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Abstract
Owing to the development of industrial production, the hidden danger in industrial control systems (ICSs) has considerably

increased, causing challenges in traditional safety defense methods. The combination of machine-learning or deep-learning

algorithms and intrusion detection systems (IDSs) has become the mainstream method for solving this problem. However,

these methods depend on a massive amount of high-quality attack traffic data, which cannot be obtained easily owing to the

independence and unique characteristics of ICSs. In this study, we apply the reconstructed convolutional neural network

and a data expansion algorithm named CenterBorderline_SMOTE (CB_SMOTE) to an IDS and propose data expansion

intrusion detection system (DEIDS). The DEIDS is an end-to-end detection model that learns representative attack features

from raw traffic and classifies them in a unified framework. Moreover, we adopt the classification activation map structure,

which can deeply mine the potential characteristics of traffic and enhance the effectiveness of attack features. While

enhancing the data quality, we introduce the designed CB_SMOTE algorithm into DEIDS to expand the data and solve the

problem of insufficient attack data in the system. Our comprehensive experiments on different open datasets indicate that

DEIDS achieves an excellent performance (97% detection accuracy) and outperforms the state-of-the-art methods. The

experimental results also show that our method has high efficiency and high accuracy in processing ICSs datasets.
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1 Introduction

1.1 Motivation

Owing to the development of modernization, industrial

production and control are gradually gaining attention.

Intrusion detection is particularly important for the security

of industrial control [1–5]. The intrusion detection system

(IDS) is a commonly used defense method in cybersecurity

and industrial control systems (ICS) research [6]. Recently,

IDS uses machine learning [7–9] or deep learning as the

main approach in ICS security. Using machine or deep

learning [10–12], the IDS can obtain accurate detection

results and provide a more accurate alarm for attacks under

different protocols [13–17]. This protects ICS safety.

However, the industrial control network is different

from the traditional network, and each factory’s network is

relatively independent and closed. Owing to this, the data

on the industrial control network are not universal. The

conventional traffic generated in the actual industrial pro-

duction process is larger than the actual attack traffic. This

imbalanced distribution data set seriously affects the lack

of training of machine and deep learning methods used in

intrusion detection. This results in a decline in the accuracy

of the intrusion detection. Although devices such as the

testbed at Sandia National Laboratory can alleviate this

difficulty, the number and types of attacks generated by the

testbed are limited. Therefore, it is challenging to meet the

IDS training and testing requirements. Unlike the tradi-

tional network traffic, the traffic protocol format in the

industrial control network is relatively fixed. It is approx-

imately composed of fixed-length fields such as Modbus.
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Therefore, different attacks are highly similar in feature

engineering based on machine learning IDS, which inter-

feres with machine training. In addition, because more

manual extraction processes are used to establish feature

engineering, it is easy to consider the prior knowledge of

researchers and interfere with the model’s classification

process of the model [7–9]. Therefore, increasing the

quantity and quality of the ICS attack traffic data has

become a focus issue and attracted both industrial and

scholarly attention.

1.2 Limitation of the prior state-of-the-art
methods

Combining machine or deep learning algorithms and IDS

becomes the mainstream method for protecting ICS. The

intrusion detection models in IDS include feature engi-

neering and model training. Both of these two processes

require a certain number of high-quality datasets. However,

the current ICS data sets are unevenly distributed owing to

the lack of attack traffic data, which cannot meet this

requirement. This affects the training effect and detection

accuracy of the IDS.

To solve the difficulty of the imbalanced data sets,

several methods have been proposed in the past few dec-

ades. These are approximately divided into two categories:

algorithm and data levels [18]. For the methods proposed at

the algorithm level, the goal is to reinforce the existing

classifier learning algorithms on a small number of cate-

gories. Gu et al. [19] and Khabsa et al. [20] proposed an

improved support vector machine to allocate more penalty

weights by assigning misclassified minority instances

during the training. This is to improve the accuracy of

minority class categories when dealing with unbalanced

data sets. However, this method does not consider the

different contributions of the minority class examples when

learning decision boundaries, leading to over-fitting, which

is affected by noise. Based on the aforementioned methods,

it can be observed that the algorithm-level methods for

solving the problem of imbalanced data greatly depend on

the classification ability of the classifier. Moreover, they do

not fundamentally solve the problem of the misclassified

minority class. Furthermore, the decision boundary is also

generated based on the existing data and cannot represent

the actual data distribution.

Another solution to such problems is the use of the

methods based on the data-level. The solution attempts to

rebalance the category distribution by resampling the given

imbalanced data. In Tao’s investigation, compared with the

algorithm-level methods, data-level methods seemed more

common for imbalanced datasets [21]. It was reported that

the balanced datasets obtained by resampling can be used

for learning by any classification algorithms. However, in

many practical applications of imbalanced datasets, the

minority class samples are often unavailable in the learning

phase. The lack of minority class samples makes it difficult

for the traditional resampling methods to deal with

imbalanced datasets. Furthermore, it does not enable the

IDS to achieve better training results. This makes the

industrial equipment get attacked owing to minority class

samples such as attack traffic data. Therefore, how to use

the existing ICS imbalanced datasets to improve the

detection accuracy of IDS to protect the industrial pro-

duction process better has become a limitation that

researchers need to solve.

1.3 Proposed approach

To solve the aforementioned limitations, in this study, we

propose an end-to-end system known as data expansion

intrusion detection system (DEIDS) for protecting ICS’

safety. As shown in Fig. 1, the structure of DEIDS includes

format conversion, data expansion, and intrusion detection

modules. First, the format conversion module adjusts the

raw attack traffic data’s formation to suit the IDS’ model

training and feature extraction. Then, we use a discrimi-

nator to determine whether each category’s traffic data are

in a balanced state and whether the amount is sufficient.

The data expansion module contains a redesigned convo-

lutional neural network (CNN) and a data expansion

algorithm. The redesigned CNN learns and extracts fea-

tures to enhance the discrimination of the attack traffic. The

algorithm uses enhanced features extracted by the rede-

signed CNN to expand to obtain the generated attack traffic

tensors. The traditional machine or deep learning model is

used in the intrusion detection module, and the generated

attack traffic tensors are used for the training. The trained

model has a strong ability and robustness to detect ICS

attacks. The flexible architecture increases the generaliza-

tion of DEIDS.

In this study, the data expansion module receives

insufficient samples judged by the discriminator. This

module has two submodules, the feature extractor and the

sample expander. The insufficient samples in the converted

format are first transmitted to the feature extractor. More

accurate data features can be extracted from the traffic data

using the feature extractor. Then, a new algorithm named

CenterBorderline_SMOTE (CB_SMOTE) is designed and

proposed in the sample expander. This expands the data

features in the feature extractor and strengthens the

boundaries of the data features. Finally, this submodule

makes and obtains the feature engineering by using the

expanded data features that benefit the training of the

intrusion detection model. To design the algorithm, we

refer to the interpolation idea of SMOTE method and

improve this method. We abandon the K-nearest neighbor
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idea, solving the limitation that it is easy to cause blindness

in selecting data expansion location and data volume when

the distribution differentiation of the positive and negative

samples is not high. The boundary distribution is enhanced

to solve the distribution marginalization, and it uses the

existing minority class data to ensure that the newly gen-

erated data are within the decision boundary. The sche-

matic diagram of the distribution of the generated data for

different strategies is shown in Fig. 2. The method we use

can ensure that the generated data are always kept on the

positive side. Large data will not be generated on the

boundary or in areas where it is difficult to demarcate,

resulting in misclassification of the model.

