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Abstract
Harris Hawks Optimizer (HHO) is a recent optimizer that was successfully applied for various real-world problems.

However, working under large-scale problems requires an efficient exploration/exploitation balancing scheme that helps

HHO to escape from possible local optima stagnation. To achieve this objective and boost the search efficiency of HHO,

this study develops embedded rules used to make adaptive switching between exploration/exploitation based on search

performances. These embedded rules were formulated based on several parameters such as population status, success rate,

and the number of consumed search iterations. To verify the effectiveness of these embedded rules in improving HHO

performances, a total of six standard high-dimensional functions ranging from 1000-D to 10,000-D and CEC’2010 large-

scale benchmark were employed in this study. In addition, the proposed Rules Embedded Harris Hawks Optimizer

(REHHO) applied for one real-world high dimensional wavelength selection problem. Conducted experiments showed that

these embedded rules significantly improve HHO in terms of accuracy and convergence curve. In particular, REHHO was

able to achieve superior performances against HHO in all conducted benchmark problems. Besides that, results showed that

faster convergence was obtained from the embedded rules. Furthermore, REHHO was able to outperform several recent

and state-of-the-art optimization algorithms.

Keywords Rule-based optimizer � Harris hawks � Large-scale optimization

1 Introduction

In the era of big data, a lot of real-world, large-scale

optimization problems have been existed, such as multi-

policy insurance investment planning [1], scheduling [2],

and gene biomarker discovery [3]. Tackling these problems

using metaheuristic algorithms is considered a difficult

task. This is due to the growth in dimension space, i.e.,

‘‘curse of dimensionality’’ [4]. To mitigate these difficul-

ties, researchers suggested several ideas, such as splitting

the dimensionality using a divide-and-conquer scheme [5],

introducing dynamic balancing between exploration and

exploitation [6], or using the concept of population clus-

tering [7].

Recently, many optimizers were introduced in the lit-

erature, such as Harris Hawks Optimizer (HHO) [8], Fit-

ness Dependent Optimizer (FDO) [9], Learner

Performance-based Behavior (LPB) [10], Child Drawing

Development Optimizer (CDDO) [11], and Donkey and

Smuggler Optimizer (DSO) [12]. Among them, HHO was

given a lot of attention. This is due to its simplicity and

efficiency in dealing with various real-world problems such

as image segmentation [13], features selection [14],

tracking maximum power in solar systems [15], prediction

of solar systems productivity [16], designing load fre-

quency of renewable energy plan [17], forecasting of air

pollution [18], and predicting food liking [19]. However,
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HHO lacks efficient exploration/exploitation balancing

ability. This is because it uses timely depended on energy

escape parameters which control the switching from

exploration to exploitation mode [8]. As such, when HHO

is trapped in local optima during the exploitation phase, it

will be hard to escape and return to exploration mode. To

overcome these drawbacks, researchers suggested various

versions of HHO, which could be categorized as hybri-

dized-based methods and modified-based methods.

The idea of hybridizing HHO with other metaheuristic

algorithms was studied by many researchers [2–26]. Abd

Elaziz et al. introduced a hybrid model that combines HHO

with a moth-flame optimizer [20]. The main goal was to

enhance the exploration ability of HHO by using moth-

flame to generate the initial population. In addition, a chaos

map was embedded for further enhancement. Results show

a superior impact on the performances of the hybrid opti-

mizer as compared with the standard HHO. However, the

main challenge is related to the increase in complexity due

to the large number of parameters that need to be tuned.

Further hybrid work was given by ElSayed et al. [21].

Basically, their work integrates HHO with Sequential

Quadratic Programming (SQP). SQP was used as a local

search optimizer to refine the best solution found by HHO

at run-time. Reported results on the problem of finding the

best relay directions in power systems indicated better

performances were reported from the proposed hybrid

approach. A memetic-based HHO scheme was suggested

by Li et al. [22]. The key idea of the proposed memetic

scheme is to enhance the local search capability of HHO by

embedding several elite evolutionary strategies. Conducted

analysis in their study on scheduling problems showed

further HHO improvements were achieved due to the

incorporated local search strategies. The hybridization of

Grasshopper Optimizer GO with HHO was discussed by

Singh et al. [23]. Their model was applied for the problem

of optimal placement of multiple optical network units.

The outcomes of GO-HHO demonstrated the superiority of

the hybrid model as compared with individual optimizers,

i.e., HHO and GO. The idea of evolving multiple HHO

populations with quantum particles was given by Ilker et.al

[20]. Mainly, their proposed approach was designed to

tackle dynamic optimization problems that encompass

multiple local optima. Conducted experiment on CEC 2009

showed that multiple HHO populations produced better

outcomes in terms of convergence rate and fitness value.

The fusion of HHO with both sine–cosine and simulated

annealing was discussed in [25] and [26], respectively.

Both models were applied for the problem of features

selection, and their analysis showed great improvements in

tackling feature selection challenges. Very recent hybrid

studies which integrate HHO with other metaheuristic

optimization algorithms were discussed by Abba et al. [27],

Ebrahim et al. [28], Bandyopadhyay et al. [29], Suresh

et al. [30], and Mossa et al. [31]. In [27], the hybrid of PSO

with HHO for renewable energy load demand forecasting

was presented. The synergy of sine–cosine with HHO was

discussed in [28] for optimizing the fuel cell-based elec-

tric power system. Bandyopadhyay et al. [29] presented the

integration of simulated annealing with HHO for deep

features selection of COVID-19 from CT-scan images. The

hybrid of chaotic multi-verse optimizer with HHO was

given in [30] for the problem of medical diagnosis. The

issue of parameters estimation of proton exchange mem-

brane fuel cell using a hybrid atom optimizer with HHO

was investigated in [31]. Nevertheless, the main challenge

of hybrid-based methods is related to the increase of fitness

evaluation cost needed for each optimizer. In addition,

hybridizing several optimizers raises the difficulties of

simultaneously managing them at run-time [32].

