
Supplementary-Architecture

Weight-Optimization Neural Networks

Jared O’Reilly1* and Nelishia Pillay1

1Department of Computer Science, University of Pretoria,
Lynnwood Road, Pretoria, 0002, Gauteng, South Africa.

*Corresponding author(s). E-mail(s): u17051429@tuks.co.za;
Contributing authors: nelishia.pillay@up.ac.za;

Abstract

Research efforts in the improvement of artificial neural networks have
provided significant enhancements in learning ability, either through
manual improvement by researchers or through automated design by
other artificial intelligence techniques, and largely focusing on the archi-
tecture of the neural networks or the weight update equations used
to optimize these architectures. However, a promising unexplored area
involves extending the traditional definition of neural networks to allow
a single neural network model to consist of multiple architectures, where
one is a primary architecture and the others supplementary architec-
tures. In order to use the information from all these architectures to
possibly improve learning, weight update equations are customized per
set-of-weights, and can each use the error of either the primary archi-
tecture or a supplementary architecture to update the values of that
set-of-weights, with some necessary constraints to ensure valid updates.
This concept was implemented and investigated. Grammatical evolu-
tion was used to make the complex architecture choices for each weight
update equation, which succeeded in finding optimal choice combina-
tions for classification and regression benchmark datasets, the KDD
Cup 1999 intrusion detection dataset, and the UCLA graduate admis-
sion dataset. These optimal combinations were compared to traditional
single-architecture neural networks, which they reliably outperformed at
high confidence levels across all datasets. These optimal combinations
were analysed using data mining tools, and this identified clear pat-
terns, with theoretical explanation provided as to how these patterns
may be linked to optimality. The optimal combinations were shown to
be competitive with state-of-the-art techniques on the same datasets.

Keywords: artificial neural networks, weight update equations,
supplementary architectures, neuro-evolution, grammatical evolution

1

2 Supplementary-Architecture Weight-Optimization Neural Networks

1 Introduction

Researchers have poured efforts into identifying weaknesses in artificial neu-
ral networks, to remedy them with new constructs and mechanisms, and this
process has yielded great improvements in learning ability, or ’performance’.
These improvements have been manual, where human experts have identified
and patched weaknesses with mathematical specifications and greater process-
ing power. They have also been automatic through neuro-evolution, where
other artificial intelligence techniques are used to search within some original
or expanded aspect of neural networks and identify optimal solutions.

The aspects of neural networks which truly enable learning are the weight
update equations. In this research, the implementation of specialized per-
weight-set weight update equations is combined with an expansion to the
traditional definition of a neural network, specifically, a single neural network
model can consist of multiple architectures. One of these architectures is the
primary architecture, which produces the error of the neural network, and any
other architectures are supplementary architectures.

This is done by allowing the weight update equations for any set-of-weights
in the model to use the error of either the primary architecture or one of the
supplementary architectures to update weight values, with some constraints to
ensure valid weight update equations. This combination has not been explored
in current research, and has the potential to improve the learning ability of
the neural network model, which would be a contribution to the field.

This improvement is not guaranteed, as various choices are required:
what primary architecture should be used, which supplementary architectures
should be used, and which architecture should each weight update equation
use. These choices are complex and interlinked: therefore, the search technique
of grammatical evolution will be used to identify optimal combinations of the
choices above. The investigative objectives of this research are therefore:

1. To ascertain the effectiveness of combinations of primary architecture, sup-
plementary architecture and weight update equation choices on multiple
classification and regression problems.

2. To compare the performance of the standard neural network model, with a
single weight update equation and architecture, to the performance of neural
networks which can use supplementary architectures in their per-weight-set
update equations, on the mentioned problems.

3. To analyse why the standard or expanded neural network model performs
better on these problems, in particular, why particular combinations of
architecture choices in the expanded model affect performance.

This research is presented in the following sections: Section 2 covers any
related work that is needed for context, Section 3 presents the definition of
this new technique, Section 4 specifies the experimental setup and design in
order to fulfill the research objectives, Section 5 provides the results of these
experiments, Section 6 analyses these results, Section 7 presents a comparison

Supplementary-Architecture Weight-Optimization Neural Networks 3

to state-of-the-art techniques, and Section 8 concludes with a clear link to the
research objectives and possible future work.

2 Related work

No work is directly related, as the primary research objective is to investigate
if the novel mechanism can improve neural network learning performance.
However, concepts needed for context and motivation are introduced.

2.1 Manual design of the weight update equation

The stochastic gradient descent weight update equation used for neural net-
works is the following, where wxy is any particular set of weights in the neural
network that connects layer x to layer y, α is the learning rate, and E is the
error function calculated on the architecture of the neural network:

w′
xy = wxy − α ∗ dE

dwxy
α ≈ 0.01 (1)

Improvement by researchers has been done manually, where weaknesses
were identified and new mathematical constructs implemented as remedies,
centered around two major ideas: the introduction of momentum into the
weight update equation, and the introduction of per-weight learning rates.

The re-application of the previous weight update to simulate momentum
[1] as well as the look-ahead gradient calculation embedded in the Nesterov
accelerated gradient method [2] were both improvements with the primary
objective of using momentum and its convergence-stabilising properties.

The idea of adaptive, per-weight learning rates which decreased for weights
with frequent updates and increased for weights with infrequent updates was
pioneered by Adagrad [3]. Issues with vanishing learning rates were remedied
by both RMSprop [4] and Adadelta [5], which both use a decaying average
of past squared gradients instead of maintaining and using a store of all past
squared gradients to adapt learning rates.

The use of both momentum and adaptive per-weight learning rates was
combined in Adam [6], which uses a decaying average of past squared gradients
to adapt learning rates and a decaying average of past gradients to simulate
momentum. Various improvements of Adam such as AdaMax [6], Nadam [7]
and AMSGrad [8] were also derived, designed to remedy some flaw of Adam.

2.2 Automated design of the weight update equation

Automated improvement and/or reformulation of the weight update equation
has also been investigated. Neuro-evolution is the primary sub-field of artificial
intelligence devoted to this task, where neuro-evolution is simply defined as the
use of evolutionary algorithms to optimize aspects of neural networks [9, 10].

The major groups of work within neuro-evolution include: the search for
optimal weight values for fixed architectures [11–16]; the search for optimal

4 Supplementary-Architecture Weight-Optimization Neural Networks

architectures trained with gradient methods, also known as neural architecture
search or NAS [17, 18]; the simultaneous search for both optimal architec-
tures and optimal weights for these architectures [19, 20]; and the concept
of synaptic-plasticity [21–28] and neuromodularity [29–31] to alter not only
weight values but also architectures over the course of training.

The major group of work within neuro-evolution most relevant to this
research is the evolution of learning rules [9, 10] i.e. weight update equations.
These approaches automatically design the learning rules either directly in
the learning rule space [32–34] or in another space used to generate learning
rules [35, 36]. Common themes in this group of related work include: the use
of Hebbian learning rules [37] as an alternative to gradient descent in vari-
ous contexts [35, 38] as well as other synaptic-plasticity mimicking techniques
[39, 40] which alter the architecture over time [41], and the evolution of local
learning rules for neurons with various encoding schemes [38, 42].

The evolution of local learning rules is related to the concept of per-weight
local learning rates utilized by previously mentioned optimizers [3–6], which
led to significantly increased learning capability. Local learning rules can be
applied at various levels of granularity e.g. for each neuron, for each weight, or
perhaps for each set-of-weights between layers in the architecture, which should
provide a good balance between search space size and optimality potential.

A possibility not yet explored in the field is that of using multiple distinct
architectures in one model. NAS involves searching the space of possible archi-
tectures for one that is optimal for further gradient-based learning, but this
assumes that a neural network’s learning rules can only consider and use one
architecture. Further, the concept of local learning rules for each set-of-weights
in an architecture provides a surface onto which the use of multiple archi-
tectures can be applied. The weight update equations for each set-of-weights
could be separately specified, and each weight update equation could somehow
incorporate different architectures.

2.3 Grammatical evolution

Just as NAS searches the space of architectures, this new concept also needs a
search, but in the space of multiple architectures and their combined use. Evo-
lutionary algorithms like genetic algorithms or other grammar-based search
techniques such as grammatical evolution (GE) [43] can be used. GE evolves
programs defined by a target grammar using a binary string of variable
length, utilizing a mapping process which converts binary strings maintained
in the population, genotypes/chromosomes, into valid programs from the tar-
get grammar, phenotypes. These programs are evaluated by a fitness function,
relating a fitness value to the chromosome used to generate the program [43].

Grammatical evolution has the following significant advantage over other
evolutionary algorithms [43]: other algorithms search directly in the program
space, so their genetic operators must be designed to produce valid programs.
GE searches within a binary string space which is mapped onto the program
space, and this mapping always produces valid programs. Therefore, standard

Supplementary-Architecture Weight-Optimization Neural Networks 5

bitstring genetic operators can be used to move the search, which require less
manual design than validity-preserving genetic operators working directly in
the program space, which enables an unconstrained search of the genotype [43].

3 Supplementary Architecture Weight
Optimization

Based on current research, a new optimization algorithm for neural networks is
proposed: Supplementary Architecture Weight Optimization, or SAWO. This
algorithm extends traditional gradient descent weight optimization by intro-
ducing supplementary architectures alongside the primary neural architecture.
The errors that the supplementary architectures produce can be used to update
particular weight sets in the primary architecture, rather than the error of the
primary architecture. The choices of which weight sets to do this for, and which
supplementary architectures to use, are decided by grammatical evolution.

3.1 Architectures: definition and construction

Neural network architectures are made up of layers of neurons, which are
connected sequentially using sets of weights. Definitions given below:

Definition 1 (Layer set L) In the architectures of this research, 5 different layers
can be used in an architecture, and they are defined in the layer set L:

L = {i, a, b, c, o} (2)

Definition 2 (Layer size and types) Each layer contains a number of neurons, known
as the size of the layer, and this can be retrieved using the cardinality operator i.e.
the size of x ∈ L is |x|, with |x| ∈ N. Each of these layers is one of 3 types, defined by
how they can be connected to other layers. i is an input layer, and can only connect
to other layers. a, b and c are hidden layers, which can connect to other layers and
be connected to by other layers, but not to themselves. o is an output layer, which
can only be connected to by other layers.

Definition 3 (Set-of-weights set W) Every possible connection between layers will
involve a set-of-weights. Therefore, the set of all possible sets-of-weights W is defined,
bearing in mind the connective possibilities of layers from Definition 2:

W = { wxy | x ∈ {i, a, b, c}, y ∈ {a, b, c, o}, x ̸= y } (3)

Definition 4 (Set-of-weights dimensions) The dimensions of a set of weights are the
sizes of the layers it connects i.e. wxy between layers x and y has dimensions |x| x |y|.

