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Abstract
Since COVID-19 was declared as a pandemic by World Health Organization in March 2020, 169,682,828 cases have been

reported worldwide, with 151,416,570 recovered, and 3,526,647 deaths by May 28, 2021. Oxygen gas cylinders demand is

booming globally due to its need for COVID-19’s for intensive care. Thus, it is critical for hospitals to know exactly the

time of receiving oxygen gas cylinders since this will help in minimizing the fatality rate. In this regards, this paper

proposes a Multilayer Perceptron Neural Network-based model to predict the delivery time of oxygen gas cylinders for a

real-life logistics data from a company that delivers oxygen gas cylinders to all cities around Saudi Arabia. Besides,

Multilayer Perceptron Neural Network is benchmarked to supported vector machine and multiple linear regression.

Although all the considered models have the ability to provide accurate prediction results, the findings indicate that the

proposed supported vector machine and Multilayer Perceptron Neural Network model provide better prediction results.

The analysis was achieved through a methodology to identify factors with the highest impact and build a neural network

model. The model was further optimized to identify the best order and select the best subset of input variables. The analysis

showed that the neural network model can be used effectively to estimate the delivery time of oxygen gas cylinders. The

model illustrated high accuracy of prediction by comparing the predicted values to the actual values.

Keywords COVID-19 pandemic � Estimation � Delivery time � Oxygen gas cylinders � Multilayer Perceptron Neural

Network

1 Introduction

The COVID-19 pandemic underscored the importance of

managing health supply chain effectively, especially

medical logistic distribution. It has exposed the gaps in this

field that need to be tackled by researchers. The logistics of

medical products are characteristic of unique challenges

because their delivery and storage require special regula-

tions and licenses. For instance, to transport medical gases,

the common way is to use gas cylinders in a closed-loop

logistic distribution since the cylinders are reused and

refilled [1]. Moreover, the gas cylinders must be regularly

inspected before being delivered and also need to be

carefully handled, due to the size, weight, and hazards

associated with them [2]. Furthermore, the storage facili-

ties’ condition and locations must be well-designed to

ensure safety [3]. Thus, delivery of medical products is a

difficult task due to these characteristics, especially during

COVID-19 pandemic. Consequently, there is a need for

studies that focus on the logistics of medical gases stored in

cylinders. One of the main gases transported in cylinders is

oxygen, which is continuously increasing in demand.

COVID-19 pandemic has positively impacted the growth

of global demand for Oxygen Gas Cylinders (OGCs) for

intensive care. Accurate prediction of medical oxygen gas

cylinders delivery is critical for hospitals. Hospitals must

keep an adequate supply of oxygen on hand, with the

quantity determined by delivery estimates. In general, a

fourteen-day supply is the minimum quantity to be held,
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and this quantity should be buffered further in case of

logistics problems and delivery time inaccuracies [2]. Due

to the increase in oxygen demand during the COVID-19

pandemic, World Health Organization (WHO) released a

special guide to address oxygen distribution. According to

the guide, a proper management of oxygen logistics is the

foundation to manage the crisis and similar crises [4].

To address the surge increase in OGCS demand and

overcome logistics challenges, a robust design of the

OGCs’s supply chain is important. This supply chain

should consist of specialized production facilities, filling

centers, and distribution centers, to deliver the cylinders to

end users. Moreover, several unique factors should be

analyzed to improve the performance of oxygen gas

cylinder supply chains, including gas molecules, filling

tools, and plant composition [5]. Therefore, a sophisticate

data-driven model are required to identify the impact of

these factors and hence recommend ways to manage these

factors and improve overall performance. The literature

review reveals that there is a lack of developing and using

date-driven models to predict OGCs delivery time inter-

nationally and locally. Moreover, identifying the factors

influencing the delivery time of OGCs, ranking the most

influential factors, and developing a forecasting model that

considers the identified factors are needed. Therefore, to fill

this gap and participate in inhibiting and controlling

COVID-19 pandemic, the main contributions of this paper

are summarized as follows:

• Designing and implementing a neural network-based

model that provides the state-of- the-art result in OGCs

logistics. The proposed model extends the applicability

and suitability of neural network in prediction of

delivery time of such important medical product

especially during COVID-19 pandemic.

• Additionally, two other state-of-the-art algorithms,

namely multiple linear regression and supported vector

machine have been used for the purpose of performance

comparison.

• Identifying the factors influencing the logistics distri-

bution of OGCs. The data are taken from a leading

distribution company having its sales network spread all

over the country.

• Structuring and designing the data set required to train,

validate, and evaluate the proposed model to ensure its

accuracy and effectiveness.

Furthermore, sensitivity analysis is conducted to inves-

tigate the impact of changing the inputs variables on the

behavior of model. The developed model offers a simple

and practical way for logistics service providers and

companies dealing with supplying medical resources. It is

also useful for hospitals to assist them in their planning of

OGCs held inventory. In the next section, the most relevant

published papers will be reviewed.

2 Literature review

Several stochastic variables influence logistics, trans-

portation, and supply chain management problems. The

literature shows that cycle time prediction in logistics can

assist in identifying factors causing delays, and hence

mitigate them. Hence, many studies have explored

methodologies to analyze those variables to predict various

outputs, such as delivery time and cost. Several studies

used classical methods such as heuristics [6], partial least

square regression [7], linear regression [8], support vector

regression [9], and logistic regression [10]. However,

recently, machine learning was extensively used in the

literature for prediction problems. In the medical field,

accurate prediction of delivery times is critical since it

enables hospitals to effectively plan the availability of vital

materials, which impact people’s lives. The delivery of

OGCs is especially important, since it is high in demand,

and it requires special handling. Several studies attempted

to optimize medical logistics and the logistics of oxygen

cylinders. These include studies to predict medical demand

and general medical deliveries. Moreover, oxygen cylinder

delivery was studied using mathematical programming and

simulation [11, 12].

