## **ORIGINAL ARTICLE**



# Rules embedded harris hawks optimizer for large-scale optimization problems

Hussein Samma<sup>1,3</sup> ( · Ali Salem Bin Sama<sup>2,4</sup>

Received: 15 August 2021 / Accepted: 28 February 2022 / Published online: 31 March 2022 © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

## Abstract

Harris Hawks Optimizer (HHO) is a recent optimizer that was successfully applied for various real-world problems. However, working under large-scale problems requires an efficient exploration/exploitation balancing scheme that helps HHO to escape from possible local optima stagnation. To achieve this objective and boost the search efficiency of HHO, this study develops embedded rules used to make adaptive switching between exploration/exploitation based on search performances. These embedded rules were formulated based on several parameters such as population status, success rate, and the number of consumed search iterations. To verify the effectiveness of these embedded rules in improving HHO performances, a total of six standard high-dimensional functions ranging from 1000-D to 10,000-D and CEC'2010 large-scale benchmark were employed in this study. In addition, the proposed Rules Embedded Harris Hawks Optimizer (REHHO) applied for one real-world high dimensional wavelength selection problem. Conducted experiments showed that these embedded rules significantly improve HHO in terms of accuracy and convergence curve. In particular, REHHO was able to achieve superior performances against HHO in all conducted benchmark problems. Besides that, results showed that faster convergence was obtained from the embedded rules. Furthermore, REHHO was able to outperform several recent and state-of-the-art optimization algorithms.

Keywords Rule-based optimizer · Harris hawks · Large-scale optimization

# 1 Introduction

In the era of big data, a lot of real-world, large-scale optimization problems have been existed, such as multipolicy insurance investment planning [1], scheduling [2], and gene biomarker discovery [3]. Tackling these problems using metaheuristic algorithms is considered a difficult

Hussein Samma hussein.samma@utm.my

- <sup>1</sup> School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, 81310 UTM Johor, Malaysia
- <sup>2</sup> Computer and Information Science Department, College of Shari'a & Islamic Studies, Al-Imam Mohammad Ibn Saud Islamic University, Al-hassa, Kingdom of Saudi Arabia
- <sup>3</sup> Faculty of Computer and Information Technology, University of Shabwah, Shabwah, Republic of Yemen
- <sup>4</sup> Department of Geology Engineering, Faculty of Oil & Minerals, Aden University, Aden, Republic of Yemen

task. This is due to the growth in dimension space, i.e., "*curse of dimensionality*" [4]. To mitigate these difficulties, researchers suggested several ideas, such as splitting the dimensionality using a divide-and-conquer scheme [5], introducing dynamic balancing between exploration and exploitation [6], or using the concept of population clustering [7].

Recently, many optimizers were introduced in the literature, such as Harris Hawks Optimizer (HHO) [8], Fit-Dependent Optimizer (FDO) [9], Learner ness Performance-based Behavior (LPB) [10], Child Drawing Development Optimizer (CDDO) [11], and Donkey and Smuggler Optimizer (DSO) [12]. Among them, HHO was given a lot of attention. This is due to its simplicity and efficiency in dealing with various real-world problems such as image segmentation [13], features selection [14], tracking maximum power in solar systems [15], prediction of solar systems productivity [16], designing load frequency of renewable energy plan [17], forecasting of air pollution [18], and predicting food liking [19]. However,

HHO lacks efficient exploration/exploitation balancing ability. This is because it uses timely depended on energy escape parameters which control the switching from exploration to exploitation mode [8]. As such, when HHO is trapped in local optima during the exploitation phase, it will be hard to escape and return to exploration mode. To overcome these drawbacks, researchers suggested various versions of HHO, which could be categorized as hybridized-based methods and modified-based methods.

The idea of hybridizing HHO with other metaheuristic algorithms was studied by many researchers [2-26]. Abd Elaziz et al. introduced a hybrid model that combines HHO with a moth-flame optimizer [20]. The main goal was to enhance the exploration ability of HHO by using mothflame to generate the initial population. In addition, a chaos map was embedded for further enhancement. Results show a superior impact on the performances of the hybrid optimizer as compared with the standard HHO. However, the main challenge is related to the increase in complexity due to the large number of parameters that need to be tuned. Further hybrid work was given by ElSayed et al. [21]. Basically, their work integrates HHO with Sequential Quadratic Programming (SQP). SQP was used as a local search optimizer to refine the best solution found by HHO at run-time. Reported results on the problem of finding the best relay directions in power systems indicated better performances were reported from the proposed hybrid approach. A memetic-based HHO scheme was suggested by Li et al. [22]. The key idea of the proposed memetic scheme is to enhance the local search capability of HHO by embedding several elite evolutionary strategies. Conducted analysis in their study on scheduling problems showed further HHO improvements were achieved due to the incorporated local search strategies. The hybridization of Grasshopper Optimizer GO with HHO was discussed by Singh et al. [23]. Their model was applied for the problem of optimal placement of multiple optical network units. The outcomes of GO-HHO demonstrated the superiority of the hybrid model as compared with individual optimizers, i.e., HHO and GO. The idea of evolving multiple HHO populations with quantum particles was given by Ilker et.al [20]. Mainly, their proposed approach was designed to tackle dynamic optimization problems that encompass multiple local optima. Conducted experiment on CEC 2009 showed that multiple HHO populations produced better outcomes in terms of convergence rate and fitness value. The fusion of HHO with both sine-cosine and simulated annealing was discussed in [25] and [26], respectively. Both models were applied for the problem of features selection, and their analysis showed great improvements in tackling feature selection challenges. Very recent hybrid studies which integrate HHO with other metaheuristic optimization algorithms were discussed by Abba et al. [27],

Ebrahim et al. [28], Bandyopadhyay et al. [29], Suresh et al. [30], and Mossa et al. [31]. In [27], the hybrid of PSO with HHO for renewable energy load demand forecasting was presented. The synergy of sine-cosine with HHO was discussed in [28] for optimizing the fuel cell-based electric power system. Bandyopadhyay et al. [29] presented the integration of simulated annealing with HHO for deep features selection of COVID-19 from CT-scan images. The hybrid of chaotic multi-verse optimizer with HHO was given in [30] for the problem of medical diagnosis. The issue of parameters estimation of proton exchange membrane fuel cell using a hybrid atom optimizer with HHO was investigated in [31]. Nevertheless, the main challenge of hybrid-based methods is related to the increase of fitness evaluation cost needed for each optimizer. In addition, hybridizing several optimizers raises the difficulties of simultaneously managing them at run-time [32].

A modified-based HHO methods were presented in many studies [33–38]. The idea of modifying HHO by embedding salp optimizer operations was adopted by Abdelaziz et al. [33]. The main aim of their study is to enhance the exploration capability of HHO. In their work, they split the population into two sub-populations, and one half has been evolved under salp operations, and the other half has been executed under the control of HHO operations. The modified model in [24] was applied for the multi-level image thresholding problem, and results showed that embedded salp operations enhanced HHO exploration performances. Similarly, enhancing HHO exploration ability by incorporating differential evolutionary operators was suggested by Wunnava et al. [34]. Their proposed approach was applied for the multi-level image thresholding problem. Nevertheless, incorporating additional operations into HHO raises the challenge of increasing model complexity, which will increase the cost of fitness computation needed for these additional operations. Additional work was proposed by Yousri et al. [35] for improving the effectiveness of HHO in performing the exploration phase. Particularly, they have embedded fractional calculus (FOC) memory which is used to control the movement velocity of HHO agents. As such, FOC helps in avoiding possible premature convergence. Conducted experiments clearly showed better performances were achieved from embedding FOC. Additional HHO modifications were propped by Chen et al. [36]. They incorporated both opposition technique and chaotic local search into HHO. Reported results indicated better HHO improvements due to the enhancement in HHO population diversity. Further modifications were presented by Li et al. [37] for enhancing HHO population quality. Particularly, Li et al. added horizontal and vertical crossover operations into HHO, and results indicated further HHO exploration enhancements. Finally, researchers in [38] suggested the

concept of information exchange to enhance HHO exploration ability. Very recent approaches were done by several researchers where they proposed many modification schemes to improve HHO. For instance, a multi-strategy approach was given by Li et al. [39]. The main idea of their approach is to incorporate different enhancement strategies namely opposition-based learning, logarithmic spiral, and a modified Rosenbrock local search. Other researchers suggested of embedding two different opposition-based schemes, namely selective, leading opposition, and the dynamic opposition technique. Enhancing HHO by implementing different random distribution functions which control the random movement of HHO agents was given by Akdag et al. [40]. Specifically, they have investigated seven types of random distribution functions, including chi-square, normal, exponential, Rayleigh, student's distribution, F-distribution, and lognormal. Reported results clearly showed further improvements were achieved, especially for engineering design problems. Another enhanced version of HHO was discussed by Houssein et al. [41]. The key concept of their enhanced approach is to incorporate genetic operators to enhance exploitation ability in the selection of chemical molecular descriptors problems. An additional recent modified approach was illustrated by Krishna et al. [42]. Basically, they focused on enhancing HHO search capability when dealing with constrained engineering design problems. As such, to boost the exploitation performances of HHO, they have added pattern search algorithm during the exploitation phase of HHO. A chaotic guided HHO algorithm was demonstrated by Singh et al. [43] for data clustering. They have implemented a logistic chaotic map which was executed in the exploration phase of HHO. Despite the slow convergence of the enhanced HHO algorithm in [43], but the results clearly showed an improvement in the achieved clustering performances.

Motivated by HHO popularity, simplicity, and efficiency, this study aims to further improve HHO performances when dealing with large-scale problems that encounter a lot of local optima points. It should be noted that previously mentioned studies mainly focused on enhancing HHO exploration by incorporating chaotic reinitialization schemes [43], embedding opposition-based schemes [36, 39], or using other search operations inside HHO [33, 33–35, 40]. Others suggested using an external local search algorithm with HHO to improve exploitation performance [39, 42]. Despite that, there is still room for improvements by utilizing HHO population status at runtime search progress. Knowing the population status will play a vital role in making the decision about the appropriate time to switch from exploration to exploitation and vice versa. In addition, the idea of controlling the amount of jump during the exploitation phase has been utilized in this work. Therefore, this study formulates several rules that will be embedded into HHO to make adaptive switching of exploration/exploitations. An additional rule was embedded to control the amount of jump during the exploitation phase. The main contributions of this work are outlined as follows.

- 1. It monitors and utilizes population statuses for adaptive exploration/exploitation switching.
- 2. It uses agent location information to control the amount of jump needed at exploitation mode.
- It evaluates the performances on multimodal standard benchmark function, large-scale CEC'2010 benchmark, and one real-world high-dimensional wavelength selection problem.

A table that summarizes all previously discussed HHO variants in terms of their type, authors, techniques, and used benchmarks is given in Table 1. The remaining part of this paper is organized as follows. Section 2 overview the standard HHO algorithm. The proposed embedded rules are explained in Sect. 3. A series of experiments that have been conducted to evaluate the effectiveness of the proposed approach are given in Sect. 4. A summary of the research findings is presented in Sect. 5.

## 2 Harries Hawks optimizer

HHO is a recent optimizer that has been introduced by Heidari et al [8]. It is inspired by the attacking behavior of Harris Hawks birds, and it consists of three main phases, which are exploration, transition, and exploitation. These phases are explained as follows.

