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Abstract
Drinking water safety is a safety issue that the whole society attaches great importance to currently. For sudden water

pollution accidents, it is necessary to trace the water pollution source in real time to determine the pollution source’s

characteristic information and provide technical support to emergency management departments for decision making. The

problems of water pollution’s real-time traceability are as follows: non-uniqueness and dynamic real time of pollution

sources. Aiming at these two difficulties, an intelligent traceability algorithm based on dynamic multi-mode optimization

was designed and proposed in the work. As a multi-mode optimization problem, pollution traceability could have multiple

similar optimal solutions. Firstly, the new algorithm divided the population reasonably through the optimal subpopulation

division strategy, which made the nodes’ distribution in a single subpopulation more similar and conducive to local

optimization. Then, a similar peak penalty strategy was used to eliminate similar solutions and reduce the non-unique

solutions’ number, since real-time traceability required higher algorithm convergence than traditional offline traceability

and dynamic problems with parameter changes, historical information preservation, and adaptive initialization strategies

could make reasonable use of the algorithm’s historical knowledge to improve the population space and increase the

population convergence rate when the problem changed. The experimental results showed the proposed new algorithm’s

effectiveness in solving problems—accurately tracing the source of pollution, and obtain corresponding characteristic

information in a short time.

Keywords Pollution intelligent traceability � Dynamic � Multi-mode optimization � Initialization strategies �
Simulation optimization

1 Introduction

Drinking water safety is a public safety issue that is highly

concerned by urban residents, and it is closely related to

people’s lives. With the improvement in people’s living

standards and the enhancement of environmental

protection awareness, more and more people pay attention

to the safety of drinking water quality. As the basic

industry and public facility of the national economy and

socioeconomic development, the drinking water supply

system is prone to be damaged due to its wide coverage,

long-term operation, and strong relevance, which will

cause panic and huge economic losses to the society.

Sudden drinking water pollution incidents mainly include

biological pollution, chemical pollution, and mixed pollu-

tion. In addition to human factors and natural disasters,

sudden public health events also significantly affect the

safety of drinking water quality (medical sewage and

domestic sewage). Since the outbreak of the Novel

Coronavirus, the urban drinking water supply system has

faced more severe challenges: How to improve the water
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supply system’s real-time fault tolerance capacity and

shorten the response time after water pollution’s occur-

rence has become key issues. Therefore, the study on

drinking water quality pollution traceability has great sig-

nificance to the guarantee of urban water resources envi-

ronment and water system safety in the new environment

[1].

The urban drinking water supply system is a complex

system composed of several spatially interrelated compo-

nents, including water head, water source, and water pump

connected by water pipes. Its topology can be represented

as an undirected graph. In the drinking water supply sys-

tem, water quality sensors can be arranged at key nodes,

which can send out early warning messages and continu-

ously record real-time water quality information data once

water pollution is detected. With the passage of pollution

time, the information collected by the water quality sensor

increases. It is a huge challenge to trace or locate water

pollution in real time through its characteristics and quickly

infer the injection location, injection time, and the con-

centration and quality of pollutants. The real-time trace-

ability of water pollution depends on the water quality and

hydraulic models for parameter inversion or prediction

through the node pollutant concentration data provided by

water quality sensors. The main information of the inverted

pollution source contains four dimensions: the node index

represented by the pollution source, the start time of pol-

lution, the duration of injected pollutants, and the injection

quality per unit time step. Real-time traceability starts the

simulation solution when the pollutants are detected by the

water quality sensor for the first time, which is convenient

for the urban water quality supervision department to carry

out relevant treatment measures in time, such as the release

of water quality indicators or the issuance of emergency

notifications. However, the cost of high-precision water

quality sensors and the time-consuming of hydraulic and

water quality model simulations will increase the difficulty

of water pollution’s traceability, which gives the problem

the following complex characteristics:

(1) Dynamic real time First, the model established by the

inversion of the intelligent optimization algorithm

can be defined as a dynamic optimization problem,

since it contains the time-varying characteristics of

the dynamic optimization problem; that is, the

problem parameters, variables, scale, and constraints

will change with time. Second, due to the speed

requirement of the problem, which is hoped that the

pollution source can be accurately located when the

pollution event is monitored, the water pollution’s

traceability is a process of obtaining real-time

solutions, that is, obtaining a satisfactory solution

to the problem within an acceptable time. Based on

the two factors, the high requirements for the

convergence speed and solution accuracy of the

intelligent optimization algorithm make it extremely

difficult to solve the problem of water pollution’s

real-time traceability.

(2) Non-uniqueness of solutions Simulation data gener-

ated by simulation software needed to be compared

with the real monitoring data in the solution process

due to the inversion problems’ characteristics. Since

the data size in a fixed period was limited and the

water quality sensors’ arrangement was not global,

the monitoring data size was not large. The data’s

finiteness led to multiple solutions satisfying the

characteristics of the existing data during solving the

problem, which satisfied the characteristics of multi-

mode optimization problems. The basic requirement

of intelligent water pollution traceability was to

accurately locate the water pollution source, which

posed a higher challenge to the solution algorithm:

the intelligent optimization algorithm could obtain

the only accurate solution on the premise of a small

amount of data.

Hydraulic models and water quality models were firstly

established in most studies on water quality pollution

traceability. Combined with the forward simulation of

water quality, the solutions of water quality pollution

traceability were mainly divided into three categories:

simulation–optimization method, probability selection

method, and other methods. The simulation–optimization

method was classic to solve the pollution traceability

problem. It was good in solution accuracy and robustness

but had the disadvantages of high calculation cost and slow

solving speed, which could only be applied to small or

medium-scale problems. The probability selection method

mainly used the Bayesian network model to discriminate

the pollution source information and select the most likely

location in a probabilistic manner. Others include analyti-

cally based methods such as particle backtracking,

hydraulic and water quality models, neural networks, or

algorithms that combined multiple strategies. The work

mainly discussed the simulation–optimization method.

In 1998, Zierolf et al. [2] proposed the I/O model, which

is a backward tracking model of reverse thinking, that is,

tracking the particles’ transportation process in the pipe

network according to the reverse time. According to this

model, Shang et al. [3] used the particle backtracking

algorithm for pollution source location in 2002, which

decomposes the water quality model’s basic elements,

calculates the impact factors used to describe the reservoir

and multiple pollution sources output functions, and re-

establishes the water quality model’s pipeline constraints.

The experimental results show that the optimal solution is
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valid. In 2006, Guan et al. [4] proposed a new simulation–

optimization backtracking model, which is simulated by

EPANET software and solved by the gradient descent

method. The model results’ accuracy and computational

efficiency are good and have good scalability to accom-

modate various optimization algorithms.

