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Abstract
The importance of robust flight delay prediction has recently increased in the air transportation industry. This industry

seeks alternative methods and technologies for more robust flight delay prediction because of its significance for all

stakeholders. The most affected are airlines that suffer from monetary and passenger loyalty losses. Several studies have

attempted to analysed and solve flight delay prediction problems using machine learning methods. This research proposes a

novel alternative method, namely social ski driver conditional autoregressive-based (SSDCA-based) deep learning. Our

proposed method combines the Social Ski Driver algorithm with Conditional Autoregressive Value at Risk by Regression

Quantiles. We consider the most relevant instances from the training dataset, which are the delayed flights. We applied data

transformation to stabilise the data variance using Yeo-Johnson. We then perform the training and testing of our data using

deep recurrent neural network (DRNN) and SSDCA-based algorithms. The SSDCA-based optimisation algorithm helped

us choose the right network architecture with better accuracy and less error than the existing literature. The results of our

proposed SSDCA-based method and existing benchmark methods were compared. The efficiency and computational time

of our proposed method are compared against the existing benchmark methods. The SSDCA-based DRNN provides a more

accurate flight delay prediction with 0.9361 and 0.9252 accuracy rates on both dataset-1 and dataset-2, respectively. To

show the reliability of our method, we compared it with other meta-heuristic approaches. The result is that the SSDCA-

based DRNN outperformed all existing benchmark methods tested in our experiment.

Keywords Deep long short-term memory � Deep recurrent neural network � Flight delay prediction � Social ski driver �
Yeo–Johnson Transformation

1 Introduction

The civil aviation sector is a distributed network of large

interconnected elements designed to meet the common aim

of on-time air transportation and passengers expectations

[1, 2]. Because of flight connectivity, flight delays at air-

ports, especially for commercial hub airports, usu-

ally propagate to other individual airports or even to the

entire air transportation network. Without proper moni-

toring and control, such delays can expand over time,

resulting in poor airport performance and causing unnec-

essary dissatisfaction for passengers [1, 3]. Over the last

few years, this sector has rapidly grown in areas such as

customers, infrastructure and territorial coverage [4, 5]. A

statistical report from the international air transport asso-

ciation (IATA) reveals that in 2012, airlines’ worldwide

base incurred over $160 billion in total energy cost [6–8].
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With the rapid growth of Communication, Navigation and

Surveillance (CNS), increased air traffic and airspace

capacities, flight schedule planners try to reduce buffer

time among flight departures and arrivals for maximising

the utilisation of aircraft.

The air transportation network architecture is tight and

complex, making it vital to develop accurate prediction

models critical for intelligent aviation systems [9]. It is

necessary to predict flight departure or arrival delays with

high accuracy. Anxiety by the passengers can be avoided

by efficiently arranging their schedules to have access to a

prediction model for a specific airport taxi time, with an

explanatory variable being computed before prediction

[9–11]. Additionally, airport management aims to provide

better service with improved airport gate availability

[4, 12, 13]. Nowadays, an increase in air traffic and flight

delays has become a severe and prominent issue globally

[1]. Based on the United States (US) Bureau of Trans-

portation Statistics (BTS) report, most airline flights

arrived 15 min late at their destination [14–22], thus

incurring a loss of $30 billion, which is a challenge to the

air transportation system [14, 23]. Delay analyses have

become an important research topic, and delay prediction

has been the subject of earlier studies [14, 24, 25]. As state

earlier, delays have a significant financial impact. There-

fore, it is important to introduce intelligent systems to

automate airports, passengers, and commercial airlines’

monitoring and decision processes [26]. Highly accurate

predictions and real-time monitoring systems are indis-

pensable tools to that effect [1, 9–11, 26–32]. Proposed

strategies include collaborative decision making (CDM)

[4, 33], ground delay programs (GDP) [4, 34], and air

traffic flow management (ATFM) [4, 35] to improve the

information flow among participating airports. A few years

ago, the research methodologies utilised for predicting

delay propagation were from statistical, network theory,

machine learning and agent-enabled methods [4, 36].

Comparing statistical approaches with machine learning

methods have become popular in recent years. The field of

transportation systems and aerospace research has experi-

enced a significant number of machine learning models

such as K-nearest neighbour (k-NN), support vector

machine (SVM) and artificial neural network (ANN)

models [9]. Some studies seek to improve the model pre-

diction performance by introducing variant neural network

models [37–39]. Using only machine learning methods on

historical data without an optimisation algorithm has pro-

ven ineffective. In contrast, our proposed method uses

historical data from two datasets with a novel optimisation

algorithm. The authors [14, 40] employed the traditional

statistical approach to characterise and distribute flight

delays. In [14, 41], the authors combine terminal airports

weather forecasts, convective weather forecasts, and the

scheduled flights for predicting daily airport delay time in

terms of the weather impacted traffic index (WITI) metric.

As reported in the 2017 BTS report, only 0.72% of flight

delays were attributed to extreme weather [14]. The most

broadly used traffic prediction techniques are deep learning

classifiers [42–45]. The deep learning techniques come

under supervised and unsupervised machine learning

algorithms [37–39, 42, 46–51]. None of the previous

studies has taken multiple routes full account in the pre-

diction. In contrast, we introduce a feature fusion method

that utilises the complete flight information on different

routes and combines them to improve the performance. In

our studies, we will focus on non-weather-induced delays.

Our paper aims to propose a novel flight delay predic-

tion strategy that utilises social ski driver conditional

autoregressive-based (SSDCA-based) deep long short-term

memory (LSTM). We conduct data pre-processing initially

to improve the data quality; then, we perform the data

transformation based on Yeo-Johnson transformation for

further data processing. Yeo-Johnson transformation

transfers the data with no loss of its original quality. It

works like Box-cox transformation, but data values must

not be strictly positive, and it is advantageous over other

transformation techniques. Also, it makes the data distri-

bution more symmetric, thereby handling any skewness

from the datasets. We then perform feature fusion using the

deep recurrent neural network (Deep RNN) for fusing the

imperative features. Here, we train the Deep RNN by the

developed SSDCA, which improves the model learning

process. Finally, we perform flight delay prediction using

the Deep LSTM. Furthermore, we compared the newly

developed SSDCA with other optimisation algorithms such

as social ski driver (SSD), particle swarm optimisation

(PSO), ant colony optimisation (ACO), honey-bee opti-

misation (HBO) and earthworm optimisation algorithm

(EWA) [52, 53]. The accuracy (AC) of the SSDCA out-

performs the other existing methods. It is also worth

mentioning that the proposed method’s computational time

is less than that of the other methods. In terms of error rate,

such as root mean square error (RMSE), mean square error

(MSE) and mean absolute error (MAE), the proposed

SSDCA outperformed other methods.

The contribution of the paper is:

1.1 Proposed SSDCA enabled Deep LSTM
for flight delay prediction

We introduced the classifier; SSDCA algorithm drove

Deep LSTM by modifying the training process of the Deep

LSTM with SSDCA algorithm newly proposed by incor-

porating SSD with CAViaR for biases and weights optimal

tuning. We utilise the Deep RNN for feature fusion, which
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is trained by the proposed SSDCA. Also, we adapted the

SSDCA enabled Deep LSTM for predicting flight delays.

The rest of this paper is organised as follows: Sect. 2

describes the conventional flight delay prediction strategies

employed in the literature and the challenges that inspire

the development of the novel technique. Section 3

describes the proposed model for flight delay prediction

based on the SSDCA-based deep learning classifier. Sec-

tion 4 presents our model results and compares them with

results from existing methods. Finally, Sect. 5 contains the

results and discussion of the findings to conclude with

possible future directions.