## 2.1 Exploration phase

In the exploration phase, HHO agents are going to perform discovering of the search space. Basically, there are two strategies that have been formulated for the exploration phase. The first one moves the hawk randomly in the search space. The second strategy is guided by both the best solution  $X_{rabbit}^{t}$  and the mean location of the population  $X_{m}^{t}$ . These exploration strategies are defined as follows.

$$\mathbf{X}_{i}^{t+1} = \begin{cases} \mathbf{X}_{\text{rand}}^{t} - r_{1} \cdot |\mathbf{U}_{\text{rand}}^{t} - 2 \cdot r_{2} \cdot \mathbf{X}_{i}^{t}| & p \ge 0.5\\ (\mathbf{X}_{\text{rabbit}}^{t} - \mathbf{X}_{m}^{t}) - r_{3} \cdot (lb + r_{4} \cdot (ub - lb)) & p < 0.5 \end{cases}$$
(1)

where  $X_i^{t+1}$  is the next position of *i*th hawk at search iteration *t*. Variables  $r_1, r_2, r_3$ , and  $r_4$  are random values in the range of (0, 1). Variables *ub* and *lb* are upper and lower bound of the search problem. Variable *p* is a random value used to control the switching between exploration

Table 1 Related work on HHO

| Туре     | Ref. | Authors                 | Method                                                                                                                                                                                                                                            | Benchmarks                                                                                                                                                                              |
|----------|------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hybrid   | [20] | Abd Elaziz et al.       | It incorporated moth-flame, fractional-order, and chaotic maps to enhance HHO exploration                                                                                                                                                         | It uses 13 feature selections from UCI dataset and various engineering design problems                                                                                                  |
|          | [21] | ElSayed et al.          | It integrated sequential quadratic programming (SQP) with HHO as a single model                                                                                                                                                                   | It was applied for two problems of relays optimal coordination finding                                                                                                                  |
|          | [22] | Li et al.               | It proposed a memetic technique to enhance HHO local search capability                                                                                                                                                                            | It was evaluated with 29 numerical optimization test<br>functions and the problem of resource-constrained<br>project scheduling and QoS-aware web service                               |
|          | [23] | Singh et al.            | It combined grasshopper with HHO as a single model                                                                                                                                                                                                | It has been applied for the problem of ONUs placement in Fiber-Wireless (FiWi)                                                                                                          |
|          | [20] | Ilker et al.            | It evolved multiple HHO populations with<br>quantum particles                                                                                                                                                                                     | It was evaluated with 23 dynamic test functions from CEC 2009 benchmark                                                                                                                 |
|          | [25] | Kashif et al.           | It hybridized the sine-cosine algorithm with HHO                                                                                                                                                                                                  | It uses 29 test functions of CEC'17 test suite and 16 datasets for the problem of feature selection                                                                                     |
|          | [26] | Abdel-Basset<br>et al.  | It incorporated simulated annealing for HHO search refinement                                                                                                                                                                                     | It has been evaluated with 24 standard datasets and 19 artificial datasets for feature selection problems                                                                               |
|          | [27] | Abba et al.             | It integrated PSO with HHO for renewable energy load demand forecasting                                                                                                                                                                           | It was evaluated using a lab collected data including<br>solar radiation, temperature, and wind speed to<br>predict load demand                                                         |
|          | [28] | Ebrahim et al.          | It combined since cosine with HHO for finding the<br>optimal control parameters in fuel cell-based<br>electric power system                                                                                                                       | It has been evaluated with the standard 23<br>benchmarks and applied for real-time control of<br>energy consumption                                                                     |
|          | [29] | Bandyopadhyay<br>et al. | It integrated simulated annealing with HHO for<br>performing search refinement                                                                                                                                                                    | It was assessed using real-world engineering design<br>problems and COVID-19 deep features selection<br>from CT-scan images                                                             |
|          | [30] | Suresh et al.           | It incorporated a chaotic multi-verse optimizer into HHO                                                                                                                                                                                          | It was evaluated using two public dataset for medical<br>classification problems including PIMA Indian<br>Diabetic and Wisconsin Breast Cancer                                          |
|          | [31] | Mossa et al.            | It combined atom optimizer with HHO                                                                                                                                                                                                               | It was applied for parameter estimation of Proton<br>exchange membrane fuel cell. It was tested using<br>three case studies including BCS 500-W PEM,<br>500 W SR-12PEM, and 250 W stack |
| Modified | [33] | AbdElaziz et al.        | It incorporated salp operations into HHO for<br>enhancing exploration performances                                                                                                                                                                | It has been applied for 36 functions from IEEE CEC 2005 benchmark and 11 Gy-scale image segmentation problems                                                                           |
|          | [34] | Wunnava et al.          | It embedded differential evolutionary operators                                                                                                                                                                                                   | It was evaluated with 500 images from Berkeley<br>BSDS benchmark for multi-level image<br>thresholding                                                                                  |
|          | [35] | Yousri et al.           | It added fractional-order calculus (FOC) memory<br>to guide HHO during search progress                                                                                                                                                            | It uses 28 functions from CEC2017 benchmarks problems                                                                                                                                   |
|          | [36] | Chen et al.             | It included two schemes which are opposition-<br>based and chaotic local search to enhance HHO<br>exploitation                                                                                                                                    | It has been applied for photovoltaic cells design of<br>three problems which are Shell st40, Shell sm55,<br>and Shell kc200gt photovoltaics                                             |
|          | [37] | Li et al.               | It incorporated horizontal and vertical crossover operations                                                                                                                                                                                      | It has been applied for photovoltaic parameter<br>estimation of three models, which are SDM, DDM,<br>and PV                                                                             |
|          | [38] | Qu et al.               | It utilizes an information-sharing scheme to exchange agent's locations, etc                                                                                                                                                                      | It was evaluated with 28 functions of CEC-2017 real-<br>parameter numerical optimization problems                                                                                       |
|          | [39] | Li et al.               | It embedded several search strategies to enhance<br>HHO. These strategies are logarithmic spiral and<br>opposition technique to improve the exploration<br>performances. Rosenbrock local search was<br>added to enhance the exploitation ability | It was tested using IEEE CEC2014 benchmark and<br>other engineering and real-world design problems                                                                                      |
|          | [40] | Akdag et al.            | It incorporated various random distribution<br>functions to enhance HHO                                                                                                                                                                           | It has been applied to optimize IEEE 30-bus power<br>system. In addition, it was evaluated with the<br>standard benchmark problems                                                      |

Table 1 continued

| Туре | Ref. | Authors            | Method                                                                                        | Benchmarks                                                                                 |
|------|------|--------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|      | [41] | Houssein<br>et al. | It embedded genetic operators to enhance HHO exploitation performances                        | It was evaluated using two chemoinformatics dataset namely QSAR Biodegradation and MAO     |
|      | [42] | Krishna<br>et al.  | It triggered local pattern search algorithm during the exploitation phase of HHO              | It was tested using 23 standard CEC2005 benchmark and<br>other engineering design problems |
|      | [43] | Singh<br>et al.    | It embedded logistic chaotic map to enhance the initialization and exploration ability of HHO | It was evaluated using 12 UCI machine learning<br>repository clustering problems           |

strategies. It should be noted that the mean position of the population  $X_m^t$  is computed as follows.

$$\mathbf{X}_{m}^{t} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{X}_{i}^{t} \tag{2}$$

## 2.2 Transition phase

In HHO, they considered rabbit energy as the primary indicator used to switch from exploration to exploitation mode. This variable is computed according to the following formula.

$$E = 2E_0 \left( 1 - \frac{t}{T} \right) \tag{3}$$

where *E* is escaping energy decreases linearly based on time iterations *t*. *T* is the maximum allocated iterations. Variable  $E_0$  is the initial state energy of each individual, and it is varied randomly in the range  $E_0 \in (-1, 1)$ .  $E_0$  is updated based on the following equation.

$$E_0 = 2\text{rand} - 1 \tag{4}$$

The computed escaping energy *E* in Eq. (4) will have the following plot in Fig. 1. It can be seen that HHO will be in the exploration phase when  $|E| \ge 1$ , while exploitation mode will occur when |E| < 1 as demonstrated in Fig. 1.

## 2.3 Exploitation phase

The main idea of the exploitation phase is to exploit the current best location  $X_{\text{rabbit}}^t$  and to search around it. In HHO, they proposed four different strategies for performing search exploitation, namely soft besiege, hard besiege, soft besiege with progressive rapid dives, and hard besiege with progressive rapid dives. In order to select which exploitation strategy will be executed, both escaping energy |E| and a random variable r is used to control. In particular, the escaping energy |E| will control the switching between soft/hard besiege strategy. When  $|E| \ge 0.5$  indicating that the rabbit  $X_{\text{rabbit}}^t$  still has energy and soft besiege strategy should be applied; otherwise, the rabbit should be exhausted, and hard besiege strategy should be used. In addition, each strategy could run progressive rapid dives when it is applied. As such, the implemented random variable r will control the activation of this property. As such, when r < 0.5, progressive rapid dives will be used; otherwise, it will be off. These strategies are explained as follows.

## 2.3.1 Soft besiege

As mentioned earlier, soft besiege is activated when  $r \ge 0.5$ and  $|E| \ge 0.5$ , which means that the rabbit  $X_{rabbit}^t$  still has energy, trying to escape by a random jump. As such, it will



Fig. 1 The behavior of escaping energy E



Fig. 2 The proposed embedded rules

be softly encircled by the hawks and attacked according to the following equations.

$$\mathbf{X}_{i}^{t+1} = \Delta \mathbf{X}^{t} - E \left| J \mathbf{X}_{\text{rabbit}}^{t} - \mathbf{X}_{i}^{t} \right|$$
(5)

$$\Delta \mathbf{X}^t = \mathbf{X}_{\text{rabbit}}^t - \mathbf{X}_i^t \tag{6}$$

where  $\Delta X^t$  is the difference between rabbit location  $X_{\text{rabbit}}^t$ and current hawk location  $X_i^t$ . J is a random factor that mimics rabbit movement, and it is defined as follows.

$$\mathbf{J} = 2(1 - r_5) \tag{7}$$

where  $r_5$  is a random value in the range  $r_5 \in (-1, 1)$ .

## 2.3.2 Hard besiege

This strategy is applied when the rabbit  $X_{\text{rabbit}}^t$  is exhausted, and it has only a tiny escaping energy |E| < 0.5. Therefore, hawks will attack the rabbit according to the following equation.

$$X_i^{t+1} = X_{\text{rabbit}}^t - E|\Delta X^t|$$
(8)

## 2.3.3 Soft besiege with progressive rapid dives

This strategy is applied when the rabbit still has energy  $|E| \ge 0.5$  but r < 0.5. However, they suggested in [8] a

more intelligent mathematical formula that mimics actual rabbit motion. Specifically, a zigzag motion pattern was formulated using the levy flight (LF) function defined as follows.

$$LF(\mathbf{x}) = 0.01 \times \frac{u \times \sigma}{|v|^{\frac{1}{\beta}}}$$
(9)

$$\sigma = \left(\frac{\Gamma(1+\beta) \times \sin\left(\frac{\pi\beta}{2}\right)}{\Gamma\left(\frac{1+\beta}{2}\right) \times \beta \times 2^{\left(\frac{\beta-1}{2}\right)}}\right)^{\frac{1}{\beta}}$$
(10)

where u, v are random values from 0to1.  $\beta$  is a constant value set as 1.5 as suggested in [8].

Therefore, the hawk will update his position using the following formulas.

$$\mathbf{Y} = \mathbf{X}_{rabbit}^{t} - E \left| \mathbf{J} \mathbf{X}_{rabbit}^{t} - \mathbf{X}_{i}^{t} \right|$$
(11)

$$Z = Y + S \times LF(D) \tag{12}$$

$$X_{i}^{t+1} = \begin{cases} Y \text{ if fitness } (Y) > \text{fitness } (X_{i}^{t+1}) \\ Z \text{ if fitness } (Z) > \text{fitness } (X_{i}^{t+1}) \end{cases}$$
(13)

where S is 1D random values and D is the problem dimension.

#### 2.3.4 Hard besiege with progressive rapid dives

This strategy is very similar to soft besiege with progressive rapid dives, but the hawk will a bit decrease the jump distance because the rabbit is exhausted |E| < 0.5. As such, the hawk will update his position considering the mean position  $X_m^t$  instead of using  $X_i^t$  as defined in Eq. (11). This strategy has been formulated according to the following equations.

$$Y = X_{\text{rabbit}}^t - E \left| J X_{\text{rabbit}}^t - X_m^t \right| \tag{14}$$

$$Z = Y + S \times LF(D) \tag{15}$$

$$X_i^{t+1} = \begin{cases} Y \text{ if fitness } (Y) > \text{fitness } \left(X_i^{t+1}\right) & (16) \\ Z \text{ if fitness } (Z) > \text{fitness } \left(X_i^{t+1}\right) \end{cases}$$

## 3 The proposed embedded rules

As explained earlier that HHO depends on escaping energy factor |E| for the transition from exploration to exploitation. However, |E| is a time dependent parameter that decreases gradually over time, as shown in Fig. 1. As such, HHO has a lower chance to try to exploit the discovered region and switch to exploitation mode due to |E| > 1. As a result of this, HHO will have a slow convergence rate due to the prevention of switching to exploitation mode at the beginning of search progress. Another limitation of HHO is that when |E| becomes very small and the hawks trapped in local optima region, it will be hard to escape and return to exploration stage. To overcome this shortcoming of HHO, this research introduces embedded rules that will improve balancing between exploration and exploitation and help HHO to escape from possible local optima traps by amplifying escaping energy |E|.