A modified-based HHO methods were presented in

many studies [33–38]. The idea of modifying HHO by

embedding salp optimizer operations was adopted by

Abdelaziz et al. [33]. The main aim of their study is to

enhance the exploration capability of HHO. In their work,

they split the population into two sub-populations, and one

half has been evolved under salp operations, and the other

half has been executed under the control of HHO opera-

tions. The modified model in [24] was applied for the

multi-level image thresholding problem, and results

showed that embedded salp operations enhanced HHO

exploration performances. Similarly, enhancing HHO

exploration ability by incorporating differential evolution-

ary operators was suggested by Wunnava et al. [34]. Their

proposed approach was applied for the multi-level image

thresholding problem. Nevertheless, incorporating addi-

tional operations into HHO raises the challenge of

increasing model complexity, which will increase the cost

of fitness computation needed for these additional opera-

tions. Additional work was proposed by Yousri et al. [35]

for improving the effectiveness of HHO in performing the

exploration phase. Particularly, they have embedded frac-

tional calculus (FOC) memory which is used to control the

movement velocity of HHO agents. As such, FOC helps in

avoiding possible premature convergence. Conducted

experiments clearly showed better performances were

achieved from embedding FOC. Additional HHO modifi-

cations were propped by Chen et al. [36]. They incorpo-

rated both opposition technique and chaotic local search

into HHO. Reported results indicated better HHO

improvements due to the enhancement in HHO population

diversity. Further modifications were presented by Li et al.

[37] for enhancing HHO population quality. Particularly,

Li et al. added horizontal and vertical crossover operations

into HHO, and results indicated further HHO exploration

enhancements. Finally, researchers in [38] suggested the
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concept of information exchange to enhance HHO explo-

ration ability. Very recent approaches were done by several

researchers where they proposed many modification

schemes to improve HHO. For instance, a multi-strategy

approach was given by Li et al. [39]. The main idea of their

approach is to incorporate different enhancement strategies

namely opposition-based learning, logarithmic spiral, and a

modified Rosenbrock local search. Other researchers sug-

gested of embedding two different opposition-based

schemes, namely selective, leading opposition, and the

dynamic opposition technique. Enhancing HHO by

implementing different random distribution functions

which control the random movement of HHO agents was

given by Akdag et al. [40]. Specifically, they have inves-

tigated seven types of random distribution functions,

including chi-square, normal, exponential, Rayleigh, stu-

dent’s distribution, F-distribution, and lognormal. Reported

results clearly showed further improvements were

achieved, especially for engineering design problems.

Another enhanced version of HHO was discussed by

Houssein et al. [41]. The key concept of their enhanced

approach is to incorporate genetic operators to enhance

exploitation ability in the selection of chemical molecular

descriptors problems. An additional recent modified

approach was illustrated by Krishna et al. [42]. Basically,

they focused on enhancing HHO search capability when

dealing with constrained engineering design problems. As

such, to boost the exploitation performances of HHO, they

have added pattern search algorithm during the exploitation

phase of HHO. A chaotic guided HHO algorithm was

demonstrated by Singh et al. [43] for data clustering. They

have implemented a logistic chaotic map which was exe-

cuted in the exploration phase of HHO. Despite the slow

convergence of the enhanced HHO algorithm in [43],but

the results clearly showed an improvement in the achieved

clustering performances.

Motivated by HHO popularity, simplicity, and effi-

ciency, this study aims to further improve HHO perfor-

mances when dealing with large-scale problems that

encounter a lot of local optima points. It should be noted

that previously mentioned studies mainly focused on

enhancing HHO exploration by incorporating chaotic re-

initialization schemes [43], embedding opposition-based

schemes [36, 39], or using other search operations inside

HHO [33, 33–35, 40]. Others suggested using an external

local search algorithm with HHO to improve exploitation

performance [39, 42]. Despite that, there is still room for

improvements by utilizing HHO population status at run-

time search progress. Knowing the population status will

play a vital role in making the decision about the appro-

priate time to switch from exploration to exploitation and

vice versa. In addition, the idea of controlling the amount

of jump during the exploitation phase has been utilized in

this work. Therefore, this study formulates several rules

that will be embedded into HHO to make adaptive

switching of exploration/exploitations. An additional rule

was embedded to control the amount of jump during the

exploitation phase. The main contributions of this work are

outlined as follows.

1. It monitors and utilizes population statuses for adaptive

exploration/exploitation switching.

2. It uses agent location information to control the amount

of jump needed at exploitation mode.

3. It evaluates the performances on multimodal standard

benchmark function, large-scale CEC’2010 bench-

mark, and one real-world high-dimensional wavelength

selection problem.

A table that summarizes all previously discussed HHO

variants in terms of their type, authors, techniques, and

used benchmarks is given in Table 1. The remaining part of

this paper is organized as follows. Section 2 overview the

standard HHO algorithm. The proposed embedded rules

are explained in Sect. 3. A series of experiments that have

been conducted to evaluate the effectiveness of the pro-

posed approach are given in Sect. 4. A summary of the

research findings is presented in Sect. 5.

2 Harries Hawks optimizer

HHO is a recent optimizer that has been introduced by

Heidari et al [8]. It is inspired by the attacking behavior of

Harris Hawks birds, and it consists of three main phases,

which are exploration, transition, and exploitation. These

phases are explained as follows.

2.1 Exploration phase

In the exploration phase, HHO agents are going to perform

discovering of the search space. Basically, there are two

strategies that have been formulated for the exploration

phase. The first one moves the hawk randomly in the search

space. The second strategy is guided by both the best

solution Xt
rabbit and the mean location of the population Xt

m.

These exploration strategies are defined as follows.

Xtþ1
i ¼ Xt

rand � r1 � Ut
rand � 2 � r2 � Xt

i

�
�

�
� p� 0:5

(Xt
rabbit � Xt

mÞ � r3 � lbþ r4 � ub� lbð Þð Þ p\0:5

�

ð1Þ

where Xtþ1
i is the next position of ith hawk at search iter-

ation t. Variables r1; r2; r3; andr4 are random values in the

range of 0; 1ð Þ. Variables ub and lb are upper and lower

bound of the search problem. Variable p is a random value

used to control the switching between exploration
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Table 1 Related work on HHO

Type Ref. Authors Method Benchmarks

Hybrid [20] Abd Elaziz et al. It incorporated moth-flame, fractional-order, and

chaotic maps to enhance HHO exploration

It uses 13 feature selections from UCI dataset and

various engineering design problems

[21] ElSayed et al. It integrated sequential quadratic programming

(SQP) with HHO as a single model

It was applied for two problems of relays optimal

coordination finding

[22] Li et al. It proposed a memetic technique to enhance HHO

local search capability

It was evaluated with 29 numerical optimization test

functions and the problem of resource-constrained

project scheduling and QoS-aware web service

[23] Singh et al. It combined grasshopper with HHO as a single

model

It has been applied for the problem of ONUs

placement in Fiber-Wireless (FiWi)

[20] Ilker et al. It evolved multiple HHO populations with

quantum particles

It was evaluated with 23 dynamic test functions from

CEC 2009 benchmark

[25] Kashif et al. It hybridized the sine–cosine algorithm with HHO It uses 29 test functions of CEC’17 test suite and 16

datasets for the problem of feature selection

[26] Abdel-Basset

et al.