2 Related literature

The vast volume of collected data from the commercial

aviation system makes developing machine learning and

artificial intelligence algorithms a popular candidate

approach in predicting flight delays. Traditional methods

such as support vector machine, neural network, fuzzy

logic, tree-based methods and K-nearest neighbour are the

most common data-driven methods [2]. Güvercin et al. [48]

proposed a clustered airport modelling approach for fore-

casting flight delays using airport networks. The method

provided accurate forecasts for flight delays. However,

during the training, the method uses only a few samples,

which has an adverse effect on the model’s prediction

performance. Lambelho et al. [49] assessed airports generic

strategic schedules using flight cancellation and delay

predictions. The method’s performance was good in can-

cellations and delayed flight departure but did not consider

other features such as origin and destination to improve the

predictions. Tu et al. [26] studied the factors causing major

departure delays at Denver International Airport and the

departure delay distribution using a probabilistic approach

for United Airlines. The study attempts to separate con-

tributing factors but focuses mainly on a single airport and

does not consider the network effect. Pathomsiri et al. [50]

assessed US joint production on-time and delay perfor-

mance using a nonparametric function approach.

Some researchers apply operational research, simula-

tion, queueing theory and optimisation to simulate flight

delays for an optimised policymakers’ system. Pyrgiotis

et al. [4] studied an extensive network of delay propagation

in major airports in the USA through network decompo-

sition and an analytical queueing model. Ankan et al. [52]

analyse delay propagation through air traffic networks with

empirical data by developing a stochastic model.

A Bayesian network method for estimating delay propa-

gation considers the element-oriented and complex net-

work distribution properties in three commercial aviation

systems in the USA. These methods are valuable in

understanding interactions and root causes amongst delay

occurrence elements. However, for the individual flights,

these models did not yield sufficiently accurate predictions

[53]. Rebollo et al. [54] predict departure delays by

adopting random forest algorithms using air traffic char-

acteristics as input features. When predicting departure

delay for a two-hour forecast window, the model had an

error of 21 min. Choi et al. [55] employ several machine

learning algorithms and combine weather forecasts with

flight schedules to predict scheduled times. Perez-Rodri-

guez et al. [56] proposed a model to predict daily aircraft

delay probabilities in arrivals using asymmetric logic

probability.

Recently, deep learning algorithms have been employed

to improve the accuracy of flight delay prediction. Yu et al.

[1] study flights at Beijing International Airport using a

novel Deep Believe Network with support vector regres-

sion method (SVR) to analyse high-dimensional data. The

model achieves a mean absolute error (MAE) of 8.41 min

with high accuracy, but this study was limited to a single

airport, and the propagation effects were not evaluated.

Kim et al. [57] predict departure and arrival flight delays

using a recurrent neural network (RNN) of an individual

airport with a day-to-day sequence. Their study shows that

a more in-depth architecture improved the accuracy of the

RNN. However, the model can only perform a binary

prediction of delay and does not quantify its magnitude.

Chen and Li [15] developed a machine learning method for

chained predictions of flight delays. The method provides

an averagely reasonable, accurate and practical result for

delay prediction but did not include an adequately big

dataset which could have improved the accuracy. Ai et al.

[33] developed Convolutional LSTM for temporal and

spatial distribution flight delay prediction in the network.

The method achieved good classification accuracy but did

not include human factors.

Guleria et al. [5] presented a Multi-Agent Approach for

reactionary flight delay prediction. The method helps in the

flight scheduling system by identifying itineraries. How-

ever, the technique did not test delay propagation trees for

better performance. Chen et al. [7] presented the Infor-

mation Gain-Support Vector Machine method for deter-

mining how improvements in flight delays of the studied

airlines based in China can reduce CO2 emissions. The

proposed approach reduces the limitations of the traditional

data envelopment analysis (DEA) model. However, the

authors focus on a limited number of airlines and recom-

mend further experiments to confirm the method’s validity.

Maryam et al. [58] proposed a model for predicting flight

delays based on the Levenberg–Marquart algorithm and

deep learning. The accuracy of the proposed model in

forecasting flight delays was good. However, the results

show that the imbalanced form’s standard deviation is
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higher than all balanced evaluation parameters. Balanced

data has more tendency to lead to a lower standard devi-

ation (SD). Ehsan and Seyedmirsajad [59] proposed an

approach to predict and analyse departure flight delays

using the MATLAB R2018b [60] SVM implementations.

The author recommended expanding the research to

include National Aviation System (NAS)-wide airports in

the analysis for more complete results. Daniel et al. [61]

proposed predicting air traffic delays with multilevel input

layers using a supervised neural network. The primary aim

is to present a prediction model for delays in the air route

by applying artificial neural networks (ANN) during the

model training; authors concluded that parameters such as

the day of the week, the block hour, or the airline had a

higher influence than meteorology on the delay.

Regardless of the accuracy of the models, our observa-

tion on the methods used in the above works is that their

training phase is slow, a characteristic that can become a

limiting factor when the size of the data set grows. Another

aspect of the training phase is the existence of outliers in

the data. Such outliers could exist, for example, because of

extreme delays that are not often encountered. Yu et al. [1]

eliminate extreme value delays from the bottom and top

1% as outliers. Tu et al. [26] reduce the smoothing spline

approach’s influence by excluding extreme data prepara-

tion observations. The authors in [15] and [62] adopted a

random forest method because of its low sensitivity to

outliers. This average optimisation technique was unsuit-

able for our study because it may eliminate essential fea-

tures through the manual selection process.

Accurate prediction of flight delay propagation at the

national network level is essential, especially for flights

with reoccurring delays, to reduce unwanted expenses.

Based on the recent state-of-the-art architectural model of

RNN units, LSTM has been promising in addressing this

limitation. Researchers have applied it in several fields,

including predicting traffic because the ability to learn time

series features temporal correlation. Ma et al. [63] per-

formed traffic speed prediction using LSTM on historical

microwave detectors speed data and compared their

approach with other approaches in terms of stability and

accuracy. Liu et al. [64] proposed a generative deep

learning model comprising LSTM encoder and decoder

layers to predict aircraft trajectories. The LSTM shows that

it can perform good feature extraction and learn useful

temporal correlation features [65]. However, despite all

these advancements, there is still a need to improve pre-

diction performance and reliability, potentially using an

optimisation algorithm to generate more efficient and

accurate models.

2.1 Challenges

We elaborated on some issues faced by the existing pre-

dictive approaches for flight delay as follows:

• The deep learning model and convolutional LSTM [33]

were developed for predicting flight delays. However,

the method failed to consider the airport’s delays to

optimise take-off and landing intervals.

• In [49], the authors developed a generic strategic

schedule assessment for predicting flight delays. How-

ever, the method does not utilise features such as unique

air carriers, tail number of aircraft, and origin/destina-

tion airports with trigonometric transform function in

the model training to enhance predictions’ accuracy.

• In [1], the authors introduced a deep belief network

method to determine flight delays; the method did not

use an optimisation algorithm even without access to

the required data on air traffic control because of

confidentiality considerations for improving

performance.

In our proposed method, we include the departure and

arrival details in the selected features. Thus, our method

overcomes the challenge of take-off and landing by con-

sidering the dataset’s actual and scheduled time for both

arrival and departure features. Our proposed method also

uses features that include categorical and numerical data to

enhance prediction performance.

3 Problem statement

Flight delays may occur because of several unforeseen

events, which can affect airlines, airports and passengers.

Developing more accurate models for predicting flight

delays has become essential because of the rapid increase

in flight complex data overflow, the limited number of

prediction methods, and the air transportation system net-

work’s complexity. In this context, the proposed method

builds an accurate flight delay prediction model. We

assume the input data, represented by D, to be a collection

of Di;j’s, as defined in Eq. 1.