1.4 Novelty and advantage of our approach

In this study, the main novelties and advantages of the

proposed approach are as follows:

• Enhanced feature extraction The traditional feature

extraction depends entirely on the establishment of

feature engineering by artificial operation or deep

learning methods such as CNN. This study designs a

feature extractor that modifies and redesigns the

structure of CNN and uses reconstructed CNN to

extract more accurate features. The advantage of this

method is that it can improve the accuracy of feature

extraction, avoiding unnecessary interference caused by

human disoperation or prior knowledge.

Fig. 1 Simple flow of DEIDS

Fig. 2 Schematic diagram of the distribution of the data generated by our method and the traditional method
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• Efficient data expansion The traditional method based

on SMOTE uses the K-nearest neighbor. However, the

idea K value is difficult to determine, the amount of

calculation is significant, and it can be easily affected

by noise problems. This study designs and proposes a

new data enhancement method based on SMOTE–

CB_SMOTE. Using the class boundary sample as the

classification boundary, the seed sample is obtained by

directly comparing the sample with the fitting center

distance and aggregation degree. The new sample is

synthesized on the connection between the seed sample

and the fitting center to realize the oversampling

strategy.

1.5 Key contributions

The main contributions of this study are as follows.

• DEIDS can accurately identify ICS attacks and obtain

high-precision intrusion detection. The system is suit-

able for intrusion detection based on the ICS. Compared

with the traditional intrusion systems, DEIDS has more

extensive applicability and practicability. In the case of

insufficient attack samples, it can use the internal

algorithm to generate data to improve the detection

accuracy. Therefore, it can protect industrial devices

from attacks better.

• We present a novel algorithm based on SMOTE

combined with a data’s fitting center (FC) known as

CB_SMOTE. The algorithm can solve imbalanced ICS

datasets by producing attack traffic data. The algorithm

can also deal with the boundary and strengthen the

boundary’s distinction to enhance the whole dataset to

improve its quality. The datasets expanded by this

algorithm are suitable for various types of machine or

deep learning intrusion detection models. The intrusion

detection model trained by this dataset can have a

strong robustness and detection accuracy.

• The experimental results show that DEIDS has a very

high detection accuracy. It can extract more valuable

and accurate features, which provides excellent fea-

tures. Compared with the traditional over-sampling

methods, the expanded algorithm used by DEIDS can

acquire higher quality attack data than the conventional

generated data method. The detection accuracy of the

intrusion detection model trained by the open ICS

datasets is over 97%. The generated datasets can train

the intrusion detection model and make the models

obtain a more powerful detection ability to protect the

ICS better.

2 Related work

Random over-sampling is a non-informative method,

which rebalances the class distribution by randomly

copying the minority class samples [22]. The disadvantage

is that because of the repetition of the information in the

training set, the accurate replication of substitution will

lead to the over-fitting of the subsequent supervised clas-

sification algorithm. To overcome this defect, Chawla et al.

[23] proposed an information-based over-sampling method

known as the synthetic minority over-sampling technique

(SMOTE). The algorithm generates new minority class

instances by interpolating the k-nearest minority class

neighbors. This method can provide more helpful infor-

mation for classification than the random over-sampling,

because it (the proposed method) creates new artificial

minority class instances rather than simply copying the

original minority class instances. To avoid the SMOTE

algorithm’s sample coverage problem, Han et al. [24]

proposed a Borderline-SMOTE algorithm. This algorithm

searches for ‘‘dangerous’’ samples in a small number of

classes and generates new samples based on these samples.

Therefore, He et al. [25] constructed a distribution function

of newly generated samples based on the degree of ‘‘dan-

gerous’’ samples to determine the number of unique sam-

ples generated based on each ‘‘dangerous’’ sample. Jo et al.

[26] implemented a clustering-based sampling algorithm

known as the cluster-based over-sampling (CBO), which is

suitable for cases in which multiple disconnected aggre-

gation points exist in the class distribution. Liu et al. [27]

introduced the concept of the class average distance and

proposed an unbalanced dataset learning algorithm known

as DB_SMOTE using the center of gravity of sample data.

This method is simple to use and adapts the use of datasets

with clear boundaries.

However, the method based on SMOTE faces the fol-

lowing difficulties. First, as an interpolation method,

SMOTE can quickly interpolate low-dimensional data to

achieve the purpose of over-sampling. However, it is not

suitable for high-dimensional data. Second, the SMOTE

cannot guarantee the accuracy and effectiveness of the

generated data owing to the K-nearest neighbor. This

makes the selected interpolation space impure, making part

of the generated data noisy.

Because of the advancements in machine and deep

learning methods, samples are oversampled to enhance the

data by combining algorithm-level methods. GAN [28–30],

flow-based model, and other deep learning methods inte-

grate the idea of algorithm-level methods and oversample

the samples to enhance the data [31–34]. However, in this

type of method, the oversampling speed is low because of a

pre-training process. Moreover, the introduction of deep
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learning brings uncertainty in the convergence process;

therefore it is difficult to obtain samples quickly, and it is

not suitable for the process of IDS intrusion detection.

In this study, we propose a novel IDS known as DEIDS.

It involves an oversampling technique named

CB_SMOTE based on SMOTE (a redesigned CNN

detection model to make feature engineering), and a deep

learning intrusion detection model based on the charac-

teristics of the industrial control network. CB_SMOTE

depends on the whole imbalanced dataset to achieve all the

information from the data distribution in the dataset.

Contrary to SMOTE, based on the traditional interpolation,

our method abandons the idea of K-nearest neighbor,

which makes our method to focus more data selection than

blind over-sampling data. In addition, the algorithm and the

redesigned CNN detection model can deal with higher-

dimensional data such as network traffic. Compared with

the deep learning methods (such as GAN) which require

training, CB_SMOTE directly interacts with the dataset to

generate data without training. This drastically speeds up

the efficiency of the use of IDS.

3 Process of DEIDS

Owing to the characteristics and protocol limitations of the

ICS, researchers have been faced with problems caused by

the imbalance of attack data, such as low quality of attack

data and severe shortage. There is no intrusion detection

system and method suitable for ICS to deal with the

insufficient samples and low quality. To solve these diffi-

culties, we design a novel IDS known as DEIDS. It can

utilize the imbalanced dataset of ICS for the targeted over-

sampling. Then, the attack dataset generated by expansion

and the majority class samples are combined into a training

set. This is transferred to the intrusion detection system

model for full training.

The whole system has three modules: the format con-

version, data expansion, and intrusion detection modules.

The format conversion module is responsible for process-

ing ICS attack traffic data, reshaping the data into the

format of the model designed in this study. It uses a dis-

criminator to determine whether the amount of attack

traffic data meets the intrusion detection module’s training

requirements. The data expansion module comprises two

submodules: feature extractor and sample expander. The

two submodules cooperate to improve the ICS attack traffic

dataset to meet the needs of the IDS from the view of

feature extraction and data expansion.

The structure of the system designed here is shown in

Fig. 3. First, the system transforms the data format. The

attack traffic data are converted to tensors needed for

model training, and the system will use these tensors

created by the attack data to train the CNN. They will then

be passed through the discriminator for the first time to

judge whether each attack category’s amount is in a bal-

anced state. Based on the assumption that it belongs to

equilibrium distribution attack data, the number of each

category’s attack data is enough. In such a case, it will be

transferred to the intrusion detection module for training

and detection. Nonetheless, if there are few attack data in

one type or some types, the tensors created by the attack

data will be passed to the data expansion module. Using

our designed classification importance discrimination

module (CIDM), we can extract the relevant attack details

of the attack traffic samples and construct detailed features

of the attacks based on their classification importance.

Then, using our proposed algorithm CB_SMOTE, entering

these attack features can increase the number of minority

class samples’ attack features. After the generated feature

is obtained, the feature is restored based on the standard

tensor format to generate the feature engineering. Finally,

the expanded attack samples train the intrusion detection

model, effectively solving the low-quality and insufficient

data and improving the detection accuracy. After the

operation of the whole system, researchers can expand the

imbalanced ICS attack datasets effectively and accurately.