Definition 5 (Architecture) An architecture is defined as an n-tuple, where every
element of the n-tuple is a set that contains 1 or more layers from L. For an archi-
tecture d, the k-th element of d is denoted as dk. The following constraints apply:

6 Supplementary-Architecture Weight-Optimization Neural Networks

- d1 can only contain i, i.e. d1 = {i} and dn can only contain o, i.e. dn = {o}
- The other elements of d can contain input (i) and hidden (a, b, c) layers, but each
hidden layer can only appear once in an architecture.

Definition 6 (Architecture set A) The architecture set A contains all possible valid
architectures according to Definition 5, and is given in Appendix A.

Some examples from the full architecture set A found in Appendix A are
given in Table 1 in the correct representation of an n-tuple of sets, as well as
shorthand representations, used in the appendix and throughout this research.

Table 1 Examples from architecture set A

Example Shorthand

({i}, {o}) i · o
({i}, {a}, {c}, {o}) i · a · c · o
({i}, {b}, {i, a}, {o}) i · b · |ia| · o
({i}, {i, c}, {a, b}, {o}) i · |ic| · |ab| · o

The use of parallel layers, like in i · |ic| · |ab| · o, brings up the question of
how these layers are connected together by sets-of-weights. The rules used to
construct an architecture d are presented below:

Definition 7 (Architecture construction) The sets-of-weights connecting di and
di+1 with i < n is given by the following rules:

1. If di contains a single layer x
and di+1 contains a single layer y,
then x and y will simply be connected using wxy

2. If di contains a single layer x
and di+1 contains J non-input layers y1, ..., yj , ..., yJ with J > 1,
then x will be connected to each yj with wxyj

3. If di contains J layers x1, ..., xj , ..., xJ with J > 1
and di+1 contains K non-input layers y1, ..., yk, ..., yK with K >= 1,
we perform the following:
Consider xj . We need to connect xj to every layer in y1, ..., yk, ..., yK .
Therefore, we will create layers zj1, ..., zjk, ..., zjK , which are temporary copies of
y1, ..., yk, ..., yK for xj to use. As they are copies, zjk = yk.
Each xj is then connected to each zjk using the set of weights wxjyk .
Now that the x layers are connected to the z layers, the z layers must be connected
to the y layers. An Average operation is used, which averages values from multiple
layers of the same size in an element-wise fashion and inputs them to the next layer.
Specifically, we use the Average operation to average element-wise the values of

Supplementary-Architecture Weight-Optimization Neural Networks 7

z1k, ..., zjk, ..., zJk and feed this into layer yk. All of z1k, ..., zjk, ..., zJk are temporary
copies of yk, and so will be the same size.

For the architectures of this research, a linear activation function is
used for all neuron outputs. This is the ”canonical” neural network activation
function, so is suitable for assessing the potential of this novel approach. More
recent non-linear activation functions exist, but choosing a single one for this
work is complex, and a wrong choice could bias results. The use of different
activation functions is discussed in Section 8. To illustrate the use of the rules in
Definition 7, three examples architectures and a diagrammatic representation
of their connections between layers are given in Figures 1, 2 and 3.

Fig. 1 Diagrammatic representation of the architecture i · a · b · o

Fig. 2 Diagrammatic representation of the architecture i · |ab| · c · o

The use of linear activation functions influences the choice of which
element-wise arithmetic operation to use in the third rule of Definition 7, as this
activation function is predisposed to forward-propagation saturation. Viable
candidates for this operation are Add, Multiply, Min, Max and Average.

8 Supplementary-Architecture Weight-Optimization Neural Networks

Fig. 3 Diagrammatic representation of the architecture i · |ib| · |ac| · o

Add, and especially Multiply, would certainly cause saturation, as forward-
propagated values would rapidly grow in magnitude, and this was seen in trial
runs. Min and Max are less likely to cause saturation, but these operations only
consider one of the element-wise values, meaning entire streams of encoded
knowledge from previous layers are discarded.

Average is unlikely to cause saturation, as the average of element-wise
values will always be smaller than the largest element-wise value. Every
element-wise value is used in this calculation, so all streams of encoded knowl-
edge are used to some extent and none are discarded. These two attributes of
the Average operation make it suitable for use with a linear activation function.

Definitions to extract information from a particular architecture or set-of-
weights are given, which simplify further definitions and algorithms:

Definition 8 (Set-of-weights appearing in an architecture) For a particular archi-
tecture d ∈ A, we have the following condition relating to whether the set of weights
wxy ∈ W appears in d:

∃j : x ∈ dj ∧ y ∈ dj+1 ⇒ wxy appears in d (4)

For example, wco appears in i · a · c · o and wab appears in i · |ia| · |bc| · o, whereas wib

does not appear in i · a · o and wbo does not appear in i · |ib| · a · o.

Supplementary-Architecture Weight-Optimization Neural Networks 9

Definition 9 (Set-of-weights architecture subset Axy) We can create subsets of the
architecture set A for every set of weights in W . Each set-of-weights subset contains
all the architectures from A that that set of weights appears in. We therefore define
the set-of-weights architecture subset Axy like so:

∀wxy ∈ W : Axy = { d | d ∈ A, wxy appears in d } (5)

For example, let us find Aac = { d | d ∈ A, wac appears in d }

= { i · a · c · o, i · |ia| · c · o, i · a · |ic| · o, i · |ia| · |ic| · o, i · |ab| · c · o, i · |iab| · c · o,

i · |ab| · |ic| · o, i · a · |bc| · o, i · |ia| · |bc| · o, i · a · |ibc| · o, i · a · c · b · o, i · |ia| · c · b · o,
i·a·|ic|·b·o, i·a·c·|ib|·o, i·|ia|·|ic|·b·o, i·|ia|·c·|ib|·o, i·a·|ic|·|ib|·o, i·b·a·c·o,
i·|ib|·a·c·o, i·b·|ia|·c·o, i·b·a·|ic|·o, i·|ib|·|ia|·c·o, i·|ib|·a·|ic|·o, i·b·|ia|·|ic|·o }

Definition 10 (Architecture set-of-weights subset Wd) We can also create subsets
of the set-of-weights set W for every architecture in A. Each architecture subset
contains all the sets-of-weights from W that appear in that architecture. We therefore
define the architecture set-of-weights subset Wd like so:

∀d ∈ A : Wd = { wxy | wxy ∈ W, wxy appears in d } (6)

For example, let us find

Wi·|ia|·|bc|·o = { wxy | wxy ∈ W, wxy appears in i · |ia| · |bc| · o }

= { wia, wib, wic, wab, wbc, wbo, wco }

3.2 Extending the weight update equation

A neural network has two basic aspects: its architecture with weights, and
the learning rules used to update the weights i.e. the weight update equations
(WUEs). For a set-of-weights wxy between layer x and y in an architecture d,
the stochastic gradient descent WUE for that set-of-weights is the following:

w′
xy = wxy − α ∗ dE

dwxy
(7)

α represents the learning rate, and E is the error function, which calculates
the differences between actual target values and the target values that the
architecture d’s weights produce by forward-propagation. Stochastic gradient
descent is the ”canonical” gradient-descent optimizer for neural networks, so is
used in this research to assess the potential of this novel approach and establish
proof-of-concept. The use of more recent optimizers is discussed in Section 8.

Let us consider architecture i · a · b · o, which is drawn in Figure 1. The
sets-of-weights used in this architecture is given by equation 6: Wi·a·b·o =
{wia, wab, wbo}. Therefore, the set of WUEs needed for this architecture is:

w′
ia = wia − α ∗ dE

dwia

w′
ab = wab − α ∗ dE

dwab

10 Supplementary-Architecture Weight-Optimization Neural Networks

w′
bo = wbo − α ∗ dE

dwbo
(8)

These weight update equations are now further specified. The error
function, E, is implicitly referring to the error produced by a particular
architecture. Let us more explicitly denote this with a definition:

Definition 11 (Error of an architecture Ed) The error function E, such as mean-
squared error or cross-entropy error, formulated according to the structure of
architecture d ∈ A is explicitly referred to as Ed, rather than just E.
For example, Ei·c·o is the error function E formulated for architecture i · c · o.

In this case, the architecture is i · a · b · o, so the WUEs are changed to:

w′
ia = wia − α ∗ dEi·a·b·o

dwia

w′
ab = wab − α ∗ dEi·a·b·o

dwab

w′
bo = wbo − α ∗ dEi·a·b·o

dwbo
(9)

At this point, the core question of this research can be phrased: what would
happen if some other ”supplementary” architecture g ∈ A was used to produce
error instead of i ·a ·b ·o for one or more of these equations? For example, what
if the architecture i · a · |ib| · o was introduced and used instead of i · a · b · o for
the WUE of wab? That would transform the WUEs to:

w′
ia = wia − α ∗ dEi·a·b·o

dwia

w′
ab = wab − α ∗

dEi·a·|ib|·o

dwab

w′
bo = wbo − α ∗ dEi·a·b·o

dwbo
(10)

There are two complications introduced by this change:

1. Previously, all needed sets-of-weights were known, through Wi·a·b·o =
{wia, wab, wbo}, and they each had WUEs. But with the introduction
of the new supplementary architecture i · a · |ib| · o with Wi·a·|ib|·o =
{wia, wab, wio, wbo}, an additional set-of-weights is introduced: wio. This
set-of-weights needs its own WUE in order to contribute to learning.

2. Not every supplementary architecture from A can be used in the error for
a particular WUE.

• The architecture chosen above, i · a · |ib| · o, is suitable for use in the
WUE for wab because wab appears in i · a · |ib| · o according to Definition
8. Therefore, the weight values in wab will be used in the calculation of

Ei·a·|ib|·o, and so the error derivative
dEi·a·|ib|·o

dwab
will contain meaningful

values and be of the same dimensionality as wab. This ensures meaningful
and valid updates.

Supplementary-Architecture Weight-Optimization Neural Networks 11

• An architecture such as i · a · o could not be used for the WUE of wab, as
wab does not appear in i · a · o and so the weight values in wab are not
used in the calculation of Ei·a·o. Therefore, the error derivative

dEi·a·o
dwab

will

simply evaluate to 0, much like the derivative d
dz (x

2 + 1) would evaluate
to 0, and so the values in wab would never change from their initial values.