K ¼ Di;j

� �
; 1� i�N

0 Þ; ð1� j� T 0
� �

ð1Þ

where N
0
is the total number of data points and T

0
is the

total number of attributes. Hence, Di;j represents data in

database K depicting jth mixed attribute of ith data. Thus,

the expression N
0 � T

0� �
denotes the size of the input data,

indicated by Dð ÞN 0�T
0 We will be extracting 6 features f i

from the input data D and fuse them into f as shown in

Eq. 2 before feeding them as input to the deep learning

classifier for predicting the flight delay as a final output Of .
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f ¼ fi; i ¼ 1 to 6 ð2Þ

4 Flight delay prediction using
the proposed social ski driver conditional
autoregressive-based (SSDCA) deep
learning classifier

This section explains the proposed SSDCA-based deep

learning classifier for predicting flight delay. The steps

followed in the developed model are pre-processing, data

transformation, feature fusion, and prediction. We initially

feed the pre-processing module with the input data and

then perform data transmission using Yeo-Johnson trans-

formation [66]. Afterwards, we forward the transformed

data to the feature fusion module where Deep RNN per-

forms the feature fusion [67]. We select an optimal number

of layers in the Deep RNN method using the proposed

SSDCA-based algorithm. The newly developed SSDCA

algorithm combines the SSD [68] and CAViaR [69] algo-

rithms. Finally, we perform the prediction using the Deep

LSTM method [70] that we trained using the developed

SSDCA method. Figure 1 shows the block diagram of the

flight delay detection using the newly proposed SSDCA-

based Deep learning.

4.1 Dataset description

The dataset used in this paper is from the US flight data

downloaded from the US Government BTS for January and

February of the year 2019 and 2020, respectively [71, 72].

The extracted data feature contains flight information with

21 features for time series analysis and flight delay

predictions, as shown in Table 1 [17]. There are over

1,000,000 row instances of commercial flights. The data-

sets records are inconsistent and incomplete, with many

missing, duplicates and null values. We initially need to

clean to make the data complete and suitable for further

pre-processing by converting the attributes to the most

appropriate forms for the application of deep learning and

machine learning methods.

4.1.1 Features used for the model training and testing

Several features of the dataset are not relevant to our

experiment, and we only kept the relevant features that

have a high contribution to flight delay. We use the fol-

lowing features in training and testing our model:

(i) Flight Date: The date on which the flight was

performed.

(ii) Origin: Departure airport.

(iii) Destination: Arrival airport.

(iv) Departure delay: The difference between actual

departure time and scheduled departure time.

(v) Arrival delay: The difference between actual

arrival time and scheduled arrival time.

(vi) Distance: The miles covered by the flight.

The departure and arrival delays are logically highly

correlated, and any experience of delay on the departure

flight will certainly affect the flight arrival. The authors in

[24] have proved that the origin of congestion at the des-

tination airport is, to a great extent, caused by the departure

airport. For this reason, we have the selected features.

4.2 Pre-processing

The input data is a collection of categorical, numerical and

time attributes. Categorical attributes indicate the airport

station, for example, Heathrow, Delhi, Chennai etc.

Numerical attributes represent the path values, humidity,

etc. Finally, time attributes signify the date and time stamp

for departure and arrival. Initially, we convert the cate-

gorical attributes to categorical numbers, meaning we

assign the airport stations with a unique identifier number

1; 2; 3; etc. After that, we change both the numerical and

time attributes from text to number data. Once we get the

pre-processed data, we compute the missing value using

the average and frequency method for numerical and cat-

egorical attributes. Thus, the pre-processed data output is

indicated as in Pð ÞN�T where the dimension of pre-pro-

cessed data is N � T½ �. Figure 2 shows the determination of

pre-processed data output.

Fig. 1 Block diagram of the flight delay prediction using the proposed

SSDCA-based Deep learning
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Table 1 Datasets Information

S/No Feature Name Data Type Attribute Type Brief format explanation

1 Year int64 Categorical In four digits format, e.g. 2000

2 Month int64 Categorical In two digits format, e.g. 12

3 Day of month int64 Categorical In two digits format, e.g. 01–31

4 Day of week int64 Categorical In one-digit format, e.g. 1 (Monday)—7 (Sunday)

5 Departure time float64 Continuous In four digits format, e.g. 1456

6 Scheduled departure time float64 Continuous In four digits format, e.g. 1456

7 Arrival time float64 Continuous In four digits format, e.g. 1456

8 Scheduled arrival time float64 Continuous In four digits format, e.g. 1456

9 Unique carrier code object Categorical 2 letters code, e.g. PS

10 Flight number object Categorical Number of flights, e.g. 1454

11 Actual elapsed time float64 Continuous In two digits format, e.g. 94

12 Scheduled elapsed Time float64 Continuous In two digits format, e.g. 94

13 Flight time float64 Continuous In two digits format, e.g. 94

14 Arrival time float64 Continuous In two digits format, e.g. 94

15 Departure time float64 Continuous In two digits format, e.g. 94

16 Origin object Categorical 3 letters code eg. LHR

17 Destination object Categorical 3 letters code, e.g. MAN

18 Distance int64 Continuous The miles covered, e.g. 448

19 Diverted int64 Continuous In two binary format, e.g. 0 or 1

20 Carrier delay int64 Continuous In two digits format, e.g. 94

21 Weather delay int64 Continuous In two digits format, e.g. 94

Fig. 2 Schematic diagram for the determining-processing output
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4.3 Data transformation using Yeo-Johnson
transformation

We then pass the pre-processed data Pð ÞN�T to the data

transformation phase, where the Yeo-Johnson transforma-

tion is used [66]. We find that the Yeo-Johnson transfor-

mation is better than other transformation methods because

it produces well-organised data that is easier to use. Cor-

rectly formatted and transformed data improves the data

quality and protects applications from potential landmines,

such as null values, unexpected duplicates, incorrect

indexing, and incompatible formats. Furthermore, the Yeo-

Johnson transformation can make the data distribution

more symmetric, and it does not require that the value be

strictly positive. We estimate the parameters by applying

this transformation to the response variable using the

maximum penalised likelihood model. The Yeo-Johnson

transformation expression is shown in Eq. 3.

J ¼ b d;Mð Þ ¼

M þ 1ð Þd�1
� �

=d; M� 0; d 6¼ 0

log M þ 1ð Þ; M� 0; d ¼ 0

�
�M þ 1ð Þ2�d�1

� �

2� dð Þ ; M\0; d 6¼ 2

� log �M þ 1ð Þ; M\0; d ¼ 2

8
>>>>>><

>>>>>>:

ð3Þ

where J ¼ b d;Mð Þ is the output of the data transformation

of Rj, d is any real number of the power parameter in a

piecewise function form that makes it continuous at the

point of singularityðd ¼ 0Þ, where d ¼ 1 is an identity

transformation and M is the data vector with zero, negative

and positive values or observations without restricting the

type of observation needed stabilising the variance of the

input datasets, which increase the features distribution

symmetry and improving the validity of association mea-

sures (such as the correlation between features).

4.4 Feature fusion using proposed SSDCA-based
deep RNN

Once the data transformation is performed, we then do the

feature fusion based on the trained Deep RNN model of our

SSDCA algorithm. In feature fusion, SSDs have greater

throughput, continuous access times for quicker boot-ups,

faster file transfers, and overall excellent performance. The

CAViaR model specifies the evolution of the quantile over

time using a special type of autoregressive process

described in detail later. It applies to real data and can

adapt to new risk environments. Thus, the SSDCA has the

advantages of both SSD and CAViaR in feature fusion.

After data transformation, the size of the data remains

N � T , hence for reducing the features, the feature fusion

step is fundamental in determining flight delays effectively.

For example, the T attributes having six columns, meaning

six features, as shown in the set f 1; f 2; f 3; f 4; f 5; f 6f g.

4.4.1 Correlation-based feature sorting

In this step, we perform the correlation for the six fea-

tures. For example, we compute the correlation based on

f1 target values; thus, we get six correlation values.

Then, we couple the features and change the columns

based on high correlation values, and it precedes the

feature fusion process for reducing the features. We

applied spearman’s rho correlation because our data has

an ordinal level of measurement and follows a categor-

ical distribution to measure the pairwise monotonicity of

relationships by ranking from highest to lowest and

choosing the high correlation values. Also, each of the

variable change in one direction of category without

necessarily at the same rate. It can be calculated as

shown in Eq. 4.