More accurate attack feature sets can be extracted for

intrusion detection training by our system to make the

intrusion detection results obtained more accurate.

3.1 Feature extractor based on the classification
importance discrimination module

Because the artificial operation in feature engineering will

interfere with the feature extraction, which affects intrusion

detection models’ detection accuracy, we design and use

the feature extractor to extract the data features instead of

the artificial feature engineering. It uses the reconstructed

CNN’s powerful feature extraction ability to extract fea-

tures strongly associated with the attack type.

Figure 4 shows the procedure of the traffic flow tensors’

generation process. In this study, the conversion rules are

formulated based on the characteristics of industrial control

network traffic. First of all, based on the conversion rules,

this study intercepts the first fixed number of bits of each

traffic packet, saves the original capture sequence, and

integrates it into a flow. Second, the hexadecimal data in

the flow payload are converted into decimal data and are

sent into a flow tensor line. These tensors contain the

payload or a flow of original ICS traffic for some time.

Padding data are used to make up the insufficient number

of bits to ensure that the length of each flow is the same.

Finally, the flow tensor line is reshaped into the form of a

flow tensor square.
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The traditional CNN model generally divides into con-

volutional and fully connected layers. The convolutional

layer is responsible for extracting pixel region in the image,

and the fully connected layer performs reshaping analysis

based on the pixel region to complete the classification.

Zhou et al. [35] have shown that the pixel area retained

Fig. 3 Structure of the DEIDS

Fig. 4 Generation process of the traffic flow tensor
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after several training iterations in the convolution process

is the target part that can help the classification to extract

the features. However, the fully connected layer negatively

affects the retained information to affect the feature

extraction adversely. They perceive that CNN has a sig-

nificant positioning ability by using the global average

pooling (GAP) layer, and the data information contained in

the pixels position will not be negatively affected. This

indicates that it will not cause a loss of the original image.

Thus, to extract the attack features more accurately, we

draw lessons from Zhou’s method [35] to replace the fully

connected layer in the traditional CNN model with the

weight layer to eliminate the negative impact of the fully

connected layer on the model feature extraction process.

The reconstructed CNN uses a combination of the GAP

and weight layers. The weight layer can reasonably com-

plete the fully connected layer’s classification task, and the

data will not be affected.

The reconstructed CNN structure is shown in Fig. 5. To

make this method suitable for the network attack flow, the

existing methods need to be adjusted. Although the prior

knowledge possessed by researchers can help reduce the

weight of the matrix and extract more valuable attack

features, for machines, the effect of classification depends

more on the feature attributes of the data. This attribute is

likely to contradict or conflict with human knowledge.

Therefore, for the classification model, prior human

knowledge is intrusive and misleading. Moreover, Zhou’s

method selects several features with a high degree of

activation as classification features. This is not desirable,

because this is bound to cause the loss of information. In

our paper, we designed a module known as the CIDM. This

module replaces the taking of only the most essential fea-

ture details in Zhou’s method. However, it establishes a

large matrix to preserve the feature classification impor-

tance degree in each flow. After passing through the

CIDM, each flow can accurately capture every feature that

plays a decisive role in the classification. Each type of

attack can also use the CIDM to observe the precise details

of the attack, and the characteristic information and loca-

tion play the role of the attack.

Because of the CIDM, the CNN’s feature extraction

steps have been adjusted to a certain extent. As shown in

Eq. (1), the flow data’s tensors filtered by the CIDM can

output a set of data features To
n. The feature set To

n rep-

resents the nth feature T in the O-dimension. The CNN

provides each feature a corresponding weight wo
c during

the training process. This weight w describes the impor-

tance of the O-dimension’s features when the flow tensor is

classified as C. Thus, when the image is classified into

category C, the data feature set filtered by CIDM can be

classified as Dc based on the corresponding importance

provides to each feature during the CNN’s training process.

We used this importance to select the features that play a

more decisive and important role in the classification, as

shown in Eq. (1).

Fig. 5 Schematic diagram of the reconstructed CNN structure
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Fo (To
n) denotes the importance of the degree of feature Tn

in dimension O of the flow tensor. We performed identical

deformation similarly. The highest convolution layer’s

importance tensors of the detection model were not glob-

ally pooled. All the tensors were weighted and summed

based on the weights extracted from the weight matrix. The

classification importance degree Dc corresponding to the

original tensors can be obtained.

Because the introduced GAP layer can be used to reduce

the dimension of each dimension’s important tensors, when

it is finally necessary to classify the flow tensors, the

probability of being classified to C is expressed by Eq. (2).

Pc ¼
expðDcÞ

Rn expðDcÞ
ð2Þ

Pc represents the probability that the flow tensor is classi-

fied as C, and n represents the total number of categories

owned. To judge whether the tensor classification is cor-

rect, we retained the distribution of each class probability

to calculate various classification metrics subsequently.

3.2 Sample expander based on CB_SMOTE
algorithm

After all the attack flow tensors pass through the rede-

signed CNN, the CNN can accurately extract each attack

feature that plays a decisive role in classifying the attack

types. Therefore, each attack type’s full feature importance

degree can be obtained by accumulating the classification

importance degree of all the flow tensors in each category.

Then, we select the essential attack features extracted by

CNN under each category as the feature engineering of this

attack type. Because the quality and quantity of feature

engineering cannot meet adequate training requirements

and classification, it is necessary to expand and enhance

feature engineering effectively. In this study, a module

known as sample expander is designed for this purpose. For

this module, we propose a method based on the data

weights and distribution boundaries known as CB

SMOTE. This method can effectively expand and

enhance insufficient attack samples and take the corre-

sponding measures for boundary samples to avoid cases

where boundary samples are easily misclassified as noise.

This method can simplify the expansion steps and only

expand samples in the key positions that affect model

detection.

In the sample expander with the CB SMOTE algo-

rithm, we use the feature engineering of each attack type

obtained by the feature extractor to make a targeted

expansion. S ¼ Fi; i ¼ 1; 2. . .; nf g is used to build a set of

attack details for each category of data for the attack details

extracted by the CNN. Fi represents the feature engineering

matrix of attack i, which the importance obtained by the

CIDM screens out. Then, in all the flow tensors of each

attack type, the features of the corresponding position are

regarded as the feature engineering of this flow based on

the filtered importance and are saved to Fi. The following

matrix can be observed, where n represents the number of

features selected by each flow tensor and m denotes the

number of flow tensors under this attack type. To expand

the feature set of attack details of the minority classes, we

designed the CB_SMOTE method. The method extracts

the attack details from the same class’s attack detail set and

locates the exact position’s eigenvalues in fi. Then, it

extracts the eigenvalues of the same position and calculates

the average value. The average value in the data space is

recorded as the Fitting Center (FC) and is calculated as

shown in Eq. (3), where m here has the same meaning as

the m in Fi.

F ¼

f 11 f 21 � � � f n1
f 12 f 22 � � � f n2

..

. ..
. . .

. ..
.

f 1m f 2m � � � f nm

2
66664

3
77775

FC ¼ 1

m
Rm
j¼1fm

ð3Þ

The average distance from the features of the exact loca-

tion in the attack detail of this type to the FC point is

recorded as the average Fitting Distance (FD). This dis-

tance reflects the degree of aggregation in the details of this

type of attack. The smaller the value is, the more compact

is the distribution’s degree. Otherwise, the distribution is

sparse. The calculation is shown in Eq. (4).