One of the common techniques that have been used in

supply chain prediction problems is machine learning

algorithms. In a full review of how Artificial Intelligence

(AI) is used in logistics, [13] discussed how prediction in

machine learning can enable a smart logistics system, by

predicting failures and maintenance requirements. Another

comprehensive review was conducted by [14], which

explored the use of several machine learning techniques

such as neural networks, decision trees, random forests,

and support vector machines in supply chain optimization.

Carbonneau et al. [15] also conducted a comparison study

of neural networks, support vector machine, and traditional

prediction methods to predict demand, focusing on the

bullwhip effect. Knoll et al. [16] proposed a model to

predict planning tasks in inbound logistics using machine

learning. Machine learning prediction can also be used to

study stochastic aspects of logistics, as examined by [17].

Some research articles used machine learning to approach

more specific logistics problems. For instance, [8] focused

on predicting semiconductor manufacturing cycle times.

Moreover, [18] attempted different machine learning

techniques to predict the lead time for Just-In-Time oper-

ations, using restaurants as a case study. Likewise, [19]

used machine learning to predict profits in a vendor-man-

aged inventory system and demonstrated that a
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combination of machine learning and genetic algorithms

assists in optimizing inventory replenishment. In a flow-

shop environment, machine learning can predict manu-

facturing lead-time, as explored in [20]. In addition,

machine learning can be combined with simulation and

optimization to assist in supply chain decisions such as

routing and inventory levels [21].

One of the most widely used of machine learning

algorithms in the literature for supply chain prediction is

neural networks. Noorul Haq and Kannan [22] developed

neural network model to forecast demand, then studied the

impact of the method used on the overall cost of the dis-

tribution inventory. A similar result was achieved by [23],

which used deep neural networks to forecast inventory

needs. Neural networks were also shown to provide insight

on evaluating different locations of distribution centers

[24, 25]. Chiu and Lin [26] used neural networks for supply

chain collaborative planning and order fulfillment. Asad-

zadeh et al. [27] combined multi-perceptron neural net-

works with fuzzy and linear regressions to develop a new

prediction algorithm for manufacturing lead-time. This

fuzzy-neural approach was also used by [28] to predict the

lead-time of semiconductor manufacturing and resulted in

high accuracy. Wang and Jiang [29] used Radio Frequency

Identification (RFID) data to feed neural networks and

predict order time completion. Neural networks are often

paired with an optimization algorithm to identify the best

parameters [22, 24, 25]. Delivery time was the focus of

many prediction studies. For instance, [30] used machine

learning for predicting delivery times, taking the postal

service as a case study. The authors compared several

boosting algorithms and showed that the developed algo-

rithms provide accurate predictions with short running

times. Liu et al. [31] used random forests and quantile

regression forests to predict delivery. Comparably, [32]

used quantile regression forest and regression tree to

determine arrival times of delivery. Another study con-

sidered street blockage in their input to train the models

predicting delivery times. The authors experimented on

neural networks and support vector machines, and both

provided accurate results comparing with actual delivery

times [33]. Liao and Wang [34] used neural networks to

predict delivery time of an automatic material handling

system. They built a simulation model that provided the

inputs for the neural network model, which improved

prediction results. Another input that can impact delivery is

marketing decisions, as illustrated by [35]. The proposed

neural network model revealed that delivery is most

affected by seller characteristics.

An important benefit of predicting delivery is to assign

due dates, as demonstrated by [36]. Similarly, [37] studied

the package delivery system to assign the Estimated Time

of Arrival (ETA). The authors used a ‘‘spatial–temporal

sequential neural network’’ considering numerous input

factors, namely last route sequence, delivery pattern con-

sistency, and the sequence of delivery. Liu et al. [38]

studied the food industry to analyze how arrival time pre-

diction can help optimize delivery routes. Also for the food

industry, [39] estimated delivery times of meals using

gradient boosting decision trees and showed how accurate

arrival promises improve customer experience. Further-

more, several studies focused on discussing the use of

machine learning in medical predictions since healthcare is

a critical field. Buntak et al. [40] highlighted the impor-

tance of logistics management in healthcare in general, and

review the state of the research in the medical field. There

review demonstrated that there is a need to develop

mathematical models to analyze and optimize medical

logistics. Ngiam and Khor [41] explored the benefits and

difficulties of utilizing such models, specifically machine

learning, to analyze big data of medical deliveries. Accu-

rate prediction of medical deliveries can help in hospital

planning and scheduling. However, since human lives are

at stake, data needs to be carefully preprocessed and

models need to be iteratively refined to avoid prediction

errors. Moreover, using machine learning may raise con-

cerns in terms of liabilities of any potential errors [41]. It is

a common approach to medical prediction and forecasting.

Merkuryeva et al. [42] discussed the use of regression

algorithms to forecast pharmaceutical demand. Xu and Tan

[43] demonstrated in their study how machine learning

models can improve demand forecasting in the medical

field and shed the light on the importance of data prepa-

ration. For delivery prediction, [44] used several neural

network techniques to predict drug delivery. Multilayer

perceptron (MLP) outperforms radial basis function net-

work (RBFN), and generalized regression neural network

(GRNN) in drug delivery prediction. Similarly, [5] devel-

oped a comprehensive neural network model that predicts

design, discovery, delivery, and disposition in the drug

industry.

The COVID-19 pandemic increased the importance of

effective medical supply chain management. Sharma et al.