The main idea of the proposed rules is given in Fig. 2, where embedded rules are going to be triggered according to the occurrence of some events. The first rule is given in Fig. 3. This rule has been formulated to allow HHO to escape from local optima. Three events are used to control the trigger of this rule which are population success, current search time, and a random value *r*. pop\_success factor will take a value of zero or one. It will be zero when the best population location  $X_{rabbit}^t$  was not changed; otherwise, it will be one. The second variable *t* represents the current search time step. It is used to prevent the rule to be triggered during the exploration phase where the escaping energy is already greater than one, i.e.,  $|E| \ge 1$ . The variable *r* is a random value that randomizes the trigger of RULE 1.

The second rule was designed to help HHO to switch from exploration to exploitation mode at the beginning of the search process. RULE 2 is shown in Fig. 4. It is indicated that RULE 2 is controlled by three parameters which are the location of the rabbit  $X_{rabbit}$  with respect to the mean location  $X_m$ , current search time step t, and a random value r. It should be noted that the last two parameters (i.e., t and r) are the same in RULE 1; however, the first event is used to check the current population status. Referring to Fig. 2, it can be seen when the hawks encircle the rabbit, then the location of  $X_{rabbit}$  will be close to  $X_m$ . To check this status, the fitness value of  $X_m$  is computed and compared to other hawks. If it belongs to the top 10% of the population, then it means  $X_m$  location is near to  $X_{mean}$ .

The third rule is formulated to control the amount of hawk jump needed during the exploitation mode. RULE 3

**Fig. 3** RULE 1 for switching from exploitation to exploration

**RULE 1:** IF  $pop\_success = 0$  AND t < 0.5 T AND  $r \ge 0.5$ 

**THEN** increase the escaping energy  $|\mathbf{E}| = 2.0 * |\mathbf{E}|$ 

**Fig. 4** RULE 2 for switching from exploration to exploitation

**RULE 2:** IF  $X_{rabbit}$  location is near to  $X_m$  AND t > 0.5 T AND  $r \ge 0.5$ 

**THEN** decrease the escaping energy  $|\mathbf{E}| = 0.5^* |\mathbf{E}|$ 

**Fig. 5** RULE 3 to control the amount of hawk jump during exploitation

**RULE 3:** IF |E| < 1 AND  $r \ge 0.5$ 

THEN IF  $|X_{rabbit}^t - X_i^t| < |X_i^t - X_m|$  THEN |E| = 0.5\* |E|, ELSE |E| = 2\* |E|

is defined in Fig. 5, and it will be activated only during the exploitation phase when |E| < 1. RULE 3 is triggered based on hawk location with respect to  $X_{rabbit}^t$ , and  $X_i^t$  as given in Fig. 5. Rule 3 imply that hawks located closely to  $X_{rabbit}^t$  need a small jump; however, those far away hawks need a larger jump to reach the location of  $X_{rabbit}^t$ . This jump is reflected by the amount of escaping energy that will influence Eqs. (5), (8), (11), and (14).

The complete steps of the proposed REHHO algorithm are given in algorithm 1 and Fig. 6.

Fig. 6 Flowchart of the proposed REHHO algorithm

Griewank, Penalized, and Penalized 2. These problems were executed with various high-dimensional ranging from 1000- D to 10,000-D. These experiments were epeated 30 times, and the maximum number of iterations was set to  $10^4$ .

Algorithm 1: Rules Embedded Harries Hacks Optimizer (REHHO)

| 1. Randomly initialize HHO agents $X_i$ ( $i = 1, 2,, N$ ) according to search space. Set the maximum number of iterations | s |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|
| 2. $\sim$ While t < T                                                                                                      |   |  |  |  |  |
| 3. Compute fitness value for each HHO agent                                                                                |   |  |  |  |  |
| 4. Set the best position $X_{rabbit}$                                                                                      |   |  |  |  |  |
| 5. <b>For</b> (each hawk) <b>do</b>                                                                                        |   |  |  |  |  |
| 6. Calculate escaping energy $E$ using Eq.(3)                                                                              |   |  |  |  |  |
| 7. Apply embedded rules (RULE 1 and RULE 2) that control escaping energy                                                   |   |  |  |  |  |
| 8. ( $ E  \ge 1$ ) then                                                                                                    |   |  |  |  |  |
| 9. Execute exploration phase and update hawk location using Eq.(1)                                                         |   |  |  |  |  |
| 10. else if $( E  < 1)$                                                                                                    |   |  |  |  |  |
| 11. Apply embedded rule (RULE 3) that controls the amount of hawk jump                                                     |   |  |  |  |  |
| 12. <b>if</b> $( E  \ge 0.5 \text{ and } r \ge 0.5)$ <b>then</b>                                                           |   |  |  |  |  |
| 13.   Execute soft besiege and update hawk using Eq.(5)                                                                    |   |  |  |  |  |
| else if $( E  < 0.5 and r \ge 0.5)$ then                                                                                   |   |  |  |  |  |
| . Execute hard besiege and update hawk using Eq.(8)                                                                        |   |  |  |  |  |
| else if $( E  \ge 0.5 \text{ and } r < 0.5)$ then                                                                          |   |  |  |  |  |
| Execute soft besiege with progressive rapid dives using Eq.(13)                                                            |   |  |  |  |  |
| else if $( E  < 0.5 and r < 0.5)$ then                                                                                     |   |  |  |  |  |
| 19.   Execute hard besiege with progressive rapid dives using Eq. (16)                                                     |   |  |  |  |  |
| 20. end If                                                                                                                 |   |  |  |  |  |
| 21. Cend for                                                                                                               |   |  |  |  |  |
| 22. end while                                                                                                              |   |  |  |  |  |
| 23. Return $X_{rabbit}$                                                                                                    |   |  |  |  |  |

# **4** Experimental results

## 4.1 The standard benchmark problems

This section evaluates the performances of REHHO as compared with HHO using six multimodal benchmark problems, which are Schwefel, Rastrigin, Ackley,

$$F1(X) = \sum_{i=1}^{D} -x_i \sin\left(\sqrt{|x_i|}\right),$$
  
search range [-500, 500],  
$$D = 1000, f_{\min} = -418.9829 * n$$
 (17)

The mathematical formula of Schwefel function is given in Eq. (17). This function has multiple local optima, as can be seen in Fig. 7. Therefore, finding the global optima of



this function under high dimensions is a quiet challenge. Nevertheless, REHHO was able to reach the minimum value faster than HHO, as shown in Fig. 7. This is due to the dynamic of REHHO and its ability to perform earlier exploitation searches as compared with HHO. Further analysis is conducted by evaluating the performances when the dimension of the problem is increased to 5000-D and 10,000-D, respectively. Therefore, the best, medium, worst, mean, and standard deviation of REHHO and HHO algorithms are reported in Table 2. It can be seen that both algorithms reported almost the same mean values in all variations of dimensions which are 1000-D, 5000-D, and 10,000-D. However, REHHO was able to reach the global optima earlier than HHO, as indicated in Fig. 7.

$$F_{2}(X) = \sum_{i=1}^{D} \left[ x_{i}^{2} - 10 \cos(2\pi x_{i}) + 10 \right],$$
  
search range [-5.12, 5.12],  
$$D = 1000, f_{\min} = 0$$
 (18)

Rastrigin function is given in Eq. (18), and it differs from the Schwefel function where the minimum value is located at point zero, as shown in Fig. 8. The convergence curve of both functions is almost similar. This is due to the nature of the optimized problem, where it is a bit easier as compared with the shifted Schwefel function discussed earlier. Moreover, the variation in the dimensions does not affect the performances of both algorithms, as indicated in Table 3. In other words, REHHO and HHO were able to achieve the global optima in all runs with zero standard deviation, which showed the stability of both algorithms.

Table 2 Results of Schwefel functions

| Dim        | Fitness | Algorithm     |               |
|------------|---------|---------------|---------------|
|            |         | REHHO         | ННО           |
| 1000 – D   | Best    | -4.1898e+05   | 4.1898e + 05  |
|            | Median  | -4.1898e + 05 | -4.1898e + 05 |
|            | Worst   | -4.1898e + 05 | -4.1898e + 05 |
|            | Mean    | -4.1898e + 05 | -4.1898e + 05 |
|            | Std     | 0             | 0             |
| 5000 – D   | Best    | -2.0949e + 06 | -2.0949e + 06 |
|            | Median  | -2.0949e + 06 | -2.0949e + 06 |
|            | Worst   | -2.0949e + 06 | -2.0949e + 06 |
|            | Mean    | -2.0949e + 06 | -2.0949e + 06 |
|            | Std     | 0             | 0             |
| 10,000 – D | Best    | -4.1898e + 06 | -4.1898e + 06 |
|            | Median  | -4.1898e + 06 | -4.1898e + 06 |
|            | Worst   | -4.1898e + 06 | -4.1898e + 06 |
|            | Mean    | -4.1898e + 06 | -4.1898e + 06 |
|            | Std     | 0             | 0             |

$$F_{3}(X) = -20 \exp\left(-0.2 \sqrt{\frac{1}{D} \sum_{i=1}^{D} x_{i}^{2}}\right) - \exp\left(\frac{1}{D} \sum_{i=1}^{D} \cos(2\pi x_{i})\right) + 20 + e, \ search \ range \ [-32, 32] D = 1000, f_{\min} = 0$$
(19)

Equation (19) shows the mathematical formula of the Ackley function. The 2-D plot of this function is shown in Fig. 9. The plotted convergence curve indicated that REHHO is able to converge faster due to the flattening



Fig. 7 The Schwefel function with its convergence curve (1000-D)



Fig. 8 The Rastrigin function with its convergence curve (1000-D)

| Dim      | Fitness | Algorithm |     |  |
|----------|---------|-----------|-----|--|
|          |         | REHHO     | ННО |  |
| 1000–D   | Best    | 0         | 0   |  |
|          | Median  | 0         | 0   |  |
|          | Worst   | 0         | 0   |  |
|          | Mean    | 0         | 0   |  |
|          | Std     | 0         | 0   |  |
| 5000-D   | Best    | 0         | 0   |  |
|          | Median  | 0         | 0   |  |
|          | Worst   | 0         | 0   |  |
|          | Mean    | 0         | 0   |  |
|          | Std     | 0         | 0   |  |
| 10,000–D | Best    | 0         | 0   |  |
|          | Median  | 0         | 0   |  |
|          | Worst   | 0         | 0   |  |
|          | Mean    | 0         | 0   |  |
|          | Std     | 0         | 0   |  |
|          |         |           |     |  |

Table 3 Results of rastrigin function

nature of this problem. It should be noted that both algorithms were able to reach global optima with less than 50 iterations.

As can be seen in Table 4, increasing the dimensionality of this problem does not influence the performance of both algorithms. This is due to the simplicity of the tacked Ackley function.

$$F_4(X) = \frac{1}{4000} \sum_{i=1}^{D} x_i^2 - \prod_{i=1}^{D} \cos\left(\frac{x_i}{\sqrt{i}}\right) + 1, search range [-600, 600], D = 1000, f_{\min} = 0$$
(20)

The Griewank function is given in Eq. (20). This problem is considered more challenging as compared with Ackley, where it has a lot of local optima, as indicated in Fig. 10. The convergence of the Griewank function confirms the ability of REHHO to switch faster and perform exploitation searches. Nevertheless, both REHHO and HHO were able to reach the global minima, as shown in Table 5.

The Penalized function is defined as follows.

$$F_5(X) = \frac{\pi}{D} \left\{ 10\sin(\pi y_1) + \sum_{i=1}^{D-1} (y_i - 1)^2 \left[ 1 + 10\sin^2(\pi y_{i+1}) \right] + (y_D - 1)^2 \right\} + \sum_{i=1}^{D} u(x_i, 10, 100, 4)$$

$$y_{i} = 1 + \frac{x_{i} + 1}{4}$$

$$u(x_{i}, a, k, m) = \begin{cases} k(x_{i} - a)^{m}x_{i} > a \\ 0 - a < x_{i} < a \\ k(-x_{i} - a)^{m}x_{i} < a \end{cases}$$
(21)
search range [-50, 50],

Unlike previously discussed functions, the Penalized function is considered more challenging. The convergence curve of this function is given in Fig. 11, and it is clearly seen that REHHO converges a bit faster. More importantly, increasing the dimensions of Penalized function from 1000-D to 10,000-D does not influence the performances of REHHO, as given in Table 6.