FD ¼ 1

m
Rm
j¼1Disðfm;FCÞ ð4Þ

The over-sampling strategy’s key is to find the basic fea-

tures and iteratively generate new features. During sample

classification, samples at the boundary are the most prone

to classification errors. Thus, we must pay special attention

to more important weights to boundary samples. Here, we

define to facilitate the description, and this definition is

recorded as the Basic Feature (BF). The BF refers to the

feature in which the distance from the same position fea-

ture to the FC is greater than the FD. The method of
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calculation of BF is shown in Eq. (5), where T i represents

the feature set of the ith attack.

BF ¼ fTi j Disðfm;FCÞ[FDg ð5Þ

Subsequently, all the BFs in the exact location are found to

build a candidate set. The FC is designated as the reference

point to avoid adding too much interference into the gen-

erated feature. A line segment is formed using the attack

features and reference points in the candidate set. We

generate new attack features on the line segment to ensure

that the generated attack features are located inside the

correct class. Based on the basic principle of the SMOTE

algorithm, we combine the algorithm with the Generated

New Feature (GNF) as shown in Eq. (6):

GNF ¼ Si þ ðSi � FCÞ � r ð6Þ

where Si belongs to the candidate set sample and r is a

random number taken between [0,1].

Based on the previous description, the greater the dis-

tance between the attack features of the candidate set and

the features of FC is, the more likely these features are to

be misclassified. Thus, the number of features generated

for such a sample needs to be increased accordingly. This

is suitable for improving the classification model’s accu-

racy. According to the Euclidean distance calculation

method, the distance Dis(Si, FC) from each feature to the

FC’s feature can be obtained. Therefore, the sum of

Euclidean distances from each attack detail to FC is

obtained by accumulation. The synthesis is recorded as S.

Finally, we can obtain the distribution function P as shown

in Eq. (7).

Pi ¼
DisðSi;FCÞ

S
;
Xk
i¼1

Pi ¼ 1 ð7Þ

We can obtain the number of new samples generated for

each candidate attack feature by multiplying the probability

of the feature distribution by the total number of features.

The ICS attack data characteristics and the correlation

between information points are used to simplify the sample

expansion process. This indicates that samples can be

expanded for a specific location pixel of an individual

attack detail. The corresponding position pixel information

can be expanded based on the change in the first position.

This method retains ICS attack data characteristics, and it

is not easy to produce a large number of error data when

expanding the sample.

The following shows the implementation of the

CB_SMOTE. Assume few class sample sets

DS ¼ ðfi;NiÞ; i ¼ 1; 2; 3; . . .; nf g, where i represents the

number of attack detail categories for the samples, fi rep-

resents the collection of specific attack details, and Ni

represents the number of fi category attack details.

In the algorithm, the int() function is rounding up. The

balance factor is used to determine the total number of

generated samples, which can be initially set to one here

based on the requirement. This is to ensure a balanced
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relationship between the over-sampled dataset and majority

of sample sets.

3.3 Sample expander based on boundary
enhancement CB_SMOTE

Because the proposed method generates new features by

the random position on the line segment, if the

CB_SMOTE cannot develop enough new features near the

boundary, it does not enhance the quality of the boundary

sample. To perform the aforementioned operation, we

adopt the design idea of improving the boundary attack

data. The boundary data and their nearest original boundary

data are connected. The generated data between the

boundary data and the nearest neighbor data are defined as

the sample set to be generated. Therefore, the expanded

dataset is calculated using the aforementioned

CB_SMOTE algorithm. Thus, we can obtain sufficient

generated data to enhance the boundary attack data quality

and avoid misclassification.

In this study, the boundary dataset to be expanded is

selected based on the previous paragraph’s description. The

Real Center (RC) of the boundary attack dataset (the two

boundary midpoints of the dataset to be expanded), and the

result compared with the FC, the Difference Value (text-

biDV), is expressed by Eq. (8):

DV ¼ jRC� FCj;

where RC ¼ XboundaryL � XboundaryR

2

� � ð8Þ

where XboundaryL and XboundaryR are represented as the

boundary point at the left and right boundaries, respec-

tively. The distance of DV between RC and FC can be

calculated using Eq. (8). The existence of DV indicates that

there is an error between the actual and estimated values.

Therefore, the generated sample cannot be well represented

as the distribution of the original data. We use the sample

expander specially designed for the boundary in this study

to enhance the boundary of data distribution. The imple-

mentation of the algorithm used by the sample expander,

which is specially designed for the boundary, is described

later.

If the DV needs to be further expanded, new data are

calculated and generated by applying the aforementioned

algorithm. Each time the data are generated, the FC is
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calculated, and a new FC is obtained. Then, the distance

between the FC and RC is compared until the difference is

less than or equal to a particular threshold value. This can

effectively solve the classification accuracy of the bound-

ary features.

4 Experiment

In this study, relevant experiments were designed for

DEIDS and CB_SMOTE to verify whether the proposed

system and method can effectively improve the quantity

and quality of ICS attack data to improve the detection

accuracy of the intrusion detection system.

4.1 Dataset

There are two industrial control datasets selected in this

study. One is the safe water treatment (SWaT) system [36],

and the other is the test-bed designed by Rodofile [37]

(referred to as the S7 dataset in this study), which simulates

the actual mining and refining of the industrial process.

The SWaT system is an operating test-bed for water

treatment and a small-scale version of a large-scale modern

water treatment plant. The water purification process in

SWaT is divided into six sub-processes. Experiments are

performed on the SWaT system to study the network attack

and the corresponding system response. In the process of

the SWaT data collection, four major types of attacks

occurred, including 36 sub-type attacks. Table 1 indicates

the types of attacks, sensors, executors that may be

attacked in different water treatment processes and distri-

bution proportion of each type of attack. There are 449919

pieces of data in the experiment, of which 395298 and

54621 are standard and attack data, respectively. To

facilitate the test, 10000 pieces of data are randomly

selected based on the imbalance ratio of each sub-type

attack. Among them, 8000 and 2000 are the training and

test data, respectively.

In this study, another set of industrial control network

datasets designed by Rodofile was used for experiments

(S7 dataset). This simulates the actual mining and refinery

of industrial processes. As shown in Table 2, we select

approximately 10h of data in the dataset, including 30

cycles and 55 attacks (excluding flooding attacks), and the

original normal traffic is approximately 40000. We extract

the original payload of the industrial control network traffic

from the S7 protocol packet. The original data include

several complete communication processes between the

man-machine interface and primary control programmable

logic controller(PLC). The attack process in this dataset is

to send attack commands to the master PLC by connecting

the attacker to the industrial control network, as shown in

Table 3.

In the experimental setup of this study, the S7 dataset

retains all the 55 pieces of the data and replays them based

on their respective attack types. A total of 1200 attack data

are obtained and are proportionally divided into 1000 and

200 as training and test sets, respectively. Then, the data

extracted from the standard data and 1000 pieces of the

attack data are integrated into 4000 and 800 pieces of flow

as the training and the test sets, respectively.

4.2 Model processing and training

To solve the uneven distribution of industrial control

samples, CNN must extract accurate attack details as fea-

tures. Thus, we reconstruct and improve several classical

CNN methods. First, the fully connected layer in the tra-

ditional model is wholly removed. The highest convolution

layer in the model is directly connected to the weight

matrix through the global average pooling operation. The

format of the weight matrix is as follows:

weight ¼

w11 w12 � � � w1n

w21 w22 � � � w2n

..

. ..
. . .

. ..
.

wm1 wm2 � � � wmn

2
66664

3
77775

where m denotes the number of dimensions or filters of the

highest convolution layer and n is the final classification

number.