It incorporated simulated annealing for HHO

search refinement

It has been evaluated with 24 standard datasets and

19 artificial datasets for feature selection problems

[27] Abba et al. It integrated PSO with HHO for renewable energy

load demand forecasting

It was evaluated using a lab collected data including

solar radiation, temperature, and wind speed to

predict load demand

[28] Ebrahim et al. It combined since cosine with HHO for finding the

optimal control parameters in fuel cell-based

electric power system

It has been evaluated with the standard 23

benchmarks and applied for real-time control of

energy consumption

[29] Bandyopadhyay

et al.

It integrated simulated annealing with HHO for

performing search refinement

It was assessed using real-world engineering design

problems and COVID-19 deep features selection

from CT-scan images

[30] Suresh et al. It incorporated a chaotic multi-verse optimizer into

HHO

It was evaluated using two public dataset for medical

classification problems including PIMA Indian

Diabetic and Wisconsin Breast Cancer

[31] Mossa et al. It combined atom optimizer with HHO It was applied for parameter estimation of Proton

exchange membrane fuel cell. It was tested using

three case studies including BCS 500-W PEM,

500 W SR-12PEM, and 250 W stack

Modified [33] AbdElaziz et al. It incorporated salp operations into HHO for

enhancing exploration performances

It has been applied for 36 functions from IEEE CEC

2005 benchmark and 11 Gy-scale image

segmentation problems

[34] Wunnava et al. It embedded differential evolutionary operators It was evaluated with 500 images from Berkeley

BSDS benchmark for multi-level image

thresholding

[35] Yousri et al. It added fractional-order calculus (FOC) memory

to guide HHO during search progress

It uses 28 functions from CEC2017 benchmarks

problems

[36] Chen et al. It included two schemes which are opposition-

based and chaotic local search to enhance HHO

exploitation

It has been applied for photovoltaic cells design of

three problems which are Shell st40, Shell sm55,

and Shell kc200gt photovoltaics

[37] Li et al. It incorporated horizontal and vertical crossover

operations

It has been applied for photovoltaic parameter

estimation of three models, which are SDM, DDM,

and PV

[38] Qu et al. It utilizes an information-sharing scheme to

exchange agent’s locations, etc

It was evaluated with 28 functions of CEC-2017 real-

parameter numerical optimization problems

[39] Li et al. It embedded several search strategies to enhance

HHO. These strategies are logarithmic spiral and

opposition technique to improve the exploration

performances. Rosenbrock local search was

added to enhance the exploitation ability

It was tested using IEEE CEC2014 benchmark and

other engineering and real-world design problems

[40] Akdag et al. It incorporated various random distribution

functions to enhance HHO

It has been applied to optimize IEEE 30-bus power

system. In addition, it was evaluated with the

standard benchmark problems

13602 Neural Computing and Applications (2022) 34:13599–13624

123



strategies. It should be noted that the mean position of the

population Xt
m is computed as follows.

Xt
m ¼ 1

N

XN

i¼1

Xt
i ð2Þ

2.2 Transition phase

In HHO, they considered rabbit energy as the primary

indicator used to switch from exploration to exploitation

mode. This variable is computed according to the following

formula.

E ¼ 2E0 1� t

T

� �

ð3Þ

where E is escaping energy decreases linearly based on

time iterations t. T is the maximum allocated iterations.

Variable E0 is the initial state energy of each individual,

and it is varied randomly in the range E0 2 �1; 1ð Þ. E0 is

updated based on the following equation.

E0 ¼ 2rand� 1 ð4Þ

The computed escaping energy E in Eq. (4) will have

the following plot in Fig. 1. It can be seen that HHO will be

in the exploration phase when Ej j � 1, while exploitation

mode will occur when Ej j\1 as demonstrated in Fig. 1.

2.3 Exploitation phase

The main idea of the exploitation phase is to exploit the

current best location Xt
rabbit and to search around it. In

HHO, they proposed four different strategies for perform-

ing search exploitation, namely soft besiege, hard besiege,

soft besiege with progressive rapid dives, and hard besiege

with progressive rapid dives. In order to select which

exploitation strategy will be executed, both escaping

energy Ej j and a random variable r is used to control. In

particular, the escaping energy Ej j will control the

switching between soft/hard besiege strategy. When

Ej j � 0:5 indicating that the rabbit Xt
rabbit still has energy

and soft besiege strategy should be applied; otherwise, the

rabbit should be exhausted, and hard besiege strategy

should be used. In addition, each strategy could run pro-

gressive rapid dives when it is applied. As such, the

implemented random variable r will control the activation

of this property. As such, when r\0:5; progressive rapid

dives will be used; otherwise, it will be off. These strate-

gies are explained as follows.

2.3.1 Soft besiege

As mentioned earlier, soft besiege is activated when r� 0:5

and Ej j � 0:5; which means that the rabbit Xt
rabbit still has

energy, trying to escape by a random jump. As such, it will

Table 1 continued

Type Ref. Authors Method Benchmarks

[41] Houssein

et al.

It embedded genetic operators to enhance HHO

exploitation performances

It was evaluated using two chemoinformatics dataset

namely QSAR Biodegradation and MAO

[42] Krishna

et al.

It triggered local pattern search algorithm during the

exploitation phase of HHO

It was tested using 23 standard CEC2005 benchmark and

other engineering design problems

[43] Singh

et al.

It embedded logistic chaotic map to enhance the

initialization and exploration ability of HHO

It was evaluated using 12 UCI machine learning

repository clustering problems

Fig. 1 The behavior of escaping

energy E
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be softly encircled by the hawks and attacked according to

the following equations.

Xtþ1
i ¼ DXt � E JXt

rabbit � Xt
i

�
�

�
� ð5Þ

DXt ¼ Xt
rabbit � Xt

i ð6Þ

where DXt is the difference between rabbit location Xt
rabbit

and current hawk location Xt
i. J is a random factor that

mimics rabbit movement, and it is defined as follows.

J ¼ 2 1� r5ð Þ ð7Þ

where r5 is a random value in the range r5 2 �1; 1ð Þ.

2.3.2 Hard besiege

This strategy is applied when the rabbit Xt
rabbit is exhausted,

and it has only a tiny escaping energy Ej j\0:5. Therefore,

hawks will attack the rabbit according to the following

equation.

Xtþ1
i ¼ Xt

rabbit � E DXtj j ð8Þ

2.3.3 Soft besiege with progressive rapid dives

This strategy is applied when the rabbit still has energy

Ej j � 0:5 but r\0:5. However, they suggested in [8] a

more intelligent mathematical formula that mimics actual

rabbit motion. Specifically, a zigzag motion pattern was

formulated using the levy flight (LF) function defined as

follows.