The Penalized 2 function is defined as follows:



Fig. 9 The Ackley function with its convergence curve (1000-D)

Table 4 Results of Ackley function

| Dim      | Fitness | Algorithm    |              |  |
|----------|---------|--------------|--------------|--|
|          |         | REHHO        | ННО          |  |
| 1000-D   | Best    | 8.8818e - 16 | 8.8818e - 16 |  |
|          | Median  | 8.8818e - 16 | 8.8818e - 16 |  |
|          | Worst   | 8.8818e - 16 | 8.8818e - 16 |  |
|          | Mean    | 8.8818e - 16 | 8.8818e - 16 |  |
|          | Std     | 0            | 0            |  |
| 5000-D   | Best    | 8.8818e - 16 | 8.8818e - 16 |  |
|          | Median  | 8.8818e - 16 | 8.8818e - 16 |  |
|          | Worst   | 8.8818e - 16 | 8.8818e - 16 |  |
|          | Mean    | 8.8818e - 16 | 8.8818e - 16 |  |
|          | Std     | 0            | 0            |  |
| 10,000-D | Best    | 8.8818e - 16 | 8.8818e - 16 |  |
|          | Median  | 8.8818e - 16 | 8.8818e - 16 |  |
|          | Worst   | 8.8818e - 16 | 8.8818e - 16 |  |
|          | Mean    | 8.8818e - 16 | 8.8818e - 16 |  |
|          | Std     | 0            | 0            |  |
|          |         |              |              |  |

$$F_{6}(X) = 0.1 \left\{ sin^{2} (3\pi x_{1}) + \sum_{i=1}^{D} (x_{i} - 1)^{2} \times \left[ 1 + sin^{2} (3\pi x_{i} + 1) \right] + (x_{D} - 1)^{2} \left[ 1 + sin^{2} (2\pi x_{D}) \right] \right\} + \sum_{i=1}^{D} u(x_{i}, 5, 100, 4), \text{ search range } [-50, 50],$$
(22)

The conducted analysis on the Penalized 2 function is given in Fig. 12 and Table 7. As can be seen, REHHO

outperformed HHO with a better mean fitness value and faster convergence curve.

#### 4.2 2010 large scale global benchmark problems

This experimental section examines the effectiveness of the embedded rules in enhancing HHO (i.e., REHHO algorithm) on large-scale benchmark problems. Specifically, a set of 20 large-scale functions from 1000-D CEC'2010 benchmark functions [44] has been used. The details of these functions are given in Table 8. As can be seen, CEC'2010 benchmark consists of 5 groups of functions, namely, separable, single-group m- non-separable functions. D/2m group m-non-separable functions. Each experiment was repeated 30 times, and the population size was 30 agents with a maximum number of fitness evaluations  $3 \times 10^4$ .

Table 9 depicts the results of REHHO and HHO on CEC'2010 largescale problems. It should be noted that the separable functions F1, F2, and F3 have a smaller number of local optima as compared with other categories. Nevertheless, the reported results showed that REHHO achieved the best results. This is due to the ability of REHHO to perform fast convergence and switch earlier to exploitation mode. In other words, the implemented adaptive switching scheme using the embedded rules helps REHHO to reach faster to global optima point. The results of single-group m – non-separable functions are given by functions F4, F5, F6, F7, and F8. Similarly, REHHO reports the best mean value in all conducted functions.

For the category of D/2m group m- non-separable functions, which is considered more complex, REHHO is still able to perform well due to its ability to switch back from exploitation mode to exploration mode when



Fig. 10 The Griewank function with its convergence curve (1000–D)

Table 5 Results of Griewank function

| Dim      | Fitness | Algorithm |     |
|----------|---------|-----------|-----|
|          |         | REHHO     | ННО |
| 1000–D   | Best    | 0         | 0   |
|          | Median  | 0         | 0   |
|          | Worst   | 0         | 0   |
|          | Mean    | 0         | 0   |
|          | Std     | 0         | 0   |
| 5000–D   | Best    | 0         | 0   |
|          | Median  | 0         | 0   |
|          | Worst   | 0         | 0   |
|          | Mean    | 0         | 0   |
|          | Std     | 0         | 0   |
| 10,000–D | Best    | 0         | 0   |
|          | Median  | 0         | 0   |
|          | Worst   | 0         | 0   |
|          | Mean    | 0         | 0   |
|          | Std     | 0         | 0   |
|          |         |           |     |

population success status is zero, then rule 2 will be triggered as explained in Sect. 3. In addition, REHHO reports the best mean value in the remaining functions from F14 to F20.

In conclusion, conducted analysis on CEC'2010 largescale benchmark functions showed that the performances of REHHO have been improved considerably from the embedded rules. Further analysis was conducted by investigating the graphical behavior of REHHO convergence during run time. Specifically, the base-10 logarithmic mean values of the fitness function from a total of 30 runs are computed and plotted in Fig. 13. It is shown that REHHO has faster convergence in all benchmark functions. This is due to the ability of REHHO to switch earlier to exploitation mode at the beginning of the search process, as mentioned previously.

## 4.2.1 Compared with other metaheuristic algorithms

In this section, the performance of REHHO has been compared with several well-known state-of-the-art optimization algorithms. These algorithms are particle swarm optimization (PSO), differential evolution (DE), BAT optimizer, Arithmetic Optimization Algorithm (AOA) [45], and Horse Herd Algorithm (HHA) [46]. It is worth mentioning that BAT, PSO, and DE are very famous population-based algorithms and are widely used in the literature as baseline comparison algorithms. The settings of these algorithms are given in Table 10. For all conducted algorithms, each experiment was repeated 30 times, and the population size was 30 agents with a maximum number of fitness evaluations  $3 \times 10^4$ .

The results of the conducted analysis are given in Table 11. As can be seen, REHHO reported the best mean value in most functions except for five of them, namely F5, F6, F8, and F10, where DE outperformed other algorithms. This is due to the benefits of crossover and mutation



Fig. 11 The Penalized function with its convergence curve (1000–D)

Table 6 Results of Penalized function

| Dim      | Fitness | Algorithm    |              |  |
|----------|---------|--------------|--------------|--|
|          |         | REHHO        | ННО          |  |
| 1000–D   | Best    | 7.4754e – 11 | 5.6363e - 10 |  |
|          | Median  | 2.0208e - 10 | 8.2071e - 10 |  |
|          | Worst   | 1.9952e - 09 | 6.4469e - 09 |  |
|          | Mean    | 7.5735e - 10 | 2.6104e - 09 |  |
|          | Std     | 1.0739e - 09 | 3.3250e - 09 |  |
| 5000-D   | Best    | 1.8923e - 12 | 1.0878e - 10 |  |
|          | Median  | 4.1541e - 11 | 1.5618e - 10 |  |
|          | Worst   | 2.1488e - 10 | 6.7634e – 10 |  |
|          | Mean    | 8.6105e - 11 | 3.1377e - 10 |  |
|          | Std     | 1.1327e - 10 | 3.1489e - 10 |  |
| 10,000–D | Best    | 1.2802e - 10 | 2.5269e - 10 |  |
|          | Median  | 1.6376e - 10 | 8.4575e - 10 |  |
|          | Worst   | 5.9265e - 10 | 1.9220e - 09 |  |
|          | Mean    | 2.5641e - 10 | 1.0068e - 09 |  |
| _        | Std     | 3.0082e - 09 | 8.4625e - 10 |  |

operation used by the DE algorithm. Nevertheless, REHHO reports superior performances as compared with other recent algorithms, namely AOA and HHA. The worst results were archived by the BAT optimizer due to the lack of exploration operations used for handling large-scale problems.

## 4.2.2 Statistical analysis

In this section, the statistical t-test [47] was used to evaluate the outcome of the 1000-D CEC'2010 large-scale benchmark statistically. The t-test is used to determine if there is a significant difference between REHHO and other algorithms in terms of the reported mean value. To compute the significant difference using t- test, three values are required, which are the mean, the standard deviation, and the number of data (repeated times). From these computed values, the degrees of freedom and t-distribution value will be identified to generate the *p*-value.

To implement the t-test, the null hypothesis  $H_0$  assumes that REHHO and other compared algorithms performed equally. However, the alternative hypothesis  $H_1$  assumed that REHHO outperformed other algorithms. In this analysis, the *p*-value of the t-test was set at 0.05 (i.e., 95% confidence level), meaning that the alternative hypothesis  $H_1$  would be accepted if the *p*-value was less than 0.05. The *p*-value results of the t-test are reported in Table 12, and it can be seen that most *p*-values were less than 0.05, which confirms that the proposed REHHO algorithm significantly outperforms other conducted algorithms in most of the functions.

## 4.2.3 Computational time analysis

The computational time of the proposed REHHO is compared against HHO on large-scale problems. This analysis is conducted to measure the overhead of the embedded



Fig. 12 The Penalized 2 function with its convergence curve (1000–D)

Table 7 Results of penalized 2 function

| Dim      | Fitness | Algorithm    |              |  |
|----------|---------|--------------|--------------|--|
|          |         | REHHO        | ННО          |  |
| 1000–D   | Best    | 9.6019e – 08 | 2.9647e – 08 |  |
|          | Median  | 9.6562e - 08 | 4.0487e - 07 |  |
|          | Worst   | 2.0774e - 07 | 2.2211e - 06 |  |
|          | Mean    | 1.3344e - 07 | 8.8522e - 07 |  |
|          | Std     | 6.4348e - 08 | 1.1721e – 06 |  |
| 5000-D   | Best    | 3.5014e - 08 | 3.0948e - 08 |  |
|          | Median  | 7.4315e - 07 | 5.2818e - 07 |  |
|          | Worst   | 2.0981e - 07 | 4.1433e - 06 |  |
|          | Mean    | 1.0638e - 07 | 1.5675e - 06 |  |
|          | Std     | 9.1702e - 07 | 2.2445e - 06 |  |
| 10,000–D | Best    | 2.4982e - 07 | 6.3753e – 06 |  |
|          | Median  | 9.9053e - 07 | 7.1744e – 06 |  |
|          | Worst   | 3.3143e - 06 | 2.6157e - 05 |  |
|          | Mean    | 1.1461e – 06 | 1.3236e - 05 |  |
|          | Std     | 1.8781e - 05 | 1.1198e - 05 |  |

rules. The hardware and software specifications of the adopted PC are given in Table 13. The average computational time for 30 runs of the F1 function of large-scale problems is computed and reported in Table 14. As can be seen, REHHO required extra time due to the calculation of population status and agent location needed to fire the embedded rules. Nevertheless, the computational time overhead consumed by these rules is still affordable, which is 34 s only. This value represents around 10% of the total time needed by HHO.

# 4.3 NIR wavelength selection

This section evaluates the performances of REHHO in performing wavelength selection of the NIR spectrum of gasoline [48]. This case study contains 60 samples with wavelength (x-axis) of range from 900 to 1700 nm and intervals of 2 nm, which result in 401 channels/per sample. The values on the y-axis represent the amount of absorbed heat, as shown in Fig. 14. The dataset has been divided into 50% for training (30 samples) and 50% for testing.

To encode this problem, a 1D binary vector of size 401 is given in Fig. 15. As such, optimization algorithms were applied to find the most distinguished wavelengths. As can be seen in Fig. 15, when the value of the corresponding wavelength W is set to 1, then it will be selected; otherwise, it will be skipped.