The weight matrix can replace the classification effect of

the fully connected layer. It will not affect the location of

the target in the convolution layer, similar to the fully

connected layer’s operation. The CNN’s editability is used

to adjust the convolution part’s size parameters to adapt to

the traffic tensors developed here. The convolution pro-

cess’s stride is controlled to one to reduce the information

loss and further ensure the model’s effectiveness. The CNN

Table 1 SWaT attack type,

attack distribution and location

information table

Attack type Process Attack sensors Attack executer Attack times

SSSP P1-P5 LIT101, MV101 MV101, P101, P102 26

SSMP P1, P2, P5 AIT202, P201 MV101, P101, P102 4

MSSP P6 AIT504, P501 – 2

MSMP P6 AIT504, P501 – 4
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structure designed in this study is shown in the following

table. We retain the original convolution process and

replace the fully connected layer of the CNN model with

CIDM to make the reconstructed CNN-CIDM. The CNN-

CIDM under different structures is tested, and the test

results are shown in Table 4.

Based on the confusion matrix definition, we use the

calculated values of ACC, FNR, and FPR as the measure-

ment metrics.

ACC ¼ FN

TPþ FN
ð9Þ

FNR ¼ FN

TPþ FN
ð10Þ

FPR ¼ FP

FPþ TN
ð11Þ

TPR ¼Recall ¼ TP

TPþ FN
ð12Þ

Table 2 Types and distribution

of abnormal attack behavior in

the S7 dataset (section)

Time Attack Time Attack Time Attack Time Attack Time Attack

2980 1 6198 5 8280 11 14517 5(F) 17157 8

3420 5 6237 6 8489 3(F) 15457 8(F) 17216 8

3999 8 6796 8 8959 7(F) 15861 6 20166 8

4231 3 6826 8 9648 10(F) 16575 8 21402 8

4787 7 7057 3 9917 2(F) 16605 8 21948 6

5413 10 7146 3 10672 6(F) 16655 8 21952 8

5659 1 7460 7 12053 8(F) 16753 8 22943 2

5718 2 7648 7 12680 1(F) 17087 8 22966 4

Table 3 Situation of the attack

types in the S7 dataset
Label Attack name Control domain Address Flow type

1 Conveyor belt off 0 9 83 0 9 0330 CBOF

2 Conveyor belt on 0 9 83 0 9 0331 CBON

3 Conveyor belt-gate change direction 0 9 83 0 9 0332 CB-GCD

4 Conveyor belt-gate reset 0 9 83 0 9 0334 CBR

5 Water tank off 0 9 83 0 9 0328 WTO

6 Water tank on auto 0 9 83 0 9 0329 WTOA

7 Water tank on manu 0 9 83 0 9 032a WTOM

8 Reactor off 0 9 83 0 9 0320 ROF

9 Reactor on 0 9 83 0 9 0322 RON

10 Change upper-threshold 0 9 83 0 9 0040 CU-T

11 Change lower-threshold 0 9 83 0 9 0060 CL-T

12 Global reset 0 9 83 0 9 0339 GR

13 Emergency stop 0 9 83 0 9 033b ES

Table 4 Structure of the different models with CIDM

CNN-CIDM ResCNN-CIDM

Conv1 Conv2d-96, s = 2, kernel_size = 7, padding = 1 Conv1 Conv2d-32, s = 1, kernel_size = 3, padding = 1, bias = False

MaxPooling 3*3, MaxPooling, s = 2

Conv2 Conv2d-256, s = 2, kernel_size = 3 Conv2 [3*3 32] [3*3 32]*2

MaxPooling Conv3 [3*3 128] [3*3 128]*2

Conv3 Conv2d-384, s = 2, kernel_size = 2 Conv4 [3*3 256] [3*3 256]*2

Global average pooling Global average pooling

Weight layer Weight layer
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Precision ¼ TP

TPþ FP
ð13Þ

F1� value ¼ ð1þ bÞ � Recall � Precision
b � Recallþ Precision

ð14Þ

RERR ¼ 1� 1� ACCnew

1� ACCpre
ð15Þ

where TP is the number of normal traffic that is classified

as usual, FP is the number of abnormal traffic that is

classified as usual, TN is the number of normal traffic

classified as abnormal, and FN is the number of abnormal

traffic classified as abnormal. The F1-value combines the

output results of precision and recall. The value ranges

from zero to one, where one and zero represent the model’s

best and worst outputs, respectively. The value of b is

usually one.

To better measure this method’s advantages, we use the

relative error rate reduction(RERR) to assess the improve-

ment in the accuracy after using our approach to enhance

the dataset [38]. ACCpre denotes the accuracy without using

our method, and ACCnew donates the metric value using our

form. The RERR can effectively highlight the improvement

or reduction in intrusion detection accuracy before and

after using our method to show our approach’s advantages

more quantitatively and intuitively.

Table 5 shows the training and testing results of two

original models and two reconstructed models with CIDM.

Each model was trained for 20 epochs, and each model was

tested 15 times. The results of Table 5 show that the

model’s detection accuracy after reconstruction is better

than that of the model before reconstruction, and the

accuracy of different models and the F1-value of the final

model have reached a very objective value. This shows that

the model has been thoroughly trained and can extract

relatively reliable features. Therefore, we choose CNN-

CIDM and ResCNN-CIDM models as our experimental

model.

4.3 Experiment and results

We choose the S7 dataset as the experimental sample

selected by the parameters. Table 5 reveals that there is not

much difference between the CNN-CIDM and ResCNN-

CIDM in the process of feature extraction. Therefore, we

used CNN-CIDM as the experimental model with an

excellent comprehensive training effect.

4.3.1 Verification of the influence of the boundary distance
difference on data expansion

To find the best threshold setting of the boundary FC and

DV, the following experiments are designed. The DV is set

to 0.01, 0.02, 0.05, 0.1, 0.2, and 0.5, respectively. Based on

these six different DV values, six different boundary-en-

hanced generated datasets can be obtained. The dataset is

used to train the model. Then, cross-verification is per-

formed using the actual attack test set for detection. The

detection results shown in Table 6 are obtained.

The results in Table 6 show that the overall detection

accuracy, FPR and FNR of the model without data

enhancement are weaker than those of the model with

boundary processing. This indicates that the sample has

been further enhanced, and the quality of the attack data

has been drastically improved compared to the one before

the expansion. The boundary enhancement strategy can

help the model to classify the attack data accurately. Then,

by observing the different boundary detection results, when

we set the DV to 0.01, the model’s detection accuracy,

FNR, FPR, and the ability to identify the attack categories

all achieve optimal results. Therefore, in all the experi-

ments, DV is set to 0.01.

4.3.2 Verification of the universality of the CB_SMOTE
algorithm

The improvement in accuracy usually does not exhaus-

tively illustrate the effectiveness of the method. Usually,

the model’s overall accuracy is likely to be high; however,

the precision of single-class attacks is not high. To further

verify the method’s effectiveness, we use CB_SMOTE to

expand the S7 data separately for each attack category, and

the other 12 categories that have not been expanded are

replayed and integrated. Then, we merge the expanded

attack data and the other twelve kinds of attack data with

Table 5 Accuracy, detection

rate, FNR, and FPR of different

models by using the S7 dataset

Model Accuracy /% Recall /% F1-value

Max Avg Min Max Avg Min

CNN 96.072 94.172 92.266 96.061 94.163 92.259 0.9417±0.019

CNN-CIDM 96.497 94.562 92.500 96.451 94.557 92.381 0.9456–0.021
ResCNN 97.608 95.437 93.322 97.607 95.356 93.212 0.9540±0.022

ResCNN-CIDM 97.702 95.544 93.966 97.679 95.512 93.856 0.9553±0.021

Bold text emphasize the superiority of this experimental data over the other comparison groups
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the original training set to form a new training set for

training. The actual data are used for detection. The test

results are shown in Table 7.