Liu et al. [5] proposed a dynamic simulation–opti-

mization framework in 2011, which connects the inversion

problem with the dynamic optimization problem. It studies

the dynamics of the problem and used some adaptive

operators to track the optimal solutions in real time. The

experimental results are significantly better than previous

ones. In 2015, Hu et al. [6] quantified the non-uniqueness

of the pollution source location problem’s solution and

proposed a parallel niche genetic algorithm based on

MapReduce to quickly and accurately obtain the location,

quality, and time vector of the pollution sources. In 2016,

Arpan et al. [7] compared three algorithms for solving

pollution source location problems, which were the Baye-

sian probability-based method, pollution source state-based

method, and simulation optimization method. Finally, the

simulation optimization method can solve most pollution

intrusion events. In 2017, Wang et al. [8] proposed a

temporal Bayesian method. First, the sensor observations’

probability distribution is obtained when the node is a

polluted one. Then, the polluted node’s posterior proba-

bility is calculated in real time and decomposed into a

hierarchical tree structure. Finally, the node with the

highest posterior probability is selected as the polluted

node in real time. In 2017, Yan et al. [9] simulated

uncertain water demand through a Gaussian model and

proposed a real-time positioning algorithm. Experiments

show that the method can find real pollution events in a

short time with fewer sensor data. In 2019, Yan et al. [10]

continued to reduce the positioning time on this basis to

simulate the real-time location and solved the problems

according to the designed simulation optimization model

and algorithm. The real pollution source can be located by

a small amount of sensor data.

More and more people pay attention to the influence of

the water pipe network’s uncertain factors on the posi-

tioning problems. In 2009, Torres et al. [11] pointed out

that understanding the water pipe network’s uncertainties

can establish a robust model, perform sensitivity analysis,

and effectively uncertainty levels. On this basis, in 2011,

Preis and Ostfeld et al. [12] proposed a method to add

hydraulic ambiguity on the premise of knowing a small

amount of hydraulic data and the single sensor’s effective

data. Statistical knowledge is used to process the node

demand’s upper and lower bounds, and the experiments are

carried out in three different situations. In 2009, Vankayala

et al. [13] considered the node demand as the biggest

driving force for the water pipe network’s uncertainties

under the condition that the hydraulic water quality model

remained unchanged. Therefore, they used the noisyGA

(noisy Genetic Algorithm) algorithm to solve the posi-

tioning problem when the water demand was uncertain.

The uncertain water demand is closer to the real pipeline

network situation. Yan et al. [14, 15] further simulated the

water demand model to solve the water demand’s uncer-

tainties and designed the traceability algorithms based on

the Poisson model and the autoregressive model. The

experimental results prove the algorithm’s effectiveness for

water pollution’s traceability. Yan et al. [16–18] proposed

an intelligent optimization method based on expensive

optimization methods to solve water pollution’s intelligent

traceability in the large-scale pipe network nodes. The

results prove the effectiveness of the large-scale pipe net-

works. Hu et al. used optimization algorithms for sensor

placement in water distribution system [19–21].

The work’s remaining chapters are organized as follows:

Chapter 2 mainly introduces the problem model of water-

pollution traceability and the process of real-time trace-

ability. Chapter 3 is the algorithm’s design of water pol-

lution’s intelligent traceability based on multi-mode

optimization, including the algorithm ideas, multi-strategy

improvements, and the algorithm’s overall steps. Chapter 4

shows the simulation experiment and analysis, where the

proposed algorithm is verified through different pollution

scenarios.

2 Traceability of water pollution

The general process of solving the traceability problem of

water pollution by the simulation–optimization method

was as follows: Firstly, take the pollution source informa-

tion as the input event of the water quality and hydraulic

model simulation software EPANET for the corresponding

simulation. Then, the offline data generated by the simu-

lation software were used to calculate the function’s fitness

and trace the source. The solution to this problem mainly

included four dimensions of the information: the node

index represented by the pollution source, the pollution’s

start time, the duration of injected contaminant, and the

injection quality per time step. The work adopted real-time

simulation to trace the water pollution’s source. When the

fitness function was calculated, the water pollution trace-

ability’s optimization target was changed from a static

problem to a dynamic problem by inputting dynamic

simulation-time parameters to simulation software EPA-

NET. The real-time positioning’s fitness function is shown

in Eq. 1.
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Minimizef ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PT
t¼t0

PNs

i¼1 Cobs
i;t � C�

i;t

� �2
2

r

Ns

S:T:C ¼ idx; ts; td;Mð Þ

M ¼ m1;m2; . . .mnð Þ; mi [ 0

t 2 T

ð1Þ

where Cobs and C� separately represent the sensor con-

centration under the simulated and the real pollution

events, mainly determined by the input pollutant informa-

tion and the simulation duration. It contains four related

variables of {idx; ts; td;M} with idx as the source point

location, ts as the start time, tda s the duration, and M as the

injection quality per time step, whose dimension changes

withtd. Besides, T represents the current simulation dura-

tion and the current actual time and Ns the sensors’ num-

ber. The optimization target minimizes the concentration

difference between the real pollution source represented by

f and the simulated pollution source event, which is a

dynamic optimization function that minimized the target.

Once the pollution event occurs, the polluted water body

will be monitored by the sensor when it passes through the

water quality monitoring sensor pre-arranged in the net-

work, which is the same as the scene when the actual

pollution occurs. Then, the time detected for the first time

is taken as the algorithm’s starting time t0 and be simulated

with a present time step of Dt. Similar to the dynamic

optimization’s target, the optimal solution of the current

period is obtained in each time step Dt. Meanwhile, the

most possible pollution source node and pollutant injection

information are found in a relatively short time, and rele-

vant departments are guided to make decisions on public

events, thus minimizing the public impact caused by pol-

lution. In the previous non-real-time positioning studies,

the sensor’s concentration 24 or 48 h after the first detec-

tion of the pollutant is often used as the offline simulation

data for optimization.

However, in the case of real-time positioning, the sen-

sors’ readings may fluctuate greatly in different events due

to the difference in pipe network characteristics and the

sensor’s layout scheme. In Fig. 1, the sensor detects the

pollution for the first time around 9 h. Assuming that the

simulation time step is 1 h, in the first hour of the simu-

lation, the real pollution source’s concentration is too small

that any simulated pollution source injected a small amount

of pollution in this period leads to an extremely small

concentration difference, which cannot guide the popula-

tion evolution correctly. During the 10 to 12 h of the

simulation, the simulated observation concentration fluc-

tuates sharply compared with the previous one, resulting

from a large number of previous high-quality solutions’

quality reduction. The real-time positioning requires a

reasonable response to the dynamic changes caused by the

simulation duration’s change to ensure the algorithm’s

solving ability. Figure 2 shows the real-time traceability

flow of the work.