LF xð Þ ¼ 0:01� u� r

vj j
1
b

ð9Þ

r ¼
C 1þ bð Þ � sin pb

2

� �

C 1þb
2

� �

� b� 2
b�1
2ð Þ

0

@

1

A

1
b

ð10Þ

where u; v are random values from 0to1. b is a constant

value set as 1.5 as suggested in [8].

Therefore, the hawk will update his position using the

following formulas.

Y ¼ Xt
rabbit � E JXt

rabbit � Xt
i

�
�

�
� ð11Þ

Z ¼ Y þ S� LF Dð Þ ð12Þ

Xtþ1
i ¼

Y if fitness Yð Þ[ fitness Xtþ1
i

� �

Z if fitness Zð Þ[ fitness Xtþ1
i

� �

(

ð13Þ

where S is 1D random values and D is the problem

dimension.

Fig. 2 The proposed embedded rules
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2.3.4 Hard besiege with progressive rapid dives

This strategy is very similar to soft besiege with progressive

rapid dives, but the hawk will a bit decrease the jump dis-

tance because the rabbit is exhausted Ej j\0:5. As such, the

hawk will update his position considering the mean position

Xt
m instead of using Xt

i as defined in Eq. (11). This strategy

has been formulated according to the following equations.

Y ¼ Xt
rabbit � E JXt

rabbit � Xt
m

�
�

�
� ð14Þ

Z ¼ Y þ S� LF Dð Þ ð15Þ

Xtþ1
i ¼

Y if fitness Yð Þ[ fitness Xtþ1
i

� �

Z if fitness Zð Þ[ fitness Xtþ1
i

� �

(

ð16Þ

3 The proposed embedded rules

As explained earlier that HHO depends on escaping energy

factor Ej j for the transition from exploration to exploita-

tion. However, Ej j is a time dependent parameter that

decreases gradually over time, as shown in Fig. 1. As such,

HHO has a lower chance to try to exploit the discovered

region and switch to exploitation mode due to Ej j[ 1. As a

result of this, HHO will have a slow convergence rate due

to the prevention of switching to exploitation mode at the

beginning of search progress. Another limitation of HHO is

that when Ej j becomes very small and the hawks trapped in

local optima region, it will be hard to escape and return to

exploration stage. To overcome this shortcoming of HHO,

this research introduces embedded rules that will improve

balancing between exploration and exploitation and help

HHO to escape from possible local optima traps by

amplifying escaping energy Ej j:
The main idea of the proposed rules is given in Fig. 2,

where embedded rules are going to be triggered according to

the occurrence of some events. The first rule is given in

Fig. 3. This rule has been formulated to allow HHO to

escape from local optima. Three events are used to control

the trigger of this rule which are population success, current

search time, and a random value r. pop success factor will

take a value of zero or one. It will be zero when the best

population location Xt
rabbit was not changed; otherwise, it

will be one. The second variable t represents the current

search time step. It is used to prevent the rule to be triggered

during the exploration phase where the escaping energy is

already greater than one, i.e., Ej j � 1. The variable r is a

random value that randomizes the trigger of RULE 1.

The second rule was designed to help HHO to switch

from exploration to exploitation mode at the beginning of

the search process. RULE 2 is shown in Fig. 4. It is indi-

cated that RULE 2 is controlled by three parameters which

are the location of the rabbit Xrabbit with respect to the

mean location Xm, current search time step t, and a random

value r. It should be noted that the last two parameters (i.e.,

t and r) are the same in RULE 1; however, the first event is

used to check the current population status. Referring to

Fig. 2, it can be seen when the hawks encircle the rabbit,

then the location of Xrabbit will be close to Xm. To check

this status, the fitness value of Xm is computed and com-

pared to other hawks. If it belongs to the top 10% of the

population, then it means Xm location is near to Xmean.

The third rule is formulated to control the amount of

hawk jump needed during the exploitation mode. RULE 3

Fig. 3 RULE 1 for switching

from exploitation to exploration

Fig. 4 RULE 2 for switching

from exploration to exploitation

Fig. 5 RULE 3 to control the

amount of hawk jump during

exploitation
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is defined in Fig. 5, and it will be activated only during the

exploitation phase when Ej j\1: RULE 3 is triggered based

on hawk location with respect to Xt
rabbit, and Xt

i as given in

Fig. 5. Rule 3 imply that hawks located closely to Xt
rabbit

need a small jump; however, those far away hawks need a

larger jump to reach the location of Xt
rabbit. This jump is

reflected by the amount of escaping energy that will

influence Eqs. (5), (8), (11), and (14).

The complete steps of the proposed REHHO algorithm

are given in algorithm 1 and Fig. 6.

4 Experimental results

4.1 The standard benchmark problems

This section evaluates the performances of REHHO as

compared with HHO using six multimodal benchmark

problems, which are Schwefel, Rastrigin, Ackley,

Griewank, Penalized, and Penalized 2. These problems

were executed with various high-dimensional ranging from

1000- D to 10,000-D. These experiments were epeated 30

times, and the maximum number of iterations was set to

104.

F1 Xð Þ ¼
XD

i¼1

� xi sin
ffiffiffiffiffiffi

xij j
p� �

;

search range � 500; 500½ �;
D ¼ 1000; fmin ¼ �418:9829 � n

ð17Þ

The mathematical formula of Schwefel function is given

in Eq. (17). This function has multiple local optima, as can

be seen in Fig. 7. Therefore, finding the global optima of

cFig. 6 Flowchart of the proposed REHHO algorithm
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this function under high dimensions is a quiet challenge.

Nevertheless, REHHO was able to reach the minimum

value faster than HHO, as shown in Fig. 7. This is due to

the dynamic of REHHO and its ability to perform earlier

exploitation searches as compared with HHO. Further

analysis is conducted by evaluating the performances when

the dimension of the problem is increased to 5000-D and

10,000-D, respectively. Therefore, the best, medium,

worst, mean, and standard deviation of REHHO and HHO

algorithms are reported in Table 2. It can be seen that both

algorithms reported almost the same mean values in all

variations of dimensions which are 1000-D, 5000-D, and

10,000-D. However, REHHO was able to reach the global

optima earlier than HHO, as indicated in Fig. 7.

F2 Xð Þ ¼
XD

i¼1

x2i � 10 cos 2pxið Þ þ 10
	 


;

search range � 5:12; 5:12½ �;
D ¼ 1000; fmin ¼ 0

ð18Þ

Rastrigin function is given in Eq. (18), and it differs

from the Schwefel function where the minimum value is

located at point zero, as shown in Fig. 8. The convergence

curve of both functions is almost similar. This is due to the

nature of the optimized problem, where it is a bit easier as

compared with the shifted Schwefel function discussed

earlier. Moreover, the variation in the dimensions does not

affect the performances of both algorithms, as indicated in

Table 3. In other words, REHHO and HHO were able to

achieve the global optima in all runs with zero standard

deviation, which showed the stability of both algorithms.