As shown in Table 7, the method of CB_SMOTE is not

universality. The model’s detection accuracy is not nega-

tively affected by the training with the generated data, and

the FNR and FPR are reduced accordingly. Moreover, the

model’s recall rate and precision are also shown in this

experiment, and the F1-value is calculated. The data show

that the model trained by different generated samples can

still achieve very high accuracy. In terms of the output

data’s feedback results, other models trained by the gen-

erated samples can stabilize the F1-value above 0.94. Thus,

the model can achieve better classification results. There is

no considerable difference between the model trained by

the generated samples and the model trained using the

actual data. When there is a lack of experimental data, the

generation method proposed here can solve the data

shortage and sample imbalance.

4.3.3 Comparison with the common expanded algorithms

To further verify the superiority of the proposed method,

we compare the proposed method with SMOTE-related

methods (SMOTE and borderline-SMOTE) and many

extended sample methods based on the integrated

principles SMOTE-Boost and cluster-based under-sam-

pling with boosting(CUS-Boost). The results of the com-

parison are presented in Table 8.

Table 8 shows that several different methods can

improve the classification accuracy of other models, reduce

the FNR and FPR of the model, and significantly improve

the intrusion detection accuracy. Thus, several methods can

make up for the accuracy of the model detection caused by

the lack of information by generating a small number of

samples. Comparing the two different datasets, we observe

that the CB_SMOTE proposed in this study is feasible.

Compared with the other two SMOTE-based methods, the

FNR and FPR of model classification are significantly

reduced and have obvious advantages in improving the

accuracy of attack detection. Moreover, several methods of

integrated ideas are compared. The results show that the

approach we have proposed is better than the other tech-

niques of all metrics.

As indicated by the experimental results of several

detection metrics, our method has distinct advantages in

both data sets. This is because our method locates the data

boundaries and the areas where the data need to be gen-

erated more accurately.

Fig. 6 shows that the traditional dataset is divided into

three areas: safe area, overlapping area and noise area. The

most challenging place for the classifiers to distinguish is

Table 6 Influence of setting

different DV values on the

testing metrics

DV type Detection rate /% FNR /% FPR /% ACC/%

Without boundary enhancement 80.87 1.79 1.55 97.51

DV=0.01 87.28 1.17 0.86 99.09

DV=0.02 86.74 1.23 0.91 99.07

DV=0.05 86.33 1.25 0.92 98.91

DV=0.1 86.51 1.24 0.89 98.95

DV=0.2 85.49 1.26 1.14 98.88

DV=0.5 85.47 1.31 1.18 98.83

Table 7 Verification of the

detection accuracy with

different generated data

Flow type ACC /% FNR /% TPR /% Recall /% Precision /% Detection rate /% F-value

CBOF 98.71 1.62 1.03 98.33 98.00 90.76 0.9816

CBON 99.21 1.27 0.87 97.78 94.46 89.29 0.9609

CB-GCD 99.05 1.32 0.92 97.78 98.00 89.71 0.9789

CBR 99.16 1.43 0.96 97.61 97.64 91.01 0.9763

WTO 99.25 1.29 0.91 98.61 96.73 91.36 0.9766

WTOA 99.37 1.23 0.89 99.00 95.07 91.09 0.9700

WTOM 99.46 1.17 0.87 99.85 94.13 93.32 0.9691

ROF 99.09 1.31 0.93 98.05 96.16 89.97 0.9710

RON 99.18 1.31 0.95 99.40 91.73 90.31 0.9541

CU-T 98.91 1.39 0.95 96.80 97.39 90.04 0.9709

CL-T 98.97 1.38 0.94 91.00 98.27 89.94 0.9450

GR 99.36 1.23 0.88 99.18 97.55 89.96 0.9836
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the overlapping area rather than the noise and safe areas.

Therefore, as a data-level oversampling method, data

should be generated for the overlapping areas. However,

the traditional method has such a problem: the SMOTE is

performed on three areas. Therefore, the generated samples

are distributed in each area. Although the data generated by

this method does not change the distribution of the original

data, they cannot help improve the classification ability of

the classifier. Consequently, borderline-SMOTE does bet-

ter and plays an essential role in improving the

Table 8 Accuracy, detection

rate, FNR and FPR of the

different methods by using the

S7 and SWaT dataset

Model/Method CNN- CIDM ResCNN-CIDM

MAX AVG MIN MAX AVG MIN

S7 SMOTE Accuracy/% 97.98 97.29 96.57 97.36 96.67 95.47

FNR/% 2.36 2.03 1.88 2.27 2.11 1.93

FPR/% 2.95 2.74 2.56 1.97 1.78 1.52

DR/% 94.68 93.44 91.58 96.73 96.50 95.13

Borderline- SMOTE Accuracy/% 97.93 97.33 96.81 97.50 96.72 96.68

FNR/% 1.95 1.71 1.58 1.94 1.63 1.56

FPR/% 1.73 1.56 1.39 1.60 1.41 1.35

DR/% 95.87 95.41 95.28 96.55 95.84 95.53

SMOTE- boost Accuracy/% 97.35 96.92 96.69 97.48 96.62 95.71

FNR/% 2.47 2.38 2.27 2.32 1.83 1.41

FPR/% 2.99 2.74 2.48 2.63 2.27 1.82

DR/% 94.61 93.58 93.18 97.28 96.84 95.67

CUS- boost Accuracy/% 97.55 97.13 96.98 96.72 95.49 95.16

FNR/% 2.41 2.36 2.25 2.65 2.54 2.42

FPR/% 2.98 2.85 2.49 3.08 2.91 2.87

DR/% 94.81 93.92 93.58 96.55 95.19 94.98

Our method Accuracy/% 98.72 98.29 97.78 98.93 98.03 97.49

FNR/% 1.44 1.32 1.29 1.75 1.34 1.26

FPR/% 0.98 0.84 0.79 1.05 0.91 0.85

DR/% 96.01 95.76 95.22 98.67 97.93 97.34

SWaT SMOTE Accuracy/% 99.71 95.02 88.67 97.50 94.97 89.54

FNR/% 4.74 2.59 1.05 4.85 2.39 1.26

FPR/% 4.75 3.66 0.95 4.83 2.28 1.20

DR/% 98.94 94.62 88.07 97.04 94.83 89.29

Borderline- SMOTE Accuracy/% 96.96 94.14 92.04 97.46 95.67 93.05

FNR/% 4.88 2.72 2.51 5.02 3.05 2.07

FPR/% 5.07 4.36 3.55 5.75 3.63 2.16

DR/% 95.37 93.58 91.05 97.08 94.93 92.71

SMOTE- boost Accuracy/% 97.32 96.54 96.08 97.92 96.52 95.81

FNR/% 2.08 1.69 1.37 2.13 1.59 1.18

FPR/% 3.36 3.07 2.64 3.45 3.15 2.23

DR/% 95.55 94.62 94.35 97.51 96.45 95.51

CUS- boost Accuracy/% 97.01 96.42 96.00 97.22 96.35 96.06

FNR/% 2.11 1.78 1.55 2.06 1.84 1.47

FPR/% 3.35 3.33 3.03 3.29 3.09 2.95

DR/% 94.88 94.57 94.32 96.92 96.27 95.54

Our method Accuracy/% 99.15 98.88 98.20 99.69 98.70 98.13

FNR/% 1.74 1.37 0.37 1.66 1.45 0.75

FPR/% 2.00 1.00 0.25 1.75 0.98 0.69

DR/% 98.50 98.20 97.88 99.13 98.56 98.11

Bold text emphasize the superiority of this experimental data over the other comparison groups
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classification ability of the classifier. However, it only acts

on the boundary of the overlapping area of the data set.