Considering these complications, the WUEs must be further transformed.
Considering complication 1, a new set-of-weights wio is introduced and given its
own WUE. Considering complication 2, an appropriate supplementary archi-
tecture must be chosen for this new WUE. The criterion for this choice is that
wio must appear in the supplementary architecture. This criterion fits well
with the definition of equation 5, and so we find Aio according to equation 5,
and choose the architecture i · o ∈ Aio. Any architecture in Aio could be cho-
sen, but i ·o ensures no further sets-of-weights are introduced, as Wi·o = {wio},
which is ideal to end this example. The WUEs are therefore transformed to:

w′
ia = wia − α ∗ dEi·a·b·o

dwia

w′
ab = wab − α ∗

dEi·a·|ib|·o

dwab

w′
io = wio − α ∗ dEi·o

dwio

w′
bo = wbo − α ∗ dEi·a·b·o

dwbo
(11)

Now that all required WUEs are defined, and each WUE will evaluate
meaningfully, the following question is pertinent: what will happen if the trans-
formed WUEs from equation set 11 are used in the training of the neural
network, rather than the original WUEs from equation set 9? If decreasing the
error of the original (or ”primary”) architecture i ·a ·b ·o is the goal of training,
which set of WUEs will better achieve this goal? This question is difficult to
answer theoretically, so we need to train using both sets of WUEs separately
and compare their performance.

But regardless of the outcome of this comparison, another question arises:
could better supplementary architectures be chosen than the ones above, which
would better achieve this goal? And what if different sets-of-weights were cho-
sen to use a supplementary architecture in their WUE? These choices are
complex and numerous, and a human expert would struggle to consider them
all. For this reason, a grammar is created to define all possible weight-and-
architecture choices, and grammatical evolution is used to search this possible
space of choices to find those which achieve the goal of training best.

Henceforth, a neural network with a primary architecture that can use
supplementary architectures for weight updates is defined as a supplementary-
architecture weight-optimization neural network, or SAWO-NN.

12 Supplementary-Architecture Weight-Optimization Neural Networks

3.3 Grammar of possible SAWO-NNs

A grammar defining a WUE for any set-of-weights wxy is specified, denoted
Gxy. This grammar is instantiated for every set-of-weights in W from equation
3. An overall grammar is then specified, denoted as G, which uses these
grammars to describe a neural network using supplementary architectures.

The grammar Gxy for a set-of-weights wxy is given below:

⟨start⟩ ::= w′
xy = wxy - ⟨constant⟩ * dE ⟨architecture⟩ / d wxy

⟨constant⟩ ::= 0.01 | 0.1 | 0.25 | 0.33 | 0.5 | 0.66 | 0.75 | 0.9 | 0.99

⟨architecture⟩ ::= g ∈ Axy

This grammar encodes choices of which constant learning rate and which
architecture from the Axy set to use for the WUE of wxy. This grammar is
instantiated for every wxy ∈ W , giving Gia, Gib, ..., Gco. Consider the grammar
Gba. A few example instances of Gba are:

• w′
ba = wba - 0.25 * dE i · b · a · o / d wba

• w′
ba = wba - 0.66 * dE i · |ib| · a · o / d wba

• w′
ba = wba - 0.01 * dE i · c · b · |ia| · o / d wba

In this research, the error used for all weight update equations is mean-
squared error or MSE, for simplicity sake. The grammar G is given below,
with instances of this grammar encoding all information needed to instantiate
a SAWO-NN. Layer sizes are restricted to 20 to keep training times short.

⟨start⟩ ::= ⟨layers⟩ ⟨weightupdates⟩ ⟨primary⟩

⟨layers⟩ ::= a:⟨size⟩, b:⟨size⟩, c:⟨size⟩

⟨size⟩ ::= n ∈ {2...20}

⟨weightupdates⟩ ::= eia ∈ L(Gia), ..., exy ∈ L(Gxy), ..., eco ∈ L(Gco)

⟨primary⟩ ::= d ∈ A

The sizes of the a, b and c layers are encoded using the layers rule. The
primary architecture is encoded using the primary rule. A WUE for all sets-of-
weights in W is chosen from the language of the corresponding grammar and
encoded using the weightupdates rule, with the WUE chosen from grammar
Gxy denoted as exy. Note that every set-of-weights in W has a WUE chosen,
even if that set-of-weights is not needed to train the primary architecture.
This choice will be elaborated when the training procedure is defined.

Supplementary-Architecture Weight-Optimization Neural Networks 13

Here is an example of a valid instance of the G grammar:

a : 16, b : 4, c : 9

w′
ia = wia − 0.33 ∗ dE i · a · o

dwia

w′
ib = wib − 0.25 ∗ dE i · b · a · o

dwib

w′
ic = wic − 0.75 ∗ dE i · |ib| · c · o

dwic

w′
io = wio − 0.01 ∗ dE i · |ic| · o

dwio

w′
ab = wab − 0.1 ∗ dE i · |ac| · |ib| · o

dwab

w′
ac = wac − 0.99 ∗ dE i · a · c · o

dwac

w′
ao = wao − 0.66 ∗ dE i · |ibc| · a · o

dwao

w′
ba = wba − 0.5 ∗ dE i · b · |ia| · o

dwba

w′
bc = wbc − 0.1 ∗ dE i · b · c · o

dwbc

w′
bo = wbo−0.9∗ dE i · |ia| · c · |ib| · o

dwbo

w′
ca = wca − 0.25 ∗ dE i · |ibc| · a · o

dwca

w′
cb = wcb − 0.33 ∗ dE i · c · b · o

dwcb

w′
co = wco − 0.66 ∗ dE i · |ab| · |ic| · o

dwco

i · |ia| · c · |ib| · o

Note that the architectures chosen in each WUE can possibly be the same
as the primary architecture, such as for wbo above. If this is true for every set-
of-weights that appears in the primary architecture, then we essentially have
standard gradient descent, similar to the configuration of equation set 9.

3.4 Training and using a SAWO-NN

The instances of G fully describe a particular SAWO-NN, but not how they
are trained, with the goal of decreasing the error produced by the primary
architecture. This training process is described, for some instance of G.

Before the neural network can be trained, the needed sets-of-weights must
be established, as well as the architectures used to update these sets-of-weights.
As mentioned, not every set-of-weights WUE is needed for every instance of
G, but every WUE is encoded by the grammar: it is easier to discard excess
structure than to generate the exact amount of structure needed.

Before presenting the algorithm to do this, a useful definition is given,
which extracts the architecture used in a particular WUE:

Definition 12 (Architecture used in a WUE αxy) If exy is the WUE for set-of-
weights wxy, then:

αxy = { d | d ∈ A , d is used in the error derivative term of exy } (12)

For example, for eic chosen as w′
ic = wic − 0.75 ∗ dE i·c·o

dwic
, we have αic = {i · c · o},

and for eao chosen as w′
ao = wao − 0.33 ∗ dE i·b·a·o

dwao
, we have αao = {i · b · a · o}.

14 Supplementary-Architecture Weight-Optimization Neural Networks

The algorithm to find the needed sets-of-weights W ′ and needed architec-
tures A′ is given:

1. Initialise a directed graph. Create a node for every weight set in W .
2. Perform the following for each wxy ∈ W :
(a) Consider the WUE for wxy i.e. exy. Find the architecture used in

this WUE, in other words, find αxy.
(b) For the single architecture d in αxy, establish which sets-of-weights

appear in d. In other words, find Wd.
(c) For every set-of-weights wij ∈ Wd, if one does not exist, draw a

directed edge in the graph from the wxy node to the wij node.
3. Create an empty set W ′, the needed set of weights set.
4. Consider the primary architecture, denoted p. Establish which sets-of-

weights appear in p i.e. find Wp. Perform the following for every weight
set wxy ∈ Wp:

(a) Consider the wxy node in the directed graph. Find all nodes that
are connected to this wxy node by a directed walk i.e. they are
reachable from the wxy node.

(b) Add the set-of-weights for each of these nodes to the set W ′.
5. Create an empty set A′, the needed architectures set. Add the primary

architecture p to A′.
6. Perform the following for each wxy ∈ W ′:
(a) Consider the WUE for wxy i.e. exy. Find the architecture used in

this WUE, in other words, find αxy.
(b) Add the single architecture d in αxy to A′.

7. We now have our set of needed sets-of-weightsW ′ and our set of needed
architectures A′. Randomly initialise all sets of weights in W ′.

For the example instance of G grammar provided previously, the elements
of W ′ and A′ are derived and given below. In this research, all weights in W ′

are randomly initialized using a normal distribution with mean of 0 and
standard deviation of 0.2 i.e. N (0, 0.2):

W ′ = { wia, wib, wic, wio, wac, wao, wba, wbc, wbo, wca, wcb, wco }

A′ = { i · |ia| · c · |ib| · o, i · a · o, i · b · a · o, i · |ib| · c · o,
i · |ic| · o, i · a · c · o, i · |ibc| · a · o, i · b · |ia| · o,

i · b · c · o, i · |ibc| · a · o, i · c · b · o, i · |ab| · |ic| · o }

The algorithm for training a SAWO-NN is given. This algorithm takes
as input: the W ′ and A′ sets derived previously; all information encoded in
the grammar instance such as the primary architecture p; all WUEs; and
the dataset which the SAWO-NN is being optimized for in two parts: the
training subset and validation subset. When error needs to be calculated,
mean-squared error is again used. See the algorithm below:

Supplementary-Architecture Weight-Optimization Neural Networks 15

1. Construct all architectures in A′ according to Definition 7. Then, to
initialise the values of the sets-of-weights in the architectures, make
shallow copies of the corresponding sets-of-weights in W ′.

2. Calculate either the accuracy (classification) or error (regression) of p
on the validation subset. Store this value as best-perf and the current
values of the sets-of-weights in W ′ as best-perf-weights.

3. Repeat the following for n epochs:
(a) Shuffle the training subset, and then split it evenly into a certain

number of training mini-batches, denoted as T .
(b) Perform the following for each training mini-batch ti ∈ T :

(i) Evaluate each WUE of the weight sets in W ′, thereby updat-
ing these weight sets in W ′. When an error partial derivative is
evaluated, use the required architecture from A′ on the training
mini-batch ti to calculate error.

(ii) Remove all constructed architectures.
(iii) Re-construct all architectures in A′, and initialise weight values

with shallow copies of the newly updated sets-of-weights in W ′.
(c) Calculate either the accuracy or error of p on the validation subset.

If this is better than best-perf, store this value in best-perf and the
current values in the sets-of-weights in W ′ in best-perf-weights.

4. Return best-perf, best-perf-weights, and p.

The returned best-perf represents the SAWO-NN at its best generalization
ability throughout training. One can reproduce this using the returned primary
architecture p and best-perf-weights, which contains the set-of-weights values
to use in p to produce best-perf. The increasing (classification) or decreasing
(regression) of best-perf is regarded as the goal of training.