F3 Xð Þ ¼ �20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

D

XD

i¼1

x2i

v
u
u
t

0

@

1

A

� exp
1

D

XD

i¼1

cos 2pxið Þ
 !

þ 20

þ e; search range � 32; 32½ � D
¼ 1000; fmin ¼ 0 ð19Þ

Equation (19) shows the mathematical formula of the

Ackley function. The 2-D plot of this function is shown in

Fig. 9. The plotted convergence curve indicated that

REHHO is able to converge faster due to the flattening

Fig. 7 The Schwefel function with its convergence curve (1000-D)

Table 2 Results of Schwefel functions

Dim Fitness Algorithm

REHHO HHO

1000 - D Best - 4.1898e ? 05 4.1898e ? 05

Median - 4.1898e ? 05 - 4.1898e ? 05

Worst - 4.1898e ? 05 - 4.1898e ? 05

Mean - 4.1898e ? 05 - 4.1898e ? 05

Std 0 0

5000 - D Best - 2.0949e ? 06 - 2.0949e ? 06

Median - 2.0949e ? 06 - 2.0949e ? 06

Worst - 2.0949e ? 06 - 2.0949e ? 06

Mean - 2.0949e ? 06 - 2.0949e ? 06

Std 0 0

10,000 - D Best - 4.1898e ? 06 - 4.1898e ? 06

Median - 4.1898e ? 06 - 4.1898e ? 06

Worst - 4.1898e ? 06 - 4.1898e ? 06

Mean - 4.1898e ? 06 - 4.1898e ? 06

Std 0 0
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nature of this problem. It should be noted that both algo-

rithms were able to reach global optima with less than 50

iterations.

As can be seen in Table 4, increasing the dimensionality

of this problem does not influence the performance of both

algorithms. This is due to the simplicity of the tacked

Ackley function.

F4 Xð Þ ¼ 1

4000

XD

i¼1

x2i �
YD

i¼1

cos
xi
ffiffi

i
p
� �

þ 1; search range � 600; 600½ �; D
¼ 1000; fmin ¼ 0 ð20Þ

The Griewank function is given in Eq. (20). This

problem is considered more challenging as compared with

Ackley, where it has a lot of local optima, as indicated in

Fig. 10. The convergence of the Griewank function con-

firms the ability of REHHO to switch faster and perform

exploitation searches. Nevertheless, both REHHO and

HHO were able to reach the global minima, as shown in

Table 5.

The Penalized function is defined as follows.

F5 Xð Þ¼ p
D

10sin py1ð Þþ
XD�1

i¼1

yi�1ð Þ2
(

1þ10sin2 pyiþ1ð Þ
	 


þ yD�1ð Þ2
)

þ
XD

i¼1

u xi;10;100;4ð Þ

yi ¼ 1þ xi þ 1

4

u xi; a; k;mð Þ ¼
k xi � að Þmxi [ a

0� a\xi\a

k �xi � að Þmxi\a

8

><

>:

search range �50; 50½ �;

ð21Þ

Unlike previously discussed functions, the Penalized

function is considered more challenging. The convergence

curve of this function is given in Fig. 11, and it is clearly

seen that REHHO converges a bit faster. More importantly,

increasing the dimensions of Penalized function from

1000-D to 10,000-D does not influence the performances of

REHHO, as given in Table 6.

The Penalized 2 function is defined as follows:

Fig. 8 The Rastrigin function with its convergence curve (1000-D)

Table 3 Results of rastrigin function

Dim Fitness Algorithm

REHHO HHO

1000–D Best

Median

Worst

Mean

Std

0

0

0

0

0

0

0

0

0

0

5000–D Best

Median

Worst

Mean

Std

0

0

0

0

0

0

0

0

0

0

10,000–D Best

Median

Worst

Mean

Std

0

0

0

0

0

0

0

0

0

0
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F6 Xð Þ ¼ 0:1

(

sin2 3px1ð Þ þ
XD

i¼1

xi � 1ð Þ2

� 1þ sin2 3pxi þ 1ð Þ þ xD � 1ð Þ2
i h

1þ sin2 2pxDð Þ
h i

)

þ
XD

i¼1

u xi; 5; 100; 4ð Þ; search range �50; 50½ �;

ð22Þ

The conducted analysis on the Penalized 2 function is

given in Fig. 12 and Table 7. As can be seen, REHHO

outperformed HHO with a better mean fitness value and

faster convergence curve.

4.2 2010 large scale global benchmark problems

This experimental section examines the effectiveness of the

embedded rules in enhancing HHO (i.e., REHHO algo-

rithm) on large-scale benchmark problems. Specifically, a

set of 20 large-scale functions from 1000-D CEC’2010

benchmark functions [44] has been used. The details of

these functions are given in Table 8. As can be seen,

CEC’2010 benchmark consists of 5 groups of functions,

namely, separable, single-group m� non-separable func-

tions, D=2m group m-non-separable functions, D=m group

m-non-separable functions, and fully separable functions.

Each experiment was repeated 30 times, and the population

size was 30 agents with a maximum number of fitness

evaluations 3� 104.

Table 9 depicts the results of REHHO and HHO on

CEC’2010 largescale problems. It should be noted that the

separable functions F1, F2, and F3 have a smaller number

of local optima as compared with other categories. Nev-

ertheless, the reported results showed that REHHO

achieved the best results. This is due to the ability of

REHHO to perform fast convergence and switch earlier to

exploitation mode. In other words, the implemented

adaptive switching scheme using the embedded rules helps

REHHO to reach faster to global optima point. The results

of single-group m� non-separable functions are given by

functions F4, F5, F6, F7, and F8. Similarly, REHHO

reports the best mean value in all conducted functions.