Cs ¼ 1� 6
P

d2i
ðn2 � nÞ ð4Þ

where Cs is the rank between two features, di is the dif-

ference between two variable ranks for each data pair while
P

d2i Represents the square sum difference between two

features rank, and n is the number of instances.

4.4.2 Feature fusion and determination of b based on deep
recurrent neural network

After feature fusion, we determine the b based on the Deep

RNN classifier. Here, we take the features as the Deep

RNN classifier’s input for performing feature fusion using

weights and bias-related with hidden layers.

4.4.2.1 Feature fusion Once we change the columns

based on the correlation values, we perform the feature

fusion based on Eq. 5.

f fusedk ¼
XS

i¼1

b
j
f1 ð5Þ

where i ¼ 1þ T
l j ¼ 1. . .l, T represents the total features

and l refers to the number of selected features as shown in

Eq. 6.

l ¼ T

S
; 1� k� S ð6Þ

where the term k is the index of fused features and S is the

last index of the fused features.
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4.4.2.2 Structure of deep RNN This network architecture

contains several recurrent hidden layers in the network

hierarchy. However, the recurrent connection exists only

among hidden layers. It takes the previous state output as

the input to the next state and the iteration process with the

hidden state information begins. The advantage of using a

Deep RNN [67] classifier over state-of-art classifiers is that

it operates effectively under changes of the input feature

length. A recurrent feature associated with Deep RNN

yields high performance in feature fusion accuracy and the

required number of iterations. We used Deep RNN to find

the best parameter values because it can process inputs of

any length and approximate any function. We illustrate the

structure of the Deep RNN classifier in Fig. 3.

The Deep RNN classifier defined the input vector of the

layer f at time h as U f ;hð Þ ¼

U
f ;hð Þ
1 ;U

f ;hð Þ
2 ; :::U f ;hð Þ

r ; :::U f ;hð Þ
n

n o
; and the output vector of

the layer f at time h as O f ;hð Þ ¼ O
f ;hð Þ
1 ;

n

O
f ;hð Þ
2 ; :::O f ;hð Þ

r ; :::O f ;hð Þ
s g. The set of units for each element

of output and input vectors n refers to the arbitrary unit

number of layer f and v signifies total units. However, the

total units of f � 1ð Þth layer and the arbitrary unit number c

and /. Here, the input propagation weight from f � 1ð Þth

layer to f th layer is shown by W fð Þ 2 Iv�c, and f th we

denote recurrent layer weight as w fð Þ 2 Iv�v, the term I

signifies weight set. Therefore, the input vector compo-

nents are as in Eq. 7.

U f ;hð Þ
n ¼

Xc

u¼1

z fð Þ
nu O f�1;hð Þ

z þ
Xv

n0
e fð Þ
nn0 O

f ;h�1ð Þ
n0 ð7Þ

where, z fð Þ
nu and e fð Þ

nn0 refer to elements of W fð Þ and w fð Þ, the

term n0 signifies the arbitrary unit number of f th layer.

Thus, the output vector of f th the layer elements is as in

Eq. 8.

Fig. 3 Structure of Deep RNN
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O f ;hð Þ
n ¼ l fð Þ U f ;hð Þ

n

� �
ð8Þ

where l fð Þ refers to the activation function. Thus, activa-

tion functions, like sigmoid function, are indicated by

l Uð Þ ¼ tanh Uð Þ rectified linear unit function (ReLU) is

l Uð Þ ¼ max U; �hð Þ, and we represent the logistic sigmoid

function as l Uð Þ ¼ 1
1þe�Uð Þ are the employed activation

function. To simplify the prediction process, consider ‘th

weight as z
fð Þ

n‘ and ‘th unit as O
f�1;hð Þ
‘ and hence, we spec-

ified the bias as shown in Eq. 9.

O f ;hð Þor b ¼ l fð Þ: W fð ÞO f�1;hð Þ þ w fð Þ:O f ;h�1ð Þ
� �

ð9Þ

Thus, the output of the classifier is indicated as O f ;hð Þ or

b. AndW ðf Þ is the input propagation weight, recurrent layer

weight aswðf Þ, unit as O
f�1;hð Þ
‘ and l fð Þ refers to the acti-

vation function. The classifier is tuned by a proposed

optimisation algorithm for updating the classifier’s

weights, enabling effective prediction performance.

4.4.2.3 Training data After the determination b, we

computed the training data value by correlating the mean

vector of data belonging to the class. The training data step

is significant for the selected six features instance in model

building to generate an output, as shown in Table 2.

We compute the training of the output b using Eq. 10.

b ið Þ
training ¼ Correlation di;Mdið Þ ð10Þ

where Mdi refers to the mean vector of data di belonging to

the class.

4.4.3 Training of deep recurrent neural network using
social ski driver conditional autoregressive

We carried out the training process of Deep RNN [67]

using the developed SSDCA technique for finding opti-

mal weights to tune the Deep RNN [30] for feature

fusion and flight delay prediction. The feature fusion

based on the developed SSDCA categorises data by

obtaining optimal weights and dealing with new data

characteristics from distributed resources. The naturally

inspired SSD algorithm [68] has several evolutionary

optimisation algorithms for reducing SVMs parameters

and improving system performance. The goal of SSD is

to search in space for near-optimal or optimal solutions.

Thus, this approach is efficient in generating improved

features for solving multi-aim optimisation problems.

The method solves highly nonlinear problems with

complicated constraints, can deal with heterogeneous

data.

On the other hand, the CAViaR model [73] has

received much attention to distributing direct returns to

the quantile behaviour. We employ regression quantile to

estimate and update the parameters. Tests of the model

adequacy use a criterion independent of each probability

period of all past information processes. The method also

increased the convergence process and the diversity of

solutions and improved the balance between exploitation

and exploration. CAViaR models can adapt to new risk

environments. Thus, integrating CAViaR with SSD is to

enhance the overall algorithmic performance. We give

the algorithmic steps of the proposed SSDCA as follows.

4.4.3.1 Initialisation The initial step of the SSDCA

algorithm is the search agent’s location initialisation,

where the user determines the total number of agents.

The agent’s position is, as shown in Eq. 11.

Xt
v; 1� v� zð Þ ð11Þ

where the term Xt
m refers to the agent’s location at a time t,

v is the velocity as and z is the total number of samples.

4.4.3.2 Objective function evaluation We select the

optimal agent location using the minimal learning error as

an optimal solution. We estimate the objective function

error using Eqs. 12, 13, 14 and 15.

MSE ¼ 1

Z

Xz

h¼1

Ih � bhð Þ2 ð12Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Z

Xz

h¼1

Ih � bhð Þ2
s

ð13Þ

MAE ¼ 1

Z

Xz

h¼1

Ih � bhj j ð14Þ

Table 2 Determination of training data

di=f T f1 f2 f3 fT Target

d1 C (d1, f1) C (d1, f2) C (d1, f3) C (d1, fT) btraining

d2 C (d2, f1) C (d2, f2) C (d2, f3) C (d2, fT) btraining

d3 C (d3, f1) C (d3, f2) C (d3, f3) C (d3, fT) btraining

d4 C (d4, f1) C (d4, f2) C (d4, f3) C (d4, fT) btraining
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where the classifiers estimated target, the output is Ih and

bh. The term z denotes the total number of samples.

4.4.3.3 Solution update using the SSDCA algorithm Once

we compute the objective functions, the solution undergoes

the location update based on SSDCA as shown in Eq. 16.

The standard equation of the SSD velocity Ktþ1
lm is given by

Eq. 17.