[45] highlighted the challenges caused by the COVID

pandemic in medical supply chains. Medical materials

demand has significantly increased, while distribution

channels became difficult to reach due to lockdowns. The

authors also explored the dependence of Indian supply

chains on China, which amplified the challenges related to

logistics and distribution. The study proposed supply chain

diversification, inventory buffers, localization, and risk

management focus [45]. Ivanov [46] developed a simula-

tion model to predict the long-term impact of the pandemic

on supply chains. The model’s results showed that the

closure of facilities due to the pandemic can lead to sig-

nificant delays and losses. It also predicts that the use of
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machine learning can help businesses reduce the impact of

such pandemics by providing more planning and prediction

insight [46]. Bhaskar et al. [47] proposed an integrated

framework to build robust supply chain. Machine learning

is used to predict customer demand.

Several studies tackled logistics problems specifically

for gas cylinders, either medical or for other uses. Singh

et al. [12] designed the logistics network for gas cylinders

using mixed-integer programming, considering overall

supply chain transportation costs. Carrasco-gallego et al.

[1] also designed the gas cylinder closed-loop supply chain,

but with consideration of reuse of the cylinders. Costantino

et al. [11] developed a simulation model to analyze the

impact of opening and closing plants on overall perfor-

mance while experimenting with oxygen cylinder logistics.

The simulation model enabled optimizing inventory levels

in each scenario of which plants are open. Pathak et al. [48]

obtained a US patent for their design of a gas cylinder

supply chain distribution network. The design considered

the location of distribution hubs, filling plants, and pro-

duction facilities considering customer sites. The invention

includes a computer system that recommends a design for

the supply chain distribution network for gas cylinders,

considering a list of input data. The network is optimized

using a two-step model. However, the patent did not con-

sider delivery time prediction. Though the importance of

oxygen particularly nowadays because of COVID-19

pandemic, the above literature reveals that there is a lack of

developing date-driven models to predict oxygen cylinder

delivery time. Therefore, this very critical field needs more

attention and development of simple and effective data-

driven models for forecasting logistic distribution that can

be easily standardized and employed. In this regards, this

paper proposes a data-driven neural network model to

estimate oxygen gas cylinder delivery time. It explores the

literature and uses a real-life application to identify and

select applicable features associated with the commodity.

3 Material and methods

In this study, real delivery time data are used to develop a

data-driven model based on multilayer perceptron (MLP)

neural network for predicting delivery time for a vital

medical item during COVID-19, which is the OGCs. In

addition, the proposed neural network model is compared

to two other methods, namely; supported vector machine

and multiple linear regression. This work is useful for

logistics service providers in general, and more so for

companies dealing with OGCs and closed-loop supply

chains. It is also useful for hospitals to assist them in their

planning especially during health crisis such as COVID-19

which needs Oxygen gas. Different input parameters are

identified and described to estimate the delivery time of

OGCs. The correlation between the input parameters and

the response variable is also diagnosed. The development

of an artificial neural network model involved five main

phases as shown in Fig. 1. These phases are divided into

twelve steps as follows:

1. Conduct a comprehensive literature review to iden-

tify factors that affects OGC logistics. Also, addi-

tional general logistics factors suggested by experts

were considered. This list of factors is used as a

starting point, to be filtered in step 2.

2. Test the initial factors against the real-life practice.

To do so, a logistics company that delivers OGCs

was identified. Meetings were performed to utilize

employee expertise to select factors that have the

most impact in practice from those identified through

the literature review in step 1.

3. Collect practical data for selected factors from the

identified logistics companies. The data were col-

lected from operational history of year 2019. This

data are used to build the model and test it.

4. Analyze and process the data to eliminate outliers

and ensure that the model uses reliable data. This

analysis provided insight that allowed effective

model building.

5. Identify the factors that have the most impact on

delivery time, as found from the data analysis in step

4. Based on this finding, improvements were recom-

mended to reduce OGC delivery time.

6. Build a neural network model that consists of a

scaling layer, feedforward multilayer perceptron

(MLP) neural network, and an unscaling layer. The

scaling layer normalizes the data such that input

factors have the same range. The perceptron layers

use back propagation to enable the model to learn.

The activation function of the perceptron layers was

set as linear for the first and last layers and

hyperbolic tangent for the layers in the middle. The

unscaling layer resets the ranges to the actual scale.

7. Identify model training strategy which focuses on

training–testing split, error measurement of loss

index, and optimal model selection. First, data was

split so that 60% is used for model training, 20% for

model selection, and 20% for model testing. Second,

the loss index was measured using Mean Square

Error (MSE). For model optimization, the quasi-

Newton method was used.

8. Select the optimal structure of the neural network

that minimizes loss. This included identifying opti-

mal order and selecting optimal input variables.
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Fig. 1 Research methodology
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9. Train the data using the optimized training strategy

set in step 7 and the input factors set in step 2. The

output variable is the total delivery time.

10. Test the model on the testing data set to measure how

effective the model is on new data.

11. Validate the selected model on an unseen set of data.

The goal of model validation is to ensure that the

model is effective for newly introduced data. Mean

Squared Error (MSE), Root Mean Square Error

(RMSE), and Mean Absolute Error (MAE) are used

to measure the performance of the proposed model.

12. Conduct sensitivity analysis to identify the impact of

the input factors on the proposed neural network

model. This analysis was achieved by changing one

variable while keeping other variables unchanged.

This methodology enabled the achievement of the study

objectives, as will be explained in the model development

section.

In this paper, Neuraldesigner software is used to develop

the neural network model [48]. Several neural network

architectures were trained and examined to find the best

model that achieves the best results. For the oxygen

cylinder delivery problem, the ‘‘output variable’’ is the

total hours spent in delivery, and the factors impacting the

delivery time are defined as ‘‘input variables’’.

3.1 Methods

Multilayer Perceptron is a type of feedforward Artificial

Neural Network that is highly used in prediction problems.