For the category of D=2m group m� non-separable

functions, which is considered more complex, REHHO is

still able to perform well due to its ability to switch back

from exploitation mode to exploration mode when

Fig. 9 The Ackley function with its convergence curve (1000-D)

Table 4 Results of Ackley function

Dim Fitness Algorithm

REHHO HHO

1000-D Best

Median

Worst

Mean

Std

8.8818e - 16

8.8818e - 16

8.8818e - 16

8.8818e - 16

0

8.8818e - 16

8.8818e - 16

8.8818e - 16

8.8818e - 16

0

5000-D Best

Median

Worst

Mean

Std

8.8818e - 16

8.8818e - 16

8.8818e - 16

8.8818e - 16

0

8.8818e - 16

8.8818e - 16

8.8818e - 16

8.8818e - 16

0

10,000-D Best

Median

Worst

Mean

Std

8.8818e - 16

8.8818e - 16

8.8818e - 16

8.8818e - 16

0

8.8818e - 16

8.8818e - 16

8.8818e - 16

8.8818e - 16

0
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population success status is zero, then rule 2 will be trig-

gered as explained in Sect. 3. In addition, REHHO reports

the best mean value in the remaining functions from F14 to

F20.

In conclusion, conducted analysis on CEC’2010 large-

scale benchmark functions showed that the performances

of REHHO have been improved considerably from the

embedded rules.

Further analysis was conducted by investigating the

graphical behavior of REHHO convergence during run

time. Specifically, the base-10 logarithmic mean values of

the fitness function from a total of 30 runs are computed

and plotted in Fig. 13. It is shown that REHHO has faster

convergence in all benchmark functions. This is due to the

ability of REHHO to switch earlier to exploitation mode at

the beginning of the search process, as mentioned

previously.

4.2.1 Compared with other metaheuristic algorithms

In this section, the performance of REHHO has been

compared with several well-known state-of-the-art opti-

mization algorithms. These algorithms are particle swarm

optimization (PSO), differential evolution (DE), BAT

optimizer, Arithmetic Optimization Algorithm (AOA) [45],

and Horse Herd Algorithm (HHA) [46]. It is worth men-

tioning that BAT, PSO, and DE are very famous popula-

tion-based algorithms and are widely used in the literature

as baseline comparison algorithms. The settings of these

algorithms are given in Table 10. For all conducted algo-

rithms, each experiment was repeated 30 times, and the

population size was 30 agents with a maximum number of

fitness evaluations 3� 104.

The results of the conducted analysis are given in

Table 11. As can be seen, REHHO reported the best mean

value in most functions except for five of them, namely F5,

F6, F8, and F10, where DE outperformed other algorithms.

This is due to the benefits of crossover and mutation

Fig. 10 The Griewank function with its convergence curve (1000–D)

Table 5 Results of Griewank function

Dim Fitness Algorithm

REHHO HHO

1000–D Best

Median

Worst

Mean

Std

0

0

0

0

0

0

0

0

0

0

5000–D Best

Median

Worst

Mean

Std

0

0

0

0

0

0

0

0

0

0

10,000–D Best

Median

Worst

Mean

Std

0

0

0

0

0

0

0

0

0

0
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operation used by the DE algorithm. Nevertheless, REHHO

reports superior performances as compared with other

recent algorithms, namely AOA and HHA. The worst

results were archived by the BAT optimizer due to the lack

of exploration operations used for handling large-scale

problems.

4.2.2 Statistical analysis

In this section, the statistical t-test [47] was used to eval-

uate the outcome of the 1000-D CEC’2010 large-scale

benchmark statistically. The t-test is used to determine if

there is a significant difference between REHHO and other

algorithms in terms of the reported mean value. To com-

pute the significant difference using t- test, three values are

required, which are the mean, the standard deviation, and

the number of data (repeated times). From these computed

values, the degrees of freedom and t-distribution value will

be identified to generate the p-value.

To implement the t-test, the null hypothesis H0 assumes

that REHHO and other compared algorithms performed

equally. However, the alternative hypothesis H1 assumed

that REHHO outperformed other algorithms. In this anal-

ysis, the p-value of the t-test was set at 0.05 (i.e., 95%

confidence level), meaning that the alternative hypothesis

H1 would be accepted if the p-value was less than 0.05. The

p-value results of the t-test are reported in Table 12, and it

can be seen that most p-values were less than 0.05, which

confirms that the proposed REHHO algorithm significantly

outperforms other conducted algorithms in most of the

functions.

4.2.3 Computational time analysis

The computational time of the proposed REHHO is com-

pared against HHO on large-scale problems. This analysis

is conducted to measure the overhead of the embedded

Fig. 11 The Penalized function with its convergence curve (1000–D)

Table 6 Results of Penalized function

Dim Fitness Algorithm

REHHO HHO

1000–D Best

Median

Worst

Mean

Std

7.4754e - 11

2.0208e - 10

1.9952e - 09

7.5735e 2 10

1.0739e - 09

5.6363e - 10

8.2071e - 10

6.4469e - 09

2.6104e - 09

3.3250e - 09

5000–D Best

Median

Worst

Mean

Std

1.8923e - 12

4.1541e - 11

2.1488e - 10

8.6105e 2 11

1.1327e - 10

1.0878e - 10

1.5618e - 10

6.7634e - 10

3.1377e - 10

3.1489e - 10

10,000–D Best

Median

Worst

Mean

Std

1.2802e - 10

1.6376e - 10

5.9265e - 10

2.5641e 2 10

3.0082e - 09

2.5269e - 10

8.4575e - 10

1.9220e - 09

1.0068e - 09

8.4625e - 10

Bold values indicate the best mean value (i.e., average minimum)
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rules. The hardware and software specifications of the

adopted PC are given in Table 13. The average computa-

tional time for 30 runs of the F1 function of large-scale

problems is computed and reported in Table 14. As can be

seen, REHHO required extra time due to the calculation of

population status and agent location needed to fire the

embedded rules. Nevertheless, the computational time

overhead consumed by these rules is still affordable, which

is 34 s only. This value represents around 10% of the total

time needed by HHO.

4.3 NIR wavelength selection

This section evaluates the performances of REHHO in

performing wavelength selection of the NIR spectrum of

gasoline [48]. This case study contains 60 samples with

wavelength (x-axis) of range from 900 to 1700 nm and

intervals of 2 nm, which result in 401 channels/per sample.

The values on the y-axis represent the amount of absorbed

heat, as shown in Fig. 14. The dataset has been divided into

50% for training (30 samples) and 50% for testing.

To encode this problem, a 1D binary vector of size 401

is given in Fig. 15. As such, optimization algorithms were

applied to find the most distinguished wavelengths. As can

be seen in Fig. 15, when the value of the corresponding

wavelength W is set to 1, then it will be selected; other-

wise, it will be skipped.

Conducted optimization algorithms are guided by the

accuracy of Partial Least Squares (PLS) regressor and

complexity measure. The fitness function of this problem is

formulated as follows.

fitness ¼ �1� 0:9*Accuracyð Þ � 0:1*complexityð Þð Þ
ð23Þ

Accuracy ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN

i¼1

yi � ŷið Þ2
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN

i¼1

yi � yið Þ2
s ð24Þ

Complexity ¼ number of selected wavelengths

401
ð25Þ

where yi is the actual value of absorbed heat, ŷi is the

predicted value, and yi is the mean value of the training set.

