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Abstract
Spatial transform networks (STN) are widely used since they can transform images captured from different viewpoints to

obtain an objective image. These networks use an image captured from any viewpoint as input and the desired image as a

label. Usually, these images are segmented, but this could lead to convergence problems if the percentage of overlap

between the segmented images is quite low. In this paper, we propose a new training method to facilitate the convergence

of a STN in these cases, even when there is no overlap between the object’s projections in the two images. This new

strategy is based on the incorporation of the distance transformation images to the training, thus increasing the useful image

information to provide gradients in the loss function. This new training strategy has been applied to a real case, with images

of Caenorhabditis elegans, and to a simulated case, which uses artificial images to ensure that there is no overlap between

the images used for the assays. In the assays carried out with these datasets, we have shown that the training convergence is

strengthened, reaching a precision level for IoU metric of 0.862 and 0.984, respectively, and the computational cost has

been maintained compared to the assay with segmented images, for the real case.
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1 Introduction

Since Jaderberg et al. [1] developed the spatial transformer

network (STN), it has been employed to solve a multitude

of tasks. In most cases, it is used as an intermediate phase

that adapts the input images to tackle problems with greater

efficiency. Among some of the most frequent problems in

which this type of network is used, are the classification

task [1–4], the object detection task [5–8] or the corre-

spondence task [9, 10].

On developing STNs, Jaderberg et al. [1] presented its

use for the classification task, in which the objective of the

STN is to transform the input image to make the study

element more easily identifiable, in this case a dataset such

as MNIST or Street View House Numbers (SVHN) to

identify numbers and so on CUB-200-2011 birds dataset to

identify the parts of birds. As in the two first datasets, the

STN were also used in [2] to classify numbers printed on

football players’ jerseys. And, beyond the classification of

numbers the STNs have been used in many other areas

such as the classification of traffic signs in [3], or, in the

field of the medicine, to recognize tumor cells in [4].

For the object detection task, the purpose of STN is to

transform the image so that it is easier to recognize the

characteristics of the object to be identified. For example,

in [5] thermal images of power stations were transformed

to detect the different elements, or in [6] where the people

in images captured with fish-eyes cameras were detected.

They have also been used to detect a section of images that

have some special characteristic in [7]. Or for crowd

counting in [8], but in this case the STN have been applied

to a video dataset instead of an image dataset. To do so,

they divide the video frames into blocks and seek to predict

the trajectory of the people in each block. Then they apply

the corresponding transformation and compare this new

activation map with the ground truth for the next frame, if

it differs, it means that the crowd has changed.

Finally, regarding the correspondence task, which is the

application studied in this paper, the STNs try to modify

the appearance of an image to transform into another
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appearance used as a ground truth. This application is

explained in [9], which seeks to give a more realistic

appearance to synthetic images of the fruit flies D. rerio

and the worm C. elegans. To do so, synthetic images have

been segmented as input and real images segmented as

target, thus, the STN calculates the transformation required

to give to the synthetic images the appearance of real

images. And we also find this problematic in [10], where

researches try to obtain a 3D model of a face from infor-

mation taken from images of the same person from dif-

ferent viewpoints.

Here, the problem we study is similar to that posed in

[9], in that the STN is used to transform images by seg-

menting the object of interest. But unlike [9], here we seek

to transform images in which the overlap of the object’s

projections between the input images and the target image

is not ensured.

Images of C. elegans have been used as a dataset. These

were obtained using two micro-cameras with different

viewpoints. Of these two cameras, one of them, which will

be referred to as Micro 1 from hereon, captures images in

which the worm is centered, while the second, which we

will call Micro 2, captures images in which the worm has

been displaced slightly toward the top right corner.

The principal objective of the STN is to give the images

obtained by Micro 2 a similar appearance to those of Micro

1, to solve the correspondence problem and to be able to

use these images in future works.

In our case, as seen in Fig. 1, the worm represents a

small portion of the images there may be no overlap

between the projections of the two worms depending on

their position.

To avoid this, in the first instance, it was tried to use

images of distances to the edges of the object to perform

the training. The use of this type of images, which is novel

in itself, increase the useful image information allowing

convergence in these cases, but the precision is reduced.