Xtþ1
lm ¼ Xt

lm þ Ktþ1
lm ð16Þ

Ktþ1
lm ¼ e sin m1ð Þ Bt

lm � Xt
lm

	 

þ sin m1ð Þ At

lm � Xt
lm

	 

; s2 � 0:5

e cos m1ð Þ Bt
lm � Xt

lm

	 

þ cos m1ð Þ At

lm � Xt
lm

	 

; s2 [ 0:5

�

ð17Þ

where Klm signifies velocity of Xlm, and uniformly dis-

tributed random numbers represent m1 and m2 range

between 0 to 1. Blm refers to the optimal agent solution and

Alm denotes means a global solution for the entire popu-

lation. Hence, Eq. (17) depicts the standard SSD equation

that incorporates the CAViaR updated equation. Therefore,

the CAViaR standard equation is given as in Eq. 18.

Xt
lm ¼ ap þ

Xk

h¼1

ahXlm t � hð Þ þ
Xr

l¼1

alf Xlm t � hð Þð Þ ð18Þ

Substituting k ¼ r ¼ 2 in Eq. 18 becomes Eq. 19.

Xt
lm ¼ a0 þ a1Xlm t � 1ð Þ þ a2Xlm t � 2ð Þ þ a1f Xlm t � 1ð Þð Þ

þ a2f Xlm t � 2ð Þð Þ
ð19Þ

where f :ð Þ denotes the fitness function considering the

case-1 in Eq. 16, which we refer to as Eq. 16a.

Now substituting Eq. 17a in Eq. 16 results to:

Xtþ1
lm ¼ Xt

lm þ e sin m1ð Þ Bt
lm � Xt

lm

	 

þ sin m1ð Þ At

lm � Xt
lm

	 


ð20Þ

Rearranging, Eq. 20, the solution becomes,

Xtþ1
lm ¼ Xt

lm 1� e sin m1ð Þ � sin m1ð Þ½ � þ e sin m1ð ÞBt
lm

þ sin m1ð ÞAt
lm ð21Þ

Substituting Eqs. 19 in 21 yields:

Xtþ1
lm ¼ a0 þ a1Xlm t � 1ð Þ þ a2Xlm t � 2ð Þ þ a1f Xlm t � 1ð Þð Þ

þ a2f Xlm t � 2ð Þð Þ 1� e sin m1ð Þ � sin m1ð Þ½ �
þ e sin m1ð ÞBt

lm þ sin m1ð ÞAt
lm

ð22Þ

Following the same procedure when considering case-2

in Eq. 17, which we refer to as Eq. 17b,

we get:

Ktþ1
lm ¼ Xt

lm e cos m1ð Þ þ cos m1ð Þ½ � þ e cos m1ð ÞBt
lm

þ cos m1ð Þ � At
lm ð23Þ

Similarly, substituting Eqs. 19 in 23 results to:

Ktþ1
lm ¼ a0 þ a1Xlm t � 1ð Þ þ a2Xlm t � 2ð Þ þ a1f Xlm t � 1ð Þð Þ

þ a2f Xlm t � 2ð Þð Þ e cos m1ð Þ þ cos m1ð Þ½ �
þ e cos m1ð ÞBt

lm þ cos m1ð Þ � At
lm

ð24Þ

Thus, the final expression for the updated equation of

the proposed SSDCA applied in performing the flight delay

prediction is shown below in Eq. 25:

4.4.3.4 Recheck the feasibility Once we test the updated

position and each solution of the objective functions, we

consider the optimal solution to be the one with maximal

fitness.

AC ¼ TRUE POSITIVE þ TRUE NEGATIVE

TRUE POSITIVE þ FALSE POSITIVE þ TRUE NEGATIVE þ FALSE NEGATIVE
ð15Þ

Ktþ1
lm ¼

a0 þ a1Xlm t � 1ð Þ þ a2Xlm t � 2ð Þ þ a1f Xlm t � 1ð Þð Þ þ a2f Xlm t � 2ð Þð Þ
1� e sin m1ð Þ � sin m1ð Þ½ � þ e sin m1ð ÞBt

lm þ sin m1ð ÞAt
lm ; s2 � 0:5

a0 þ a1Xlm t � 1ð Þ þ a2Xlm t � 2ð Þ þ a1f Xlm t � 1ð Þð Þ þ a2f Xlm t � 2ð Þð Þ
e cos m1ð Þ þ cos m1ð Þ½ � þ e cos m1ð ÞBt

lm þ cos m1ð Þ � At
lm ; s2 [ 0:5

8
>><

>>:
ð25Þ
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4.4.3.5 Termination The steps i to iv continue until we

meet a specified maximum iteration number or achieve an

optimal solution. The pseudocode of the developed

SSDCA approach is shown in Algorithm 1.

We call F the output obtained from line 20 of algorithm

1.

4.4.4 Flight delay prediction based on proposed SSDCA-
based deep LSTM

The feature fusion output F is plug into the Deep LSTM

classifier [70] for predicting the flight delays training by the

novel SSDCA, incorporating the SSD algorithm [68] and

CAViaR [69]. We employ the Deep LSTM classifier

because it takes less computational time to process the

input time series data. Another significant benefit of Deep

LSTM is that it requires less training data and can generate

optimal results at a specific instance. This section presents

an elaborate discussion of the Deep LSTM structure and

framework utilised for optimising training weights.

4.5 Deep LSTM Architecture

We feed the Deep LSTM classifier with the fusion features

F obtained from the feature fusion to accomplish the flight

delay prediction. The Deep LSTM effectively achieves the

flight delay prediction by applying the classifier’s memory

cell, advantageous for the other classifiers. Here, the

memory cell utilises the stored state information and acts as

an accumulator. The Deep LSTM uses the input and their

neighbours’ past states to predict future states based on the

convolutional operator and Hadamard product. We achieve

an effective flight delay prediction using the high transi-

tional kernel where the encoding and forecasting layers

form the Deep LSTM structure. The forecasting network

receives the initial input and outputs the cell encoding

network. Also, the Deep LSTM uses a self-parametrised

gate to clear cell access. The memory cell receives the state

information if the gate gets activated when subject to the

input. Whenever the forget gate is ON, the classifier forgets

the past cell information. Because of insufficient decaying

error backflow, information storage takes a long time over

extended time intervals with a recurrent backpropagation.

A significant advantage of the classifier is how it manages

the information flow.

LSTM is an efficient and gradient-based method. The

LSTM can bridge the minimal time lags learning to enforce

constant error flow-through ‘‘constant error carrousels’’

over 1000 discrete time steps within the particular unit. In

terms of space and time, the LSTM is local. The LSTM

algorithm can solve long-time lags of complex tasks that
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other recurrent neural network algorithms cannot solve.

Here, there is a convolutional architecture in the input to

the state-to-state transition so that the forecasting problem

solve has a structure in the LSTM. The classifier’s rows

and columns are the 3D tensors in spatial dimensions with

inputs, hidden state and gates utilise. We define the input

cell and states as vectors in spatial grid form to enhance the

flight delay prediction performance. However, the classifier

employs the previous state and neighbours’ input cell to

compute the future cell states. Thus, the Deep LSTM

classifier includes an input T1; :::Tmf g, hidden states

I1; ::::Imf g, cell output D1; :::Dmf g, and gates xm, ym, zm.

Figure 4 describes the architecture of the Deep LSTM

classifier.

Equation 26 defines the input gate output:

xm ¼ c STx � Tm þ SIx � Im�1 þ SDx 	 Dm�1 þ kx
	 


ð26Þ

where Tm is the input vector and STx is the weight among the

input layer and gate. The gate activation function is given

by c, and SDx is the weight vector between the cell input and

output layer, and SIx is the weight between memory input

and output layer, while Im�1 represents the previous cell

output, and Dm�1 is the previous memory unit output. The

term kx represents input layer bias, and the character �
represents the Convolutional operator, and the character 	
is the element-wise multiplication. Equation 27 represents

the forget gate output:

ym ¼ c STy � Tm þ SIy � Im�1 þ SDy 	 Dm�1 þ ky
� �

ð27Þ

where STy denotes weight among the input layer forget gate

while the term SIy is the weight among the memory unit of

the previous layer and output gate and SDy is the weight

among output gate and cells. The term ky represents the

bias that relates to forgetting gates. Equation 28 represents

the output generated from the output gate:

zm ¼ c STz � Tm þ SIz � Im�1 þ SDz 	 Dm�1 þ kz
	 


ð28Þ

where STz represents the weight between the input layer and

the output gate and SIz denotes the weight between the

output gate and memory unit, and SDz denotes the weight

between the output gate and the cell; the term kz is the

output gate bias based on the activation function. Equa-

tion 29 represents the temporary cell state output.