Conducted optimization algorithms are guided by the accuracy of Partial Least Squares (PLS) regressor and complexity measure. The fitness function of this problem is formulated as follows.

$$fitness = -1*((0.9*Accuracy) - (0.1*complexity))$$
(23)

Accuracy = 
$$1 - \frac{\sqrt{\sum_{i=1}^{N} (y_i - \hat{y}_i)^2}}{\sqrt{\sum_{i=1}^{N} (y_i - \overline{y}_i)^2}}$$
(24)

$$Complexity = \frac{number of selected wavelengths}{401}$$
(25)

where  $y_i$  is the actual value of absorbed heat,  $\hat{y}_i$  is the predicted value, and  $\overline{y_i}$  is the mean value of the training set.

| Type                                                   | Function                                                                                                                                                                 | Description                                                   | Dim  | Range       | $f_{min}$ |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------|-------------|-----------|
| Separable functions                                    | $F_1(X) = \sum_{i=1}^D (10^6)^{rac{i-1}{D-1}} Z_i^2$                                                                                                                    | Shifted elliptic function                                     | 1000 | [-100, 100] | 0         |
|                                                        | $F_2(X) = \sum_{i=1}^{D} \left[ Z_i^2 - 10\cos(2\pi Z_i) + 10  ight]$                                                                                                    | Shifted Rastrigin's function                                  | 1000 | [- 5, 5]    | 0         |
|                                                        | $F_3(X) = -20\exp\left(-0.2\sqrt{\frac{1}{D}\sum_{i=1}^D Z_i^2}\right) - \exp\left(\frac{1}{D}\sum_{i=1}^D \cos(2\pi Z_i)\right) + 20 + e$                               | Shifted ackley's function                                     | 1000 | [- 32, 32]  | 0         |
| Single-group <i>m</i> – non-separable<br>Functions     | $F_4(X) = F_{rot\_elliptic}[Z(P_1:P_m)] * 10^6 + F_{elliptic}[Z(P_{m+1}:P_D)]$                                                                                           | Single-group shifted and m-rotated elliptic function          | 1000 | [-100, 100] | 0         |
|                                                        | $F_5(X) = F_{rot\_rastrigin}[Z(P_1 : P_m)] * 10^6 + F_{rastrigin}[Z(P_{m+1} : P_D)]$                                                                                     | Single-group shifted and m-rotated rastrigin's function       | 1000 | [- 5, 5]    | 0         |
|                                                        | $F_{6}(X) = F_{rot\_ackley}[Z(P_{1}:P_{m})] * 10^{6} + F_{ackley}[Z(P_{m+1}:P_{D})]$                                                                                     | Single-group shifted and m-rotated ackley's function          | 1000 | [- 32, 32]  | 0         |
|                                                        | $F_{7}(X) = F_{schwefe}[Z(P_{1}:P_{m})] * 10^{6} + F_{sphere}[Z(P_{m+1}:P_{D})]$                                                                                         | Single-group shifted m-dimensional schwefel's                 | 1000 | [-100, 100] | 0         |
|                                                        | $F_8(X) = F_{rosenbrock}[Z(P_1 : P_m)] * 10^6 + F_{sphere}[Z(P_{m+1} : P_D)]$                                                                                            | Single-group shifted m-dimensional rosenbrock's function      | 1000 | [-100, 100] | 0         |
| $\frac{D}{2m}$ group <i>m</i> -non-separable functions | $F_9(X) = \sum_{k=1}^{rac{D}{2}} F_{rot\_elliptic} ig[ zig( P_{(k-1)*m+1}: P_{k*m} ig) ig] + F_{elliptic} ig[ zig( P_{2+1}^{D}: P_D ig) ig]$                            | $\frac{D}{2m}$ group shifted and m-rotated elliptic function  | 1000 | [-100, 100] | 0         |
|                                                        | $F_{10}(X) = \sum_{k=1}^{D} F_{rot\_rastrigin} \left[ z \left( P_{(k-1)*m+1} : P_{k*m}  ight)  ight] + F_{rastrigin} \left[ z \left( P_{	ilde{2}+1} : P_D  ight)  ight]$ | $\frac{D}{2m}$ group shifted and m-rotated rastrigin function | 1000 | [- 5, 5]    | 0         |
|                                                        | $F_{11}(X) = \sum_{k=1}^{D} F_{rot\_ackley} \Big[ z \big( P_{(k-1)*m+1} : P_{k*m} \big) \Big] + F_{ackley} \Big[ z \Big( P_{\hat{2}+1}^{p} : P_D \Big) \Big]$            | $\frac{D}{2m}$ group shifted and m-rotated ackley's function  | 1000 | [- 32, 32]  | 0         |
|                                                        | $F_{12}(X) = \sum_{k=1}^{D} F_{schwefet} \Big[ z ig( P_{(k-1)*m+1} : P_{k*m} ig) \Big] + F_{sphere} \Big[ z ig( P_{rac{D}{2}+1} : P_D ig) \Big]$                        | $\frac{D}{2m}$ group shifted m-rotated schwefel's             | 1000 | [-100, 100] | 0         |
|                                                        | $F_{13}(X) = \sum_{k=1}^{D} F_{rasentrack} \left[ z (P_{(k-1)^{s}m+1}:P_{k^{s}m})  ight] + F_{sphere} \left[ z \left( P_{2+1}^{p}:P_{D}  ight)  ight]$                   | $\frac{D}{2m}$ group shifted m-rotated rosenbrock's function  | 1000 | [-100, 100] | 0         |

Table 8 Description of 1000 - D CEC'2010 large - scale benchmark functions

 $\underline{\textcircled{O}}$  Springer

| Table 8 (continued)                                 |                                                                                                 |                                                              |      |             |           |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------|-------------|-----------|
| Type                                                | Function                                                                                        | Description                                                  | Dim  | Range       | $f_{min}$ |
| <u>n</u> group <i>m</i> -non-separable<br>Functions | $F_{14}(X) = \sum_{k=1}^{D} F_{rot\_etliptic} ig[ zig( P_{(k-1)*m+1}: P_{k*m} ig) ig]$          | $\frac{D}{m}$ group shifted and m-rotated elliptic function  | 1000 | [-100, 100] | 0         |
|                                                     | $F_{1S}(X) = \sum_{k=1}^{D} F_{roi\_rastrigin} \left[ z ig( P_{(k-1)*m+1} : P_{k*m} ig)  ight]$ | $\frac{D}{m}$ group shifted and m-rotated rastrigin function | 1000 | [- 5, 5]    | 0         |
|                                                     | $F_{16}(X) = \sum_{k=1}^{2} F_{rot\_ackley} ig[ zig( P_{(k-1)*m+1}: P_{k*m} ig) ig]$            | $\frac{D}{m}$ group shifted and m-rotated ackley's function  | 1000 | [- 32, 32]  | 0         |
|                                                     | $F_{17}(X) = \sum_{k=1}^{D} F_{schwefet} ig[ zig( P_{(k-1)*m+1}: P_{k*m} ig) ig]$               | $\frac{D}{m}$ group shifted m-rotated schwefel               | 1000 | [-100, 100] | 0         |
|                                                     | $F_{18}(X) = \sum_{k=1}^{n} F_{rosenbrack} \left[ z ig( P_{(k-1)*m+1} : P_{k*m} ig)  ight]$     | $\frac{D}{m}$ group shifted m-rotated rosenbrock's function  | 1000 | [-100,100]  | 0         |
| Fully separable Functions                           | $F_{19}\left(X ight)=\sum_{i=1}^{n}\left(\sum_{j=1}^{i} x_{i} ight)^{2}$                        | Shifted schwefel's                                           | 1000 | [-100, 100] | 0         |
|                                                     | $F_{20}(X) = \sum_{i=1}^{D-1} \left[ 100(z_i^2 - z_{i+1})^2 + (z_i - 1)^2  ight]$               | Shifted rosenbrock's function                                | 1000 | [-100, 100] | 0         |

| Function | Fitness | Algorithm    |                   |
|----------|---------|--------------|-------------------|
|          |         | REHHO        | ННО               |
| F1       | Best    | 2.6334e + 09 | 2.5870e + 09      |
|          | Median  | 2.8842e + 09 | 2.9525e + 09      |
|          | Worst   | 3.0811e + 09 | 3.1307e + 09      |
|          | Mean    | 2.8583e + 09 | 2.9077e + 09      |
|          | Std     | 1.3393e + 08 | 1.8042e + 08      |
| F2       | Best    | 1.5968e + 04 | 1.6194e + 04      |
|          | Median  | 1.6255e + 04 | 1.6394e + 04      |
|          | Worst   | 1.6685e + 04 | 1.6656e + 04      |
|          | Mean    | 1.6285e + 04 | 1.6405e + 04      |
|          | Std     | 221.9340     | 146.6359          |
| F3       | Best    | 20.2382      | 20.1865           |
|          | Median  | 20.5327      | 20.5663           |
|          | Worst   | 20.6923      | 20.7024           |
|          | Mean    | 20.5073      | 20.5474           |
|          | Std     | 0.1428       | 0.1591            |
| F4       | Best    | 1.2145e + 13 | 1.3675e + 13      |
|          | Median  | 1.8154e + 13 | 1.8249e + 13      |
|          | Worst   | 2.5972e + 13 | 3.1059e + 13      |
|          | Mean    | 1.8575e + 13 | 1.9648e + 13      |
|          | Std     | 3.7970e + 12 | 5.3968e + 12      |
| F5       | Best    | 4.1407e + 08 | 4.1267e + 08      |
|          | Median  | 4.5136e + 08 | 4.4175e + 08      |
|          | Worst   | 4.8347e + 08 | 4.9685e + 08      |
|          | Mean    | 4.4886e + 08 | 4.4936e + 08      |
|          | Std     | 2.5081e + 07 | 2.8098e + 07      |
| F6       | Best    | 1.9146e + 07 | 1.9100e + 07      |
|          | Median  | 1.9211e + 07 | 1.9226e + 07      |
|          | Worst   | 1.9276e + 07 | 1.9282e + 07      |
|          | Mean    | 1.9212e + 07 | 1.9215e + 07      |
|          | Std     | 3.9172e + 04 | 5.3649e + 04      |
| F7       | Best    | 1.3083e + 09 | 1.3848e + 09      |
|          | Median  | 1.7299e + 09 | 1.7041e + 09      |
|          | Worst   | 2.0005e + 09 | 2.6482e + 09      |
|          | Mean    | 1.7102e + 09 | 1.8329e + 09      |
|          | Std     | 2.4558e + 08 | 4.5454e + 08      |
| F8       | Best    | 4.6868e + 09 | 3.5725e + 09      |
|          | Median  | 6.2015e + 09 | 7.0823e + 09      |
|          | Worst   | 1.2757e + 10 | 1.3574e + 10      |
|          | Mean    | 6.9842e + 09 | 8.3367e + 09      |
|          | Std     | 2.5889e + 09 | 3.3609e + 09      |
| F9       | Best    | 4.3561e + 09 | 4.4583e + 09      |
|          | Median  | 4.5738e + 09 | 4.6868e + 09      |
|          | Worst   | 4.8799e + 09 | 5.1160e + 09      |
|          | Mean    | 4.5915e + 09 | 4.7577e + 09      |
|          | Std     | 1.6658e + 08 | $2.0995e \pm 0.8$ |
|          | ~       |              |                   |

Table 9 Results of 1000-D CEC'2010 large-scale functions

Table 9 (continued)

| Function | Fitness | Algorithm    |              |
|----------|---------|--------------|--------------|
| _        |         | REHHO        | ННО          |
| F10      | Best    | 1.6334e + 04 | 1.6174e + 04 |
|          | Median  | 1.6526e + 04 | 1.6680e + 04 |
|          | Worst   | 1.6897e + 04 | 1.6753e + 04 |
|          | Mean    | 1.6559e + 04 | 1.6617e + 04 |
|          | Std     | 169.1596     | 177.6641     |
| F11      | Best    | 221.5103     | 220.8727     |
|          | Median  | 222.7064     | 222.9485     |
|          | Worst   | 224.8432     | 225.3188     |
|          | Mean    | 222.8913     | 223.1134     |
|          | Std     | 1.0573       | 1.2622       |
| F12      | Best    | 1.9385e + 06 | 1.9622e + 06 |
|          | Median  | 2.0562e + 06 | 2.0869e + 06 |
|          | Worst   | 2.1350e + 06 | 2.1904e + 06 |
|          | Mean    | 2.0461e + 06 | 2.0763e + 06 |
|          | Std     | 6.9452e + 04 | 8.4339e + 04 |
| F13      | Best    | 1.1077e + 08 | 1.0374e + 08 |
|          | Median  | 1.3137e + 08 | 1.3379e + 08 |
|          | Worst   | 1.6626e + 08 | 1.6147e + 08 |
|          | Mean    | 1.3441e + 08 | 1.3493e + 08 |
|          | Std     | 1.5571e + 07 | 1.9787e + 07 |
| F14      | Best    | 6.2729e + 09 | 6.0907e + 09 |
|          | Median  | 6.6919e + 09 | 6.8612e + 09 |
|          | Worst   | 8.0578e + 09 | 7.5727e + 09 |
|          | Mean    | 6.7559e + 09 | 6.9155e + 09 |
|          | Std     | 5.0437e + 08 | 4.8570e + 08 |
| F15      | Best    | 1.6416e + 04 | 1.6340e + 04 |
|          | Median  | 1.6534e + 04 | 1.6691e + 04 |
|          | Worst   | 1.6927e + 04 | 1.6892e + 04 |
|          | Mean    | 1.6568e + 04 | 1.6674e + 04 |
|          | Std     | 145.8575     | 145.5967     |
| F16      | Best    | 404.9208     | 407.5469     |
|          | Median  | 409.7903     | 409.6755     |
|          | Worst   | 410.9187     | 412.0824     |
|          | Mean    | 409.1372     | 409.8648     |
|          | Std     | 1.7926       | 1.4549       |
| F17      | Best    | 2.7638e + 06 | 2.8882e + 06 |
|          | Median  | 2.9555e + 06 | 3.0557e + 06 |
|          | Worst   | 3.1423e + 06 | 3.2906e + 06 |
|          | Mean    | 2.9464e + 06 | 3.0504e + 06 |
|          | Std     | 1.1326e + 05 | 1.4232e + 05 |
| F18      | Best    | 2.4614e + 09 | 2.5603e + 09 |
|          | Median  | 2.7451e + 09 | 2.7727e + 09 |
|          | Worst   | 3.1012e + 09 | 3.0197e + 09 |
|          | Mean    | 2.7693e + 09 | 2.8075e + 09 |
|          | Std     | 2.0060e + 08 | 1.4732e + 08 |
|          |         |              |              |

| Table 9 | (continued) |
|---------|-------------|
|---------|-------------|

| Function | Fitness | Algorithm    | Algorithm    |  |  |  |
|----------|---------|--------------|--------------|--|--|--|
|          |         | REHHO        | ННО          |  |  |  |
| F19      | Best    | 7.4615e + 06 | 8.8942e + 06 |  |  |  |
|          | Median  | 1.0164e + 07 | 1.0717e + 07 |  |  |  |
|          | Worst   | 1.3475e + 07 | 1.5390e + 07 |  |  |  |
|          | Mean    | 1.0020e + 07 | 1.1079e + 07 |  |  |  |
|          | Std     | 1.7817e + 06 | 1.8966e + 06 |  |  |  |
| F20      | Best    | 2.7733e + 09 | 2.5204e + 09 |  |  |  |
|          | Median  | 3.0091e + 09 | 3.0602e + 09 |  |  |  |
|          | Worst   | 3.2906e + 09 | 3.8450e + 09 |  |  |  |
|          | Mean    | 3.0219e + 09 | 3.1099e + 09 |  |  |  |
|          | Std     | 1.8120e + 08 | 3.8648e + 08 |  |  |  |