In the optimization process, discrete or continuous tra-

ditional optimization algorithms can be selected as the

basis for improvement according to different coding

methods. The main improvement directions can be roughly

divided into two types: 1. The exploration and inquiry

capabilities of improving the algorithm through optimiza-

tion strategies, representing the algorithm’s evolutionary

optimization and refinement capabilities, respectively. 2.

Based on the pollution sources’ dynamic characteristics,

the algorithm is dynamically adjusted during the evolution

process to better adapt to the false influence caused by the

dynamic environment and the parameters. Finally, the most

possible pollution source events are obtained by outputting

the optimization algorithm.

3 Intelligent real-time traceability method
based on dynamic multi-mode
optimization

3.1 Algorithm idea

When the intelligent real-time water pollution’s traceability

is combined with the dynamic optimization, the actual

problems’ peculiarities should be considered, such as the

objective function’s variation characteristics, the pipe net-

work parameters’ characteristics, and the simulation time.

Experimental analysis is needed to improve the strategy. In

dynamic optimization cases, changes in environmental

parameters cause the continuous change of the optimal

solution’s position. The unchanged optimal solution should

be found before each change, with the algorithm’s evolu-

tion direction adjusted. With swarm intelligence algo-

rithms, if the population cannot be dynamically adjusted

over time, the intelligence optimization algorithm’s con-

vergence characteristics will cause the individuals in the

population to lose diversity, resulting in the algorithm’s

stagnation and the inability to continue moving toward the

new optimal solution. However, blindly pursuing the

population’s diversity would cause the randomness and

dispersion of the entire population, and sometimes the

optimal value cannot be obtained at all. Therefore, a

dynamic optimization algorithm is needed to balance the

population’s diversity while the historical optimal solution

is rationally used. Simultaneously, the non-uniqueness

problem caused by the incompleteness of the pipeline

network data should be considered when the water pollu-

tion’s source is traced through inversion based on intelli-

gent optimization methods.
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Based on the above ideas, the work designed an intel-

ligent real-time traceability algorithm for water pollution

based on dynamic multi-mode optimization. Figure 3

shows the algorithm’s overall flow, which mainly includes:

1. Optimal subpopulation division strategy. 2. Historical

information retention strategy. 3. Similar peak punishment

strategy. 4. Quality local search strategy. 5. Adaptive ini-

tialization strategy. 6. Redundant individual elimination

Fig. 1 Concentration contrast

Real-�me loca�on
Collect data

Epanet
simula�on

Contaminant
injec�on

Op�mal strategy

Response
Dynamic change

Tradi�onal
algorithm

Output 
op�mal 
solu�on

Report to 
department Locate real source

X(t1)

X(t2)

X(t2)

Fig. 2 Real-time positioning framework
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strategy. The multi-modal algorithm adopted a multi-pop-

ulation approach to solve the non-uniqueness problem. The

optimal subpopulation division strategy was used to cluster

the pollution source feature information randomly gener-

ated, with the performance indicators proposed for evalu-

ation. Finally, iteratively select the clustering division with

the optimal classification. After the single population

converged, the convergent local optimal solution would be

saved. At the same time, the quality partial search strategy

should be introduced to improve the algorithm’s accuracy.

The reason was that in the pollution source’s characteristic

information, the dimension of the injection quality changed

with the injection duration. The dimension of the real

pollution source’s injection quality to be solved was

uncertain, and the most direct influence was that the

characteristic information of which part injected quality

was not precise enough. After the algorithm’s solving

ability improved, strategies should be set up to cope with

the environmental changes as they occurred. When the

environmental changes’ degree was uncertain, the adaptive

initialization strategy could be adopted, which made rea-

sonable use of the historical optimal solution reserved for

each period to improve the algorithm’s convergence speed.

Finally, when multiple populations evolved to the same

peak, the populations with poor quality should be punished

to save algorithm resources.

3.2 Improved multiple strategies

3.2.1 Optimal subpopulation division strategy

The problem is considered as multi-mode optimization due

to the non-uniqueness of water pollution traceability [22].

Therefore, the whole population is generally divided into

multiple subpopulations to better search the entire solution

space so that each subpopulation can have an optimal

solution and perform independent optimization iterations,

thus preserving the entire population’s diversity. However,

it is difficult to determine the way to divide the population

and the subpopulations’ number for the solution space with

unknown local peaks. If there are too many subpopulations

in the entire solution space, the single subpopulation is

prone to stagnation due to the small number of individuals.

On the contrary, if there are too few subpopulations, then

the single population can easily fall into the local optimum,

and the algorithm as a whole can hardly find the global

optimum.

The work adopted a clustering method to self-adaptively

divide the sub-populations, thus overcoming the above

shortcomings of multi-group division. Different from the

clustering methods [23, 24] in the previous multi-popula-

tion optimization algorithms, the optimal subpopulation

partition strategy (OSPS) proposed in the work could

adaptively adjust the population quantity. The strategy’s

execution process was as follows: After randomly

Op�mal subpopula�on
par��on strategy

Adap�ve re-ini�liza�on
strategy

Historical informa�on
reserva�on strategySolu�on space

Redundancy avoiding 
archive strategy

Quality local search 
strategy

ind1

Subpopula�
on 1

Subpopula�
on 2

Subpopula�
on N

indn ind1 indn ind1 indn

Similar peak penalty 
strategy

.......

....... ....... .......