Dm



¼ tanh STv � Tm þ SIv � Im�1 þ kv

	 

ð29Þ

where kv represents the bias and STv represents the weight

between cell and input layer, while the symbol SIv repre-

sents the weight between cell and the memory unit. The

cell output estimates adding the previous and current layer,

temporary cell state and a memory unit. Equation 30 and

Eq. 31 represent the cell output estimation.

Ds ¼ ym 	 Dm�1 þ xm 	 Ds



ð30Þ

Dm ¼ ym 	 Dm�1 þ xm 	 tanh STv � Tm þ SIv � Im�1 þ kv
	 


ð31Þ

Equation 32 expresses the memory unit generated

output:

Im ¼ zm 	 tanh Dmð Þ ð32Þ

where zm represents the output gate, and the term Im rep-

resents the block output memory. Thus, Eq. 33 represents

the generated output Om:

Fig. 4 Architecture of Deep LSTM classifier
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Om ¼ a SIO : Im þ kO
	 


ð33Þ

where the output vector of weight among the memory unit

is SIO and kO representing the output layer bias.

5 Results and discussion

This section describes the results of the proposed SSDCA-

based Deep LSTM based on some benchmark metrics and

compares our method with a set of methods from the lit-

erature. Table 3 presents the considered methods and the

corresponding special names we give them.

5.1 Dataset source

The dataset considered for the experimentation is the flight

delay prediction dataset with US flight data downloaded

from the US Government Bureau of transportation statistics

[71, 72].

5.1.1 January flight delay prediction dataset (dataset-1
[71])

This dataset contains the flights in January 2019 and Jan-

uary 2020. It contains over 400,000 flights, which translate

into 400,000 rows. It contains 21 feature columns that

specify the features of each flight. It includes destination

airport, origin airport, departure time, arrival time, and

aircraft information. We used the dataset for predicting

flight delays at the destination airport for January.

5.1.2 February flight delay prediction dataset (dataset-2
[72])

This dataset contains the flights in February 2019 and

February 2020. It contains over 400,000 flights, which

translate into 400,000 rows. It contains 21 feature columns

that specify the features of each flight. It includes

destination airport, origin airport, departure time, arrival

time, and aircraft information. We used the dataset for

predicting flight delays at the destination airport for

February.

5.2 Evaluation metrics

We evaluate the proposed model performance using the

MSE, RMSE, MAE and Accuracy metrics [17, 74–76].

5.2.1 MSE

This measures the average square difference between the

estimated and target values, as shown in Eq. 10.

5.2.2 RMSE

This measures the square root of the average square dif-

ference between the actual and the predicted value, as

shown in Eq. 11.

5.2.3 MAE

This measures the Mean of the absolute values of indi-

vidual prediction errors over all instances in the test set, as

shown in Eq. 12.

5.2.4 Accuracy

This measures the estimated value’s closeness to a standard

or actual value, as shown in Eq. 13.

5.3 Method comparisons

We analyse the developed model performance and com-

pare it with the existing methods from the literature

[1, 4, 6, 26] and other meta-heuristic approaches imple-

mented with the Deep LSTM in our study.

5.3.1 Model evaluation

In this section, we compare the proposed SSDCA-based

Deep LSTM by varying the percentage of the training and

testing datasets to investigate the impact on the model’s

performance.

5.3.1.1 Analysis using dataset-1 Figure 9 in the appendix

illustrates the analysis of the developed approach based on

dataset-1 by considering the feature size as ‘6’. Figure 9a

shows the analysis of RMSE regarding training data, with

smaller values of RMSE being the favourable ones. When

we consider 60% as training data, RMSE measured shows

that our proposed method outperforms the existing

Table 3 Methods considered

S/No Methods Special name

1 Deep belief network (DBN) Med 1

2 Gradient boosting classifier Med 2

3 Information gain-SVM Med 3

4 Multi-agent approach Med 4

5 Deep LSTM Med 5

6 PSO ? Deep LSTM Med 6

7 ACO ? Deep LSTM Med 7

8 SSD ? Deep LSTM Med 8

9 HBO ? Deep LSTM Med 9

10 EWA ? Deep LSTM Med 10
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methods, as shown in Table 9. For 90% training data, the

developed model gained a minimum RMSE of 0.1114,

whereas the remaining existing methods did not perform as

well, with the actual values shown in Table 9.

Figure 9b shows the analysis of MSE in terms of

training and testing data percentage. For 70% of training

data, the MSE measured by the existing methods and our

proposed method is shown in Table 9. For 90% training

data, the developed model achieved a minimum MSE of

0.0134 compared to the other methods, with detailed values

shown in Table 9.

Figure 9c shows the analysis of MAE in terms of

training and testing data percentage. For 60% of training

data, the MAE measured by our proposed method outper-

forms the other existing methods with a value of 0.1615.

Detailed values are shown in Table 9. For 90% training

data, the developed model achieved a minimum MAE of

0.0511 compared to the other methods, with detailed values

shown in Table 9.

Figure 9d shows the analysis of Accuracy in terms of

training and testing data percentage. For 70% of training

data, the Accuracy measured by our proposed method

outperforms the other existing methods with a value of

0.9156. Table 9 shows the detailed values of the other

existing methods. For 90% training data, the developed

model achieves an accuracy of 0.9362 compared to the

other methods, with detailed values shown in Table 9.

5.3.1.2 Analysis using dataset-2 Figure 10 in the appen-

dix illustrates the analysis of the developed approach based

on dataset-2 by considering the feature size as ‘6’. Fig-

ure 10a shows the analysis of RMSE regarding training

data, with smaller values of RMSE being the favourable

ones. When we consider 60% as training data, RMSE

measured shows that our proposed method outperforms the

existing methods, as shown in Table 10. For 90% training

data, the developed model gained a minimum RMSE of

0.1157, whereas the remaining existing methods did not

perform as well, with the actual values shown in Table 10.

Figure 10b shows the analysis of MSE in terms of

training and testing data percentage. For 70% of training

data, the MSE measured by the existing methods and our

proposed method is shown in Table 9. For 90% training

data, the developed model achieved a minimum MSE of

0.0134 compared to the other methods, with detailed values

shown in Table 10.

Figure 10c shows the analysis of MAE in terms of

training and testing data percentage. For 60% of training

data, the MAE measured by our proposed method outper-

forms the other existing methods with a value of 0.1701.

Detailed values are shown in Table 9. For 90% training

data, the developed model achieved a minimum MAE of

0.0557 compared to the other methods, with detailed values

shown in Table 10.

Figure 10d shows the analysis of Accuracy in terms of

training and testing data percentage. For 70% of training

data, the Accuracy measured by our proposed method

outperforms the other existing methods with a value of 0.

0.9085. Table 10 shows the detailed values of the other

existing methods. For 90% training data, the developed

model achieves an accuracy of 0.9252 compared to the

other methods, with detailed values shown in Table 10.

5.3.2 Delay prediction analysis

We now set the training data to be 70% of the dataset.

Figure 5 represents the delay prediction gained using

dataset-1. On January 15, 2020, the actual number of flights

delayed was 1707, shown under the (original label). Our

proposed method predicts 1640 and being the most accu-

rate method. Detailed results of all methods appear in

Table 4.

We now set the training data to be 70% of the dataset.

Figure 6 represents the delay prediction gained using

dataset-1. On February 20, 2020, the actual number of

flights delayed was 2772, shown under the (original label).

Our proposed method predicts 2874 and being the most

accurate method. Detailed results of all methods appear in

Table 5.