It can learn complicated nonlinear problems and generate

accurate outputs with newly untrained data inputs [49].

Multilayer Perceptron neural network consists of multiple

interconnected neurons that are activated by activation

functions. The most suitable activation function should be

selected in order to assure a highly accurate model.

Selection of the appropriate activation function can be

performed through understanding its mechanism and its

implications. The most common types of activation func-

tions are linear, sigmoid and Hyperbolic Tangent or Rec-

tified Linear Units functions, etc. The linear activation

function turns the neural network into one layer where the

activation is proportional to the input. The sigmoid func-

tion has a sigmoid curve (S shape) ranging from 0 to 1.

With such characteristics, sigmoid activation functions are

highly used for predicting the output having the ability to

range from 0 to 1 [50]. The following formula shows the

sigmoid activation function:

[
X

Xn:Wn

� �
þ bn

h i
¼ ; zð Þ ¼ 1

1 þ eZ
ð1Þ

where Xn represents multiple inputs and each input will

have its own weight Wn, and bn represents the bias inclu-

ded to allow shifting the activation function. The Hyper-

bolic Tangent function is like the sigmoid function with (S-

Shape) curve but has higher range from -1 to 1 which give

it more capabilities [50]. The ‘‘Hyperbolic Tangent’’ acti-

vation function is shown below:

[
X

Xn:Wn

� �
þ bn

h i
¼ [ Zð Þ ¼ Tanh Zð Þ ð2Þ

Figure 2 shows the common structure of Multilayer

Perceptron and the flow of data. In Multilayer Perceptron,

there are mainly three layers which are input layer, hidden

layers and output layer. The basic function of the input

layer is to feedforward inputs to the network in the direc-

tion of the output. The output of the input layers will feed

the hidden layers where it calculates the data based on the

activation function to generate an output that will feed the

output layer. Finally, the output layer will be also activated

to generate the desired output. The weight of each input to

each neurons and layers is calculated throughout the

training phase [50].

During the training of the network, input data and

weights are continuously adjusted until the Multilayer

Perceptron reaches the optimum mapping between inputs

to output. The learning is supervised which is carried out

through backpropagation algorithm that minimizes the

least mean squares [50]. On the other hand, multiple linear

regression algorithm considers more than one predictor

variable to predict the response variable, y. A multiple

linear regression algorithm models the linear relationship

between a single dependent variable and multiple inde-

pendent variables (i.e., input). It can be represented by the

following standard form:

y ¼ b0 þ b1x1 þ b2x2 þ . . .þ bnxn þ e ð3Þ

where b0; b1; b2; ::; bn are the model coefficients that rep-

resent the change in the dependent variable (y) for each

independent variable x when the other variables were kept

constant. The model coefficients are estimated based on the

input data and according to the least square method by

minimizing the difference between the observed and pre-

dicted data sets [51]. After estimating the model coeffi-

cients, the predicted multiple linear regression equation is

used to forecast the response/ dependent variable for any

future set of the independent variables xi (i.e., input).

Furthermore, support vector machine (SVM) is a learning

machine algorithm developed by [52] for pattern recogni-

tion problems. Recently, SVM has been used extensively to

solve regression and time series prediction problems

[53, 54]. SVM approximates the function in the following

form:
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y ¼
Xn

i¼1

wiui xð Þ þ b ð4Þ

where ui xð Þ are the input features, wi and b are the sup-

ported vector machine coefficients that need to be esti-

mated based on the structural risk principle which is

minimizing an upper bound of the generalization error. In

this paper, various set of performance metrics are used to

measure the accuracy of the proposed prediction algo-

rithms namely, R-squared, Mean Squared Error (MSE),

Root Mean Squared Error (RMSE), and Mean Absolute

Error (MAE) [55]. MSE is used as the loss measurement, as

shown in the following equation:

MSE ¼ 1

n

Xn

i¼1

yi � tið Þ2 ð5Þ

where n is the number of data points, yi is the predicted

delivery duration at point i, and ti is the actual delivery

duration at point i. RMSE is the square root of average

value of squared error in a set of predicted values, without

considering direction. It measures of how wide residuals

are spread out. RMSE is expressed in Eq. 6:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

yi � tið Þ2

s
ð6Þ

MAE is a measure of the absolute errors between the

actual and predicted values. It can be expressed by Eq. 7:

MAE ¼ 1

n

Xn

i¼1

yi � tij j ð7Þ

In the following sub-sections, data collection, analysis,

and model development are described in details.

3.2 Data collection

The first step is to identify the factors affecting the delivery

time of OGCs in order to develop a prediction model of

delivery time. A review of previous research in this filed,

knowledgeable practitioners, and experts are used to define

the most relevant parameters. First, the literature was

reviewed to identify factors used in cylinder delivery and in

closed-loop supply chains. Table 1 summarizes the initial

set of factors collected from the literature.

The above factors were then validated by getting inputs

from experts to find the factors that are used in practice.

Additional factors were included such as number of trips

between cities, number of hospitals in the trip, total dis-

tance, and fuel consumption. To ensure the practicality of

the model, actual data were collected from a logistics

company that delivers oxygen cylinders to hospitals loca-

ted in all cities of Saudi Arabia. The data were obtained

from historical records of company operations. The com-

pany has a central warehouse located in Riyadh, Saudi

Arabia. It delivers OGCs from the central warehouse to

several hospitals in disperse cities within Saudi Arabia.

Before COVID-19 pandemic, the average delivery time

was within 12 h which is achievable and acceptable to the

company. After COVID-19 pandemic the OGCs demand

has increased sharply which makes the company unable to

cover all demands and have faced logistic problem and

delays in delivery time. The management had to act

effectively to resolve this problem and minimize the

delivery time as much as they can in order to save lives and

minimize the fatality rate. The company has to cope with a

new delivery time target controlled by government and

governed by contracts, where any delays are subjected to

huge penalty.