Note that this training algorithm closely mimics the training algorithm of
standard gradient-descent weight-optimization. Indeed, if every set-of-weights
in the primary architecture p uses p in its WUE, then regardless of the other
architectures choices, standard gradient-descent will occur, as W ′ will be equal
to Wp and A′ will only contain p. This algorithm would then just update the
sets-of-weights in the primary architecture, using training mini-batches over
a number of training epochs. This can occur by chance when constructing an
instance from the grammar, for any of the primary architectures in A. This
fact will be used to inform initial population generation.

At this stage, a SAWO-NN is well defined in terms of configurations and
usage. However, the exact configurations which would optimize learning ability
and subsequent usage are unknown. It is also unknown whether a SAWO-NN
can learn more optimally than the standard gradient-descent approach which it
extends. To establish these unknowns, which correspond to research objective
1 and 2 respectively, an experiment is conducted: find optimal configurations
of SAWO-NN on different tasks, represented by datasets, and then compare
these optimal SAWO-NNs to their standard gradient-descent counterparts on
these tasks. This is the focus of the rest of this research.

16 Supplementary-Architecture Weight-Optimization Neural Networks

4 Experimental setup

The specifics of this experiment are presented. The datasets which the tech-
niques will be evaluated on are provided first. For each dataset, grammatical
evolution (GE) is used to search the space of SAWO-NNs defined by the gram-
mar G. SAWO-NNs are evaluated using their performance on these datasets
after training. The general design and hyperparameters of GE is also provided,
as well as how many times GE will be run and how these results are aggregated.

4.1 Datasets

SAWO-NNs are capable of classification and regression, so the datasets chosen
represent both problem domains: well-known benchmark data sets from the
binary classification, multi-class classification and regression fields, and lesser-
known real-world datasets tied to specific application domains. This will give
a good picture of the capabilities of SAWO-NNs. See Appendix B for more
information on the source and pre-processing of these datasets.

4.1.1 Benchmark problems

The datasets in this section are extensively used in machine learning literature,
and are considered benchmark datasets which new techniques should be tested
against. Table 2 presents the chosen binary classification datasets, Table 3
presents the chosen multi-class classification datasets, and Table 4 presents
the chosen regression datasets.

Table 2 Binary-class classification datasets

ID Dataset Rows Features Class Dist % Domain

1
Breast Cancer

569 32 B=63 M=37
healthcare,

Wisconsin (Diagnostic) cancer

2
Mushroom

8124 23 e=52 p=48
nature,

Classification public safety

3
Heart Attack Analysis

303 14 0=46 1=54
healthcare,

and Prediction heart conditions

4.1.2 Real-world application problems

The datasets in this section represent real-world problems, which have been
encoded into dataset format for machine learning. The inclusion of these
datasets is for establishing the suitability of SAWO-NN for difficult real-world
problems. Table 5 presents the chosen real-world application datasets.

Supplementary-Architecture Weight-Optimization Neural Networks 17

Table 3 Multi-class classification datasets

ID Dataset Rows Features Class Dist % Domain

4
Iris

150 5
0 to 2: earth & nature,

Species 33, 33, 33 biology

5
Red Wine

1599 12
3 to 8: chemistry,

Quality 1, 3, 43, 40, 13, 1 alcohol

6
Glass

214 10
1 to 7: industrial,

Classification 33, 36, 8, 0, 6, 4, 14 chemistry

7
Wheat

210 8
0 to 2: earth & nature,

Seeds 33, 33, 33 agriculture

Table 4 Regression datasets

ID Dataset Rows Features Mean Output Value Domain

8
Boston House

505 11 22.53
real estate,

Price social science

9
Abalone

4177 9 9.93
earth & nature,

Rings biology

10
1985 Automobile

201 29 121.43
insurance,

Insurance vehicles

Table 5 Real-world application datasets

ID Dataset Rows Features Problem Type Domain

11
KDDCup 99

25k 42
Binary intrusion detection,

Intrusion Detection classification networks

12
Graduate

400 9 Regression
education,

Admission universities & colleges

4.2 GE design

A generational model is used, where a new generation is entirely produced
using genetic operators. The stopping criteria is a set number of generations.
This GE design was chosen to achieve good results across all datasets.

4.2.1 Initial population generation

Chromosome bitstrings are usually randomly generated, however, experimen-
tal runs struggled to find optimal SAWO-NNs. This is because a randomly
generated chromosome will generate random supplementary architectures for

18 Supplementary-Architecture Weight-Optimization Neural Networks

all WUEs, which may not be the same as, or similar to, the primary architec-
ture. It was observed that the use of all of these supplementary architectures
at once was not effective at decreasing the error of the primary architecture.

Some optimal SAWO-NNs were found, but they were needles in a haystack,
with one common property: they only had a few WUEs using supplementary
architectures, with the majority of the WUEs using the primary architecture.
This optimality pattern makes sense: single-architecture gradient-descent is
known to be effective for learning, and so using different architectures for
almost all WUEs would deviate from this known point of optimality.

Therefore, an informed initial population is used. This means that the
initial population is not just randomly generated, rather, a known heuristic is
used to guide the random generation. Members in the initial population will
already have some optimality, and further evolution of this initial population
should produce more optimal members.

Instead of randomly generating bitstrings, a set of template bitstrings is
defined, one for each possible primary architecture in A. Each template bit-
string has some bits filled, which is determined by the corresponding primary
architecture. The primary architecture choice is filled to map to the primary
architecture. The sets-of-weights in the primary architecture are established,
and the supplementary architecture choices for each of those WUEs are also
filled to map to the primary architecture. Any other bits are left as ”empty”.

This filling strategy ensures that if any template bitstring is chosen,
and ”empty” bits randomly filled, the chromosome would map to standard
single-architecture gradient-descent in G. This filling strategy works because
the number of codons needed can be exactly determined, which is detailed
later. However, members of the population should deviate slightly from this
configuration, using a few supplementary architectures rather than none.

Therefore, when a new member of the population must be created, a tem-
plate is randomly chosen. 1 or 2 bits are randomly flipped in this template, and
then the ”empty” bits are randomly filled. This ensures that the bitstrings do
not map to single-architecture gradient-descent on the corresponding primary
architecture, rather, they will slightly differ and use about 1 or 2 supplemen-
tary architectures. These generated chromosomes therefore display the same
optimality pattern as the needles in the haystack mentioned previously, which
is the heuristic being used for this informed initial population.

Lastly, because the performance of a multi-point search like GE is largely
determined by the starting points in the search space, a larger initial popula-
tion is used. The best members selected from this initial population are placed
into the smaller second generation, which is therefore more likely to contain
optimal members, providing a better starting point.

4.2.2 Fitness function

The optimality of a SAWO-NN should be based on its performance on testing
data after training i.e. generalization ability. The returned value of best-perf
from the training algorithm represents this measure, however, the value is

Supplementary-Architecture Weight-Optimization Neural Networks 19

stochastic in nature, as the weight values for the SAWO-NN are initialized
randomly. Therefore, multiple trainings will take place, and the average value
of best-perf used to represent fitness.

For classification, a higher best-perf indicates better fitness, as this rep-
resents validation accuracy. For regression, a lower best-perf indicates better
fitness, as this represents validation error. The number of trainings per fitness
evaluation must be chosen carefully: a larger number of trainings gives a bet-
ter picture of fitness, but takes longer to execute. An appropriate number of
trainings will be chosen and specified in the hyperparameters section.

4.2.3 Selection methods and genetic operators

Two selections methods are used: m-elitism, which selects the best m members
from the current generation, and k-way tournament selection, with the value of
k offering control over the rate of convergence. As GE maintains a population
of bitstrings, standard bitstring genetic operators are used:

1. Reproduction - the input bitstring is exactly copied and returned.
2. Creation - a new bitstring is generated as per the initial population

generation template method and returned.
3. Mutation - a random bit is chosen and flipped in the input bitstring and

that bitstring is returned.

Members chosen using m-elitism undergo reproduction, and members chosen
using k-way tournament selection undergo mutation. Crossover was not used,
as experimental runs found that crossover was having a destructive effect on
population members, rarely producing offspring with better fitness values. This
may be due to the fact that a sudden change in the primary architecture,
which crossover is likely to cause, can have severely debilitating effects.

4.2.4 Hyperparameters

There are two sets of hyperparameters: one set specific to the functioning of
SAWO-NN, shown in Table 6, and another set for tweaking the behaviour of
GE, shown in Table 7. All hyperparameter choices were decided by trial and
error from experimental runs, except a few which were explicitly chosen.

Table 6 Hyperparameters for SAWO-NN

Number of epochs per training 20
Number of mini-batches 5
Training/validation split 75/25

The most important GE choice is the number and size of codons. Due
to Gxy’s architecture rule and G’s primary rule, which both encode a large
number of choices, the codon lengths must be large enough to choose every
option, with 7 bits sufficient. The number of codons needed can be exactly

20 Supplementary-Architecture Weight-Optimization Neural Networks

Table 7 Hyperparameters for GE

Number of generations 10
Initial population size 120
Subsequent population size 60
Tournament selection k 2

Reproduction rate 20%
Creation rate 30%
Mutation rate 50%

Number of codons 31
Codon length 7 bits
Number of trainings per evaluation 2

determined: 1 codon is needed for the start rule, 3 codons are needed for layer
size choices, 2 codons are needed to make a constant and architecture choice
for each of the 13 WUEs, and 1 codon is needed for a primary architecture
choice. Therefore, exactly 31 codons are needed.

4.3 Experimental runs

Because GE is stochastic by nature, multiple runs should be done on each
dataset. Exactly 10 runs are done on each of the 12 datasets. The best SAWO-
NN from each run is extracted, which gives 10 optimal models for each of the
12 datasets. Note that the best model for classification datasets achieves the
highest best-perf values, and for regression, the lowest best-perf values.

Statistical measures are then calculated across these 10 models per dataset,
summarising the performance of this GE approach in finding optimal SAWO-
NNs. The single best model for each of the 12 datasets is selected, and these
models are used for further comparisons to the baseline technique. These steps
will help fulfill research objective 1.

4.4 Comparing techniques

The optimal SAWO-NNs need to be compared to the baseline technique
they are attempting to improve. This baseline technique is standard single-
architecture gradient-descent, where a single primary architecture is used in all
WUEs. This comparison must be done to assess if the novel mechanisms used
in the SAWO-NNs are able to provide a learning advantage over the baseline
approach, to fulfill research objective 2.

Below are the specifics of the baseline model to be compared against:

• The single architecture used is i · a · b · c · o with hidden layer sizes of 15.
This is a fair architecture to compare against, as all hidden layers are used
and the sizes are relatively large considering the range in G is from 2 to 20.

• The linear activation function will be used on every neuron in this architec-
ture, and all weights are randomly initialized using a normal distribution

Supplementary-Architecture Weight-Optimization Neural Networks 21

with mean of 0 and standard deviation of 0.2 i.e. N (0, 0.2), to ensure a fair
comparison with SAWO-NNs.