Fig. 3 Intelligent water pollution traceability algorithm framework based on dynamic multi-mode optimization
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initializing the entire population, OSPS began to search for

the most reliable population division strategy:

(1) The k-means clustering algorithm is used to generate

a series of division schemes, where the k value changes

with each iteration until reaching the preset maximum

population number MAX CLUSTER NUM. (2) During

each iteration, judge the division schemes with different k

values, calculate the population division metric of the

current division scheme, and keep the population division

scheme represented by the minimum value of pdm. Until it

reaches the maximum number of iterations MAX GEN,

the process terminates and the optimal division scheme is

adopted. pdm is calculated by Eq. (2).

pdm ¼ min
1� g�MAX GEN

PsubN
i¼1

Psize ið Þ
j¼1 d indij;CS

g
i

� �

min
1� i� subN

minj 6¼i dmin Cg
i ;C

g
j

� �n o ;

ð2Þ

where

dmin Cg
i ;C

g
j

� �

¼ min
indii2Cg

i ;indij2Cg
j

dmin indii; indij
� �

where d indii; indij
� �

is the Euclidean distance between

individuals i and j; Cg
i and CSgi are the i th cluster with g

generations’ evolution and its cluster center, respectively;

subN is the subpopulations’ number after using k-means

clustering; dmin is the minimum distance between two

different clusters, determined by the minimum distance

between two populations of individuals. The smaller the

pdm, the stronger the cohesion of a single subpopulation

(the smaller the molecule in Eq. 2), the larger the distance

between each population, and the smaller the possibility of

mutual coverage. After dividing the optimal subpopulation,

it should consider the situation that the single population is

too discrete and the individuals’ number is too small. As

shown in Fig. 4a, the fewer individuals are merged if the

right half has fewer individuals than

NP=MAX CLUSTER NUM (NP is the subpopulations’

number). Figure 4b shows the division effect after merg-

ing. Meanwhile, it is necessary to keep the single popula-

tion’s number not too large (more than

2 � NP=MAX CLUSTER NUM) or select the population

with too far cluster center distance in terms of the two

populations selected to be merged.

3.2.2 Historical information preservation and redundant
individual elimination strategies

As mentioned above, when the environment changes in the

dynamic optimization problems, it is necessary to reason-

ably balance the population diversity according to the

changes. One of the methods is to preserve the historical

optimal solution before the environmental changes. Using

the historical archive-based method, the effective infor-

mation in the predecessor period can be transferred to the

current environment, leading the populations’ cross-muta-

tion in a favorable direction. In some studies, the historical

archive method has been proved to be effective in accel-

erating population convergence. However, on the other

hand, it is also necessary to consider other influences

caused by the excessively large historical archive solution

set and the same or similar individuals’ excessive redun-

dancy: Waste of computing resources, the diversity’s loss

caused by too intensively reusing individuals in the popu-

lation. Therefore, the historical information reservation

strategy (HIRS) was adopted in the work to preserve the

historical optimal individuals; meanwhile, the redundant

avoiding archive strategy (RAAS) was used to remove

similar individuals. The first is the judgment of similarity.

Three variables of the pollution source characteristic

information except for the injection quality are taken as the

benchmark, and individuals with the same source location,

Individual

Center

(a) (b)

Fig. 4 Subpopulation division: a before the subpopulations merge; b after the subpopulations merge
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starting, and duration time are similar. In the pollution

source characteristic information, these three variables

having a relatively large impact on the objective function’s

value are discrete variables with a relatively small range.

For contaminant injection quality, it is difficult to take

equal values as the basis for the similarity of two indi-

viduals because of the real value.

The second is the time to preserve the population’s

optimal solution. The breadth search was the intelligent

optimization algorithm’s main focus in the early stages,

searching for potential peaks in the solution space, and then

taking fitness function and evolution operator as the

direction to specifically explore the optimal value node on

a peak. Therefore, preserving the populations’ optimal

solution should not be in the algorithm evolution’s explo-

ration stage, where the adaptability is often poor and can-

not afford to represent a local optimum. Instead, the local

optimal value should be retained gradually after the pop-

ulation entered the convergence stage. In the study [25], the

population converges are judged mainly by the optimal

individual fitness or the variations in the population radius,

but the premise is established based on the general test

function.

It is inaccurate to use Euclidean distance to calculate the

population radius in water pollution traceability, because

the source location information between individuals does

not represent their spatial distribution in the water supply

network, but only serves as a number. Not only that, in the

early stage of real-time pollution traceability, some sub-

populations have poor fitness due to the lack of pollutant

concentration data and remain unchanged after multiple

iterations. The misjudgment of the population convergence

leads to the preservation of inferior individuals in the

populations’ historical archives. After the population con-

verges, the population will move toward the optimal indi-

vidual in the current population affected by the genetic

operators, and there will be a large number of similar

individuals in the population. Therefore, when the optimal

individual’s repetition rate in a population exceeds certain

degree rr, it is considered as the population converges.

pBesti : idxb; ts;b; td;b;Mb

� �

; indi : idx; ts; td;Mð Þ
if : idxb ¼ idxthen : pBesti ¼ indi;Nrr ¼ Nrr þ 1

ð3Þ

Nrr

Ni
[ rr ð4Þ

fcur ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PT
t¼t0

PNs

i¼1 C�
i;t

� �2
2

r

Ns

ð5Þ

As shown in Eq. (3), pBesti is the best individual in

population i, and indi is any individual in population i.

When judging two individuals locating at the same

pollution source node, the current population’s repeat

number Nrr increases by 1. Ni is the individual number of

the population i, and the current population is considered to

converge when the proportion of Nrr exceeds repetition

threshold rr. Judge the fitness of the subpopulation’s

optimal individual before the historical archive. If the

current individual fitness value satisfies Eq. (5), it will not

be added to the historical archive. The main purpose is to

eliminate individuals with all zero sensor concentration

values simulated in the early stage of real-time positioning

and eliminate some effects caused by insufficient data.

Besides, the one with the smaller fitness for similar indi-

viduals is retained in the historical archive.

3.2.3 Adaptive initialization policy

After setting up the historical archive, it is necessary to

adjust the use of these historically optimal individuals. An

Adaptive Re-initialization Strategy (ARS) was formulated

according to the dynamic environment’s changing degree

in the work, aiming at dynamically adjusting the individ-

uals’ number in the HIRS archive to balance the popula-

tions’ diversity. After the environment changed, the change

of parameter T of the pollution traceability caused varying

degrees of changes in the individual fitness of the popu-

lation, which directly affected the average fitness of the

population. Moreover, the populations needed to reorient

their evolution direction toward the new peak. In the real-

time evolution process, the set evolution time step and the

iterations’ maximum number on each step could be con-

sidered as the changing moment in the dynamic opti-

mization problem.

Then, before and after each change, the impact ecs(en-

vironmental change severity) caused by the current change

is calculated according to Eq. (6), which mainly expresses

the fitness changing degree of the same individual in dif-

ferent environments. Nes represents the sentries’ number

set by the current algorithm, and its main function is to

calculate the environmental changes’ degree. After that, the

environmental changes’ degree should be compared with

the fitness changing degree in the stable evolution state to

be defined. Equation (7) shows the specific calculation.

ecs ¼
PNes

i¼1 fitnew esið Þ � fitold esið Þ
�

�

�

�

Nes
ð6Þ

where er (evolution rate) is the average degree of the

change of all the populations’ fitness, which is calculated at

the algorithm’s each iteration. The adaptive initialization

strategy retains the calculated maximum and minimum,

and forms the upper and lower bounds ecr, as shown in

Eq. (8).
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eravg
g ¼ 1

NP

X

subN

i¼1

X

size ið Þ

j¼1

fitg indi;j

� �

� fitg�1 indi;j

� �
�

�

�

� ð7Þ

ecr ¼ min eravg
g

� �

; max eravg
g

� �h i

ð8Þ

When ecs is relatively large and exceeded the upper

bound of ecr, the current environment changes dramati-

cally. The high-quality individuals in the previous envi-

ronment may not be suitable for the next environment; the

population can initialize almost all individuals at random.