5.3.3 Convergence analysis

Figure 7 shows the analysis for convergence using dataset-

1. For dataset-1, the MSE of the considered Deep LSTM

method coupled with the different optimisers. PSO ?

Deep LSTM is 0.0132, ACO ? Deep LSTM is 0.0130,

SSD ? Deep LSTM is 0.0130, HBO ? Deep LSTM is

0.0128, and EWA ? Deep LSTM the convergence is

0.0127. The MSE of the proposed SSDCA-based Deep

LSTM is 0.0124. Hence, the proposed algorithm has the

best convergence when compared to the other algorithms.

Table 4 Delay prediction using dataset-1

Method DBN Gradient boosting

classifier

Information gain-

SVM

Multi-agent

approach

Deep

LSTM

Proposed SSDCA-based deep

LSTM

Number of flights

delayed

5300 3337 2534 1365 1365 1640
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Fig. 5 Delay prediction using dataset-1

Fig. 6 Delay prediction using dataset-2

Table 5 Delay prediction using dataset-2

Method DBN Gradient boosting

classifier

Information gain-

SVM

Multi-agent

approach

Deep

LSTM

Proposed SSDCA-based deep

LSTM

Number of flights

delayed

6472 4357 3525 2217 2217 2874
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Figure 8 shows the analysis of convergence using

dataset-2. For dataset-2, the MSE of the considered Deep

LSTM method coupled with the different optimisers.

PSO ? Deep LSTM is 0.0157, ACO ? Deep LSTM is

0.0148, SSD ? Deep LSTM is 0.0136, HBO ? Deep

LSTM is 0.0130, and the convergence of EWA ? Deep

LSTM is 0.0119, and for the Proposed SSDCA-based Deep

LSTM the convergence is 0.0108. Hence, the proposed

algorithm has the best convergence when compared to the

other algorithms.

5.4 Comparative discussion

Table 6 illustrates the comparative results of the proposed

SSDCA-based Deep LSTM approach. When considering

the feature size as ‘6’ for dataset-1our proposed approach

gained minimum RMSE and MSE values. The RMSE

measured by the proposed SSDCA-based Deep LSTM is

0.1114. In contrast, the existing DBN, gradient boosting

classifier, information gain-SVM, multi-agent approach,

and Deep LSTM achieved the RMSE of 0.2953, 0.2229,

0.1878, 0.1165, and 0.1154, respectively. The MSE

achieved by the existing DBN, gradient boosting classifier,

information gain-SVM, multi-agent approach, Deep

LSTM, and proposed SSDCA-based Deep LSTM for fea-

ture size ’6’ is 0.0872, 0.0497, 0.0353, 0.0136, 0.0133, and

0.0124 respectively. Table 3 shows that the proposed

approach achieved minimal RMSE and MSE of 0.1065 and

0.0113 with dataset-2. The existing DBN, gradient boost-

ing classifier, information gain-SVM, multi-agent

approach, and Deep LSTM achieved the RMSE of 0.2971,

0.2240, 0.1892, 0.121, 0.1143 and 0.1065, respectively.

The MSE achieved by the existing DBN, gradient boosting

classifier, information gain-SVM, multi-agent approach,

Deep LSTM, and proposed SSDCA-based Deep LSTM for

Fig. 7 Convergence analysis using dataset-1

Fig. 8 Convergence analysis using dataset-2
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feature size ’6’ is 0.0883, 0.0502, 0.0358, 0.0148, 0.0131

and 0.0113 respectively.

From our analysis, we show that our proposed method

offers higher accuracy and needs fewer iterations than the

existing methods. Also, it is more versatile in terms of

skewness. CAViaR models can adapt to new risk envi-

ronments, and LSTMs avoid the long-term dependency

problem. RNN can process inputs of any length, and RNN

with a deep network can approximate any function. Deep

RNN can be much more efficient in terms of computation

and the number of parameters.

5.5 Statistical analysis

Table 7 shows the statistical analysis. In the statistical

analysis, the proposed method’s RMSE and MSE Mean is

0.1113, 0.0124, and the variance is 0.0002 using dataset-1.

Conducting the same statistical analysis using dataset-2,

the mean and variance of the proposed method were

0.1063, 0.0111 and 0.0002. The proposed method has a

minimum variance than the other existing methods for both

RMSE and MSE.

5.6 Computational time analysis

We perform our experiment on a Personal Computer (PC)

with Intel(R) Core(TM) i7-9700 CPU with a processor

speed of 3.00 GHz and 32 GHz RAM. We used libraries

such as TensorFlow Core-2.4.1, TensorFlow GPU-2.4.1,

NumPy-1.19.1, pandas-0.25.3, sci-kit learn-0.23.2, Scipy-

1.5.2, PySimpleGUI-4.29.0 and Matplolib-3.3.1. Table 8

shows the computational wall time. The computational

time analysis shows that our proposed SSDCA-based Deep

LSTM needs 300 s and outperforms all other methods.

Table 8 shows detail computational time requirements

(Table 8).

Table 6 Comparative discussion

Dataset Metrics DBN Gradient boosting

classifier

Information gain-

SVM

Multi-agent

approach

Deep

LSTM

Proposed SSDCA-based deep

LSTM

Dataset

1

RMSE 0.2953 0.2229 0.1878 0.1165 0.1154 0.1114

MSE 0.0872 0.0497 0.0353 0.0136 0.0133 0.0124

Dataset

2

RMSE 0.2971 0.2240 0.1892 0.1215 0.1143 0.1065

MSE 0.0883 0.0502 0.0358 0.0148 0.0131 0.0113

Table 7 Statistical analysis

Dataset Metrics DBN Gradient boosting

classifier

Information gain-

SVM

Multi-agent

approach

Deep

LSTM

Proposed SSDCA-based deep

LSTM

Dataset-

1

RMSE 0.2953 0.2229 0.1878 0.1165 0.1154 0.1115

Mean 0.2947 0.2225 0.1872 0.1162 0.1150 0.1113

Variance 0.0006 0.0004 0.0006 0.0003 0.0004 0.0002

MSE 0.0872 0.0497 0.0353 0.0136 0.0133 0.0124

Mean 0.0868 0.0490 0.0350 0.0131 0.0130 0.0122

Variance 0.0004 0.0007 0.0003 0.0005 0.0003 0.0002

Dataset-

2

RMSE 0.2971 0.2240 0.1892 0.1215 0.1143 0.1065

Mean 0.2965 0.2236 0.1885 0.1210 0.1139 0.1063

Variance 0.0006 0.0004 0.0007 0.0005 0.0004 0.0002

MSE 0.0883 0.0502 0.0358 0.0148 0.0131 0.0113

Mean 0.0878 0.0498 0.0353 0.0144 0.0126 0.0111

Variance 0.0005 0.0004 0.0005 0.0004 0.0005 0.0002
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6 Conclusions and future work

Many factors can cause flight delays, ranging from failure

in processes to late departure or aircraft arrival. The rea-

sons for flight delay generate an enormous, complex

amount of data used by machine learning methods to make

crucial decisions because of the importance of flights

arriving or departing on-time for the airport, airlines and

passengers. Developing flight delay prediction models with

high accuracy is necessary. In this paper, we propose a

novel optimised forecasting model with Deep LSTM for

flight delay prediction. We utilise the developed SSDCA to

train the Deep LSTM and the Deep RNN for fusing the

features. The newly proposed SSDCA works by combining

SSD and CAViaR algorithms. We employ the novel

SSDCA to identify the best weights for effective flight

delay prediction using the US Government Bureau of

transportation statistics dataset.

Initially, we perform the pre-processing from the input

data and then the data transformation based on the Yeo-

Johnson transformation. Afterwards, we perform the fea-

ture fusion using the Deep RNN to extract the useful fea-

tures from the original datasets containing complex and

nonlinear structures with spatial and temporal correlations.

We introduced a two-step training procedure to help inte-

grate the fused features and prediction layer of the model.