For this reason, several new strategies have been pro-

posed to favor the convergence in these cases and avoid

this loss of precision. The one that gives the best result

consists of a hybrid strategy that begins training alternately

with transformed distance images and segmented images

and switches to only segmented images to achieve better

precision when convergence is already assured.

2 Methods

2.1 Network architecture

The structure of the STN is divided in two different parts.

On the one hand, a localization neural network, and on the

other hand, a grid generator that uses the result of the first

one to obtain the grid and apply it to the corresponding

images to obtain the desired image, as can be seen in

Fig. 2.

The network employed for this study was the same as in

[9]. In it, the first part is responsible for locating the pixels

of the object of interest within the image. In turn, the

localization network can be divided into two stages.

The first stage is made up of a sequence of convolutional

layers, each followed by a maxpooling layer and by a

SeLU activation layer, except the last one, which is only

followed by a SeLU activation layer. Therefore, this part

has a total of five convolutional layers, five SeLU activa-

tion layers and four maxpooling layers, in the order shown.

Table 1 shows a summary of the main characteristics of

each layer.

Then its second section adapts the information obtained

in the previous stage to define the parameters of the

transformation to be performed. This section is made up by

two fully connected layers, between which a SeLU acti-

vation layer is placed. The result of the last layer is a vector

of 12 elements, whose values are reorganized in a matrix of

3 rows and 4 columns which represent the transformation

Fig. 1 Images obtained from Micro 1 camera (left) and Micro 2 camera (right). These images are not exactly the images captured by the cameras,

but have had a filter applied to increase the contrast
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to be carried out (Eq. 1). This matrix serves as input for the

grid generator.

Finally, the second section of the STN uses the infor-

mation provided by the localization neural network to

obtain the grid to be applied on the input images in order to

make it resemble the target image. In this case, two

PyTorch functions have been used: ‘‘affine_grid’’ and

‘‘grid_sample’’.

The former, ‘‘affine_grid’’, is in charge of obtaining the

grid. As inputs this function uses the 3 � 4 matrix obtained

in the localization network and the grid size to be obtained,

which must be the same as the target images size.

The latter, ‘‘grid_sample’’, obtains the final transformed

image, using the grid to be applied and the input image,

through a bilinear interpolation.

These two functions allow the calculation of two types

of transformations, on the one hand, affine transformations

and, on the other hand, projective transformations. In our

case, projective transformation has been used, since this is

the most appropriate transformation for the images

employed, which is why the ‘‘affine_grid’’ input has the

size 3 � 4, in the case that the affine transformation is used,

this matrix must have size 2 � 3.

Xinput

Yinput

Zinput

0
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1
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a21 a22 a23 a24

a31 a32 a33 a34
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Also, in the ‘‘grid_sample’’ function, the ‘‘padding_mode’’

parameter has been set to ‘‘edge’’ to extend the colors of

the edge pixels to the pixels that are outside the image

instead of turning them black.

2.2 Simulator

A virtual camera simulator has been developed to generate

synthetic images, in order to control the characteristics of

the network input images. It should be noted that the main

function of the simulator is not to expand the real images

dataset, but to generate an alternative dataset to analyze

specific cases.

The simulator enables the projection of the points

defining the object of interest by means of the projection

matrix extracted from the camera features (focal length,

height, inclination...), so that in the resulting image it

projects the object of interest according to the camera

features.

First the morphology of the object to be captured must

be defined, for which the points of its silhouette must be

defined. As the shape of the object is not a critical aspect,

to simplify its definition, a rectangle was generated, since it

could be defined by the four vertices. In addition to its

shape, its size must also be defined, which is set at a

number of pixels similar to that of C. elegans in real

images, i.e., approximately 80 � 300 pixels.

Subsequently, in order to grant greater variability to the

images, certain parameters were established to randomly

change the characteristics of the rectangles. On the one

hand, their size can vary from 50% to 150% of the base

size in each of the directions independently. On the other

hand, the rectangle that is originally oriented vertically is

randomly rotated around its center. And finally, as in the

real images the positioning of the worm in Micro 1 is not

fully centred, a small random displacement has also been

added in each of the two axes.