Conversely, when the change degree of ecs is at the lower

bound of ecr, the environmental change has almost no

effect on the evolution. Its effect is less than a variation in

the stable evolution process, so a large number of historical

solutions can be used to continue the evolution. Equa-

tion (9) shows the specific execution. In general, the cal-

culated ecs and ecr are used to adaptively adjust the

number of the population’s individual applying history

solution Nreserved, and the individuals out of the proportions

are still randomly initialized. When ecs exceeds the upper

bound of ecr, number 1 in Eq. (9) means only the optimal

solution of the previous environment is retained.

Nreserved ¼

NP; ecs\min eravg
g

� �

max eravg
g

� �

� ecs

max er
avg
gð Þ � min er

avg
gð Þ � NP; others

1; ecs[ max eravg
g

� �

8

>

>

>

>

>

<

>

>

>

>

>

:

ð9Þ

3.2.4 Quality local search strategy

In actual water pollution events, the information such as

the node where the pollution occurs, start, and duration of

the pollution is often more critical, which can guide rele-

vant agencies to carry out response measures. At the same

time, when the simulation software simulates the events,

pollution events with different node positions, start, and

duration often differ greatly in the function fitness. Con-

versely, when these three parameters are the same,

changing the injection quality in each period only affects a

relatively small part of the fitness. When the node location,

start time, and duration are different, and the injection

quality is the same, and the pollution concentration of the

pollution source event shown in Fig. 5a fluctuates differ-

ently. However, in Fig. 5b, the first three characteristic

information of the four pollution events is all {44,5,3}, and

the injection quality is different, but their concentrations

fluctuate in a very similar way. It also proved that the work

is reasonable to select three characteristic information as

the benchmark data for judging the similarity of nodes in

the previous section. Therefore, from the perspective of

judging whether the individual is converged, the algorithm

should focus on searching the first three main pieces of

information in the first stage, and then the refinement

search, such as for quality. For finding more accurate

information such as quality, the quality local search strat-

egy (QLSS) in this section further searched for the quality

of high-quality individuals in the population to improve the

algorithm’s convergence accuracy, based on judging the

population’s convergence.

After the algorithm reaches the maximum iterations, it

performs the quality local search on the convergent popu-

lation that has been judged in the historical information

retention strategy. Local search adopts particle swarm

optimization (PSO). In the algorithm’s initialization stage,

the quality of the converged individuals in the converged

population is initialized, keeping the first three main

Fig. 5 Comparison of concentration of pollution source events
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variables unchanged. Different main variables only gen-

erate one population. A new multi-population with differ-

ent population numbers is generated in this way. Each

population refines the quality of its population and outputs

the optimal solution at the end of the algorithm. After the

end of the local search algorithm, a new optimal pollution

source consistent with the convergent populations’ number

is generated.

3.2.5 Similar peak penalty strategy

Although the population division scheme generated by the

optimal subpopulation division strategy has reasonably

balanced the distance within the population and the dis-

tance between the populations, multiple subpopulations

evolving in the same direction are inevitable in the actual

algorithm evolution process and finally located on the same

peak. Corresponding to the pollution source problem that

the optimal individuals of multiple populations are similar,

the three main characteristics of the pollution source are

the same. Therefore, the situation needed to be optimized,

and the optimal solution is to merge similar populations

into one population size, leaving some high-quality indi-

viduals in two other populations to solve the algorithm

resources. For the population individual’s reduction caused

by fusion, new individuals are randomly generated again to

supplement, and the optimal subpopulation division strat-

egy is used again. Besides, the similar peak penalty strat-

egy (SPPS) in the work is based on population

convergence. There is no need to judge whether it is cov-

ered with other populations for populations without con-

vergence, and the algorithm resources can be used more

rationally simultaneously.

3.3 Steps of the algorithm

After analyzing the real-time water pollution traceability’s

characteristics, the traditional intelligent traceability algo-

rithm is strengthened by a multi-strategy approach, so it

can better cope with the environmental changes of intelli-

gent real-time water pollution traceability. The process of

the intelligent real-time traceability algorithm based on the

dynamic multi-mode optimization is as follows.

Step 1 Initialize the individuals of the population

randomly and implement the optimal subpopulation

division strategy.

Step 1.1 Set SP MAX GEN as the maximum iterations

of the optimal subpopulation division, 3 as the initial

value of k, and start the iteration.

Step 1.2 Divide the population according to the current k

value, and calculate pdm according to Eq. (3.5). Save the

minimal plan of pdm as PminðpdmÞ, and k increase by 1

until reaching kmax.

Step 1.3 Iterate to the maximum iterations

SP MAX GEN, and let the initial population

P ¼ PminðpdmÞ.

Step 2 t0 is the moment that the sensor detected the

pollutant for the first time, and the current time is

tc ¼ t0 þ Dt. MAX GEN is the maximum iterations for

each time step Dt, and g is the current iterations.

Step 2.1 Let g ¼ gþ 1, and enter the genetic algorithm

selection stage. Use the roulette method to select the

parent individual according to the individual’s fitness.

Step 2.2 In the cross-phase, generate the random number

rand. When rand\Pc, cross the parental individual using

the selection phase. The source position, start, and

duration of the pollution source individual are coded by

integers, and two-point crossover in integer coding is

adopted. The quality injection part use SBX to simulate

binary crossover to produce offspring individual indc.

Step 2.3 In the variation stage, when random number

rand\Pm, the source position, start, and duration of the

pollution source use single-point variation in integer

coding, and inject the quality real number single-point

variation to produce new offspring individual indm.

Step 2.4 In the update phase, add the new offspring

individuals to the current subpopulation Pi, and discard

the individuals in the current population with the worst

fitness.

Step 2.5 Determine whether the current population

converges according to Eq. (4). If it converges, add the

current population Pi to the convergent population set

and add the optimal solution to the historical archive di.
The redundancy elimination mechanism is used to filter

the repeated archived solutions. For the set uc, judge

whether there is a similar peak evolution, and retain only

one population size of the similar peak individual

according to the similar peak penalty strategy.