In coordination with the company management, a team

was formed to study the problem thoroughly and collect the

factors that may lead to a long delivery time. Several

potential factors were initially identified. Based on analysis

and subject matter experts’ judgment, the factors were

filtered to include location, cylinder quantity, truck num-

ber, driver name, number of trips between cities, number of

hospitals in the trip, total distance, fuel consumption, which

are all indicators of the total delivery time of oxygen

cylinders. To perform a deep analysis on the identified

Fig. 2 Multilayer Perceptron
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problem, the artificial neural network method was proposed

to develop a data-driven model that predicts the delivery

time for OGCs orders. The input variables are listed and

described in Table 2. The output variable reflects the ulti-

mate objective of the logistics company, which is to min-

imize the total hours spent on a trip to deliver OGCs to

multiple destinations. A sample of 420 data set is presented

in Table 3. Data were split randomly so that 60% is used

for training the model, 20% was used for selecting the best

model architecture, and 20% was used for testing. More-

over, additional new data points were collected to validate

the model.

3.3 Data analysis

To achieve meaningful results, the quality of the data is

analyzed by conducting correlations among input and

output variables. The maximum, minimum, mean, and

standard deviation values used to scale the inputs are

shown in Table 4. It is clear that the data are distributed

uniformly, which mean that the developed model has a

high level of accuracy. The factors that influence the

delivery time of OGCs are defined as inputs, whereas the

delivery time is identified as output.

A pairwise comparison was performed between input

variables to identify correlations between them. A full

positive relationship is given a value of one, no relationship

has the value of zero, and a full negative relationship has a

value of negative one. This means that the closer the value

to zero, the weaker the relationship. As shown in Table 5,

some input variables show significant correlations while

others show no correlation. The highest correlation of

0.981 is between distance traveled and fuel consumption,

Table 1 Initial factors list

Variables Source

Filling tools, plant composition, vehicle capacity, average duration per customer delivery, cylinder type, and location [5]

Location [39]

Transport requirements and material handling resources [34]

Delivery sequence [37]

Quality, promotion, and price [35]

Quantity [16]

Day of week, customer name/number, and quantity [32]

New/Used cylinder [1]

Inventory levels [56]

Customer class, location, and price [43]

Location, contract versus spot, number of drops, weather, tenure, origin facility, and driver [10]

Number of cities [30]

Priority, status of operation, equipment [20]

Table 2 Description of the identified factors

Variable Definition Type

Location The final destination in the trip before returning to the main center in Riyadh Categorical

Cylinder

quantity

The number of cylinders in the truck at the beginning of the trip. At the end of the trip, all cylinders are delivered

to the trip’s drop points

Discrete

Truck number A unique identifier for the trucks. This input variable is used to represent the condition of the truck Categorical

Driver name The unique name of the driver delivering the cylinders Categorical

Trip number The number of trips between cities in a delivery cycle Discrete

Number of

drops

The number of customers (hospitals) in the trip that will require the truck to stop and unload oxygen cylinders Discrete

Distance Meter reading before the trip starts minus meter reading at the end of the trip, representing the total distance

traveled

Continuous

Fuel

consumption

Amount of fuel consumed in the trip Continuous
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while the lowest is 0 which occurs between several input

variables.

These correlations present several interesting observa-

tions. First, location has no correlation with the number of

drops, nor the distance traveled, which indicates that

serving far customers is not a concern, but the company

needs to optimize their routes if they plan to reduce total

distance. Second, truck number does not correlate with the

Table 3 Sample of the data set

Location Cyl Qty Truck # Driver No. Trips Number of drops Distance Fuel consumption Hours

Qassim 42 9098 Driver 1 1 10 1371 475 71.27

Onnaiza 24 7589 Driver 2 3 9 1397 400 69.08

Qassim 4 2364 Driver 3 3 11 1514 350 69.03

Qassim 8 2359 Driver 4 1 9 1110 350 67.35

Qassim 18 2367 Driver 5 3 11 1330 350 66.5

Qassim 5 7589 Driver 4 2 9 1468 400 64.82

Alaflaj 70 5508 Driver 4 1 3 1357 480 60.67

Hota 15 5508 Driver 4 1 4 1368 475 52.78

Qassim 18 2364 Driver 2 1 7 1214 350 52

Sulail 15 5508 Driver 6 1 4 1351 475 51.17

Alaflaj 55 5508 Driver 6 1 4 1343 475 51

Table 4 Statistical analysis of

the data
Variable Minimum Maximum Mean Standard deviation

Input

Cylinder quantity 1 128 40.9 29.0

Number of drops 1 11 2.4 1.8

Distance 0 1514 334.4 368.9

Fuel consumption 25 480 120.4 121.4

Location Categorical Categorical Categorical Categorical

Truck number Categorical Categorical Categorical Categorical

Driver name Categorical Categorical Categorical Categorical

Output

Delivery time 0.58 71.3 14.3 13.8

Table 5 Input variables correlations

Location Cylinder

quantity

Truck

number

Driver

name

Number of

trips

Number of

drops

Distance

traveled

Fuel

consumption

Location 1 - 0.30277 0.90194 0.89040 0.13519 0 0 - 0.12933

Cylinder

quantity

1 0.03346 0.16550 0.15564 - 0.58559 0.29492 0.34550

Truck number 1 0.97171 0 0.05996 - 0.07079 0.63527

Driver name 1 0 0 0.00560 0.00373

Number of trips 1 - 0.29675 - 0.05838 - 0.10124

Number of

drops

1 0.19142 0.21904

Distance

traveled

1 0.98075

Fuel

consumption

1
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number of trips and low correlation with the number of

drops and distance traveled, which leads us to infer that the

company did not consider the truck condition in their

logistics planning. Third, it seems that most of the time,

drivers use the same truck, since the correlation between

the truck number and driver name has a high value of

0.972. Also, these drivers and trucks mostly go to the same

locations, as inferred by the high correlations between

location and truck number and between location and driver

name. Finally, cylinder quantity has a high negative cor-

relation with the number of drops. This is counterintuitive,

but it may indicate that only a few customers required a

high number of cylinders, while others order only a few

cylinders. Customers that order a few cylinders add to the

delivery time while adding little value to overall sales. This

finding can help logistics companies to focus on customers

that provide the highest sales value.