Fig. 2 Scheme of a spatial transform network (STN)

Table 1 Summary of layers features

Layer Output size Layer details

Conv 1 [Batch size, 8, 1938, 2586] Kernel ¼ 7 � 7

MaxPooling 1 [Batch size, 8, 969, 1293] Stride ¼ 2

Activation SELU 1 [Batch size, 8, 969, 1293] Inplace ¼ True

Conv 2 [Batch size, 10, 965, 1289] Kernel ¼ 5 � 5

MaxPooling 2 [Batch size, 10, 482, 644] Stride ¼ 2

Activation SELU 2 [Batch size, 10, 482, 644] Inplace ¼ True

Conv 3 [Batch size, 20, 478, 640] Kernel ¼ 3 � 3

MaxPooling 3 [Batch size, 20, 239, 320] Stride ¼ 2

Activation SELU 3 [Batch size, 20, 239, 320] Inplace ¼ True

Conv 4 [Batch size, 40, 237, 318] Kernel ¼ 3 � 3

MaxPooling 4 [batch size, 40, 118, 159] Stride ¼ 2

Activation SELU 4 [Batch size, 40, 118, 159] Inplace ¼ True

Conv 5 [Batch size, 10, 116, 157] Kernel ¼ 3 � 3

Activation SELU 5 [Batch size, 10, 116, 157] Inplace ¼ True

Linear 1 [Batch size, 32 ] –

Activation SELU 6 [Batch size, 32 ] Inplace ¼ True

Linear 2 [Batch size, 12 ] –
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Once the object represented by the simulator has been

defined, the next step is to determine the projection

matrices of the two cameras. To do this, the cameras were

calibrated; ensuring that the image produced has a similar

appearance to the real images.

Consequently, the simulator is capable of generating

images of rectangles with a random position and shape

captured from the perspective of the two cameras. A

sample of these images is shown in Fig. 3.

2.3 Dataset

From the viewpoint of the dataset, there are two types, on

the one hand, the dataset of real images, and on the other,

the dataset of the simulated images, as already mentioned

in the previous section, both cases will be analyzed

separately.

2.3.1 Dataset of C. elegans

The C. elegans dataset was obtained by image capture

system [11] in the laboratory. To capture the images two

cameras were used (Micro 1 and Micro 2). These cameras

take captures with a resolution of 1944 � 2592 pixels.

The images used as network inputs (Micro 2) maintain

their original capture size, but in order to reduce memory

use and ensure that all the information present in the target

image is found in the initial image, Micro 1 images have

been cropped to half their size, thus target image size is

972 � 1296 pixels.

Given the costly capture process, the C. elegans dataset

had a total of 975 pairs of images. The 975 image pairs

with a similar appearance to those shown in Fig. 1 were

processed to obtain the segmented images and distance

transformation using the functionalities of the OpenCV

library.

Depending on the assays, the dataset may be formed by

pairs of segmented C. elegans images (Fig. 4a, b) or by

pairs of distance-to-the-edge transformed C. elegans ima-

ges (Fig. 4c, d), or by both types, depending on the case.

2.3.2 Synthetic dataset

The synthetic dataset has 1000 pairs of images, approxi-

mately the same as the C. elegans dataset. And, as in the

case of the C. elegans dataset there are two types of ima-

ges, segmented images and distance-transformed images.

By default, the simulator returns the segmented images

of the rectangles. To obtain the distance-transformed

images, a processing stage was required. A sample of the

images returned by the simulator are those represented in

Fig. 5a–d. These images have been grouped identically to

the C. elegans dataset depending on the case studied.

2.4 Metrics

Different types of metrics were selected to estimate the

performance of the assays; all of them have been applied

on segmented images since the main objective is to trans-

form the Micro 2 image so that the segmentations of the

worms or the rectangles coincide.

On the one hand, because of the size of the object of

interest, the number of non-coincident pixels between the

two images was counted (Eq. 2) and the mean, maximum,

and minimum values of all pairs of images were recorded.

In this way, the error was better characterized.

error ¼ sumðjX � YjÞ ð2Þ

Where ‘‘X’’ and ‘‘Y’’ are the resulting segmented image and

the target segmented image, respectively.

On the other hand, we decided to use the IoU (Inter-

section over Union) metric, since it reflects exactly what

we set out to achieve. This metric calculates the ratio

between the intersection and the union of the elements of

the two segmented images, as reflected in Eq. 3.