• Optimal learning rates are dependent on the problem, so will be systemati-
cally fine-tuned and presented for every dataset. The Gxy grammar permits
some learning rate tuning, so this is fair. Other training hyperparameters
are the same as those used by SAWO-NNs, as described in Table 6.

To compare the performance of two techniques on a dataset, statistical
hypothesis testing is used. This requires performance samples to be generated.
A performance sample for a technique will contain either maximum validation
accuracy values (classification) or minimum validation mean-squared error val-
ues (regression) i.e. best-perf values achieved across multiple trainings. Each
training uses a randomly shuffled training/validation split of the dataset of
interest. The performance samples will be of size 30.

One random seed is chosen for each dataset, and whenever a performance
sample must be generated for that dataset, that random seed is used to gen-
erate all training/validation splits, sequentially. This ensures that the same
shuffled split is used element-wise for any performance samples on a dataset,
enabling the use of paired-sample hypothesis testing.

The performance sample of the best SAWO-NN found for a dataset is
denoted as sawo with average sawoµ. The performance sample of the baseline
with optimized parameters for the dataset is denoted as base with average
baseµ. The comparison between sawo and base for each dataset is done like so:

1. Perform two tests, each a one-sided paired two-sample t-test:
(a) H0 : sawoµ = baseµ and Ha : sawoµ < baseµ
(b) H0 : sawoµ = baseµ and Ha : sawoµ > baseµ

2. For classification datasets:
(a) If H0 is rejected in test i with confidence c, base wins with c confidence
(b) If H0 is rejected in test ii with confidence c, sawo wins with c confidence
(c) If no H0 is rejected or both are rejected, there is no clear winner

3. For regression datasets:
(a) If H0 is rejected in test i with confidence c, sawo wins with c confidence
(b) If H0 is rejected in test ii with confidence c, base wins with c confidence
(c) If no H0 is rejected or both are rejected, there is no clear winner

5 Results

5.1 Experimental runs

To calculate statistical measures across the 10 models for each dataset, 10
performance samples of size 30 for every dataset need to be aggregated. Each
performance sample will be reduced to the average of that performance sample,
which gives 10 averages for every dataset, which is easier to aggregate. The
average of a model’s performance sample will simply be referred to as the
”Perf” value for the model. The design time taken to find these models using

22 Supplementary-Architecture Weight-Optimization Neural Networks

GE, as well as the time taken to perform one training using the parameters of
Table 6, are provided in average ± standard deviation format.

The results for the benchmark datasets are presented in Table 8, and for
the real-world application applications in Table 9. The top section of each
table represents classification datasets and validation accuracies, whereas the
bottom section of each table represents regression datasets and validation
mean-squared errors. This is also the case for Tables 10 and 11.

Table 8 Statistical summaries of best members across benchmark datasets

Dataset Min-Perf Avg-Perf Std-Perf Max-Perf Design (mins) Training (s)

1 0.959441 0.967459 0.004079 0.972028 204.00 ± 15.77 45.43 ± 5.82
2 0.978549 0.982633 0.001815 0.984917 204.90 ± 13.41 49.83 ± 9.61
3 0.841667 0.846447 0.002699 0.851316 198.72 ± 16.04 46.55 ± 4.02
4 0.873684 0.880144 0.003889 0.885088 206.37 ± 11.42 52.28 ± 7.57
5 0.545250 0.563408 0.010762 0.578417 215.21 ± 15.51 54.24 ± 8.47
6 0.553086 0.565802 0.010716 0.583333 228.70 ± 27.47 49.32 ± 8.00
7 0.922013 0.950063 0.011410 0.957233 216.61 ± 21.32 53.90 ± 3.69

8 0.013769 0.014365 0.000315 0.014849 203.72 ± 16.28 49.69 ± 7.03
9 0.007979 0.008167 0.000104 0.008354 205.00 ± 15.57 48.63 ± 4.81
10 0.017991 0.019459 0.001422 0.021770 181.09 ± 11.26 48.04 ± 5.57

Table 9 Statistical summaries of best members across real-world applications

Dataset Min-Perf Avg-Perf Std-Perf Max-Perf Design (mins) Training (s)

11 0.951995 0.954438 0.001124 0.956102 232.32 ± 14.56 56.36 ± 8.05

12 0.004265 0.004367 0.000102 0.004561 206.26 ± 12.60 48.65 ± 7.02

The baseline neural networks had an average training time of approximately
3 seconds, which is far quicker than the SAWO-NNs. However, the baselines
use a single architecture with the Keras API in Python, which is known to be
extremely efficient and runs mostly as C code. SAWO-NN maintains multiple
architectures, and was created for correctness, so increasing the efficiency of
the implementation can certainly be investigated.

For each dataset and its 10 selected members, the one with the best perfor-
mance sample average is chosen as the champion i.e. members who produced
the values in the Max-Perf column for classification and Min-Perf column for
regression. These selections fulfill research objective 1. These champions are
used for further comparisons with the baseline technique.

5.2 Comparisons

The comparison between the best SAWO-NN for each dataset and the baseline
technique for the benchmark datasets is presented in Table 10, and in Table 11

Supplementary-Architecture Weight-Optimization Neural Networks 23

for the real-world applications. The average of each technique’s performance
sample (”Perf”) and the fine-tuned learning rate chosen for the baseline is
given. The hypothesis testing comparison result between their performance
samples is also provided, stating the winner and confidence - note that a higher
classification accuracy is better, and a lower regression error is better.

Table 10 SAWO-NN versus baseline across benchmark datasets

Dataset SAWO-NN Perf BASE Perf Comparison

1 0.972028 0.965035 α=0.23 sawo wins with 99.884% confidence
2 0.984917 0.978040 α=0.18 sawo wins with 99.999% confidence
3 0.851316 0.838596 α=0.22 sawo wins with 99.970% confidence
4 0.885088 0.871930 α=0.50 sawo wins with 99.665% confidence
5 0.578417 0.561917 α=0.48 sawo wins with 99.922% confidence
6 0.583333 0.568519 α=0.48 sawo wins with 87.652% confidence
7 0.957233 0.942138 α=0.39 sawo wins with 99.980% confidence

8 0.013769 0.015989 α=0.22 sawo wins with 99.956% confidence
9 0.007979 0.008437 α=0.34 sawo wins with 99.999% confidence
10 0.017991 0.020182 α=0.14 sawo wins with 99.616% confidence

Table 11 SAWO-NN versus baseline across real-world applications

Dataset SAWO-NN Perf BASE Perf Comparison

11 0.956102 0.950381 α=0.18 sawo wins with 99.998% confidence

12 0.004265 0.004358 α=0.26 sawo wins with 96.551% confidence

Both the baseline method and optimal SAWO-NNs worked better with
higher learning rates than typically used. This is likely due to the relatively
small architectures used in this research compared to the huge deep learning
models which tend to work better with minute learning rates.

The SAWO-NNs are resounding winners in this comparison, winning at
very high confidence for all datasets. Not only do the SAWO-NNs win in terms
of a hypothesis test, but the performance sample averages for the SAWO-NNs
are convincingly better than the baseline across the 12 datasets. This thorough
victory by the SAWO-NNs indicates that the use of supplementary architec-
tures in particular WUEs was undoubtedly beneficial to the learning process.
These results fulfill research objective 2, and the theoretical explanation for
this boost in learning performance is presented in the next section.

6 Analysis

6.1 Identification of patterns

With the established improvements of SAWO-NN on standard single-
architecture gradient-descent, the question of interest is how they caused an

24 Supplementary-Architecture Weight-Optimization Neural Networks

improvement. Why did particular architectures work as supplementary update
architectures for particular weight sets, compared to other architectures? What
aspects of these architectures made them suitable for supplementary use, and
are they tied to aspects of the primary architecture and the weight set chosen?

To answer this, and fulfill research objective 3, the top SAWO-NNs need to
be analysed for common patterns. For each of the 12 datasets, one model was
chosen for comparisons, but this only gives 12 models, which is not sufficient
to find confident patterns. Therefore, all 10 optimal SAWO-NNs from each
dataset are considered, which gives 120 models that can be analysed.

These 10 models per dataset can be sorted by their performance sample
average, to rank them by optimality. Patterns can then be extracted at different
stages of optimality. All 10 models across all 12 datasets can be analysed, then
the top 9 models, then the top 8, etc, until only the top 3 models for each
dataset are analysed. This not only extracts strong patterns and trends for the
top models, but gives an indication of whether these patterns and trends grow
stronger or fade away as we become more exclusive in terms of optimality.

Identifying the most important patterns within these optimal models using
the naked eye is difficult, so data mining tools are used to extract patterns.
These tools are designed to find patterns in numerical features, and so the
array-like architectures and sets-of-weights that use them must be described
using numerical features. A list of features to extract was derived, with some
features directly extracted from the architecture and others performing scaling
on those directly extracted. Some of these features are presented in Table 12.

Table 12 Examples of extracted features

Feature Meaning

len the length of an architecture i.e. the value of n of the n-tuple
cnt the number of layers in an architecture
n i the number of i layers in an architecture
w i whether the weight set starts with an i (1) or not (0)
strt the distance from the front of the architecture to the front of the weight set

n 1s the number of sets in the n-tuple of the architecture with one element
dnsty defined as cnt / len
p i defined as n i / cnt, percentage of i layers

p 1s defined as n 1s / len, percentage of 1-sets

To illustrate how these features can be extracted from an architecture and
a weight set, Table 13 gives some architecture and weight combinations, and
what the values of these example features would be.

The pattern extraction process was done on pairs of numerical features.
Each pair is derived from a model, and consists of a mapping of <features
of primary arch and weight, features of supplementary arch and weight>. For
some models, multiple weight sets use supplementary architectures, so multiple
pairs are produced for these models. These pairs share the same values for the
primary element, but have different values for the supplementary element.

Supplementary-Architecture Weight-Optimization Neural Networks 25

Table 13 A few examples of architectures and extracted features

Arch & Weight w i len cnt dnsty n i p i strt n 1s p 1s

i · b · o & io 1 3 3 1.00 1 0.33 0 3 1.00
i · |ia| · b · o & ib 1 4 5 1.25 2 0.40 1 3 0.60

i · |ic| · |ia| · o & ao 0 4 6 1.50 3 0.50 2 2 0.50
i · |iabc| · o & ic 1 3 6 2.00 2 0.33 0 2 0.66

i · a · |ib| · c · o & bc 0 5 6 1.20 2 0.33 2 4 0.80

These mapping pairs represent a separate input-produces-output problem,
where features of the primary architecture and weight determine features of
the supplementary architecture and weight. This ”dataset” of mapping pairs
was analysed for patterns. Multiple methods of analysis and pattern extraction
were performed, including: statistical summaries, correlation analysis, deci-
sion tree analysis to predict supplementary features using primary features,
and hypothesis testing to determine significant changes between corresponding
features in primary and supplementary architectures.