Based on the correlations analysis, the variables ‘‘Fuel

consumption’’ and ‘‘Driver name’’ were removed from the

model, since they are represented by ‘‘Distance traveled’’

and ‘‘Truck number’’, respectively. The output versus input

correlations analysis helps to investigate the correlation

between the target, which is delivery time in hours, and the

six remaining input variables. An absolute value that is

close to one indicates a strong correlation between the

input and the target, and an absolute value near zero

indicates a weak correlation. As shown in Fig. 3, the

highest contributor to high delivery hours is the distance

traveled. On the other hand, location has no impact on

delivery time. This low correlation between location and

delivery time is interesting. It can be explained by the input

relationships since the location has no correlation with

distance. This is probably because the final destination

before returning to Riyadh city (central warehouse) may

not be an indicator of total distance, which is more related

to the number of trips and the number of drops, meaning

that a single drop to a distant location can take much less

time than several drops to a nearby final destination. The

truck number, cylinder quantity, and the number of drops

have medium correlations to delivery time. Finally, the

number of trips and location have the lowest correlations.

These correlations with the goal to visualize the correla-

tions with the Pareto principle, where focusing 20% of the

reasons can lead to addressing 80% of the improvement

opportunities. In this case, it shows that reducing the dis-

tance traveled can significantly decrease delivery time,

which emphasized the need of utilizing route optimization

algorithms. As a matter of fact, these two variables repre-

sent 64% of the correlations, while the other input variables

combined account for only 36% of the correlations.

Moreover, the relationships between delivery time and

the numerical input variables are represented using the

scatter plots as shown in Fig. 4. Scatter plots are an

effective and simple tool to show the strength of the rela-

tionship between variables and to show if the relationship

is linear or non-linear. For example, distance traveled

shows a strong linear relationship with total delivery time

in hours. As can be seen in the scatter plots in Fig. 4,

distance traveled clearly shows a strong positive correla-

tion with delivery time in hours. Also, the number of drops

shows a week positive correlation. Finally, cylinder quan-

tity and the number of trips show almost no relationship

with delivery time. The results of the scatter plots align

with those of the Pareto chart in Fig. 3.

From Fig. 4, it is clear that the type of relationship

between output versus distance traveled and number of

drops is linear; output versus truck number and location is

logistic, output versus cylinder quantity is power, and

output versus number of trips is exponential.

3.4 The proposed model structure

3.4.1 Model development

In this section, the MLP model is developed consisting of

three functions: a scaling function layer, multi-perceptron

layers, and an unscaling function layer. The scaling func-

tion layer normalizes the inputs to have a consistent range,

using the Minimum–Maximum method. The unscaling

function layer returns the data to its actual range. The

multi-perceptron layers are used to enable learning. The

initial model contains four input multi-perceptron layers

and one output layer. The first and fourth perceptron layer

use the linear activation function, and the second and third

layers use the hyperbolic tangent (tanh) activation function

which is a sigmoid function that is used widely for data

ranging from -1 to 1. The initial neural network structure

is portrayed in Fig. 5. There are six input variables repre-

sented as black circles and the scaling layer is denoted as
Fig. 3 Pareto chart of correlations between the target and input

variables
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yellow circles. There are four perceptron layers depicted as

blue circles. Finally, the orange circle represents the

unscaling layer. The details of the initial neural network

model are shown in Table 6. Since the location and truck

number are categorical, each value was set as a binary

variable which led to 48 input variables.

After constructing the initial neural network, the net-

work is trained to learns the input weights and minimizes

the loss or error. In this paper, the training process was

Fig. 4 Scatter plots of target versus input variables

Fig. 5 Architecture of the initial

built Neural Network
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performed in two stages. First, the initial model was used to

get initial performance. Second, training was performed on

the optimized model to ensure that it significantly improves

the performance. To train the initial built model, 60% of

the data set, which was randomly selected from the overall

data. The training set enabled producing weights for each

input and to measure prediction performance. Moreover,

several parameters were experimented on to find the set of

parameters that provides the minimum loss. The parame-

ters setting of the model is explained in details in the next

subsection.

3.4.2 Setting neural network model parameters

The aim of training the neural network is to identify the

weight and bias that minimize the loss. Thus, the Quasi-

Newton method was used to optimize the model and

minimize the loss, which uses a Hessian function as the

loss function. It simplifies the full Newton method by

approximating the inverse Hessian function for each iter-

ation of the optimization algorithm. The loss minimization

at each epoch is depicted in Fig. 6. The blue line represents

the training error, and the orange line represents the

selection error. A clear drop in error can be attributed to

applying the quasi-Newton method for optimization.

It is noticed that after 298 epochs, the training error has

improved significantly from 0.252439 to 0.0137193 (95%

improvement), and the selection error has improved from

0.410997 to 0.016316 (96% improvement). The final

results of the model after optimization are presented in

Table 7.