For each algorithm, the mean fitness value, accuracy of testing set, number of selected channels are reported in Table 15. It can be seen that REHHO was able to reduce PLS complexity by using only 17 wavelengths. In terms of accuracy on the testing dataset, the best results were achieved by REHHO with 96.3%. Furthermore, the proposed REHHO was able to produce the best fitness value. The worst results have been reported by the BAT algorithm due to its lack of exploration ability as compared with other algorithms.

# **5** Conclusion

This work presents a novel REHHO algorithm that improves HHO by embedding several rules. The effectiveness of REHHO has been evaluated with a total of six standard high-dimensional functions ranging from 1000-D to 10,000-D, CEC'2010 large-scale benchmark, and the problem of NIR wavelength selection. Reported results indicated that REHHO was able to outperform HHO and other state-of-the-art optimization algorithms, including BAT, PSO, DE, AOA, and HHA. From the statistical analysis of the results, the t-test showed that REHHO significantly outperformed other algorithms with a 95% confidence level. As future work, REHHO could be applied for features selection problems and other real-world, largescale problems.





Fig. 13 The convergence curves for large-scale functions F1–F20



Fig. 13 continued



Fig. 13 continued

Table 10 Parameter settings

| Method | Population | FEs               | Parameters                                                                                                                                               |
|--------|------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| BAT    | 30         | 3*10 <sup>4</sup> | Loudness = $0.5$ , Pulse rate = $0.5$ , Frequency minimum = $0$ , Frequency maximum = $2$                                                                |
| PSO    | 30         | $3*10^{4}$        | c1 = 2.5 to 0.5, $c2 = 0.5$ to 2.5, $w = 0.9$ to 0.4                                                                                                     |
| DE     | 30         | $3*10^{4}$        | Lower bound of scaling factor = $0.2$ , upper bound of scaling factor = $0.8$ , crossover probability = $0.2$                                            |
| AOA    | 30         | $3*10^{4}$        | MOP: 0.2–1, Alpha = 5, Mu = 0.499                                                                                                                        |
| HHA    | 30         | $3 * 10^4$        | $h\beta = 0.9, h\gamma = 0.5, s\beta = 0.1, s\gamma = 0.2, i\gamma = 0.3, d\alpha = 0.5, d\beta = 0.2, d\gamma = 0.1, r\delta = 0.1, and r\gamma = 0.05$ |

# Table 11 Results of 1000 - D CEC'2010 functions

| Function | Fitness | Algorithm        |                  |                  |                              |                              |                              |
|----------|---------|------------------|------------------|------------------|------------------------------|------------------------------|------------------------------|
|          |         | REHHO            | BAT              | PSO              | DE                           | AOA                          | ННА                          |
| F1       | Best    | 2.6334e + 09     | 8.1920e + 11     | 7.2801e + 10     | 9.1436e + 09                 | 1.7666e + 11                 | 1.0932e + 11                 |
|          | Median  | 2.8842e + 09     | 8.6848e + 11     | 8.1627e + 10     | 9.8334e + 09                 | 1.8469e + 11                 | 1.1305e + 11                 |
|          | Worst   | 3.0811e + 09     | 8.8280e + 11     | 9.7007e + 10     | 1.0501e + 10                 | 1.9057e + 11                 | 1.2559e + 11                 |
|          | Mean    | 2.8583e + 09     | 8.6279e + 11     | 8.3058e + 10     | 9.8575e + 09                 | 1.8458e + 11                 | 1.1615e + 11                 |
|          | Std     | 1.3393e + 08     | 2.0195e + 10     | 8.1725e + 09     | 4.5750e + 08                 | 5.7304e + 09                 | 7.1356e + 0                  |
| F2       | Best    | 1.5968e + 04     | 3.3933e + 04     | 1.8561e + 04     | 1.3561e + 04                 | 1.6800e + 04                 | 1.6718e + 04                 |
|          | Median  | 1.6255e + 04     | 3.4126e + 04     | 1.9207e + 04     | 1.3724e + 04                 | 1.6820e + 04                 | 1.6781e + 04                 |
|          | Worst   | 1.6685e + 04     | 3.4304e + 04     | 1.9749e + 04     | 1.3825e + 04                 | 1.6840e + 04                 | 1.7128e + 04                 |
|          | Mean    | 1.6285e + 04     | 3.4128e + 04     | 1.9174e + 04     | 1.3714e + 04                 | 1.6819e + 04                 | 1.6847e + 04                 |
|          | Std     | 221.9340         | 117.0192         | 413.7851         | 83.5222                      | 16.8634                      | 166.2090                     |
| F3       | Best    | 20.2382          | 20.5806          | 21.2729          | 20.6231                      | 20.9388                      | 20.9921                      |
|          | Median  | 20.5327          | 20.6414          | 21.3183          | 20.7270                      | 20.9416                      | 21.0046                      |
|          | Worst   | 20.6923          | 20.6582          | 21.3342          | 20.9378                      | 20.9454                      | 21.0084                      |
|          | Mean    | 20.5073          | 20.6323          | 21.3146          | 20.7673                      | 20.9419                      | 21.0031                      |
|          | Std     | 0.1428           | 0.0265           | 0.0189           | 0.1058                       | 0.0024                       | 0.0065                       |
| F4       | Best    | 1.2145e + 13     | 1.3747e + 16     | 2.2275e + 14     | 4.1787e + 14                 | 8.8284e + 14                 | 3.0634e + 14                 |
|          | Median  | 1.8154e + 13     | 2.2254e + 16     | 2.6180e + 14     | 5.1197e + 14                 | 1.0977e + 15                 | 3.7229e + 14                 |
|          | Worst   | 2.5972e + 13     | 2.7323e + 16     | 3.6314e + 14     | 6.0705e + 14                 | 1.7835e + 15                 | 4.0546e + 14                 |
|          | Mean    | 1.8575e + 13     | 2.1821e + 16     | 2.7632e + 14     | 5.1684e + 14                 | 1.2728e + 15                 | 3.6432e + 14                 |
|          | Std     | 3.7970e + 12     | 4.5174e + 15     | 4.7843e + 13     | 6.2056e + 13                 | 4.4289e + 14                 | 4.2287e + 13                 |
| F5       | Best    | 4.1407e + 08     | 1.6805e + 09     | 3.9186e + 08     | 4.0647e + 08                 | 4.7870e + 08                 | 6.5631e + 08                 |
|          | Median  | 4.5136e + 08     | 1.7357e + 09     | 4.2848e + 08     | 4.3649e + 08                 | 6.0494e + 08                 | 7.0156e + 08                 |
|          | Worst   | 4.8347e + 08     | 1.7998e + 09     | 4.8385e + 08     | 4.4413e + 08                 | 6.3414e + 08                 | 7.1827e + 08                 |
|          | Mean    | 4.4886e + 08     | 1.7385e + 09     | 4.3203e + 08     | 4.3096e + 08                 | 5.8409e + 08                 | 6.9519e + 08                 |
|          | Std     | 2.5081e + 07     | 4.8769e + 07     | 2.3246e + 07     | 1.4678e + 07                 | 6.4493e + 07                 | 2.4010e + 07                 |
| F6       | Best    | 1.9146e + 07     | 1.9982e + 07     | 1.2002e + 07     | 7.3976e + 04                 | 1.9686e + 07                 | 1.7861e + 07                 |
|          | Median  | 1.9211e + 07     | 1.9982e + 07     | 1.3239e + 07     | 3.2774e + 05                 | 1.9835e + 07                 | 1.9947e + 07                 |
|          | Worst   | 1.9276e + 07     | 2.0000e + 07     | 1.4555e + 07     | 1.4352e + 06                 | 2.0073e + 07                 | 2.0317e + 07                 |
|          | Mean    | 1.9212e + 07     | 1.9987e + 07     | 1.3167e + 07     | 4.9662e + 05                 | 1.9868e + 07                 | 1.9248e + 07                 |
|          | Std     | 3.9172e + 04     | 7.7142e + 03     | 7.2390e + 05     | 4.4267e + 05                 | 1.7567e + 05                 | 1.2673e + 06                 |
| F7       | Best    | 1.3083e + 09     | 2.0432e + 13     | 4.6628e + 10     | 6.0392e + 10                 | 5.9279e + 11                 | 1.2764e + 11                 |
|          | Median  | 1.7299e + 09     | 4.6735e + 13     | 6.2946e + 10     | 8.1327e + 10                 | 1.2642e + 12                 | 1.6919e + 11                 |
|          | Worst   | 2.0005e + 09     | 5.1538e + 14     | 1.5931e + 11     | 1.0211e + 11                 | 1.9517e + 12                 | 2.5879e + 11                 |
|          | Mean    | 1.7102e + 09     | 1.0400e + 14     | 7.3297e + 10     | 8.1724e + 10                 | 1.3035e + 12                 | 1.9109e + 11                 |
|          | Std     | 2.4558e + 08     | 1.4957e + 14     | 3.2527e + 10     | 1.3181e + 10                 | 5.5130e + 11                 | 6.2565e + 10                 |
| F8       | Best    | 4.6868e + 09     | 1.0082e + 18     | 3.0385e + 14     | 2.9923e + 08                 | 2.6765e + 16                 | 3.5186e + 15                 |
| 10       | Median  | 6.2015e + 09     | 1.0712e + 18     | 4.6240e + 14     | 4.0148e + 08                 | 3.0181e + 16                 | 5.9064e + 15                 |
|          | Worst   | 1.2757e + 10     | 1.1125e + 18     | 9.7152e + 14     | 5.0636e + 08                 | 3.1786e + 16                 | 8.3792e + 15                 |
|          | Mean    | 6.9842e + 09     | 1.0662e + 18     | 5.6671e + 14     | 3.9180e + 08                 | 2.9738e + 16                 | 56005e + 15                  |
|          | Std     | 25889e + 09      | 3.7550e + 16     | 2.5688e + 14     | 6.7384e + 07                 | 1.9547e + 15                 | 2.0058e + 15                 |
| F9       | Best    | $4.3561e \pm 09$ | $8.9819e \pm 11$ | $6.6803e \pm 10$ | $9.7943e \pm 10$             | 2.0783e + 11                 | $1.2854e \pm 11$             |
| - /      | Median  | $45738e \pm 09$  | $9.2339e \pm 11$ | $7.5959e \pm 10$ | $1.0200e \pm 11$             | 2.07000 + 11<br>2.2127e + 11 | 1.205 + 11<br>1.3227 + 11    |
|          | Worst   | $4.8799e \pm 09$ | $9.3707e \pm 11$ | $9.1954e \pm 10$ | 1.02000 + 11<br>1.1517e + 11 | 2.21270 + 11<br>2 2824e + 11 | 1.32270 + 11<br>1.4251e + 11 |
|          | Mean    | 459150 + 09      | $9.2208e \pm 11$ | $7.6976e \pm 10$ | $1.0320e \pm 11$             | 2.202 + 11<br>2.2032e + 11   | 1 33310 ± 11                 |
|          | Std     | $1.6658e \pm 08$ | $1.1524e \pm 10$ | $8.8065e \pm 00$ | $5.0416e \pm 00$             | $8.2515e \pm 00$             | $55035_{\circ} \pm 00$       |
|          | Siu     | $1.00000 \pm 00$ | 1.152 + 0 + 10   | $3.00050 \pm 09$ | $5.0 \pm 100 \pm 0.09$       | 0.20100 1.09                 | $5.57550 \pm 09$             |