Fig. 12 The Penalized 2 function with its convergence curve (1000–D)

Table 7 Results of penalized 2 function

Dim Fitness Algorithm

REHHO HHO

1000–D Best

Median

Worst

Mean

Std

9.6019e - 08

9.6562e - 08

2.0774e - 07

1.3344e 2 07

6.4348e - 08

2.9647e - 08

4.0487e - 07

2.2211e - 06

8.8522e - 07

1.1721e - 06

5000–D Best

Median

Worst

Mean

Std

3.5014e - 08

7.4315e - 07

2.0981e - 07

1.0638e 2 07

9.1702e - 07

3.0948e - 08

5.2818e - 07

4.1433e - 06

1.5675e - 06

2.2445e - 06

10,000–D Best

Median

Worst

Mean

Std

2.4982e - 07

9.9053e - 07

3.3143e - 06

1.1461e 2 06

1.8781e - 05

6.3753e - 06

7.1744e - 06

2.6157e - 05

1.3236e - 05

1.1198e - 05

Bold values indicate the best mean value (i.e., average minimum)
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Table 9 Results of 1000-D CEC’2010 large-scale functions

Function Fitness Algorithm

REHHO HHO

F1 Best

Median

Worst

Mean

Std

2.6334e ? 09

2.8842e ? 09

3.0811e ? 09

2.8583e 1 09

1.3393e ? 08

2.5870e ? 09

2.9525e ? 09

3.1307e ? 09

2.9077e ? 09

1.8042e ? 08

F2 Best

Median

Worst

Mean

Std

1.5968e ? 04

1.6255e ? 04

1.6685e ? 04

1.6285e 1 04

221.9340

1.6194e ? 04

1.6394e ? 04

1.6656e ? 04

1.6405e ? 04

146.6359

F3 Best

Median

Worst

Mean

Std

20.2382

20.5327

20.6923

20.5073

0.1428

20.1865

20.5663

20.7024

20.5474

0.1591

F4 Best

Median

Worst

Mean

Std

1.2145e ? 13

1.8154e ? 13

2.5972e ? 13

1.8575e 1 13

3.7970e ? 12

1.3675e ? 13

1.8249e ? 13

3.1059e ? 13

1.9648e ? 13

5.3968e ? 12

F5 Best

Median

Worst

Mean

Std

4.1407e ? 08

4.5136e ? 08

4.8347e ? 08

4.4886e 1 08

2.5081e ? 07

4.1267e ? 08

4.4175e ? 08

4.9685e ? 08

4.4936e ? 08

2.8098e ? 07

F6 Best

Median

Worst

Mean

Std

1.9146e ? 07

1.9211e ? 07

1.9276e ? 07

1.9212e 1 07

3.9172e ? 04

1.9100e ? 07

1.9226e ? 07

1.9282e ? 07

1.9215e ? 07

5.3649e ? 04

F7 Best

Median

Worst

Mean

Std

1.3083e ? 09

1.7299e ? 09

2.0005e ? 09

1.7102e 1 09

2.4558e ? 08

1.3848e ? 09

1.7041e ? 09

2.6482e ? 09

1.8329e ? 09

4.5454e ? 08

F8 Best

Median

Worst

Mean

Std

4.6868e ? 09

6.2015e ? 09

1.2757e ? 10

6.9842e 1 09

2.5889e ? 09

3.5725e ? 09

7.0823e ? 09

1.3574e ? 10

8.3367e ? 09

3.3609e ? 09

F9 Best

Median

Worst

Mean

Std

4.3561e ? 09

4.5738e ? 09

4.8799e ? 09

4.5915e 1 09

1.6658e ? 08

4.4583e ? 09

4.6868e ? 09

5.1160e ? 09

4.7577e ? 09

2.0995e ? 08

Neural Computing and Applications (2022) 34:13599–13624 13615

123



For each algorithm, the mean fitness value, accuracy of

testing set, number of selected channels are reported in

Table 15. It can be seen that REHHO was able to reduce

PLS complexity by using only 17 wavelengths. In terms of

accuracy on the testing dataset, the best results were

achieved by REHHO with 96.3%. Furthermore, the pro-

posed REHHO was able to produce the best fitness value.

The worst results have been reported by the BAT algorithm

due to its lack of exploration ability as compared with other

algorithms.

5 Conclusion

This work presents a novel REHHO algorithm that

improves HHO by embedding several rules. The effec-

tiveness of REHHO has been evaluated with a total of six

standard high-dimensional functions ranging from 1000-D

to 10,000-D, CEC’2010 large-scale benchmark, and the

problem of NIR wavelength selection. Reported results

indicated that REHHO was able to outperform HHO and

other state-of-the-art optimization algorithms, including

BAT, PSO, DE, AOA, and HHA. From the statistical

analysis of the results, the t-test showed that REHHO

significantly outperformed other algorithms with a 95%

confidence level. As future work, REHHO could be applied

for features selection problems and other real-world, large-

scale problems.

Table 9 (continued)

Function Fitness Algorithm

REHHO HHO

F10 Best

Median

Worst

Mean

Std

1.6334e ? 04

1.6526e ? 04

1.6897e ? 04

1.6559e 1 04

169.1596

1.6174e ? 04

1.6680e ? 04

1.6753e ? 04

1.6617e ? 04

177.6641

F11 Best

Median

Worst

Mean

Std

221.5103

222.7064

224.8432

222.8913

1.0573

220.8727

222.9485

225.3188

223.1134

1.2622

F12 Best

Median

Worst

Mean

Std

1.9385e ? 06

2.0562e ? 06

2.1350e ? 06

2.0461e 1 06

6.9452e ? 04

1.9622e ? 06

2.0869e ? 06

2.1904e ? 06

2.0763e ? 06

8.4339e ? 04

F13 Best

Median

Worst

Mean

Std

1.1077e ? 08

1.3137e ? 08

1.6626e ? 08

1.3441e 1 08

1.5571e ? 07

1.0374e ? 08

1.3379e ? 08

1.6147e ? 08

1.3493e ? 08

1.9787e ? 07

F14 Best

Median

Worst

Mean

Std

6.2729e ? 09

6.6919e ? 09

8.0578e ? 09

6.7559e 1 09

5.0437e ? 08

6.0907e ? 09

6.8612e ? 09

7.5727e ? 09

6.9155e ? 09

4.8570e ? 08

F15 Best

Median

Worst

Mean

Std

1.6416e ? 04

1.6534e ? 04

1.6927e ? 04

1.6568e 1 04

145.8575

1.6340e ? 04

1.6691e ? 04

1.6892e ? 04

1.6674e ? 04

145.5967

F16 Best

Median

Worst

Mean

Std

404.9208

409.7903

410.9187

409.1372

1.7926

407.5469

409.6755

412.0824

409.8648

1.4549

F17 Best

Median

Worst

Mean

Std

2.7638e ? 06

2.9555e ? 06

3.1423e ? 06

2.9464e 1 06

1.1326e ? 05

2.8882e ? 06

3.0557e ? 06

3.2906e ? 06

3.0504e ? 06

1.4232e ? 05

F18 Best

Median

Worst

Mean

Std

2.4614e ? 09

2.7451e ? 09

3.1012e ? 09

2.7693e 1 09

2.0060e ? 08

2.5603e ? 09

2.7727e ? 09

3.0197e ? 09

2.8075e ? 09

1.4732e ? 08

Table 9 (continued)