Fig. 3 Images obtained by the simulator. a Image Micro 1. b Image Micro 2
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Fig. 4 Images of C. elegans dataset. A cropped segmented image Micro 1. B segmented image Micro 2. C cropped distance-transformed image

Micro 1. D distance-transformed image Micro 2

Fig. 5 Images of synthetic dataset. A cropped segmented image Micro 1. B segmented image Micro 2. C cropped distance-transformed image

Micro 1. D distance-transformed image Micro 2
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IoU ¼ X \ Y

X [ Y
ð3Þ

where ‘‘X’’ is the segmented worm of the transformed

image and ‘‘Y’’ is the segmented worm of the target image.

This ratio provides the percentage of overlap that occurs

between the worms in the two images.

Lastly, in the assays with C. elegans images the training

time has also been monitored to consider the computational

cost, since if this is too high, a good alternative in terms of

precision could be unfeasible due to such cost.

2.5 Hyper-parameter tuning

Hyper-parameter tuning is a fundamental task to ensure the

convergence of a network. In our case, we look at the

limitations of the network and the GPU to define them.

The first hyper-parameter to be fixed was batch size,

which was set at eight due to the large size of the images,

since this was the maximum size that met the memory

limitation of the GPU used.

Regarding the optimizer, an Adam optimizer (Eq. 4)

was chosen to perform the convergence, whose learning

rate value had been defined with one of the assays carried

out.

m ¼ b1 � mþ ð1 � b1Þ � rhðLðhtÞÞ
m ¼ b2 � mþ ð1 � b2Þ � rhðLðhtÞÞ2

htþ1 ¼ ht �
g � mffiffiffiffiffiffiffiffi
m � e

p
ð4Þ

where ‘‘b1 ’’ and ‘‘b2’’ are the attenuation coefficients of

the moments of the first and second order respectively (the

values of 0.9 and 0.99 are used, respectively),‘‘e’’ is the

step value (which is usually a very small value), ‘‘h’’ are

the parameters of the network, ‘‘t’’ indicates the iteration in

which we are, ‘‘g’’ is the learning rate and ‘‘L’’ represents

the loss function.

To define the stopping criterion, two different methods

were followed depending on the dataset used. If the assay

used the synthetic dataset, the training stopped after 150

times, while if the assay worked with the C. elegans

dataset, it stopped when a given level of convergence was

reached, which corresponded to a value for the IoU of 0.86

(this value is very close to the upper limit of precision), or

when the training was unable to improve further, this

occurs when it fails to improve in the last 20 times.

And the last one to be fixed was the loss function. To

train the STN, the loss function used was the Mean Square

Error (MSE) loss, with the formula represented in 5.

MSEloss ¼
Pn

i¼0

Pm
j¼0ðXði;j;cÞ � Yði;j;cÞÞ

m � n
ð5Þ

where ‘‘n’’ and ‘‘m’’ are the size of the images for each of

their axes, ‘‘c’’ is the channel of the images and,

‘‘X(n, m, c)’’ and ‘‘Y(n, m, c)’’ the values of the pixels of

the transformed image and the target image respectively.

This function calculates the mean of the distances between

the values of all the pixels of the two images, thus evalu-

ating how similar they are.

3 Training methods, experiments
and results

This section presents the methods developed together with

the assays that have been performed and the results

obtained. First, the assays in which only one type of image

(segmented or distance-transformed) is used have been

compared to determine which generates better results, and

then some alternatives have been considered to improve the

training performance.

3.1 Segmented image method compared
to distance-transformed image method

3.1.1 Synthetic dataset

These two cases have been studied using the synthetic

dataset to analyze some specific cases. For these assays, the

computational cost was not calculated, as the aim was to

find the method that provides the best performance, in

terms of precision and robustness. In Algorithm 1, is shown

the procedure of a training step for these assays.
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Apart from comparing the type of image used (seg-

mented or distance-transformed), these assays have also

served to adjust the learning rate with which the optimizer

will work, for this reason assays have been carried out

varying this value for both strategies.

Specifically, to carry out the assays, three different

values for this parameter have been chosen, 5e�5, 1e�4 y

5e�4. All these assays have been repeated three times to

estimate the mean of the results. These results are shown in

Table 2.