This changes the distribution of the original data and

negatively impacts the authenticity and integrity of the data

set. Methods such as CUS-Boost and SMOTE-Boost are

not oversampling method they are under-sampling meth-

ods. For datasets with the smallest amount of data, it is

challenging to be effective.

Our method differs from other methods described above.

First, our method is used only in the overlapping area. In

contrast to the SMOTE method, our method follows the

original distribution of the data set for data expansion.

Second, our method generates data around the FC of the

dataset, reducing the impact of the generated data on the

original data distribution. Finally, our method borrows the

idea of borderline-SMOTE, which is appropriately aug-

mented for the boundaries of the dataset.

Furthermore, to further verify if our method has a strong

advantage, based on the RERR metric introduced in this

study, we observe the improvement in the intrusion

detection model’s detection accuracy using different

methods to expand the data. As shown in Table 9, when the

intrusion detection model is trained, the detection accuracy

of the attack dataset generated by our method is 34%

higher than the dataset expanded by other methods. The

experimental results show that the method designed in this

study improves detection accuracy and is suitable for dif-

ferent types of detection models. The proposed method can

achieve more accurate and high-quality data than the

commonly used sample expansion algorithm, enhancing

the robustness and accuracy of the intrusion detection

models.

Nowadays, more and more latest studies focus on big

data industrial environment and the process of industrial

production [1–5]. There are many kinds of attacks in

industrial control systems and industrial control networks,

but the number of attack samples is too few. In essence,

this kind of problem cannot be classified as a big data

problem. In other words, it is challenging to solve such

problems by using the current big data method, such as

intrusion detection of the industrial control system. Our

proposed method solves the problem of few attack sample

data such as industrial control systems and makes up for

the gap of existing traditional methods.

After a comprehensive analysis of the above results, it is

not difficult to find that our method has obvious advantages

over the data-level methods. However, no method is per-

fect, and our method is no exception, which also has some

limitations, which can be summed up as follows:

• Unknown traffic attack At present, our method can well

detect known traffic attacks, but our method may not

have the ability to detect unknown traffic attacks

accurately. This is also one of the key points of our

future research.

• Total attack traffic To some extent, our method can

alleviate the negative impact caused by the lack of

attack traffic data in IDS. But when the total amount of

Fig. 6 Data distribution classification schematic

Table 9 RERR of the different

models by using the S7 dataset

and SWaT

Model/Method CNN-CIDM ResCNN- CIDM

ACC-AVG/% RERR/% ACC-AVG/% RERR/%

S7 Our method 98.29 – 98.03 –

SMOTE 97.29 36.27 96.67 40.84

Borderline-SMOTE 97.33 34.84 96.72 39.94

SMOTE-boost 96.92 44.48 96.62 41.72

CUS-boost 97.13 40.42 95.49 56.32

SWaT Our method 98.88 – 98.70 –

SMOTE 95.02 77.51 94.97 74.16

Borderline-SMOTE 94.14 80.89 95.67 69.98

SMOTE-boost 96.54 67.63 96.52 62.64

CUS-boost 96.42 68.72 96.35 64.38

Bold text emphasize the superiority of this experimental data over the other comparison groups
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attack traffic is very extreme, such as zero-shot, the

expansion effect of our method is not so obvious.

5 Conclusion and limitations

In this study, we propose a new IDS named DEIDS to

solve the problem of low precision in intrusion detection

caused by the shortage and low-quality of attack traffic data

in ICSs. The system mainly solves the difficulty in

achieving a good intrusion detection accuracy, because the

ICS attack data is imbalanced distribution. In this study, the

CNN’s structure is adjusted and the reconstructed CNN

model can extract more accurate features of the attack data.

A new data expansion method named CB_SMOTE is

designed based on SMOTE, which is suitable for the ICS

attack data. This method can effectively use the extracted

accurate features of the attack data to enhance and expand

the data, thereby enabling the CNN to retrain and update

the proposed DEIDS. The generated attack data are used to

train the intrusion detection model, and all the detection

metrics are significant. This indicates its superiority over

other traditional sample expansion algorithms. The analysis

of the experimental data shows that the CB_SMOTE

method proposed in this study can effectively solve the

problems of insufficient ICS attack data and CNN learning

difficulties when the attack data are insufficient. The

algorithm designed in this study can be expanded and

enhanced for different ICS attack datasets, and it has a

certain universality as indicated by the related experiments.

The experimental results also show that DEIDS can

effectively enhance the characteristics of the attack data to

improve the quality of the ICS attack data, and high-quality

data can train the model more effectively. At present, we

still need to conduct further research such as for defining

the exact boundary of the data distribution and ensuring the

integrity and authenticity of the generated data.

Acknowledgements Foundation item: National Key Research and

Development Project, China (Key Technologies and Applications of

Security and Trusted Industrial Control System,

NO.2020YF2009500), Natural Science Foundation of Beijing

Municipality, China (NO.19L2020).

Author Contributions Haoran Gu was involved in conceptualization,

methodology, writing—original draft and also performed software.

Haoran Gu, Yingxu Lai and Yipeng Wang performed investigation.

Haoran Gu, Motong Sun and Beifeng Mao performed data processing,

visualization and validation. Yingxu Lai, Yipeng Wang and Jing Liu

performed supervision and writing—review and editing. Yingxu Lai

and Yipeng Wang were involved in formal analysis. Yingxu Lai

performed project administration.

Declaration

Conflict of interest The authors declare that they have no known

competing financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Meng X, Zhang Y, Qiao J (2021) An adaptive task-oriented RBF

network for key water quality parameters prediction in wastew-

ater treatment process. Neural Comput Appl

33(17):11401–11414. https://doi.org/10.1007/s00521-020-05659-

z

2. Tang J, Xia H, Zhang J, Qiao J, Yu W (2021) Deep forest

regression based on cross-layer full connection. Neural Comput

Appl 33(15):9307–9328. https://doi.org/10.1007/s00521-021-

05691-7

3. Wang B, Mao Z (2020) Detecting outliers in industrial systems

using a hybrid ensemble scheme. Neural Comput Appl

32(12):8047–8063. https://doi.org/10.1007/s00521-019-04307-5

4. Chen Y, Ping Y, Zhang Z, Wang B, He S (2021) Privacy-pre-

serving image multi-classification deep learning model in robot

system of industrial iot. Neural Comput Appl 33(10):4677–4694.

https://doi.org/10.1007/s00521-020-05426-0

5. Wan J, Li J, Hua Q, Celesti A, Wang Z (2020) Intelligent

equipment design assisted by cognitive internet of things and

industrial big data. Neural Comput Appl 32(9):4463–4472.

https://doi.org/10.1007/s00521-018-3725-5

6. Wang Y, Fan K, Lai Y, Liu Z, Zhou R, Yao X, Li L (2017)

Intrusion detection of industrial control system based on modbus

TCP protocol. In: 13th IEEE International symposium on

autonomous decentralized system, ISADS 2017, Bangkok,

Thailand, March 22-24, pp 156–162. IEEE Computer Society.

https://doi.org/10.1109/ISADS.2017.29

7. Antón SD, Kanoor S, Fraunholz D, Schotten HD (2018) Evalu-

ation of machine learning-based anomaly detection algorithms on

an industrial modbus/tcp data set. In: Doerr, S., Fischer, M.,

Schrittwieser, S., Herrmann, D. (eds.) Proceedings of the 13th

international conference on availability, reliability and security,

ARES 2018, Hamburg, Germany, August 27-30, pp 41–1419.