| Table | 11 | (continued) |
|-------|----|-------------|
| lable |    | (continued) |

| Function | Fitness | Algorithm                            |                    |                                  |                                      |                                            |                                  |
|----------|---------|--------------------------------------|--------------------|----------------------------------|--------------------------------------|--------------------------------------------|----------------------------------|
|          |         | REHHO                                | BAT                | PSO                              | DE                                   | AOA                                        | HHA                              |
| F10      | Best    | 1.6334e + 04                         | 3.6158e + 04       | 1.8758e + 04                     | 1.5455e + 04                         | 1.6946e + 04                               | 1.6843e + 04                     |
|          | Median  | 1.6526e + 04                         | 3.6548e + 04       | 1.9327e + 04                     | 1.5655e + 04                         | 1.7056e + 04                               | 1.6944e + 04                     |
|          | Worst   | 1.6897e + 04                         | 3.6681e + 04       | 1.9866e + 04                     | 1.5844e + 04                         | 1.7207e + 04                               | 1.7287e + 04                     |
|          | Mean    | 1.6559e + 04                         | 3.6479e + 04       | 1.9264e + 04                     | 1.5653e + 04                         | 1.7056e + 04                               | 1.6998e + 04                     |
|          | Std     | 169.1596                             | 183.8412           | 432.9254                         | 145.2213                             | 101.6452                                   | 172.8607                         |
| F11      | Best    | 221.5103                             | 1.5455e + 04       | 223.7311                         | 235.0548                             | 228.7676                                   | 229.6113                         |
|          | Median  | 222.7064                             | 1.5655e + 04       | 227.7812                         | 235.3412                             | 228.8919                                   | 230.0050                         |
|          | Worst   | 224.8432                             | 1.5844e + 04       | 232.7328                         | 235.6772                             | 229.2603                                   | 230.3229                         |
|          | Mean    | 222.8913                             | 1.5653e + 04       | 228.0433                         | 235.3281                             | 228.9525                                   | 229.9827                         |
|          | Std     | 1.0573                               | 145.2213           | 2.6885                           | 0.1939                               | 0.1849                                     | 0.3204                           |
| F12      | Best    | 1.9385e + 06                         | 2.2378e + 09       | 8.0008e + 06                     | 1.1730e + 07                         | 1.1215e + 07                               | 6.7499e + 06                     |
|          | Median  | 2.0562e + 06                         | 2.8304e + 09       | 9.0053e + 06                     | 1.3104e + 07                         | 1.4421e + 07                               | 7.6562e + 06                     |
|          | Worst   | 2.1350e + 06                         | 4.1252e + 09       | 9.6380e + 06                     | 1.4362e + 07                         | 1.5800e + 07                               | 8.1844e + 06                     |
|          | Mean    | 2.0461e + 06                         | 2.9619e + 09       | 8.9379e + 06                     | 1.3093e + 07                         | 1.3817e + 07                               | 7.5167e + 06                     |
|          | Std     | 6.9452e + 04                         | 6.0028e + 08       | 6.0593e + 05                     | 6.5046e + 05                         | 1.8030e + 06                               | 5.6543e + 05                     |
| F13      | Best    | 1.1077e + 08                         | 1.2709e + 13       | 4.3093e + 11                     | 8.9269e + 10                         | 6.6945e + 11                               | 6.6277e + 11                     |
|          | Median  | 1.3137e + 08                         | 1.2883e + 13       | 5.6566e + 11                     | 1.0461e + 11                         | 6.7833e + 11                               | 6.6784e + 11                     |
|          | Worst   | 1.6626e + 08                         | 1.2938e + 13       | 7.5955e + 11                     | 1.1624e + 11                         | 6.8313e + 11                               | 6.8071e + 11                     |
|          | Mean    | 1.3441e + 08                         | 1.2866e + 13       | 5.6360e + 11                     | 1.0477e + 11                         | 6.7714e + 11                               | 6.6928e + 11                     |
|          | Std     | 1.5571e + 07                         | 6.7440e + 10       | 9.8735e + 10                     | 7.4351e + 09                         | 5.2862e + 09                               | 7.4645e + 09                     |
| F14      | Best    | 6.2729e + 09                         | 9.0032e + 11       | 5.8034e + 10                     | 1.5575e + 11                         | 2.3567e + 11                               | 1.4172e + 11                     |
|          | Median  | 6.6919e + 09                         | 9.2654e + 11       | 7.0696e + 10                     | 1.6093e + 11                         | 2.3947e + 11                               | 1.4433e + 11                     |
|          | Worst   | 8.0578e + 09                         | 9.3724e + 11       | 7.9735e + 10                     | 1.6536e + 11                         | 2.6200e + 11                               | 1.6292e + 11                     |
|          | Mean    | 6.7559e + 09                         | 9.2284e + 11       | 7.0374e + 10                     | 1.6057e + 11                         | 2.4443e + 11                               | 1.4773e + 11                     |
|          | Std     | 5.0437e + 08                         | 1.2867e + 10       | 6.6447e + 09                     | 3.2319e + 09                         | 1.0479e + 10                               | 8.6053e + 09                     |
| F15      | Best    | 1.6416e + 04                         | 3.4679e + 04       | 1.8985e + 04                     | 1.6483e + 04                         | 1.6628e + 04                               | 1.6793e + 04                     |
|          | Median  | 1.6534e + 04                         | 3.4896e + 04       | 1.9517e + 04                     | 1.6919e + 04                         | 1.6770e + 04                               | 1.6952e + 04                     |
|          | Worst   | 1.6927e + 04                         | 3.5081e + 04       | 1.9770e + 04                     | 1.7140e + 04                         | 1.6945e + 04                               | 1.7109e + 04                     |
|          | Mean    | 1.6568e + 04                         | 3.4896e + 04       | 1.9503e + 04                     | 1.6870e + 04                         | 1.6788e + 04                               | 1.6962e + 04                     |
|          | Std     | 145.8575                             | 116.2722           | 217.1941                         | 230.8942                             | 115.2534                                   | 137.9735                         |
| F16      | Best    | 404 9208                             | 411 5244           | 420 8667                         | 428 9731                             | 416 3841                                   | 418 8719                         |
| 110      | Median  | 409.7903                             | 412.4078           | 423.6429                         | 429.2859                             | 416.8878                                   | 419.4299                         |
|          | Worst   | 410 9187                             | 413 3157           | 425 6089                         | 429 5783                             | 417 0327                                   | 419 5139                         |
|          | Mean    | 409.1372                             | 412 4006           | 423 4740                         | 429 2628                             | 416 7921                                   | 419 3333                         |
|          | Std     | 1 7926                               | 0 5727             | 1 6473                           | 0.1800                               | 0 2488                                     | 0 2649                           |
| F17      | Best    | $2.7638e \pm 06$                     | $4.8625e \pm 09$   | 1.0475<br>$1.3717e \pm 07$       | $2.4597e \pm 07$                     | $3.2326e \pm 07$                           | $1.3599e \pm 07$                 |
| 11/      | Median  | 2.76566 + 06<br>2.9555e + 06         | 6.3958e + 09       | 1.5717e + 07<br>1 5410e + 07     | $2.43576 \pm 07$<br>2.7451e $\pm 07$ | 4.1700e + 07                               | 1.5993e + 07                     |
|          | Worst   | $2.95550 \pm 00$<br>$3.1423e \pm 06$ | $7.7926e \pm 09$   | 1.5410c + 07<br>1.6907c + 07     | 2.74510 + 07<br>$3.0764e \pm 07$     | $5.2378e \pm 07$                           | 1.57750 + 07<br>$1.6212e \pm 07$ |
|          | Mean    | $2.04640 \pm 06$                     | $6.3036e \pm 09$   | 1.00070 + 07<br>$1.5218e \pm 07$ | $2.7800e \pm 07$                     | $4.0235e \pm 07$                           | 1.0212c + 07<br>1.5448e + 07     |
|          | Std     | $1.13262 \pm 05$                     | 0.30300 + 03       | $1.32180 \pm 07$                 | $2.78000 \pm 07$                     | $4.02350 \pm 07$                           | $1.34460 \pm 07$                 |
| E19      | Deet    | $1.13200 \pm 0.00$                   | $9.43700 \pm 0.00$ | $9.97800 \pm 03$                 | 1.9342e + 00                         | 1.4444a + 12                               | $1.08500 \pm 00$                 |
| 1.10     | Madian  | $2.40146 \pm 09$                     | 2.55090 + 15       | 2.00500 + 12                     | 7.00700 + 11                         | 1.777770 + 12                              | 1.4307c + 12                     |
|          | Werst   | $2.74310 \pm 09$                     | 2.5000e + 13       | 2.99030 + 12                     | 0.0047 + 11                          | $1.43190 \pm 12$                           | 1.44570 + 12                     |
|          | worst   | 3.1012e + 09                         | 2.3809e + 13       | 3.43110 + 12                     | 9.094/e + 11                         | 1.43/20 + 12<br>1.4512a + 12.4 (140a + 00) | 1.4379e + 12                     |
|          | Niean   | 2.70936 + 09                         | 2.50/9e + 13       | 3.0392e + 12                     | 8.4958e + 11                         | 1.4513e + 12 4.6140e + 09                  | 1.4450e + 12                     |
|          | Std     | 2.0060e + 08                         | 1.13/6e + 11       | 2.2922e + 11                     | 3.9012e + 10                         |                                            | 8.8728e + 09                     |

Table 11 (continued)

| Function | Fitness | Algorithm    |              |              |              |              |              |  |
|----------|---------|--------------|--------------|--------------|--------------|--------------|--------------|--|
| _        |         | REHHO        | BAT          | PSO          | DE           | AOA          | HHA          |  |
| F19      | Best    | 7.4615e + 06 | 4.4343e + 10 | 2.5408e + 07 | 4.3615e + 07 | 4.5429e + 07 | 3.2616e + 07 |  |
|          | Median  | 1.0164e + 07 | 2.1524e + 11 | 3.0163e + 07 | 5.4726e + 07 | 5.7205e + 07 | 4.0733e + 07 |  |
|          | Worst   | 1.3475e + 07 | 1.0737e + 12 | 3.3165e + 07 | 6.0344e + 07 | 1.0451e + 08 | 4.2488e + 07 |  |
|          | Mean    | 1.0020e + 07 | 3.0652e + 11 | 3.0359e + 07 | 5.3491e + 07 | 6.9834e + 07 | 3.8587e + 07 |  |
|          | Std     | 1.7817e + 06 | 3.0170e + 11 | 2.2188e + 06 | 4.7828e + 06 | 2.5767e + 07 | 4.0426e + 06 |  |
| F20      | Best    | 2.7733e + 09 | 2.6682e + 13 | 2.6541e + 12 | 8.2017e + 11 | 1.6122e + 12 | 1.6243e + 12 |  |
|          | Median  | 3.0091e + 09 | 2.6791e + 13 | 3.4566e + 12 | 8.4314e + 11 | 1.6327e + 12 | 1.6272e + 12 |  |
|          | Worst   | 3.2906e + 09 | 2.6862e + 13 | 3.8441e + 12 | 9.2415e + 11 | 1.6350e + 12 | 1.6453e + 12 |  |
|          | Mean    | 3.0219e + 09 | 2.6773e + 13 | 3.3432e + 12 | 8.5322e + 11 | 1.6288e + 12 | 1.6318e + 12 |  |
|          | Std     | 1.8120e + 08 | 5.8015e + 10 | 3.6053e + 11 | 3.6249e + 10 | 9.4358e + 09 | 9.0083e + 09 |  |