Table 2 clearly shows that working with segmented

images obtains better precision, moreover precision is

better than that obtained using any distances assay. This

large difference may be mostly, due to the fact that the

distance-transformed images do not fully represent real

distance, but rather an approximation with interpolations.

Regarding the learning rate values, it is remarkable that

with the highest, the network is unable to converge when

working with segmented images, while it does achieve this

when working with distance-transformed images.

For the remaining values, although there is not much

differentiation as in the case of the types of images, it is

observed that for the learning rate value of 1e�4 better

results were obtained for the segmented-image assays. In

the assays using the distance-transformed images, the

change in learning rate value was practically indifferent.

So, the learning rate value selected was 1e�4.

In addition to these assays, and to demonstrate which

method provides greater robustness, an assay was

performed with rectangles that do not overlap in any of the

image pairs from Micro 1 and Micro 2 cameras. To carry

out this assay, the simulator configuration was maintained

and only the size of the rectangles forming the images was

reduced until clearly avoiding overlapping, as shown in

Fig. 6.

As shown in Table 3, the fact there is no overlap, the

assay carried out with the segmented image is unable to

converge, while the distance-transformed images assay can

converge as a result of the extra information provided by

the distances to the edges of the objects of interest.

These examples show empirically that using distance-

transformed images is more robust and can help to con-

verge. By contrast if convergence is achieved, the seg-

mented-image dataset provides greater accuracy.

3.1.2 Dataset of C. elegans

With the conclusions obtained in the synthetic images

assays, the first assay that was carried out with C. elegans

dataset was the verification of using segmented images the

network can converge. As with the synthetic dataset

(Tables 2, 3), these assays have been repeated to obtain

more reliable results. These results can be seen in Table 4.

As shown in Table 4, this method can achieve conver-

gence, reaching a precision of 0.863 for the IoU metric.

Despite this, during the simulations it was also observed

that in some cases the network was unable to converge, this

may be due to the low initial overlap between the two

images and to the usage of reduced batch size. In Fig. 7a, b

Table 2 Assays carried out with

synthetic images
Mean error (px) Min. error (px) Max. error (px) IoU

Segmented 5e�5 869 148 2172 0.98494

Segmented 1e�4 559 72 1390 0.99040

Segmented 5e�4 – – – –

Segmented 714 72 2172 0.98767

Distances 5e�5 2358 757 4441 0.96074

Distances 1e�4 2373 602 4584 0.96055

Distances 5e�4 2440 912 4812 0.95935

Distances 2381 602 4812 0.96039

Fig. 6 Synthetic no overlap images dataset. A cropped segmented Micro 1 image. B Segmented Micro 2 image. C cropped distance-transformed

Micro 1 image. D distance-transformed Micro 2 image
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shows the graphics of the loss function of an assay that

achieved convergence and another that did not,

respectively.

3.2 New training methods

For this reason, to take advantage of the robustness of the

distance-transformed images without disregarding the

precision of the segmented images, we decided to design a

new mixed training strategy in which both types of images

were used.

The first new strategy consists of using distance-trans-

formed images in the first training times and, when a cer-

tain level of precision is reached, it is switched to the

segmented images to achieve greater precision (Fig. 8),

this training method is shown in Algorithm 2. Thus, we

have attempted to avoid the convergence problems. The

change of dataset was made when the loss function

returned a value less than 0.017, which corresponds to an

IoU value of around 0.6.

In the mixed method, apart from the change of the

dataset, the optimizer was also changed, since, although in

both cases the same loss function was used, the

Table 3 Assay with no overlap

synthetic images
Mean error (px) Min. error (px) Max. error (px) IoU

Segmented – – – –

Distances 1038 304 2276 0.91445

Table 4 Assays with C. elegans
segmented images dataset

Mean error (px) Min. error (px) Max. error (px) IoU Time (h)

Assay 1 4907 2020 29923 0.86299 3:44:30

Assay 2 4968 1978 19600 0.86130 4:01:30

Assay 3 4985 2270 29667 0.86184 3:58:00

Fig. 7 Downward trends of assays with C. elegans segmented images.

a Assay that has achieved the convergence. b Assay that has not

achieved the convergence

Fig. 8 Schema of mixed training method
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optimization problem changed depending on the type of the

image. So, we used two optimizers, both of type Adam and

with a learning rate value of 1e�4.