The strongest patterns found are presented below. Supplementary archi-
tecture is abbreviated as supp, and primary architecture is abbreviated as
prim. Closely linked patterns are grouped together into rough categories.

Patterns concerning density:

• Strongest pattern: the proportion of sets with 2 layers in the supps was
higher than in their prims. This was extremely prevalent for all degrees of
exclusivity. The number of sets containing 2 layers in the supps was also
noticeably higher.

• Very strong pattern: supps were less dense than their prims. This phe-
nomenon visibly strengthened as the pool became more exclusive. This
means that the supps were longer, or had less layers, or both.

• Strong pattern: supps contained less weight sets than their prims. This pat-
tern was more frequent as the pool became more exclusive. This is tied to
a lower architecture density, as less dense architectures are less likely to
contain parallel layers, which need more weight sets.

• Moderately strong pattern: supps were longer than their prims i.e. had more
sets in the n-tuple. This pattern was highly prevalent for the entire optimal
pool. This is tied to a lower architecture density.

• Moderate pattern: less layers in supps compared to their prims. This pattern
emerged for more exclusive pools, and is tied to a lower architecture density.

Patterns concerning i-layer importance:

• Strong pattern: supps contained less a, b and c layers than their prims. This
was frequent but became less so as the pool became more exclusive. This
feature is not scaled per architecture, so is likely to be influenced by other
features e.g. shorter architectures will have less a, b and c layers.

26 Supplementary-Architecture Weight-Optimization Neural Networks

• Moderately strong pattern: the proportion of i layers in the supps was higher
than their prims, and the proportion of a, b and c layers lower. This was
frequent but faded as the pool became more exclusive. This is linked to the
above pattern, but is scaled to architecture size, so is more reliable.

Patterns concerning weight position:

• Strong pattern: the relative position of the weight set in the architecture was
closer to the front for supps than for their prims. This was not strong across
the entire optimal pool, but as the pool became more exclusive, this pattern
clearly started to emerge and was extremely evident for the most exclusive
pools. This is a relative position factoring in the architecture length, so is
more reliable than the distance to the weight set in the architecture.

The patterns presented above were derived from paired-sample hypothesis
testing between related features in the prims and supps. These test for greater-
than or less-than relationships, which reveal useful high-level trends.

Decision tree analysis created rules to predict supplementary features using
primary features, which are more specific than high-level trends. However, trees
were made for every supplementary feature, so interpretation of every tree is
difficult. Therefore, a summation was done on the primary features’ presence
in the tree rules, to establish which primary features are used most often to
predict supplementary features. Primary features used closer to the root of the
trees were weighted higher than features used further down the trees.

The most important primary feature for supplementary prediction was the
relative position of the weight set in prim, which was used most frequently in
the tree rules. Second was the number of weight sets in prim, which was half
as important. The third and fourth most important primary features were the
distance from the weight set to the end of prim, and the density of prim, and
these were just less than half as important as the number of weight sets. These
results indicate that where the weight set of interest is in the primary archi-
tecture, as well as the density of the primary architecture, are most important
for predicting what supplementary architecture will be used.

6.2 Theoretical explanation of patterns

The most certain patterns to emerge from analysis of the optimal members are
theoretically examined, to assess their contribution to increased optimality.

The patterns of greatest interest are those which strengthened in cer-
tainty as the pool of members became more exclusive. These patterns include:
a decreased density and related patterns, which visibly strengthened with
exclusivity; and a closer-to-the-front relative position of the weight set in the
architectures, which showed obvious strengthening with exclusivity.

Why are there learning benefits with less dense supps? One explanation is
that less dense architectures generally contain less weight sets, and so the role
of each weight set is more important. A weight set in a less dense architecture
is more isolated and forced to take responsibility, adapting more than a weight

Supplementary-Architecture Weight-Optimization Neural Networks 27

set in a dense architecture, which can rely on other weight sets to adapt instead.
Therefore, updating a weight set using a less dense supp may cause more
significant changes in the weight set than if it was updated by the prim, and
strengthen its role in transforming input to output.

Why is it beneficial to have the weight set of interest closer to the front
in the supp than in the prim? Weight sets near the end of an architecture
are decisive, as they make final transformative steps to produce an output.
They are more likely to be ’overfit’ to a specific architecture and its error if
they are updated using that error, and may not be suitable for use in other
architectures. However, weight sets near the front of an architecture are less
likely to be ’overfit’ to the architecture, and so could be more suitable.

There are patterns left which require theoretical explanation, but it is likely
they are all part of one larger pattern. The proportion of i layers in the supps
was higher than their prims, and the number and proportion of a, b and c
layers was lower. These two patterns indicate that i layers being in supps is
more important for optimality than a, b and c layers being in supps.

This relationship is echoed in the strongest pattern found, which was that
the proportion of sets containing 2 layers in the supps was higher than in their
prims. There can only be one i layer in a hidden set, but it cannot be the only
layer in the hidden set, meaning an extra i layer can only be in a set with size 2
or larger. Therefore, an increase in i layer proportion should increase the sizes
of sets in the architecture n-tuple, leading to an increase of sets with 2 layers.

How could more i layers affect optimality? When an i layer is only found at
the start, important information from the inputs must be preserved throughout
all transformations by subsequent weight sets. This gives the information the
best chance of reaching the output layer and strengthening prediction. How-
ever, when i layers are present later, less preservation of information is needed
by earlier weight sets, as the information is fed into the architecture again.

Therefore, earlier weight sets can shift their focus from preserving infor-
mation, to transforming the information into something useful to benefit
prediction. The ’booster signal’ that these additional i layers provide can help
weight sets be more decisive in transformation, and not as reluctant to trans-
form values and possibly lose encoded information. These weight sets may
therefore provide more use to their prim through updates using these supps,
as these stronger transformations could strengthen predictions.

This identification and explanation of patterns fulfills research objective 3.

7 Comparison to state-of-the-art

The contribution of this research is focused on highlighting and understanding
the effectiveness of supplementary architecture usage, and the opportunity
it provides for boosting the learning abilities of neural networks. However, a
comparison with state-of-the-art techniques on the selected datasets should
be done, to give an indication of where SAWO-NNs fits in the ”hierarchy” of

28 Supplementary-Architecture Weight-Optimization Neural Networks

machine learning techniques. The best SAWO-NNs found for each dataset are
used again for this comparison.

Five survey works which cover state-of-the-art techniques on the datasets
are identified: [44][45] covers the majority of the benchmark datasets, [46][47]
covers dataset 11, the KDDCup 99 dataset, and [48] covers dataset 12, the
Graduate Admission dataset. This comparison is not exhaustive, but cer-
tainly gives an indication of the performance of SAWO-NNs compared to other
effective techniques.

For each survey paper, the top 4 techniques with the highest average-
ranking across their chosen datasets are identified. These represent the state-
of-the-art techniques which generally performed the best, bearing in mind that
it is highly unlikely that any single technique will perform the best for every
single dataset i.e. the No-Free-Lunch theorem [49]. The accuracies or mean
squared errors these techniques achieved on the overlapping datasets which
are chosen for this research are extracted.

The best state-of-the-art techniques from each survey paper [44–48] are
labelled from the papers alphabetically as follows:

From [44]: (1) parRF caret, (2) rf caret, (3) svm C, (4) svmPoly caret.

From [45]: (1) ELM, (2) GBDT, (3) RF, (4) SVM.

From [46]: (1) DNN, (2) Light GBM, (3) Stacked classifier, (4) XG-Boost.

From [47]: (1) J48, (2) NB Tree, (3) Random Forest, (4) Random Tree.

From [48]: (1) 3rd-degree polynomial kernel support vector regression, (2) Linear

regression, (3) Random forest regression, (4) RBF kernel support vector regression.

Using this labelling scheme, Table 14 presents the performance of these
state-of-the-art techniques on the datasets used in this research. The averages
of the best SAWO-NN performance samples are given in the SAWO column.
The Techniques column presents the 4 techniques from each survey paper on
each dataset, with the technique label in brackets followed by the performance
value the technique achieved on the dataset. These techniques are ordered
from best to worst performance, from left to right. The Rank column gives the
ranking of SAWO-NN amongst these techniques, with rank 1 indicating that
SAWO-NN achieved the best results on the dataset.

The rankings illustrate that some survey papers presented better results
with similar techniques for the same datasets, likely due to different parameter
tuning and different methods for measuring validation performance, which may
also give them an unfair advantage over SAWO-NN.

Regardless, the average ranking of SAWO-NN amongst these state-of-the-
art techniques is 2.92, and SAWO-NN produces the best results for 5 of the 13
comparisons. This indicates that the best SAWO-NNs produced, which boost
the performance of stochastic gradient descent with effective supplementary
architecture choices, are competitive with the state-of-the-art, even though
this is not the primary contribution of this work.

Supplementary-Architecture Weight-Optimization Neural Networks 29

Table 14 Comparison to some state-of-the-art techniques

Dataset SAWO Techniques from [44] Rank

1 0.9720 (4) 0.9790 (3) 0.9700 (2) 0.9700 (1) 0.9680 2
2 0.9849 (3) 1.0000 (4) 1.0000 (2) 1.0000 (1) 1.0000 5
3 0.8513 (3) 0.8600 (4) 0.8370 (2) 0.8300 (1) 0.8230 2
4 0.8851 (4) 0.9800 (1) 0.9670 (3) 0.9660 (2) 0.9600 5
5 0.5784 (2) 0.6900 (1) 0.6900 (3) 0.6400 (4) 0.6110 5
6 0.5833 (1) 0.7800 (2) 0.7570 (4) 0.7020 (3) 0.6890 5
7 0.9572 (3) 0.9570 (1) 0.9430 (4) 0.9380 (2) 0.9340 1

Dataset SAWO Techniques from [45] Rank

2 0.9849 (4) 1.0000 (2) 1.0000 (3) 0.9951 (1) 0.9779 4
5 0.5784 (3) 0.5688 (4) 0.4938 (2) 0.4813 (1) 0.4500 1
7 0.9572 (1) 0.9048 (4) 0.8571 (2) 0.8571 (3) 0.8571 1

Dataset SAWO Techniques from [46] Rank

11 0.9561 (3) 0.9835 (4) 0.9835 (2) 0.9826 (1) 0.9756 5

Dataset SAWO Techniques from [47] Rank

11 0.9561 (1) 0.9382 (2) 0.9351 (3) 0.9279 (4) 0.9253 1

Dataset SAWO Techniques from [48] Rank

12 0.004265 (2) 0.004801 (3) 0.005821 (1) 0.006248 (4) 0.007242 1

8 Conclusion

The primary objective of this research was to establish if the use of sup-
plementary architecture errors for updating certain weight sets in a primary
architecture could benefit the performance of these primary architectures, com-
pared to if the weight sets in the primary architecture were only updated using
the error of the primary architecture.