Step 2.6 Calculate eravg
g according to Eq. (7), and update

the upper and lower bounds of ecr. Determine whether

the current iteration g exceeds MAX GEN, and enter

Step3 if it exceeds.

Step 3 Use the quality local search strategy to perform a

quality search on convergent population uc. Execute

Algorithm 3.1 to get set LS Best to update the historical

archive d.

Step 4 The multi-mode algorithm generates the multiple

subpopulation’s optimal solution Gbesti, and output the

individual with the least fitness as the real pollution

source located at the current time step. tc ¼ tc þ Dt is the

current time and judge whether tc is greater than the

maximum positioning time T; if not, enter Step5. The

algorithm terminates when it exceeds.
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Step 5 Adaptive initial strategy restarts the population.

Use Eq. (9) to calculate Nreserved. The parameters can

determine how many individuals in the historical archive

di are used, and the remaining individuals are initialized

randomly.

4 Experimental results and analysis

The multi-strategy improved algorithms were compared to

explore the impact of different improved strategies on the

algorithm’s performance to verify the effect of the new

algorithm proposed in the work and analyze the algo-

rithm’s performance in different pipe networks. Then, the

new algorithm was compared with the traditional dynamic

optimal algorithm to verify the accuracy and real-time

performance of the new algorithm.

4.1 Experimental parameter settings

This section mainly experiments and compares the pipe

network Net3_Rossman2000, BWSN1_Ostfeld2008, and

ky5_Jolly2013 [26]. Three pipe networks separately

include different node numbers and scales and have the

same hydraulic water quality steps in the parameter settings

to ignore the parameters’ influence. Besides, the settings of

the sensors’ number change as the nodes increases due to

the limitation of the pipe network’s size. Table 1 shows the

specific parameters related to the pipe network.

Table 2 shows the new algorithm’s basic parameters and

the basic parameters needed to improve the multi-strategy.

In the optimal subpopulation division strategy, the maxi-

mum divided populations per generation kmax is set to ?

10 in the three pipe networks in the work, which need

further adjustments after the expansion of the pipe network.

The crossover and variation probability of the genetic

algorithm is adjusted to 80 and 90% to improve the pop-

ulation’s convergence speed. The sentinel individuals’

number Nes is generally set to be close to the population

size, and pop size represents the individual number gen-

erated when randomly initializing the population. In addi-

tion, repeated individuals’ threshold rr is 0.6 during

judging whether the population converges. Under the cur-

rent population size, the individual’s number in a single

Table 1 Network parameters

Network parameters Net3_Rossman2000 BWSN1_Ostfeld2008 ky5_Jolly2013

Node number 97 129 430

Pipe network number 119 178 507

Reservoir 2 4 4

Pool 3 3 3

Hydraulic step 1 h 1 h 1 h

Water quality step 5 min 5 min 5 min

Sensor position distribution 37, 61 10, 83, 100 6, 22, 30, 34, 40, 42, 43, 76, 80, 87

Table 2 Parameters of the new

algorithm proposed in the work
Parameter Parameter description Parameter size

kmax Maximum clustering k-value 10

MAX CLUSTER GEN Clustering iterations 3

pop size Population size 100

subpop size Individual boundaries of subpopulations [5, 20]

Pc Crossover probability 80%

Pm Variation probability 90%

Ts Simulation time 5 h

Dt Timestep 10 min

rr Population individual repetition threshold 0.6

Nes Sentry individual detecting the environmental changes 80

w Search weights of quality PSO 0.8

c1 and c2 Search factors of quality PSO 1.8

Neural Computing and Applications (2023) 35:2059–2076 2069

123



subpopulation is small, and it increases when the number of

individuals in the subpopulation increase.

Experimental environment: Personal PC, Memory 16G,

CPU corei7-8750H, and Windows10 operating system.

4.2 Algorithm’s performance index

In terms of the evaluation criteria for the algorithm per-

formance, different references have designed different

evaluation criteria for pollution traceability, most of which

are based on absolute or relative error values. The work

carried out an optimized design on this basis to reflect the

performance characteristics of the water pollution trace-

ability algorithm, which mainly includes the following

points:

The first is the accuracy of positioning. The pollution

source feature information in the work mainly includes the

source location, start and duration, and pollution injection

quality array. For the problem of pipe network positioning,

the most decisive information is which node the pollution

Fig. 6 BWSN1_Ostfeld2008

Pipe network topology

Table 3 pollution scenario of BWSN1_Ostfeld2008 pipe network

Parameter Node number Start time of the pollution injection Duration (h) Injection contamination concentration(mg/L)

Scenario

Pollution scenario 1 44 2 4 300, 180, 240, and 180

Pollution scenario 2 92 2 4 300, 180, 240, and 180

Table 4 Error data of BWSN1_Ostfeld2008 pipe network

Algorithm Pollution scenario 1 Pollution scenario 2

Start time

error

Duration

error

Injection quality

error

acc Start time

error

Duration

error

Injection quality

error

acc

NGA 0.2853 1.0124 561.682 0.5548 0.2153 0.7281 346.4867 0.5629

GA-SBX 0.2523 1.0528 592.9434 0.7967 0.1847 0.727 330.2962 0.5967

GA-OSPS 0.2227 0.9992 564.7464 0.795 0.2204 0.6709 352.2975 0.5790

GA-HIRS 0.0164 1.0796 469.9973 0.725 0.0574 0.6389 295.9846 0.633

GA-ARS 0.0885 1.0818 486.1 0.81 0.072 0.7068 288.6287 0.725

GA-QLSS 0.2698 1.0741 510.3191 0.6758 0.1947 0.7414 316.7342 0.6112

New

algorithm

0.0283 0.999 443.1 0.8612 0.0844 0.5622 282.8936 0.6887
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source is generated on. Then, the work sets whether the

algorithm locates the real pollution source node as an

indicator, and establishes the accuracy rate acc (accuracy)

as the evaluation standard. In the entire simulation dura-

tion, for the optimal result obtained by the algorithm within

each Dt, if the node of the optimal individual is the real

pollution source node, then the node is hit once at this step.

Equation (10) shows the specific calculation.

acc ¼ Ts
PNrun

i¼1 Nhit

Dt � Nrun
ð10Þ

where Nhit represents the total number of times that the real

pollution source node is located in an independent opera-

tion. Dividing Ts and Dt can get the number of evolution

steps in a simulation time, and it also corresponds to the

number of environmental changes. Nrun is the number of

independent runs of the algorithm experiment, which is

generally set to 20 times in the work. Besides, after

locating the true source point, the remaining three pieces of

information of the pollution source characteristics are

evaluated. The average absolute error value under all

simulation steps is used to represent the accuracy of the

algorithm for solving different information. In the case of

different injection quality dimensions caused by different

durations, the unequal part is calculated as 0 mg injection.