Finally, we apply the Deep LSTM for flight delay predic-

tion. Here, we use an advanced optimisation method named

SSDCA to train the Deep LSTM and Deep RNN. We

evaluate our proposed SSDCA-based Deep LSTM and

compare it with four benchmark methods: DBN, gradient

boosting classifier, information gain-SVM, multi-agent

approach, and Deep LSTM, including other developed

meta-heuristic approaches PSO ? Deep LSTM, ACO ?

Deep LSTM, SSD ? Deep LSTM, HBO ? Deep LSTM

and EWA ? Deep LSTM. Our approach had a minimal

RMSE and MSE of 0.1115 and 0.0124 on dataset-1, with

0.1065 and 0.0113 on dataset-2. The novel SSDCA enabled

approach performance has shown superior accuracy with a

higher convergence rate than the other five meta-heuristic

approaches regarding model accuracy and convergence

analysis.

The results we get from our approach are promising. It

illustrates how we can improve predicting flight delays

using deep learning techniques with optimisation algo-

rithms to inform departing and arriving policies and better

airport facilities management. At the same time, the

stakeholders can attain efficient and improve passenger

satisfaction. The study can be extended further. One

direction could be to consider more attributes. While there

is no perfect delay prediction, in the future, we plan to

investigate further flights with significant delay even

though they are rare events. At the same time, we keep the

error range on a regular flight with a minimally accept-

able level so that departing and arriving policies are

developed with less complexity. Secondly, to investigate

the performance, we will test our proposed technique on

other data sets or other sampling data from different sec-

tors, such as maritime or rail. Finally, we will explore

advanced optimisation approaches to improve the proposed

method’s performance towards a data-driven departure and

arrival planning strategy, supporting airports, airlines and

passengers to plan travel.

Appendix

Plots showing the performance results of the methods from

Tables 9 and 10.

See Figs. 9 and 10

Table 8 Computational time

Methods Computational time (sec)

DBN 660.00

Gradient boosting classifier 690.00

Information gain-SVM 480.00

Multi-agent approach 630.00

Deep LSTM 420.00

Proposed SSDCA-based Deep LSTM 300.00
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Table 9 Results comparison of our proposed method with other existing methods across different evaluation metrics on dataset-1

S/

No

Training/

testing

(%)

Method/metrics Med

1

Med

2

Med

3

Med

4

Med

5

Med

6

Med

7

Med

8

Med

9

Med

10

Proposed

SSDCA-based

deep LSTM

1 60/40 RMSE 0.5891 0.4471 0.3775 0.2473 0.2328 0.2280 0.2261 0.2258 0.2258 0.2243 0.2235

MSE 0.3471 0.1999 0.1425 0.0611 0.0542 0.0519 0.0511 0.0511 0.0509 0.0503 0.0499

MAE 0.5291 0.3971 0.3175 0.1989 0.1845 0.1756 0.1674 0.1645 0.1632 0.1625 0.1614

Accuracy 0.7528 0.7656 0.7857 0.7924 0.8067 0.8156 0.8237 0.8398 0.8478 0.8756 0.9013

2 70/30 RMSE 0.5213 0.3874 0.3259 0.2078 0.2016 0.1963 0.1955 0.1950 0.1947 0.1946 0.1931

MSE 0.2615 0.1501 0.1062 0.0432 0.0406 0.0385 0.0382 0.0380 0.0379 0.0378 0.0373

MAE 0.4567 0.3367 0.2656 0.1573 0.1515 0.1485 0.1454 0.1450 0.1444 0.1436 0.1375

Accuracy 0.7598 0.7720 0.7896 0.7995 0.8123 0.8195 0.8285 0.8425 0.8534 0.8798 0.9156

3 80/20 RMSE 0.4174 0.3154 0.2664 0.1682 0.1646 0.1588 0.1584 0.1582 0.1580 0.1577 0.1576

MSE 0.1742 0.0995 0.0710 0.0283 0.0271 0.0252 0.0251 0.250 0.0249 0.0249 0.0248

MAE 0.3567 0.2667 0.2056 0.1178 0.1134 0.1076 0.1066 0.1056 0.1020 0.1010 0.1010

Accuracy 0.7754 0.7845 0.7945 0.8045 0.8196 0.8295 0.8367 0.8543 0.8634 0.8956 0.9268

4 90/10 RMSE 0.2952 0.2228 0.1878 0.1164 0.1154 0.1148 0.1140 0.1138 0.1133 0.1126 0.1114

MSE 0.0871 0.0496 0.0352 0.1356 0.0133 0.0131 0.0130 0.0129 0.0128 0.0126 0.1024

MAE 0.2487 0.1674 0.1267 0.0616 0.0594 0.0585 0.0580 0.0572 0.0572 0.0567 0.0511

Accuracy 0.8034 0.8278 0.8584 0.8645 0.8756 0.8834 0.8907 0.9056 0.9156 0.9265 0.9361

Table 10 Results comparison of our proposed method with other existing methods across different evaluation metrics on dataset-2

S/

No

Training/

testing

(%)

Method/metrics Med

1

Med

2

Med

3

Med

4

Med

5

Med

6

Med

7

Med

8

Med

9

Med

10

Proposed

SSDCA-based

deep LSTM

1 60/40 RMSE 0.5904 0.4474 0.3786 0.2478 0.2428 0.2408 0.2397 0.2382 0.2350 0.2338 0.2302

MSE 0.386 0.2001 0.1433 0.0614 0.0589 0.0580 0.0574 0.0567 0.0552 0.0546 0.0530

MAE 0.5315 0.3956 0.3267 0.1967 0.1915 0.1895 0.1825 0.1795 0.1750 0.1732 0.1701

Accuracy 0.7598 0.7756 0.7834 0.7956 0.8052 0.8167 0.8256 0.8367 0.8578 0.8626 0.8942

2 70/30 RMSE 0.5126 0.3869 0.3280 0.2103 0.2091 0.2076 0.2073 0.2058 0.2046 0.2016 0.1984

MSE 0.2628 0.1497 0.1076 0.0442 0.0437 0.0431 0.0429 0.0423 0.0418 0.0406 0.0393

MAE 0.4626 0.3367 0.2756 0.1576 0.1491 0.1476 0.1467 0.1445 0.1427 0.1406 0.1375

Accuracy 0.7645 0.7834 0.7945 0.8013 0.8146 0.8245 0.8356 0.8467 0.8596 0.8694 0.9085

3 80/20 RMSE 0.4183 0.3159 0.2681 0.1717 0.1703 0.1702 0.1701 0.1696 0.1687 0.1680 0.1675

MSE 0.1750 0.0998 0.0178 0.0294 0.0290 0.0290 0.0289 0.0287 0.0284 0.0282 0.0280

MAE 0.3567 0.2658 0.2181 0.1217 0.1203 0.1202 0.1201 0.1196 0.1187 0.1180 0.1175

Accuracy 0.7756 0.7956 0.8056 0.8145 0.8256 0.8352 0.8426 0.8567 0.8631 0.8745 0.9156

4 90/10 RMSE 0.2968 0.2238 0.1888 0.1214 0.1200 0.1198 0.1183 0.1181 0.1174 0.1165 0.1157

MSE 0.0881 0.0500 0.0356 0.0147 0.0144 0.0143 0.0140 0.0139 0.0137 0.0135 0.0134

MAE 0.2368 0.2238 0.1388 0.0614 0.0600 0.0593 0.0583 0.0581 0.0573 0.0565 0.0557

Accuracy 0.7967 0.8042 0.8152 0.8221 0.8372 0.8442 0.8517 0.8615 0.8742 0.9042 0.9252
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Fig. 9 Analysis using dataset-1 with feature size 6, a RMSE, b MSE, c MAE, d Accuracy
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Fig. 9 continued
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Fig. 10 Analysis using dataset-2 with feature size 6, a RMSE, b MSE, c MAE, d Accuracy
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