ACM. https://doi.org/10.1145/3230833.3232818

8. Schuster F, Paul A, Rietz R, König H (2015) Potentials of using

one-class SVM for detecting protocol-specific anomalies in

industrial networks. In: IEEE symposium series on computational

intelligence, SSCI 2015, Cape Town, South Africa, December

7-10, pp 83–90. IEEE. https://doi.org/10.1109/SSCI.2015.22

9. Liu W, Qin J, Qu H (2018) Intrusion detection algorithm of

industrial control network based on improved one-class support

vector machine. J Comput Appl 38(5):1360–1365

10. Fang Y, Ming LI, Wang P, Jiang X, Zhang X (2018) Intrusion

detection model based on hybrid convolutional neural network

and recurrent neural network. J Comput Appl 38(10):2903–7

Neural Computing and Applications (2022) 34:9793–9811 9809

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00521-020-05659-z
https://doi.org/10.1007/s00521-020-05659-z
https://doi.org/10.1007/s00521-021-05691-7
https://doi.org/10.1007/s00521-021-05691-7
https://doi.org/10.1007/s00521-019-04307-5
https://doi.org/10.1007/s00521-020-05426-0
https://doi.org/10.1007/s00521-018-3725-5
https://doi.org/10.1109/ISADS.2017.29
https://doi.org/10.1145/3230833.3232818
https://doi.org/10.1109/SSCI.2015.22


11. Chu A, Lai Y, Liu J (2019) Industrial control intrusion detection

approach based on multiclassification googlenet-lstm model.

Secur Commun Networks 2019:6757685–1675768511. https://

doi.org/10.1155/2019/6757685

12. Terai A, Abe S, Kojima S, Takano Y, Koshijima I(2017) Cyber-

attack detection for industrial control system monitoring with

support vector machine based on communication profile. In: 2017

IEEE European symposium on security and privacy workshops,

EuroS&P Workshops 2017, Paris, France, April 26-28,

pp 132–138. IEEE. https://doi.org/10.1109/EuroSPW.2017.62

13. Lai Y, Zhang J, Liu Z (2019) Industrial anomaly detection and

attack classification method based on convolutional neural net-

work. Secur Commun Networks 2019:8124254–1812425411.

https://doi.org/10.1155/2019/8124254

14. Tang TA, Mhamdi L, McLernon DC, Zaidi SAR, Ghogho M,

(2016) Deep learning approach for network intrusion detection in

software defined networking. In: 2016 International conference

on wireless networks and mobile communications, WINCOM

2016, Fez, Morocco, October 26-29, pp 258–263. IEEE. https://

doi.org/10.1109/WINCOM.2016.7777224

15. Vinayakumar R, Soman KP, Poornachandran P, (2017) Applying

convolutional neural network for network intrusion detection. In:

2017 International conference on advances in computing, com-

munications and informatics, ICACCI 2017, Udupi (Near Man-

galore), India, September 13-16, pp 1222–1228. IEEE. https://

doi.org/10.1109/ICACCI.2017.8126009

16. Bo D, Xue W, (2016) Comparison deep learning method to tra-

ditional methods using for network intrusion detection. In: IEEE

International conference on communication software networks

17. Naseer S, Saleem Y, Khalid S, Bashir MK, Han J, Iqbal MM, Han

K (2018) Enhanced network anomaly detection based on deep

neural networks. IEEE Access 6:48231–48246. https://doi.org/10.

1109/ACCESS.2018.2863036

18. Liu S, Zhang J, Xiang Y, Zhou W (2017) Fuzzy-based infor-

mation decomposition for incomplete and imbalanced data

learning. IEEE Trans Fuzzy Syst 25(6):1476–1490. https://doi.

org/10.1109/TFUZZ.2017.2754998

19. Gu X, Chung F, Ishibuchi H, Wang S (2017) Imbalanced TSK

fuzzy classifier by cross-class bayesian fuzzy clustering and

imbalance learning. IEEE Trans Syst Man Cybern Syst

47(8):2005–2020. https://doi.org/10.1109/TSMC.2016.2598270

20. Khabsa M, Elmagarmid AK, Ilyas IF, Hammady H, Ouzzani M

(2016) Learning to identify relevant studies for systematic reviews

using random forest and external information. Mach Learn

102(3):465–482. https://doi.org/10.1007/s10994-015-5535-7

21. Tao X, Li Q, Ren C, Guo W, Li C, He Q, Liu R, Zou J (2019)

Real-value negative selection over-sampling for imbalanced data

set learning. Expert Syst Appl 129:118–134. https://doi.org/10.

1016/j.eswa.2019.04.011

22. Choi JS, Ha MK, Trinh TX, Yoon TH, Byun HG (2018) Towards

a generalized toxicity prediction model for oxide nanomaterials

using integrated data from different sources. Sci Rep 8(1):6110

23. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002)

SMOTE: synthetic minority over-sampling technique. J Artif

Intell Res 16:321–357. https://doi.org/10.1613/jair.953

24. Han H, Wang W, Mao B (2005): Borderline-smote: a new over-

sampling method in imbalanced data sets learning. In: Huang, D.,

Zhang, X.S., Huang, G. (eds.) Advances in intelligent computing,

international conference on intelligent computing, ICIC 2005,

Hefei, China, August 23-26, Proceedings, Part I. Lecture Notes in

Computer Science, 3644, pp 878–887. Springer, ( 2005). https://

doi.org/10.1007/11538059_91

25. He H, Bai Y, Garcia EA, Li S (2008) ADASYN: adaptive synthetic

sampling approach for imbalanced learning. In: Proceedings of the

international joint conference on neural networks, IJCNN 2008,

Part of the IEEE World Congress on Computational Intelligence,

WCCI 2008, Hong Kong, China, June 1-6, pp 1322–1328. IEEE.

https://doi.org/10.1109/IJCNN.2008.4633969

26. Jo T, Japkowicz N (2004) Class imbalances versus small dis-

juncts. SIGKDD Explor 6(1):40–49. https://doi.org/10.1145/

1007730.1007737

27. Liu Y, Liu S, Liu T, Wang Z (2014) New oversampling algorithm

db\_smote. Comput Eng Appl

28. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley

D, Ozair S, Courville AC, Bengio Y (2014) Generative adver-

sarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawr-

ence, N.D., Weinberger, K.Q. (eds.) Advances in neural

information processing systems 27: Annual conference on neural

information processing systems 2014, December 8-13, Montreal,

Quebec, Canada, pp 2672–2680. https://proceedings.neurips.cc/

paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.

html

29. Mukherjee S, Asnani H, Lin E, Kannan S ( 2019) Clustergan:

Latent space clustering in generative adversarial networks. In:

The Thirty-Third AAAI conference on artificial intelligence,

AAAI 2019, The Thirty-First innovative applications of artificial

intelligence conference, IAAI 2019, The Ninth AAAI symposium

on educational advances in artificial intelligence, EAAI 2019,

Honolulu, Hawaii, USA, January 27—February 1, pp 4610–4617.

AAAI Press. https://doi.org/10.1609/aaai.v33i01.33014610

30. Wei X, Gong B, Liu Z, Lu W, Wang L ( 2018) Improving the

improved training of wasserstein gans: A consistency term and its

dual effect. In: 6th International conference on learning repre-

sentations, ICLR 2018, Vancouver, BC, Canada, April 30—May

3, conference track proceedings. OpenReview.net. https://open

review.net/forum?id=SJx9GQb0-

31. Kingma DP, Welling M ( 2014) Auto-encoding variational bayes.

In: Bengio, Y., LeCun, Y. (eds.) 2nd international conference on

learning representations, ICLR 2014, Banff, AB, Canada, April

14-16, conference track proceedings. arXiv: org/abs/1312.6114

32. Kingma DP, Dhariwal P (2018) Glow: generative flow with

invertible 1x1 convolutions. In: Bengio, S., Wallach, H.M.,

Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.)

Advances in Neural Information Processing Systems 31: Annual

Conference on Neural Information Processing Systems 2018,

NeurIPS 2018, December 3-8, Montréal, Canada,
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