in the middle of the graph, which form a round set, represent 

the input neurons of the DNN part that are involved in the 

prediction of the input sample. The group, which are sur- 

rounding the input node group, represents the hidden layer. 

Finally, the set in the right side of the graph, which is com- 

posed by only two neurons, represents the output layer. 

 

 

3 Experiment 

 
The defenses from section 2 are designed as an countermea- 

sure tool to avoid adversarial attacks. However, understand- 

ing the vulnerabilities of the model to be adversarial attacks 

effective has received little attention. The interpretability is 

a useful method to shed some light on the behavior of ma- 

chine learning models. For this particular case, visualization 

is used as a explanation tool in order to study how the be- 

havior of models are changed depending on the used de- 

fensed method. As mentioned above, the original model to 

be defended is composed of a convolutional neural network 

(VGG16) and a dense neural network (DNN). The inter- 

pretability is focused on the dense part of the model and 

 

 

Fig. 7: Visualization example 

 

 

Fig. 8: The colormap which generate an assignation between 

the impact of a neuron in the model’s prediction and a color 

 
the visualization is designed to observe the change on the 

behavior of the dense part depending on the input data re- 

ceived. 

The structure of the dense part of the model is repre- 

sented by a graph, where the vertices represent the neurons 

and the edges the relations between them. The color of each 

vertex represents the impact value of the specific neuron, 

where higher value implies a greater repercussion in the pre- 

diction process. The importance of each neuron (vertex) is 

computed calculating the difference between the output and 

inputs. The impact is calculated using the next equation: 

n 

Impact = Output − ∑ Inputi (1) 
i=1 

where Input is the multiplication of the activation value of 

the previous neurons multiplied by the weight correspond- 

ing to the connection these two neurons. In this way, neurons 

that have a strong negative or positive influence can be iden- 

tified, thus showing their impact on the prediction. In case 

the result is a negative value, it means that this neuron has a 

negative influence on the prediction and in the opposite case 

(a value greater than zero) it means that this neuron has a 

positive influence on the prediction. 

In Figure 8 the colormap used in the graphs is shown, 

where the color represents the impact of the neurons using 

red for low, green for medium and blue for high impact val- 

ues. The impact values belong to different scales depending 

on the sample used as input. Therefore, it is not possible to 
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compare them between different behavioral graphs. How- 

ever, it is possible to compare the number of neurons with 

low values and relevant values (calculated locally) between 

these graphs. 

 

(a) Original model (b) Defended model 
 

 

(c) The difference between both 

behavior 

 

Fig. 9: Behavior graphs generated through different types of 

imagery 

 

 

 

3.1 Adversarial Training 

 
Adversarial training defense retrains DNN part of the orig- 

inal model with adversarial examples, resulting in the de- 

fended model. This is why the adversarial examples of the 

original model have a different behavior in the activations of 

the defended model. 

In figure 9 three representation graphs can be observed, 

where figure 9a represent the behavior of the original model 

using an adversarial as input data, figure 9b shows the pat- 

terns generated by the same adversarial example in the de- 

fended model and figure 9c shows the difference between 

impact values of both cases. 

Several details can be observed in these comparisons. On 

the one hand, it has been observed that this defense modifies 

the input layer significantly, while the effect in hidden layer 

is less remarkable. Thus, these visualizations show the im- 

portance of the input layer of the DNN, since VGG16 part 

have not been retrained and the image is the same, that is, 

the features which are input of the DNN part are the same in 

both cases. 

On the other hand, in a study of 1000 adversarial exam- 

ples, a correlation of 0.756 has been found between the num- 

ber of non-zero connection to output layer that have been 

modified in the hidden layer and how reliably the adversarial 

example has been learned. The figure 9c shows the non-zero 

connections from the hidden layer to the output layer that 

the defense has modified, since those are the connection dif- 

ferences between the original model (Fig. 9a) and defended 

model (Fig. 9b) using the same image. This difference in the 

number of connections is highlighted in the figure 10. 

 

Fig. 10: Connections between hidden and output layers of 

the representation 9c 

 

 

 

 

3.2 Dimensionality Reduction 

 

Dimensionality reduction defense uses autoencoders to avoid 

the noise of the data as much as possible. Thus, this noise re- 

duction generates a different behavior in the defended model 

when the adversarial examples of the original model are 

used as input. Moreover, the two different versions of the 

defended model are more robust against possible new adver- 

sarial examples. In other words, it is more difficult to obtain 

new adversarial examples from them, in some cases being 

adversarial examples even distinguishable to the human eye. 

Those defenses do not modify the DNN, i.e., the DNN’s 

weights are the same. Therefore, the thing that is changing is 

the input data of the dense neural network part. In the initial 

autoencoder defense, the input values of the CNN part are 

modified, whereas the inputs of the dense part are directly 

modified by the middle autoencoder defense. 