The answer to this question is yes: effective combinations of primary archi-
tecture, weight sets and supplementary architectures were found through a
grammatical evolution search, fulfilling research objective 1. The use of these
supplementary architecture errors improved the learning ability of the primary
architecture on all the chosen datasets, fulfilling research objective 2.

These supplementary architectures had particular traits compared to the
primary architecture they assisted: they were less dense, contained more i
layers, and had the weight set of interest closer to the front. Therefore, research
objective 3 is fulfilled, noting that it would have been difficult to theorize
these patterns without performing a search to see what optimal trends appear.
The top SAWO-NNs were also shown to be competitive with state-of-the-art
techniques on the same datasets.

30 Supplementary-Architecture Weight-Optimization Neural Networks

This results of this work poses further questions. Seeing as stochastic gra-
dient descent was expanded to allow supplementary architecture use, could
the same be done for more advanced gradient-descent optimizers, such as [1–
8]? These weight update equations all use the ”primary” architecture’s error,
so could the same expansion be applied to these optimizers, and would it be
effective for boosting learning ability?

The canonical linear activation function was used to assess the potential of
supplementary architecture usage, but is predisposed to saturation, hence the
invention of non-linear activation functions. Future work can investigate the
use of these modern activation functions: global use in all hidden layers, or local
use by encoding and evolving activation function choices in the chromosome.

Gradient-descent is not the only weight optimization method for neural
networks. Algorithms such as Newton’s method [50], the conjugate gradient
method [51], the quasi-Newton method [52] and the Levenberg–Marquardt
algorithm [53] adjust weight values differently to gradient descent - but they
are not always scalable in terms of speed or memory for large neural networks
and/or datasets. Implementation of supplementary architecture usage for these
optimization methods and subsequent benefits will be the topic of future work.

Could the information learnt from the optimal models be encoded into
another machine learning technique, which could suggest a suitable supple-
mentary architecture when given a primary architecture and weight set in
the architecture? The same mechanisms used to extract numerical features
could be used on new combinations, for which optimality is unknown. If the
extracted features exhibit similar patterns to those identified previously, this
could indicate an effective combination.

Lastly, are there better ways of searching for optimal combinations than
GE? For example, would a single-point search in the bitstring space be
more effective than the multi-point search used in GE? This could reduce
design times, but would it find combinations of comparable optimality? Other
grammar-based evolutionary algorithms could also be used instead of GE, or
the grammar could be eliminated and a genetic algorithm used instead.

All these questions can be investigated in future research, as well as any
other improvements that contributors to this field could theorize. However, this
novel technique already has benefits and intricacies of its own, and warrants a
deeper scientific investigation into how the learning ability of neural networks
can be improved by providing additional information to the learning process.

Declarations

Funding
This work is based on the research supported wholly by the National Research
Foundation of South Africa (Grant Number MND200804549990).

Conflict of interest
The authors declare that they have no conflict of interest.

Supplementary-Architecture Weight-Optimization Neural Networks 31

Availability of data and material
Not applicable.

Code availability
The implementation code is available at the following link:
https://github.com/jared-oreilly/sawo-nn.

Compliance with ethical standards

References

[1] Qian, N.: On the momentum term in gradient descent learning algorithms.
Neural networks 12(1), 145–151 (1999)

[2] Nesterov, Y.: A method for unconstrained convex minimization problem
with the rate of convergence o (1/kˆ 2). In: Doklady an Ussr, vol. 269,
pp. 543–547 (1983)

[3] Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online
learning and stochastic optimization. Journal of machine learning research
12(7) (2011)

[4] Hinton, G., Srivastava, N., Swersky, K.: Neural networks for machine
learning lecture 6a overview of mini-batch gradient descent. Cited on
14(8) (2012)

[5] Zeiler, M.D.: Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701 (2012)

[6] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980 (2014)

[7] Dozat, T.: Incorporating nesterov momentum into adam (2016)

[8] Reddi, S.J., Kale, S., Kumar, S.: On the convergence of adam and beyond.
arXiv preprint arXiv:1904.09237 (2019)

[9] Floreano, D., Dürr, P., Mattiussi, C.: Neuroevolution: from architectures
to learning. Evolutionary intelligence 1(1), 47–62 (2008)

[10] Stanley, K.O., Clune, J., Lehman, J., Miikkulainen, R.: Designing neural
networks through neuroevolution. Nature Machine Intelligence 1(1), 24–
35 (2019)

[11] Schraudolph, N.N., Belew, R.K.: Dynamic parameter encoding for genetic
algorithms. Machine learning 9(1), 9–21 (1992)

https://github.com/jared-oreilly/sawo-nn

32 Supplementary-Architecture Weight-Optimization Neural Networks

[12] Mattiussi, C., Dürr, P., Floreano, D.: Center of mass encoding: a
self-adaptive representation with adjustable redundancy for real-valued
parameters. In: Proceedings of the 9th Annual Conference on Genetic and
Evolutionary Computation, pp. 1304–1311 (2007)

[13] Such, F.P., Madhavan, V., Conti, E., Lehman, J., Stanley, K.O., Clune, J.:
Deep neuroevolution: Genetic algorithms are a competitive alternative for
training deep neural networks for reinforcement learning. arXiv preprint
arXiv:1712.06567 (2017)

[14] Igel, C.: Neuroevolution for reinforcement learning using evolution strate-
gies. In: The 2003 Congress on Evolutionary Computation, 2003. CEC’03.,
vol. 4, pp. 2588–2595 (2003). IEEE

[15] Salimans, T., Ho, J., Chen, X., Sidor, S., Sutskever, I.: Evolution strate-
gies as a scalable alternative to reinforcement learning. arXiv preprint
arXiv:1703.03864 (2017)

[16] Mania, H., Guy, A., Recht, B.: Simple random search provides a competi-
tive approach to reinforcement learning. arXiv preprint arXiv:1803.07055
(2018)

[17] Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: A survey.
The Journal of Machine Learning Research 20(1), 1997–2017 (2019)

[18] Liu, Y., Sun, Y., Xue, B., Zhang, M., Yen, G.G., Tan, K.C.: A survey on
evolutionary neural architecture search. arXiv preprint arXiv:2008.10937
(2020)

[19] Stanley, K.O., Miikkulainen, R.: Evolving neural networks through aug-
menting topologies. Evolutionary computation 10(2), 99–127 (2002)

[20] Gruau, F.: Automatic definition of modular neural networks. Adaptive
behavior 3(2), 151–183 (1994)

[21] Nolfi, S., Miglino, O., Parisi, D.: Phenotypic plasticity in evolving neural
networks. In: Proceedings of PerAc’94. From Perception to Action, pp.
146–157 (1994). IEEE

[22] Husbands, P., Harvey, I., Cliff, D., Miller, G.: The use of genetic
algorithms for the development of sensorimotor control systems. In: Pro-
ceedings of PerAc’94. From Perception to Action, pp. 110–121 (1994).
IEEE

[23] Soltoggio, A., Bullinaria, J.A., Mattiussi, C., Dürr, P., Floreano, D.: Evo-
lutionary advantages of neuromodulated plasticity in dynamic, reward-
based scenarios. In: Proceedings of the 11th International Conference on

Supplementary-Architecture Weight-Optimization Neural Networks 33

Artificial Life (Alife XI), pp. 569–576 (2008). MIT Press

[24] Risi, S., Stanley, K.O.: A unified approach to evolving plasticity and
neural geometry. In: The 2012 International Joint Conference on Neural
Networks (IJCNN), pp. 1–8 (2012). IEEE

[25] Tonelli, P., Mouret, J.-B.: On the relationships between generative encod-
ings, regularity, and learning abilities when evolving plastic artificial
neural networks. PloS one 8(11), 79138 (2013)

[26] Soltoggio, A., Durr, P., Mattiussi, C., Floreano, D.: Evolving neuromodu-
latory topologies for reinforcement learning-like problems. In: 2007 IEEE
Congress on Evolutionary Computation, pp. 2471–2478 (2007). IEEE

[27] Velez, R., Clune, J.: Diffusion-based neuromodulation can eliminate catas-
trophic forgetting in simple neural networks. PloS one 12(11), 0187736
(2017)

[28] Husbands, P., Smith, T., Jakobi, N., O’Shea, M.: Better living through
chemistry: Evolving gasnets for robot control. Connection Science 10(3-4),
185–210 (1998)

[29] Ellefsen, K.O., Mouret, J.-B., Clune, J.: Neural modularity helps organ-
isms evolve to learn new skills without forgetting old skills. PLoS
computational biology 11(4), 1004128 (2015)

[30] Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y.L., Tan, J.,
Le, Q.V., Kurakin, A.: Large-scale evolution of image classifiers. In:
International Conference on Machine Learning, pp. 2902–2911 (2017).
PMLR

[31] Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution
for image classifier architecture search. In: Proceedings of the Aaai
Conference on Artificial Intelligence, vol. 33, pp. 4780–4789 (2019)

[32] Chalmers, D.J.: The evolution of learning: An experiment in genetic
connectionism. In: Connectionist Models, pp. 81–90. Elsevier, ??? (1991)

[33] Fontanari, J., Meir, R.: Evolving a learning algorithm for the binary
perceptron. Network: Computation in Neural Systems 2(4), 353 (1991)

[34] DAN, A.D., Oflazer, K.: Genetic synthesis of unsupervised learning
algorithms (1993)

[35] Baxter, J.: The evolution of learning algorithms for artificial neural
networks. Complex systems, 313–326 (1992)

[36] Risi, S., Stanley, K.O.: Indirectly encoding neural plasticity as a pattern

34 Supplementary-Architecture Weight-Optimization Neural Networks

of local rules. In: International Conference on Simulation of Adaptive
Behavior, pp. 533–543 (2010). Springer

[37] Hebb, D.O.: The Organisation of Behaviour: a Neuropsychological Theory.
Science Editions New York, ??? (1949)

[38] Floreano, D., Mondada, F.: Evolution of plastic neurocontrollers for
situated agents. In: Proc. of The Fourth International Conference on Sim-
ulation of Adaptive Behavior (SAB), From Animals to Animats (1996).
ETH Zürich

[39] Floreano, D., Urzelai, J.: Evolution of plastic control networks.
Autonomous robots 11(3), 311–317 (2001)