As to reflecting the real-time nature of the algorithm for

traceability of pollution sources, two indicators are set. The

first is the earliest time for the algorithm to locate the real

pollution source. After the evolution of each time step is

over, if the optimal solution obtained by the algorithm in

this evolution is the real pollution source node, then the

difference between the current time and the time when the

pollution is first discovered is the time when the real pol-

lution source is located for the first time. After the evolu-

tion of each time step, if the optimal solution obtained by

the algorithm in this evolution is the real pollution source

node, then the difference between the current time and the

time when the pollution first discovered is the time when

the real pollution source is located for the first time. It

represents how long the algorithm can find the true pollu-

tion source location after the pollution occurs. Meanwhile,

the smaller the simulation time step, the fewer simulation

data that can be used for evolution, which reflects the

algorithm’s optimization ability and the ability to cope with

the non-uniqueness of the real-time location of pollution

sources. Within each step, the average algebra of the

algorithm to locate the true pollution source for the first

time is also used as an indicator. The fewer the iterations,

the better the algorithm’s ability to converge.

4.3 Impact of different strategies
on the algorithm

Different improvement strategies in the dynamic multi-

mode optimization algorithm have different influences on

the algorithm. In this section, different experimental sce-

narios and control groups are designed to test the algo-

rithm’s effect through combining different strategies. The

experimental pipe network is the BWSN1_Ostfeld2008

water supply pipe network. Table 1 shows the character-

istic parameters, and Fig. 6 shows the topology. There are

two groups of pollution events in the experiment, and

Table 3 presents the characteristic information.

Experiments were conducted according to different

strategies and genetic algorithm combinations to explore

different effects on the positioning results. The control

group mainly included: (1) the normal genetic algorithm

(NGA), (2) the improved genetic algorithm (GA-SBX), (3)

the improved genetic algorithm and optimal subpopulation

strategy (GA-OSPS); (4) the improved genetic algorithm

and historical information retention strategy (GA-HIRS),

(5) the improved genetic algorithm and adaptive

Table 5 Real-time data of BWSN1_Ostfeld2008 pipe network

Algorithm Pollution scenario 1 Pollution scenario 2

Average earliest

location time

Earliest location

time interval

Average earliest

location algebra

Average earliest

location time

Earliest location

time interval

Average earliest

location algebra

NGA 26 [10, 90] 8.15 21.5 [10, 50] 10.87

GA-SBX 14.5 [10, 30] 9.984 17 [10, 40] 9.33

GA-OSPS 19 [10, 70] 8.1 25 [10, 60] 13.141

GA-HIRS 15 [10, 50] 2.72 56.5 [10, 180] 2.55

GA-ARS 20 [10, 50] 2.33 28 [10, 120] 3.25

GA-QLSS 25.5 [10, 90] 9.32 26.5 [10, 50] 9.46

New

algorithm

14 [10, 30] 4.13 26.5 [10, 130] 4.04
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initialization strategy (GA-ARS), (6) the improved genetic

algorithm and quality local search strategy (GA-QLSS),

and (7) the multi-strategy dynamic multi-mode optimiza-

tion algorithm (MDMMOA). Tables 4 and 5 show the

experimental results.

Table 4 shows the error value of the pollution source

characteristic information and the positioning accuracy of

the genetic algorithm with different strategy combinations,

which mainly reflect the positioning accuracy of different

strategy combinations. GA-SBX is an improved algorithm

based on the traditional genetic algorithm combined with

simulated binary crossover and hybrid coding in the work.

Compared with the experimental data of traditional NGA,

the improved genetic algorithm can reduce the error and

improve the location accuracy in pollution scenario 1.

After adding the optimal subpopulation division strategy,

the algorithm can select the parent individuals more rea-

sonably when the algorithm crosses due to a more rea-

sonable population division. The algorithm’s positioning

accuracy increases, but the error was not different when

compared with NGA and GA-SBX. Both GA-ARS and

GA-HIRS respond to the dynamic environment’s changes

by reusing the historical optimal individuals. The differ-

ence is that GA-HIRS adopts a simpler method of reusing

all the optimal historical information individuals without

adapting to the extent where dynamic changes occur. In

Table 4, GA-HIRS performs well in three characteristic

information’s error values. The excellent individuals in

each different period are completely used when the algo-

rithm is optimized. As a result, the algorithm has con-

verged when the population is initialized and tends to use a

single optimization in the overall process. Therefore, in the

pollution scenario with a low degree of uniqueness and

non-uniqueness of pollution sources, GA-HIRS can obtain

more iterations to refine the characteristic information due

to its fast convergence characteristics and finally reduce the

error. However, note that if the non-uniqueness degree of

the pollution scenario is too high, and the algorithm locates

the error source with less fitness at the initial stage, GA-

HIRS will not find the real source again as the simulation

time increases. Finally, it is completely impossible to

locate the real pollution source, which has been confirmed

in part of the experimental data. Besides, the algorithm’s

positioning accuracy is not high. When GA-QLSS is used,

the error value of the pollution-source characteristic

information is reduced compared with NGA because the

particle swarm algorithm is used to further evolve the

results of the algorithm. The error value of GA-ARS is

smaller than that of GA-QLSS, due to the algorithm’s rapid

convergence after dynamic changes and relatively more

iterations for evolution refinement. Finally, the new

Fig. 7 Individuals’ optimal number of BWSN1_Ostfeld2008

Table 6 Pollution scenarios of Net3_Rossman2000 pipe network

Parameter Node number Start time of the pollution injection Duration (h) Injection contamination concentration (mg/L)

Scenario

Pollution scenario 1 16 2 4 300, 180, 240, 180

Pollution scenario 2 86 2 4 300, 180, 240, 180
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algorithm proposed in the work performs well in both

pollution scenarios.

The data in Table 5 are whether the algorithm can use

less time to locate the real solution in real-time evolution,

representing the real-time optimization and improvement

in different strategies. In the two scenarios, GA-SBX has

more excellent optimization capabilities due to its more

reasonable crossover method. Limited data are used to find

the real source of pollution in the case of a small simulation

step size and act as the algorithm’s optimal individual. In

terms of the average number of earliest positioning itera-

tions, two algorithms using the historical solution set

strategy have achieved significant results. It is because the

algorithm can converge due to the historical optimal indi-

vidual during restart to locate quickly. After MDMMOA

adds a redundant elimination strategy, a large number of

locally optimal and similar individuals due to non-

uniqueness are eliminated. Its algorithm’s positioning

speed is balanced compared with GA-ARS and GA-HIRS,

and the convergence speed is relatively reduced; however,

a better positioning effect is received.