In the figure 11 three graphs can be observed that repre- 

sent the behavior of the different models (original and both 

defended) when the same adversarial example of the original 

model is used as input at each model. Note that the adversar- 

ial example used for graph generations is not an adversarial 



Understanding Deep Learning defenses Against Adversarial Examples Through Visualizations for Dynamic Risk Assessment 7 
 

example in defended models. The first graph (figure 11a) 

shows the behavior of the original model, while the other 

two represent the behavior of the middle autoencoder model 

(figure 11c) and the initial autoencoder (figure 11b) respec- 

tively. 

Observing these graphs, it can be noticed that each de- 

fense has a different impact on the behavior of the original 

model. One of the most remarkable changes when figures 

11a and 11b are compared is the number of neurons in the 

input layer that take part in the prediction, which has de- 

creased significantly (from 81 in the original model to 36 in 

the initial autoencoder defended model). Furthermore, the 

number of neurons from the hidden layer that take part in the 

final prediction increase (from 41 in the original model to 

58 in the initial autoencoder defended model). In the middle 

autoencoder defense (figure 11c), these behavioral changes 

are not that evident. In the case of the number of neurons 

in the input layer, a little increase in the number can be ob- 

served (from 81 neurons in the original to 91 in the middle 

autoencoder defended model). By contrast, in the case of 

the hidden layer, this defense does not make any significant 

change (from 41 in the original model to 25 in the initial 

autoencoder defended model). 

To study these modifications, for each adversarial exam- 

ple, the number of neurons that take part in its prediction 

is counted for each layer of the original model and each 

defended model. Once the neurons have been counted, the 

quantities of the input layer of the original model are com- 

pared with those of the input layers of the defended models, 

calculating the difference between them. This process is re- 

 

 

(a) Original model 
 

(b) Initial autoencoder (c) Middle autoencoder 

 

Fig. 11: Behavior graphs generated through the same adver- 

sarial example 

peated with the quantities obtained in the hidden layer. Thus, 

four different values are obtained for each adversarial exam- 

ple: difference between the number of neurons in the input 

and hidden layer participating in the prediction of the orig- 

inal model and the initial autoencoder defended model and 

difference between the number of neurons in the input and 

hidden layer participating in the prediction of the original 

model and the middle autoencoder defended model. These 

values for all the adversarial images are shown in figure 12. 

In the case of the input layer of the initial autoencoder 

defense almost all the differences obtained are positive (shown 

in figure 12a), which indicates that in almost all cases the 

number of neurons participating in the prediction has re- 

duced. However, in the hidden layer comparing the original 

model with the same defense, almost all the differences ob- 

tained are negative (see figure 12c), i.e,. the number of neu- 

rons taking part in the prediction has increased. For the mid- 

dle autoencoder defense is clear that most of the differences 

obtained from the input layer are negative (shown in figure 

12b), i.e., the number of neurons participating in the pre- 

diction has increased mostly. However, for the hidden layer 

nothing can be concluded (see figure 12d), since there is not 

any clear trend. 

 

 

3.3 Prediction Similarity 

 
The prediction similarity defense generates a detector, in 

other words, it does not modify the behavior of the original 

model. Therefore, the behavior graphs of the original model 

and the defended model (original model plus detector) are 

the same. This defense can detect an adversarial example 

search process from an original image. In this case, we are 

interested in how the graph’s behavior changes during the 

multiple iterations with the model needed to generate the 

adversarial example. 

In the process of getting the adversarial example, several 

similar images are used as input successively. The figure 15 

shows inputs in different iterations of this process, starting 

from the first graph (figure 15a) that represents the behavior 

of the original image to the final graph (figure 15e) show- 

ing the behavior of the obtained adversarial example. Fur- 

thermore, the figure 16 represent the difference between the 

original image behavior graph and the behaviour graph of 

each step in 15. In this particular case, the adversarial was 

detected at the step 12, but the adversarial example search- 

ing process was not stopped until the adversarial example 

was obtained (step 100) in order to study the detection pro- 

cess in all the possible steps. 

In the current example, the SSIM distance between an 

image from a particular step and the one in the previous 

step is around 0.94. Taking into account that the distance 

(using the same metric) between two images of the dataset 
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(a) Input neurons difference initial autoencoder (b) Input neurons difference middle autoencoder 

 

 
(c) Hidden neurons difference initial autoencoder (d) Hidden neurons difference middle autoencoder 

 

Fig. 12: Differences between the number of neurons in the original model and in each defended model, separated by layers 

for all the adversarial examples in the dataset. 

 

is around 90, the change generated by this adversarial ex- 

ample generation algorithm between two consecutive steps 

Table 3: Neuron frequencies in prediction participation by 

class 

is minimal. However, the figure 16a shows that this small   

change already has a considerable impact on the behavior of 

the neurons. 