After seeing the results of the first method, a second new

strategy was proposed to design a modified mixed strategy

to increase the convergence. As in the mixed strategy, there

is a differentiation between the first periods and the rest.

But, in this case, in these early periods the network does

not train solely with distance-transformed images, but

rather periods with distance transformed and segmented

images have been intercalated (Fig. 10), this new training

method is shown in Algorithm 3.

3.3 Experiments and results

For each of these methods, a set of experiments has been

carried out with the C. elegans dataset, as shown in

Tables 5 and 6, respectively.
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As it shown in Table 5, the mixed method achieves

precision values like the segmented images assays, but the

computational cost is higher. Although robustness

increased with this methodology, when the switch occurs

there is an increase in the loss value, sometimes reaching

values even higher than those at the beginning (Fig. 9).

This fact could mean that the assay cannot achieve con-

vergence or stay in a local minimum, as happened with the

segmented images.

In the modified mixed method, the weights of the net-

work obtained in the first phase are better adapted to the

characteristics of the segmented images and this excessive

increase in the error is avoided when making the change, as

can be seen in the graph in Fig. 11.

The data from the simulations with this second method

(Table 6), as in the previous case, reflect levels of precision

similar to those obtained with segmented images, and in

this case, the computational cost is also somewhat lower,

reaching values of the order of the segmented imaging

assays. The latter is mainly due to the fact of avoiding that

peak in the realization of the change, thus avoiding back-

sliding in learning.

Therefore, this strategy achieves greater robustness

without excessively affecting the level of precision or the

computational cost. Finally, this methodology was used in

a last assay with the non-synthetic dataset overlap to show

that it can converge and verify the increase in robustness

that occurred.

At first, the assays with this dataset were unable to

converge, since when making the first change of distances

to segmented, the level of overlap obtained was insufficient

and did not converge. For this reason, we decided to carry

out a warm up for the learning rate value of the optimizer

that works with segmented images, and, in this way, avoid

Table 5 Assays of mixed

training method and C. elegans
images

Mean error (px) Min. error (px) Max. error (px) IoU Time (h)

Assay 1 5039 2313 29621 0.85871 4:40:39

Assay 2 5474 1999 29501 0.85436 4:16:11

Assay 3 5154 2457 17990 0.86132 5:11:40
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that in the first segmented time was separated in excess of

the solution obtained by the distance-transformed images.

The initial value for the learning rate of the optimizer

that worked with segmented images was 2e�5 and each

time it was carried out with segmented images its value

increased by 2e�5 until reaching a value of 1e�4. In this

way, after the first 5 times that this type of image was used,

corresponding to the intercalated training phase, this value

was reached.

Table 7 shows that this last training method is able to

converge with this dataset, reaching a precision level of

0.984 for the IoU metric, representing an increase of 7%

with respect to the results with distance-transformed ima-

ges. Therefore, the increased robustness of this method is

demonstrated along with the preservation of the level of

precision typical with segmented images.

Fig. 10 Downward trend for the assay with the mixed training method

Table 6 Assays with the new

modified mixed training method

and C. elegans images

Mean error (px) Min. error (px) Max. error (px) IoU Time (h)

Assay 1 4936 2097 30088 0.86205 4:02:14

Assay 2 5124 2026 18606 0.85914 4:11:54

Assay 3 5279 2346 29410 0.85668 5:13:22

Fig. 9 Schema of modified mixed training method

Fig. 11 Downward trend for the assay with the modified mixed

training method

Table 7 Assay with new

modified mixed training method

and no overlap synthetic dataset

Mean error (px) Min. error (px) Max. error (px) IoU

Assay 1 197 36 434 0.98244

Assay 2 170 29 417 0.98486

Assay 3 222 27 688 0.98039
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4 Conclusions

In this paper, a new training method is proposed for those

cases in which the percentage of overlap between the two

perspectives of the object of interest is small or even null.

It has been demonstrated that the incorporation of dis-

tance-transformed images to the training, intercalating

these with periods that use segmented images during the

first period, solves the correspondence task with greater

robustness, thereby preventing convergence problems from

occurring during these periods.

Moreover, in addition, all this has been achieved

maintaining the level of precision of segmented images and

without excessively increasing the computational cost.
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