GA-OSPS has no significant effect on positioning

accuracy and real-time performance. However, multi-pop-

ulation can provide multiple optimal solutions with com-

parable quality during solving the pollution sources’ non-

uniqueness, because the sensor concentration produced by

non-homogeneous individuals is the same. Meanwhile, the

algorithm always retains a large number of optimal solu-

tions because of the similar peak penalty strategy. This

ability to locate multi-mode solutions is very important for

Fig. 8 Net3_Rossman2000 Pipe

Network

Table 7 Error data of the Net3_Rossman2000 pipe network

Pollution scenario 1 Pollution scenario 2

Algorithm Start-time

error

Duration

error

Injection quality

error

acc Start-time

error

Duration

error

Injection quality

error

acc

DOA 0.27 0.69 374.5 0.459 0.21 0.78 365.8 0.556

New

algorithm

0.04 0.54 400.4 0.96 0.01 0.74 300.8 0.745
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solving the non-uniqueness problem. Only when the

number of multiple solutions is sufficient can the optimal

solution individual be judged based on the fitness com-

parison, thus optimally locating the real pollution source in

multiple parts.

Figure 7 reflects the algorithm’s optimal solutions

number of different combination strategies. Using an

optimal subpopulation division strategy can guarantee

multiple locally optimal solutions and improve the posi-

tioning accuracy.

Fig. 9 ky5_Jolly2013 pipe

network

Table 8 Pollution scenarios of the ky5_Jolly2013 pipe network

Parameter Node number Start time of the pollution injection Duration (h) Injection contamination concentration (mg/L)

Scenario

Pollution scenario 1 31 2 4 300, 180, 240, and 180

Pollution scenario 2 155 2 4 300, 180, 240, 180
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4.4 Analysis of algorithms performance
under different pipe networks

Two other small and medium-scale pipe networks were

used for experimental comparison to further compare the

performance of the dynamic multi-mode optimization

algorithm and verify the algorithm’s real-time traceability.

(1) Net3_Rossman2000 pipe networks

This group of experiments adopted Net3_Ross-

man2000 water supply pipe network, with relevant

parameters shown in Table 6, and the topology

shown in Fig. 8. The work conducted experiments on

two pollution scenarios on the Net3_Rossman2000

water supply pipe network, where the injected

pollution concentration was continuously injected

in the units of 1 h.

For the two pollution scenarios shown in Fig. 8,

the traditional dynamic optimal algorithm (DOA)

was adopted for experimental comparison with the

new algorithm. The pipe network adopted the

experiment’s average data of 5 h simulation time

and 20 independently running times (see Table 7).

Comparing the experimental data, the algorithm’s

accuracy of real-time positioning has greatly

improved after using the new algorithm, and the

algorithm has a high probability of obtaining the

optimal solution node in different simulation time

steps. In addition, the start time error was zero, and

the duration error and the injection quality error were

not much different from the DOA in terms of the

solution error. One of the reasons was that the real

pollution source nodes’ number located by DOA was

relatively small. In this case, the optimal solution’s

quality was relatively good, so the average error

obtained would be small. Other unshown data were

that the injection quality error of the optimal solution

could reduce to zero after the new algorithm’s

simulation time increased. However, DOA could not

converge to this accuracy, showing that the new

algorithm had a relatively good ability to explore the

optimal solution.

(2) ky5_Jolly2013 Pipe Network

This group of experiments adopted a relatively

enlarged ky5_Jolly2013 pipe network, with relevant

parameters shown in Table 1 and the topology

shown in Fig. 9. The work still conducted experi-

ments on two pollution scenarios on this pipe

network to explore the new algorithm’s ability of

real-time pollution traceability in the medium-sized

pipe network. Table 8 shows the pollution scenarios’

parameters.

Table 9 shows that two pollution scenarios are simu-

lated experiments. As the pipe network scale has increased

compared with the pipe network used above, the sensor

layout has also increased to 10, which directly increases the

time of calling the simulation software EPANET for a

single simulation. Therefore, the simulation duration of this

experiment is set to 3 h to reduce the experiment’s overall

time. Figure 9 shows the specific experimental data.

The new algorithm’s positioning accuracy has been

greatly improved compared with the common dynamic

optimal algorithm in the medium-sized pipe network, and it

has excellent positioning and optimization capabilities.

There is also a significant improvement in terms of error;

the error is negligible for the starting time. Among the

unshown experimental data, the new algorithm can accu-

rately locate nodes using 10 to 20 min of the sensor con-

centration data on average, and no more than 60 min at the

latest, which is very important for the ability to cope with

real-time missing positioning data.

5 Conclusions

Drinking water safety, related to people’s vital interests, is

a key concern of the whole society. Real-time water pol-

lution traceability is a powerful guarantee for urban

drinking water safety. Considering the challenges of the

real-time water pollution traceability, the work elaborated

and formulated combining the problem’s dynamic optimal

characteristics, and proposed a dynamic multi-mode opti-

mal algorithm based on it, which improved a variety of

Table 9 Error data of ky5_Jolly2013 pipe network

Pollution scenario 1 Pollution scenario 2

Algorithm Start time

error

Duration

error

Injection quality

error

acc Start time

error

Duration

error

Injection quality

error

acc

DOA 0.361 0.734 539.5 0.67 0.249 1.175 556.85 0.37

New

algorithm

0.07 0.914 400.4 0.98 0.017 1.01 533.95 0.63
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strategies to enhance the algorithm’s real-time traceability.

In terms of the non-unique of water pollution traceability,

the optimal subpopulation division strategy was adopted to

improve the algorithm’s optimization ability, thus dividing

and conquering for solving and increasing the optimal

solutions including the real pollution source. In addition, an

adaptive initialization strategy was introduced to reuse

historical information to cope with the environmental

change caused by the simulation duration parameters’

variation in real-time simulation. Besides, the strategy can

guide the algorithm to restart according to the environ-

mental change degree. Finally, the quality of the pollution-

source characteristic information was also refined locally to

improve the algorithm’s optimal solution quality. Through

the new algorithm’s combination experiment, the effec-

tiveness of different improvement strategies for improving

the algorithm’s performance was proved. Meanwhile,

another part of the experiment showed that the new algo-

rithm had achieved good improvement effects for small

and medium-sized pipe networks.
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