At this stage of model development, the best structure of

the neural network is considered. The goal is to find the

structure that avoids overfitting and underfitting and hence

minimizes the error in predicting new data. For this pur-

pose, 20% of the data were randomly selected for model

selection. The achieved model balances between model

complexity and quality of data. The properties considered

in the model selection are the order of the model and the

input variables used. The order of the model represents

optimizing the number of hidden layers. On the other hand,

input variables selection represents finding the subset of

inputs that provides the best prediction results. To find the

order with the minimum loss, an incremental order algo-

rithm was used. This algorithm starts with the minimum

number of neurons and keeps adding to the complexity

until the order that provides the minimum loss is achieved.

For the purpose of this study, the minimum number of

perceptron layers evaluated is 1 and the maximum number

is 10, with 1 hidden perceptron layer added in each itera-

tion. The optimal number of neurons was 10. Growing

inputs algorithm was used for the purpose of finding the

best combination of input variables. This algorithm starts

with the input that is most correlated with the output,

calculates the error associated with that input variable

alone, and keeps adding the next most correlated input

variable until the error increases. The optimal number of

input variables is 5 out of the 6 variables identified previ-

ously, leading to distance traveled being not used. The

selected model is then used for model testing and valida-

tion as will be discussed in the next section.

Table 6 Details of the initial neural network layers

Name of layer Inputs Neurons Method/activation Function

Scaling layer 48 48 Minimum–maximum

Perceptron layer 1 48 6 Linear

Perceptron layer 2 6 3 Hyperbolic tangent (Tanh)

Perceptron layer 3 3 8 Hyperbolic tangent (Tanh)

Perceptron layer 4 8 1 Linear

Unscaling layer 1 1 Minimum–maximum

Fig. 6 Quasi-Newton method error history

Table 7 Results of model training after optimization

Parameter Value

Final parameters norm 2.29

Final training error 0.0137193

Final selection error 0.016316

Final gradient norm 0.185

Epochs number 298

Elapsed time 00:00:01

Stopping criterion Maximum selection error increases
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4 Results and discussion

4.1 Evaluation of MLP model

After finding the best structure that avoids overfitting and

underfitting in the selection phase, the selected model is

then used for testing and validation. In the testing phase,

the remaining 20% of the data was introduced, and the

actual output of that data set is compared to the predicted

outputs produced based on the weights identified in the

training phase. The coefficient of determination for the

MLP neural network is calculated by fitting linear regres-

sion to compare the predicted output with the actual

delivery time as shown in Fig. 7. It is obvious that the

results are close to the best-fit outputs, therefore, it is

concluded that the model performed well on the testing

data set and it provides a satisfactory results with R2 of

92.44%.

As the testing phase provided a satisfactory results, the

proposed neural network model will be move to the so-

called deployment phase. The concept of deployment or

validation refers to the use of the neural network model to

predict new and unseen data. In the validation phase, the

model is tested on 30 additional data set to ensure it pro-

vides accurate results. This data set is completely unknown

and unseen data. Figure 8 compares the predicted output

from the neural network model and the actual delivery time

for validation.

The MLP neural network algorithm shows high accu-

racy in the validation phase with coefficient of determi-

nation of 94.48%. In the next section, the accuracy of the

MLP model will be compared with supported vector

machine and multiple linear regression algorithms for

training and testing data sets.

4.2 Comparison of prediction algorithms

In this section, the performance of the developed MLP

neural network model has been benchmarked with two

other state-of-the-art prediction algorithms, namely; sup-

ported vector machine (SVM) and multiple linear regres-

sion (MLR). The accuracy for the three algorithms are

compared in the basis of four goodness-of-fit parameters

including mean squared error (MES), root mean squared

error (RMSE), measure of the absolute errors (MAE), and

coefficient of determination R2. To compare the perfor-

mance of the three algorithms, six data sets are selected

randomly from the original data. Thus, the experimental

procedure is repeated six times. Therefore, the mean values

y = 0.8809x + 2.612
R² = 0.9244
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for the four performance measures are computed for

training and testing data sets as illustrated in Table 8.

In general, the three algorithms show excellent accuracy

for predicting OGCs delivery time. However, to support the

obtained results, statistical hypothesis test and relative

percentage deviation index (RPD) are used. The results

acquired by the three models are converted into a relative

percentage deviation index as follows [57]:

RPD ¼ Modelsol � Bestsolj j
Bestsol

� 100 ð8Þ

where Modelsol is the metric value obtained by a given

algorithm, and Bestsol is the best solution obtained for the

model. The lower value of RPD is preferred. When the

confidence intervals overlap, the RPD index indicates that

there is no significant statistical difference between the

means of the measures. As a result of this analysis, the

means and the confidence intervals for the RPD of the three

models for the training phase are revealed in Fig. 9. With

respective to MSE and R2, it is clear that there is confi-

dence intervals overlap among the three methods. This

indication is also supported by statistical hypothesis tests

that report a p-values greater than 0.05.

Therefore, it is concluded that there is no significant

difference between the three methods in the training phase.

From Table 8, it is also obvious that the average of R2 for

the three algorithms are almost identical. Similarly, low

variation in the averages of mean square errors were

noticed for the three algorithms with 0.5121, 0.4622 and

0.5687 for the MLP, SVM and MLR, respectively.

For testing data set, as shown in Table 8, noticeable

differences among the performances of three methods are

observed with R2 of 91.93%, 94.06%, 90.57% for the MLP,

SVM and MLR, respectively. The means and the confi-

dence intervals for the RPD of the three models for the

testing phase are shown in Fig. 10. It can be noticed that

there is a slight confidence intervals overlap among the

three methods which is not statistically significant as sup-

ported by hypothesis test that reports p-values less than

0.05 for both R2 and MSE. Therefore, it is concluded that

there is a significant difference between the three methods.