Moreover, observing the differences with the original 

image during the process (shown in figure 16), it can be con- 

cluded that the neurons that get more affected by change the 

ones from the input layer of the DNN. Therefore, an analy- 

sis of the input neurons of the DNN has been carried out to 

observe their evolution in the process of an adversarial ex- 

ample acquisition. A total of 69381 test images4 were used 

to study which neurons participated significantly in the pre- 

diction for a particular image class. A neuron participates 

in the prediction of an image if the assigned value in the 
 

4 https://www.kaggle.com/paultimothymooney/breast- 

histopathology-images 

behavior visualization is non-zero. For this purpose, the par- 

ticipation of each neuron per class was calculated counting 

the number times a neuron participated, i.e., the number of 

times the activation value different from zero. This value ob- 

Neuron Class 0 frequency Class 1 frequency Frequency difference 

28 0.7279 0.1958 0.5320 

226 0.8659 0.3365 0.5293 

44 0.5916 0.1438 0.4477 

486 0.8349 0.4002 0.4346 

124 0.5274 0.1325 0.3948 

435 0.4329 0.0568 0.3760 

254 0.2820 0.6419 0.3599 

40 0.0700 0.4210 0.3510 

265 0.1691 0.4804 0.3112 

76 0.1486 0.4517 0.3030 

 

http://www.kaggle.com/paultimothymooney/breast-
http://www.kaggle.com/paultimothymooney/breast-
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Fig. 13: Evolution of significant neurons associated to each 

class in the adversarial example generation process of exam- 

ple shown in 16. 

 

 
tained per class has been rescaled using the total number 

of images in each class and refer to as frequency. As this 

dataset consists of only two classes, two frequencies would 

be obtained for each neuron: the frequency with respect to 

class 0 and the frequency with respect to class 1. The differ- 

ence of both frequencies has been calculated to study which 

of the neurons have more polarized behavior towards one 

of the classes. After following this process, several neurons 

were detected with a significant participation towards one of 

the classes and their frequency values per class and the dif- 

ferences between them are shown in table 3. The evolution 

in the behavior of these identified neurons has been stud- 

ied separately for each class. As expected, in the case of the 

processes of an image of class 0, these behaviors show a 

decrease in the impact of the neurons associated with this 

class throughout the process, i.e., the absolute values of the 

activations of the most meaningful neurons get reduced to 

obtain an image of class 1 and an increase in the impact of 

the neurons associated with the opposite class. While in the 

processes of generating an adversarial example for a image 

from the class 1 the opposite evolution can be observed. The 

aforementioned process can be visualised for an image in 

each of the two classes in figure 13. Thus, in the difference 

between the adversarial example obtained and the original 

image, which belongs to class 0, have several neurons as- 

sociated with this class colored in blue (figure 14), indicat- 

ing that these neurons have experienced major modifications 

with respect to the rest of the neurons. 

Therefore, it can be observed how a set of neurons has 

a relevant importance in the prediction of a class of images, 

and these neurons to be studied can be reduced thanks to 

these visualizations in order to make a more focused anal- 

ysis on the part of the model that is of interest. This allows 

the development of a more optimal detector by focusing on 

 
Fig. 14: Change of behavior of neurons associated with a 

particular class (shown in table 3) in the adversarial example 

generation process (Fig. 15). The size of indicated neurons 

are amplified and the neurons are labeled with their number 

in purple. 

 

 

a smaller number of neurons, these being those associated 

with a class. 

 
 

 

4 Conclusions and future work 

 
This work presents how different defenses against adversar- 

ial attacks modify the behavior of the model. Using visu- 

alizations, behaviors of the target model in different imple- 

mentations have been shown in order to gain a deeper un- 

derstanding of these defenses. In the three studied defenses, 

changes in the behavior of the model have been observed, 

which can be useful for improving and optimizing these de- 

fenses. The observed features shed light on the opacity of 

deep neural networks and how the defenses generated mod- 

ify the internals of the model to counter these vulnerabilities. 

In addition, these generated visualizations and the results 

obtained can be implemented in other models with other 

datasets. 

In the future, this knowledge will allow to develop more 

efficient defenses and detectors to combat different threats, 

including the adversary attack, using this visualizations. More- 

over, it will be possible to develop detectors that work di- 

rectly on these behavioral graphs, generating a new type of 

detectors [29, 26] implemented on deep neural networks. 
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(a) Original image (b) Step 1 (c) Step 40 (d) Step 80 (e) Adversarial example 

 

Fig. 15: Process of obtaining an adversarial 

 

(a) Difference 1 (b) Difference 40 (c) Difference 80 (d) Difference 

 

Fig. 16: Differences between original image behavior graph (Fig. 15a) and the other behavior graphs (Fig. 15b, Fig. 15c, Fig. 

15d, Fig. 15e) 
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