**Table 12** The p - values of statistical t - test

| Function | HHO    | REHHO | BAT    | PSO    | DE     | AOA    | HHA    |
|----------|--------|-------|--------|--------|--------|--------|--------|
| F1       | 0.0049 |       | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| F2       | 0.0036 |       | 0.0000 | 0.0000 | 0.1725 | 0.0000 | 0.0000 |
| F3       | 0.0015 |       | 0.0000 | 0.0000 | 0.0002 | 0.0000 | 0.0000 |
| F4       | 0.0140 |       | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| F5       | 0.0000 |       | 0.0000 | 0.1370 | 0.9669 | 0.0000 | 0.0000 |
| F6       | 0.0672 |       | 0.0000 | 0.0000 | 0.9004 | 0.0000 | 0.0000 |
| F7       | 0.0021 |       | 0.0412 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| F8       | 0.0025 |       | 0.0000 | 0.0000 | 0.3267 | 0.0000 | 0.0000 |
| F9       | 0.0004 |       | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| F10      | 0.0012 |       | 0.0000 | 0.0000 | 0.4640 | 0.0000 | 0.0000 |
| F11      | 0.0048 |       | 0.0277 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| F12      | 0.0023 |       | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| F13      | 0.0008 |       | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| F14      | 0.0020 |       | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| F15      | 0.0012 |       | 0.0000 | 0.0000 | 0.0026 | 0.0000 | 0.0000 |
| F16      | 0.0003 |       | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| F17      | 0.0008 |       | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| F18      | 0.0033 |       | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| F19      | 0.0021 |       | 0.0048 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| F20      | 0.0007 |       | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
|          |        |       |        |        |        |        |        |

Bold values indicate the best mean value (i.e., average minimum)

| i and i be the detailed bettings of the fe | Table 13 | The | detailed | settings | of the | PC |
|--------------------------------------------|----------|-----|----------|----------|--------|----|
|--------------------------------------------|----------|-----|----------|----------|--------|----|

|  | Table | 14 | Computational | time | analysis |
|--|-------|----|---------------|------|----------|
|--|-------|----|---------------|------|----------|

| Item             | Settings     |               | ННО | REHHO |
|------------------|--------------|---------------|-----|-------|
| CPU              | i7 — 8700    | Time (second) | 324 | 358   |
| Frequency        | 3.2 GHz      |               |     |       |
| RAM              | 32 GB        |               |     |       |
| Hard drive       | 512 GB SSD   |               |     |       |
| Operating system | Windows 10   |               |     |       |
| Language         | MATLAB 2021a | 1             |     |       |



Fig. 14 NIR gasoline spectrum

| W <sub>1</sub> W <sub>2</sub> W <sub>3</sub> W <sub>4</sub> |  | $W_{401}$ |
|-------------------------------------------------------------|--|-----------|
|-------------------------------------------------------------|--|-----------|

Fig. 15 Encoding scheme of NIR wavelength selection

 Table 15
 Results of NIR channels selection

| Parameters/<br>algorithm | Number of selected wavelengths | Test<br>accuracy<br>(%) | Fitness  |
|--------------------------|--------------------------------|-------------------------|----------|
| ННО                      | 25                             | 95.1                    | - 0.8895 |
| REHHO                    | 17                             | 96.3                    | - 0.8918 |
| BAT                      | 169                            | 92.5                    | - 0.8579 |
| PSO                      | 151                            | 93.1                    | - 0.8623 |
| DE                       | 87                             | 93.8                    | - 0.8601 |
| AOA                      | 55                             | 94.5                    | - 0.8783 |
| HHA                      | 67                             | 94.2                    | - 0.8721 |

Acknowledgements This work is fully supported by Al-Imam Mohammad Ibn Saud Islamic University, Grant Scheme entitled "Enhancement and Development of Smart Glasses System for Visually Impaired Persons by Using Intelligent System", under Project Grant No. 18-11- 08-004.

Funding Al-Imam Mohammad Ibn Saud Islamic University, 18-11-08-004, Ali Sama.

## **Declarations**

**Conflict of interest** Hussein Samma and Ali Salem Bin Sama declare that they have no conflict of interest.

# References

- Shi W, Chen W-N, Lin Y, Gu T, Kwong S, Zhang J (2017) An adaptive estimation of distribution algorithm for multipolicy insurance investment planning. IEEE Trans Evol Comput 23(1):1–14
- Sun L, Lin L, Li H, Gen M (2019) Large scale flexible scheduling optimization by a distributed evolutionary algorithm. Comput Ind Eng 128:894–904
- 3. Min W, Liu J, Zhang S (2016) Network-regularized sparse logistic regression models for clinical risk prediction and

biomarker discovery. IEEE/ACM Trans Comput Biol Bioinforma 15(3):944–953

- Bellman R (1966) Dynamic programming. Science (80-) 153(3731):34–37
- Ren Z, Liang Y, Wang M, Yang Y, Chen A (2021) An eigenspace divide-and-conquer approach for large-scale optimization. Appl Soft Comput 99:106911
- Li D, Guo W, Lerch A, Li Y, Wang L, Wu Q (2021) An adaptive particle swarm optimizer with decoupled exploration and exploitation for large scale optimization. Swarm Evol Comput 60:100789
- Schoen F, Tigli L (2021) Efficient large scale global optimization through clustering-based population methods. Comput Oper Res 127:105165
- Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872
- Abdullah JM, Ahmed T (2019) Fitness dependent optimizer: inspired by the bee swarming reproductive process. IEEE Access 7:43473–43486
- Rahman CM, Rashid TA (2021) A new evolutionary algorithm: Learner performance based behavior algorithm. Egypt Inform J 22(2):213–223
- Abdulhameed S, Rashid TA (2021) Child drawing development optimization algorithm based on child's cognitive development. Arab Sci Eng pp 1–15
- Shamsaldin AS, Rashid TA, Al-Rashid Agha RA, Al-Salihi NK, Mohammadi M (2019) Donkey and smuggler optimization algorithm: a collaborative working approach to path finding. J Comput Des Eng 6(4):562–583
- Rodriguez-Esparza E et al (2020) An efficient Harris hawks-inspired image segmentation method. Expert Syst Appl 155:113428
- Hussain K, Neggaz N, Zhu W, Houssein EH (2021) An effcient hybrid sine-cosine Harris hawks optimization for low and highdimensional feature selection. Expert Syst Appl 114778
- Mansoor M, Mirza AF, Ling Q (2020) Harris hawk optimizationbased MPPT control for PV systems under partial shading conditions. J Clean Prod 274:122857
- Essa FA, Abd Elaziz M, Elsheikh AH (2020) An enhanced productivity prediction model of active solar still using artificial neural network and Harris Hawks optimizer. Appl Therm Eng 170:115020
- Yousri D, Babu TS, Fathy A (2020) Recent methodology based Harris Hawks optimizer for designing load frequency control incorporated in multi-interconnected renewable energy plants. Sustain. Energy Grids Networks 22:100352
- Du P, Wang J, Hao Y, Niu T, Yang W (2020) A novel hybrid model based on multi-objective Harris hawks optimization algorithm for daily PM2. 5 and PM10 forecasting. Appl Soft Comput 96:106620
- Alamir MA (2021) An enhanced artificial neural network model using the Harris Hawks optimiser for predicting food liking in the presence of background noise. Appl Acoust 178:108022
- Abd Elaziz M, Yousri D, Mirjalili S (2021) A hybrid Harris hawks-moth-flame optimization algorithm including fractionalorder chaos maps and evolutionary population dynamics. Adv Eng Softw 154:102973
- ElSayed SK, Elattar EE (2021) Hybrid Harris hawks optimization with sequential quadratic programming for optimal coordination of directional overcurrent relays incorporating distributed generation. Alexandria Eng J 60(2):2421–2433
- Li C, Li J, Chen H, Heidari AA (2021) Memetic harris hawks optimization: developments and perspectives on project scheduling and QoS-aware web service composition. Expert Syst Appl 171:114529

- 23. Singh P, Prakash S (2020) Optimizing multiple ONUs placement in fiber-wireless (FiWi) access network using grasshopper and harris hawks optimization algorithms. Opt Fiber Technol 60:102357
- Gölcük İ, Ozsoydan FB (2021) Quantum particles-enhanced multiple Harris Hawks swarms for dynamic optimization problems. Expert Syst Appl 167:114202
- Hussain K, Neggaz N, Zhu W, Houssein EH (2021) An efficient hybrid sine-cosine Harris hawks optimization for low and highdimensional feature selection. Expert Syst Appl 176:114778
- Abdel-Basset M, Ding W, El-Shahat D (2021) A hybrid Harris Hawks optimization algorithm with simulated annealing for feature selection. Artif Intell Rev 54(1):593–637
- 27. Abba SI et al (2021) Emerging Harris Hawks optimization based load demand forecasting and optimal sizing of stand-alone hybrid renewable energy systems—a case study of Kano and Abuja, Nigeria. Results Eng 12:100260
- Ebrahim MA, Talat B, Saied EM (2021) Implementation of selfadaptive Harris Hawks optimization-based energy management scheme of fuel cell-based electric power system. Int J Hydrog Energy 46(29):15268–15287
- Bandyopadhyay R, Basu A, Cuevas E, Sarkar R (2021) Harris Hawks optimisation with Simulated Annealing as a deep feature selection method for screening of COVID-19 CT-scans. Appl Soft Comput 111:107698
- Suresh T, Brijet Z, Sheeba TB (2021) CMVHHO-DKMLC: a chaotic multi verse harris Hawks optimization (CMV-HHO) algorithm based deep kernel optimized machine learning classifier for medical diagnosis. Biomed Signal Process Control 70:103034
- Mossa MA, Kamel OM, Sultan HM, Diab AAZ (2021) Parameter estimation of PEMFC model based on Harris Hawks' optimization and atom search optimization algorithms. Neural Comput Appl 33(11):5555–5570
- Samma H, Lim CP, Saleh JM (2016) A new reinforcement learning-based memetic particle swarm optimizer. Appl Soft Comput 43:276–297
- 33. Abd Elaziz M, Heidari AA, Fujita H, Moayedi H (2020) A competitive chain-based Harris Hawks Optimizer for global optimization and multi-level image thresholding problems. Appl Soft Comput 95:106347
- 34. Wunnava A, Naik MK, Panda R, Jena B, Abraham A (2020) A differential evolutionary adaptive Harris hawks optimization for two dimensional practical Masi entropy-based multilevel image thresholding. J King Saud Univ Inf Sci
- 35. Yousri D, Mirjalili S, Machado JAT, Thanikanti SB, Fathy A (2021) Efficient fractional-order modified Harris hawks optimizer

for proton exchange membrane fuel cell modeling. Eng Appl Artif Intell 100:104193

- 36. Chen H, Jiao S, Wang M, Heidari AA, Zhao X (2020) Parameters identification of photovoltaic cells and modules using diversification-enriched Harris hawks optimization with chaotic drifts. J Clean Prod 244:118778
- 37. Liu Y et al (2020) Horizontal and vertical crossover of Harris hawk optimizer with Nelder-Mead simplex for parameter estimation of photovoltaic models. Energy Convers Manag 223:113211
- Qu C, He W, Peng X, Peng X (2020) Harris hawks optimization with information exchange. Appl Math Model 84:52–75
- Li C, Li J, Chen H, Jin M, Ren H (2021) Enhanced Harris hawks optimization with multi-strategy for global optimization tasks. Expert Syst Appl 185:115499
- Akdag O, Ates A, Yeroglu C (2021) Modification of Harris hawks optimization algorithm with random distribution functions for optimum power flow problem. Neural Comput Appl 33(6):1959–1985
- Houssein EH, Neggaz N, Hosney ME, Mohamed WM, Hassaballah M (2021) Enhanced harris hawks optimization with genetic operators for selection chemical descriptors and compounds activities. Neural Comput Appl 1–18
- 42. Krishna AB, Saxena S, Kamboj VK (2021) A novel statistical approach to numerical and multidisciplinary design optimization problems using pattern search inspired Harris hawks optimizer. Neural Comput Appl 33(12):7031–7072
- Singh T (2020) A chaotic sequence-guided Harris hawks optimizer for data clustering. Neural Comput Appl 32:17789–17803
- 44. Tang K, Li X, Suganthan PN, Yang Z, Weise T (2010) Benchmark functions for the cec'2010 special session and competition on large-scale global optimization
- Abualigah L, Diabat A, Mirjalili S, Abd-Elaziz M, Gandomi AH (2021) The arithmetic optimization algorithm. Comput Methods Appl Mech Eng 376:113609
- MiarNaeimi F, Azizyan G, Rashki M (2021) Horse herd optimization algorithm: a nature-inspired algorithm for high-dimensional optimization problems. Knowled.-Based Syst. 213:106711
- 47. Sheskin DJ (2003) Handbook of parametric and nonparametric statistical procedures, Chapman and Hall: CRC
- Kalivas JH (1997) Two data sets of near infrared spectra. Chemom Intell Lab Syst 37(2):255–259

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.