However, the SVM algorithm expresses the best pre-

diction accuracy followed by MLP neural network. The

SVM has high generalization capability and avoidance of

local minima due to its strong theoretical background over

other prediction methods [52]. Moreover, the low values of

mean square errors for SVM and MLP algorithms indicate

that the two approaches can reveal hidden relationships in

the collected data, thereby improving the accuracy of

predicting delivery time of OGCs. Similarly, the low val-

ues of mean absolute errors for supported vector machine

and MLP models indicate that they have ability to provide

reliable and consistent level of accuracy. The non-linearity

relationship between some input variables and the delivery

time minimizes the prediction accuracy of MLR model that

records a coefficient of determinations of 90.57%. The

differences in performances between training and testing

for each algorithm depend on the nature, complexity, and

ease of the selected data in each phase as well as the setting

of corresponding parameters of each algorithm [58].

Figures 11, 12, 13 show the variations of actual and

predicted delivery time in the testing phase for MLP, SVM,

and MLR algorithms, respectively. It can be observed that

the prediction values are close to the actual delivery time

for the three methods. However, the SVM and MLP show

slightly higher accuracy than MLR. In general, the pre-

dicted values for the three methods are almost identical to

the original data which are in agreement with the coeffi-

cient of determinations for the three methods in the testing

phase.

4.3 Sensitivity analysis

As a final step in model development, sensitivity analysis

was implemented to study the impact of changing one

numerical input variable on the prediction results while

keeping other input variables constant. The sensitivity

analysis is conducted for MLP model since it provides a

reliable and consistent level of accuracy compared to the

other two benchmarked models. Figure 14 shows how

changing cylinder quantity, number of trips, number of

drops, and distance traveled impact the total delivery time.

The grey point in the graph represents the reference point.

Sensitivity analysis provides valuable insight. First, cylin-

der quantity has a very low impact on delivery time. In

fact, the graph shows that delivering up to 200 cylinders

Table 8 Averages of

performance indices for the

three algorithms

Algorithm/accuracy measures Phase MSE RMSE MAE R2

MLP Training 0.5121 0.7079 0.8165 90.94%

Testing 0.4821 0.6611 0.7811 91.93%

SVM Training 0.4622 0.6764 0.7736 91.20%

Testing 0.3737 0.6014 0.7125 94.06%

MLR Training 0.5687 0.7493 0.8468 90.08%

Testing 0.6122 0.7760 0.8932 90.57%
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(a) Coefficient of determination, R2 (P-value= 
0.432)

(b) Mean square error, MSE (P-value= 0.405)
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can have a similar time to delivering one cylinder which

indicates that adding more cylinders does not significantly

slow down delivery time. Second, increasing the number of

trips between cities leads to an increase in delivery time.

However, this increase is not as significant as increasing

the number of drops in the overall trip. This means that

regardless of how far the cities are from each other, having

more stops has more impact on delivery time. Finally, total

distance has the most impact on delivery time, meaning

that the total distance in the round trip is the variable that

leads to most of the delays. As a final conclusion, sensi-

tivity analysis shows the importance of route optimization

in oxygen cylinder logistics.

To summarize, after the MLP neural network model is

trained, tested, and validated, it can be used to predict

future delivery times for any entity handling the delivery of

oxygen cylinders. This can assist both carriers and hospi-

tals in their planning. Based on the predicted delivery time,

carriers can plan their fleets and future deliveries. Hospitals

can use the predicted delivery times to plan the quantity of

cylinders to store. For this to work, carriers should share

the estimate for each delivery to help other entities in the

planning of their activities. The proposed neural network

model can also be generalized to numerous similar appli-

cations. Specifically, logistics networks with similar char-

acteristics, such as the delivery of industrial gases, can use

the same model to predict delivery time and analyze the

system following the proposed methodology in this study.

Moreover, the model can be adjusted for any logistics

network based on the features and applicable factors of the

studied system.
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5 Conclusions

Demand for OGCs is booming globally due to its

requirement for COVID-19 intensive care. This paper

developed an effective neural network-based prediction

model for the delivery time of OGCs. Additionally, the

performance accuracy of the proposed model was com-

pared to two state-of-the art prediction algorithms, namely,

SVM and MLR. The neural network model was con-

structed and validated based on actual data. A real-life data

set from a large company was used to provide results that

can be used and replicated in practice. First, the factors

affecting the oxygen cylinder logistics are identified based

on the literature and professional experts. Then, the best

and accurate neural network model is developed and

selected among several neural network models. The cor-

relation between the factors is identified, and sensitivity

analysis was performed to study the impact of changing

each input variable given other input variables are constant.

The results showed that although the total distance is the

main contributor to delivery delays, location has low

impact on delivery time. This finding suggests that logistics

companies can serve a wide base of customer locations,

given that they optimize their routes to reduce the total

distance traveled per trip. The results also revealed the

ability of the developed model to predict the delivery time

of OGCs. The MLP neural network model illustrated

91.93% accuracy of prediction by comparing the predicted

values to the actual values for testing data set. The SVM

and MLR illustrated 94.06% and 90.57% accuracy of

prediction, respectively.

The delivery time prediction model developed in this

study can help logistic companies to provide more realistic

delivery time promises to their clients. The model can also

be used for other gas cylinder deliveries by adding factors

unique to the studied commodities. The developed model is

an easy-to-use model that can predict delivery times of

oxygen cylinders, which enables logistics companies to

give more accurate delivery time estimates and avoid delay

penalties. Future studies can experiment on data sources

coming from other areas of the world. They can also

consider more factors given the different requirements in

other environments, such as factors related to geological or

regulatory variables. Furthermore, a similar study can be

performed on other medical commodities, other gas

cylinder logistics, or other means of storing and delivering

oxygen. In addition, a study can be performed to optimally

design delivery networks for OGCs, with the aim to reduce

total delivery time.

Fig. 14 Sensitivity analysis on the numerical variables
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