[40] Di Paolo, E.A.: Evolving spike-timing-dependent plasticity for single-
trial learning in robots. Philosophical Transactions of the Royal Society
of London. Series A: Mathematical, Physical and Engineering Sciences
361(1811), 2299–2319 (2003)

[41] Nolfi, S., Parisi, D.: Learning to adapt to changing environments in
evolving neural networks. Adaptive behavior 5(1), 75–98 (1996)

[42] Floreano, D., Urzelai, J.: Evolutionary robots with on-line self-
organization and behavioral fitness. Neural Networks 13(4-5), 431–443
(2000)

[43] O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Transactions on
Evolutionary Computation 5(4), 349–358 (2001)

[44] Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we need
hundreds of classifiers to solve real world classification problems? The
journal of machine learning research 15(1), 3133–3181 (2014)

[45] Zhang, C., Liu, C., Zhang, X., Almpanidis, G.: An up-to-date compar-
ison of state-of-the-art classification algorithms. Expert Systems with
Applications 82, 128–150 (2017)

[46] Rai, M., Mandoria, H.L.: Network intrusion detection: A comparative
study using state-of-the-art machine learning methods. In: 2019 Inter-
national Conference on Issues and Challenges in Intelligent Computing
Techniques (ICICT), vol. 1, pp. 1–5 (2019). IEEE

[47] Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis
of the kdd cup 99 data set. In: 2009 IEEE Symposium on Computational
Intelligence for Security and Defense Applications, pp. 1–6 (2009). IEEE

[48] Acharya, M.S., Armaan, A., Antony, A.S.: A comparison of regression

Supplementary-Architecture Weight-Optimization Neural Networks 35

models for prediction of graduate admissions. In: 2019 International Con-
ference on Computational Intelligence in Data Science (ICCIDS), pp. 1–5
(2019). IEEE

[49] Wolpert, D.H.: The lack of a priori distinctions between learning algo-
rithms. Neural computation 8(7), 1341–1390 (1996)

[50] Battiti, R.: First-and second-order methods for learning: between steepest
descent and newton’s method. Neural computation 4(2), 141–166 (1992)

[51] Johansson, E.M., Dowla, F.U., Goodman, D.M.: Backpropagation learn-
ing for multilayer feed-forward neural networks using the conjugate
gradient method. International Journal of Neural Systems 2(04), 291–301
(1991)

[52] Setiono, R., Hui, L.C.K.: Use of a quasi-newton method in a feedforward
neural network construction algorithm. IEEE Transactions on Neural
Networks 6(1), 273–277 (1995)

[53] Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear
parameters. Journal of the society for Industrial and Applied Mathematics
11(2), 431–441 (1963)

Please view the appendices on the following pages.

36 Supplementary-Architecture Weight-Optimization Neural Networks

Appendix A Full architecture set A

See all architectures in the architecture set A below:

i · o

i · a · o
i · |ia| · o
i · b · o
i · |ib| · o
i · c · o
i · |ic| · o
i · a · b · o
i · |ia| · b · o
i · a · |ib| · o
i · |ia| · |ib| · o
i · b · a · o
i · |ib| · a · o
i · b · |ia| · o
i · |ib| · |ia| · o
i · |ab| · o
i · |iab| · o
i · a · c · o
i · |ia| · c · o
i · a · |ic| · o
i · |ia| · |ic| · o
i · c · a · o

i · |ic| · a · o
i · c · |ia| · o
i · |ic| · |ia| · o
i · |ac| · o
i · |iac| · o
i · b · c · o
i · |ib| · c · o
i · b · |ic| · o
i · |ib| · |ic| · o
i · c · b · o
i · |ic| · b · o
i · c · |ib| · o
i · |ic| · |ib| · o
i · |bc| · o
i · |ibc| · o

i · a · b · c · o
i · |ia| · b · c · o
i · a · |ib| · c · o
i · a · b · |ic| · o
i · |ia| · |ib| · c · o
i · |ia| · b · |ic| · o
i · a · |ib| · |ic| · o
i · |ab| · c · o
i · |iab| · c · o

i · |ab| · |ic| · o
i · a · |bc| · o
i · |ia| · |bc| · o
i · a · |ibc| · o
i · |abc| · o
i · |iabc| · o
i · a · c · b · o
i · |ia| · c · b · o
i · a · |ic| · b · o
i · a · c · |ib| · o
i · |ia| · |ic| · b · o
i · |ia| · c · |ib| · o
i · a · |ic| · |ib| · o
i · |ac| · b · o
i · |iac| · b · o
i · |ac| · |ib| · o
i · b · a · c · o
i · |ib| · a · c · o
i · b · |ia| · c · o
i · b · a · |ic| · o
i · |ib| · |ia| · c · o
i · |ib| · a · |ic| · o
i · b · |ia| · |ic| · o
i · b · |ac| · o
i · b · c · a · o

i · |ib| · c · a · o
i · b · |ic| · a · o
i · b · c · |ia| · o
i · |ib| · |ic| · a · o
i · |ib| · c · |ia| · o
i · b · |ic| · |ia| · o
i · |bc| · a · o
i · |ibc| · a · o
i · |bc| · |ia| · o
i · c · a · b · o
i · |ic| · a · b · o
i · c · |ia| · b · o
i · c · a · |ib| · o
i · |ic| · |ia| · b · o
i · |ic| · a · |ib| · o
i · c · |ia| · |ib| · o
i · c · |ab| · o
i · c · b · a · o
i · |ic| · b · a · o
i · c · |ib| · a · o
i · c · b · |ia| · o
i · |ic| · |ib| · a · o
i · |ic| · b · |ia| · o
i · c · |ib| · |ia| · o

Appendix B Dataset sources and processing

See the source URLs, pre-processing information and additional notes for
each dataset used in this research, below. For all datasets, any categorical
features were one-hot encoded, and any continuous features were either stan-
dardized, if an underlying Gaussian distribution was detected in the feature,
or normalized/min-max scaled, if not detected. This preparation is necessary
for neural network processing, to minimise saturation and ensure all features
have equal importance.

Supplementary-Architecture Weight-Optimization Neural Networks 37

1 - Breast Cancer Wisconsin (Diag-
nostic)
Source: data.csv from
https://www.kaggle.com/uciml/breast-
cancer-wisconsin-data
Pre-processing: Removed id field, target
is diagnosis field.

2 - Mushroom Classification
Source: mushrooms.csv from
https://www.kaggle.com/uciml/mushr
oom-classification
Pre-processing: Target is class field.

3 - Heart Attack Analysis and Pre-
diction
Source: heart.csv from
https://www.kaggle.com/rashikrahma
npritom/heart-attack-analysis-predicti
on-dataset
Pre-processing: Target is output field.

4 - Iris Species
Source: Iris.csv from
https://www.kaggle.com/uciml/iris
Pre-processing: Removed Id field, target
is Species field.

5 - Red Wine Quality
Source: winequality-red.csv from
https://www.kaggle.com/uciml/red-win
e-quality-cortez-et-al-2009
Pre-processing: Target is quality field.

6 - Glass Classification
Source: glass.csv from
https://www.kaggle.com/uciml/glass
Pre-processing: Target is Type field.

7 - Wheat Seeds
Source: Seed Data.csv from
https://www.kaggle.com/dongeorge/see
d-from-uci
Pre-processing: Target is target field.

8 - Boston House Price
Source: housing.csv from
https://www.kaggle.com/vikrishnan/bo
ston-house-prices
Pre-processing: Target is MEDV field.
Additional notes: Data from website is
separated by spaces and not commas,
have to parse differently, and also have
to add header line.

9 - Abalone Rings
Source: abalone.csv from
https://www.kaggle.com/rodolfomend
es/abalone-dataset
Pre-processing: Target is Rings field.
Additional notes: Ring values are techni-
cally discrete, but represent age, so can
be considered continuous.

10 - 1985 Automobile Insurance
Source: auto clean.csv from
https://www.kaggle.com/fazilbtopal/a
uto85
Pre-processing: Target is normalized-
losses field.

11 - KDDCup 99 Intrusion Detection
Source: Train data.csv from
https://www.kaggle.com/sampadab17/
network-intrusion-detection
Pre-processing: Removed num -
outbound cmds and is host login
fields, target is class field.
Additional notes: The two removed fields
were both equal to 0 across all rows in
dataset, so provided no use.

12 - Graduate Admission
Source: Admission Predict.csv from
https://www.kaggle.com/mohansachar
ya/graduate-admissions
Pre-processing: Removed Serial No.
field, target is Chance of Admit field.

https://www.kaggle.com/uciml/breast-cancer-wisconsin-data
https://www.kaggle.com/uciml/breast-cancer-wisconsin-data
https://www.kaggle.com/uciml/mushroom-classification
https://www.kaggle.com/uciml/mushroom-classification
https://www.kaggle.com/rashikrahmanpritom/heart-attack-analysis-prediction-dataset
https://www.kaggle.com/rashikrahmanpritom/heart-attack-analysis-prediction-dataset
https://www.kaggle.com/rashikrahmanpritom/heart-attack-analysis-prediction-dataset
https://www.kaggle.com/uciml/iris
https://www.kaggle.com/uciml/red-wine-quality-cortez-et-al-2009
https://www.kaggle.com/uciml/red-wine-quality-cortez-et-al-2009
https://www.kaggle.com/uciml/glass
https://www.kaggle.com/dongeorge/seed-from-uci
https://www.kaggle.com/dongeorge/seed-from-uci
https://www.kaggle.com/vikrishnan/boston-house-prices
https://www.kaggle.com/vikrishnan/boston-house-prices
https://www.kaggle.com/rodolfomendes/abalone-dataset
https://www.kaggle.com/rodolfomendes/abalone-dataset
https://www.kaggle.com/fazilbtopal/auto85
https://www.kaggle.com/fazilbtopal/auto85
https://www.kaggle.com/sampadab17/network-intrusion-detection
https://www.kaggle.com/sampadab17/network-intrusion-detection
https://www.kaggle.com/mohansacharya/graduate-admissions
https://www.kaggle.com/mohansacharya/graduate-admissions

	Introduction
	Related work
	Manual design of the weight update equation
	Automated design of the weight update equation
	Grammatical evolution

	Supplementary Architecture Weight Optimization
	Architectures: definition and construction
	Extending the weight update equation
	Grammar of possible SAWO-NNs
	Training and using a SAWO-NN

	Experimental setup
	Datasets
	Benchmark problems
	Real-world application problems

	GE design
	Initial population generation
	Fitness function
	Selection methods and genetic operators
	Hyperparameters

	Experimental runs
	Comparing techniques

	Results
	Experimental runs
	Comparisons

	Analysis
	Identification of patterns
	Theoretical explanation of patterns

	Comparison to state-of-the-art
	Conclusion
	Full architecture set A
	Dataset sources and processing