Function Fitness Algorithm

REHHO HHO

F19 Best

Median

Worst

Mean

Std

7.4615e ? 06

1.0164e ? 07

1.3475e ? 07

1.0020e 1 07

1.7817e ? 06

8.8942e ? 06

1.0717e ? 07

1.5390e ? 07

1.1079e ? 07

1.8966e ? 06

F20 Best

Median

Worst

Mean

Std

2.7733e ? 09

3.0091e ? 09

3.2906e ? 09

3.0219e 1 09

1.8120e ? 08

2.5204e ? 09

3.0602e ? 09

3.8450e ? 09

3.1099e ? 09

3.8648e ? 08

Bold values indicate the best mean value (i.e., average minimum)
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Fig. 13 The convergence curves for large-scale functions F1–F20
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F9 F10

F11 F12

F13 F14

F15 F16

Fig. 13 continued
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F17

F19

F18

F20

Fig. 13 continued

Table 10 Parameter settings

Method Population FEs Parameters

BAT 30 3�104 Loudness = 0.5, Pulse rate = 0.5, Frequency minimum = 0, Frequency maximum = 2

PSO 30 3�104 c1 = 2.5 to 0.5, c2 = 0.5 to 2.5, w = 0.9 to 0.4

DE 30 3�104 Lower bound of scaling factor = 0.2, upper bound of scaling factor = 0.8, crossover probability = 0.2

AOA 30 3�104 MOP: 0.2–1, Alpha = 5, Mu = 0.499

HHA 30 3 � 104 hb = 0.9, hc = 0.5, sb = 0.1, sc = 0.2, ic = 0.3, da = 0.5, db = 0.2, dc = 0.1, rd = 0.1, and rc = 0.05
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Table 11 Results of 1000 - D CEC’2010 functions

Function Fitness Algorithm

REHHO BAT PSO DE AOA HHA

F1 Best

Median

Worst

Mean

Std

2.6334e ? 09

2.8842e ? 09

3.0811e ? 09

2.8583e 1 09

1.3393e ? 08

8.1920e ? 11

8.6848e ? 11

8.8280e ? 11

8.6279e ? 11

2.0195e ? 10

7.2801e ? 10

8.1627e ? 10

9.7007e ? 10

8.3058e ? 10

8.1725e ? 09

9.1436e ? 09

9.8334e ? 09

1.0501e ? 10

9.8575e ? 09

4.5750e ? 08

1.7666e ? 11

1.8469e ? 11

1.9057e ? 11

1.8458e ? 11

5.7304e ? 09

1.0932e ? 11

1.1305e ? 11

1.2559e ? 11

1.1615e ? 11

7.1356e ? 0

F2 Best

Median

Worst

Mean

Std

1.5968e ? 04

1.6255e ? 04

1.6685e ? 04

1.6285e ? 04

221.9340

3.3933e ? 04

3.4126e ? 04

3.4304e ? 04

3.4128e ? 04

117.0192

1.8561e ? 04

1.9207e ? 04

1.9749e ? 04

1.9174e ? 04

413.7851

1.3561e ? 04

1.3724e ? 04

1.3825e ? 04

1.3714e 1 04

83.5222

1.6800e ? 04

1.6820e ? 04

1.6840e ? 04

1.6819e ? 04

16.8634

1.6718e ? 04

1.6781e ? 04

1.7128e ? 04

1.6847e ? 04

166.2090

F3 Best

Median

Worst

Mean

Std

20.2382

20.5327

20.6923

20.5073

0.1428

20.5806

20.6414

20.6582

20.6323

0.0265

21.2729

21.3183

21.3342

21.3146

0.0189

20.6231

20.7270

20.9378

20.7673

0.1058

20.9388

20.9416

20.9454

20.9419

0.0024

20.9921

21.0046

21.0084

21.0031

0.0065

F4 Best

Median

Worst

Mean

Std

1.2145e ? 13

1.8154e ? 13

2.5972e ? 13

1.8575e 1 13

3.7970e ? 12

1.3747e ? 16

2.2254e ? 16

2.7323e ? 16

2.1821e ? 16

4.5174e ? 15

2.2275e ? 14

2.6180e ? 14

3.6314e ? 14

2.7632e ? 14

4.7843e ? 13

4.1787e ? 14

5.1197e ? 14

6.0705e ? 14

5.1684e ? 14

6.2056e ? 13

8.8284e ? 14

1.0977e ? 15

1.7835e ? 15

1.2728e ? 15

4.4289e ? 14

3.0634e ? 14

3.7229e ? 14

4.0546e ? 14

3.6432e ? 14

4.2287e ? 13

F5 Best

Median

Worst

Mean

Std

4.1407e ? 08

4.5136e ? 08

4.8347e ? 08

4.4886e ? 08

2.5081e ? 07

1.6805e ? 09

1.7357e ? 09

1.7998e ? 09

1.7385e ? 09

4.8769e ? 07

3.9186e ? 08

4.2848e ? 08

4.8385e ? 08

4.3203e ? 08

2.3246e ? 07

4.0647e ? 08

4.3649e ? 08

4.4413e ? 08

4.3096e 1 08

1.4678e ? 07

4.7870e ? 08

6.0494e ? 08

6.3414e ? 08

5.8409e ? 08

6.4493e ? 07

6.5631e ? 08

7.0156e ? 08

7.1827e ? 08

6.9519e ? 08

2.4010e ? 07

F6 Best

Median

Worst

Mean

Std

1.9146e ? 07

1.9211e ? 07

1.9276e ? 07

1.9212e ? 07

3.9172e ? 04

1.9982e ? 07

1.9982e ? 07

2.0000e ? 07

1.9987e ? 07

7.7142e ? 03

1.2002e ? 07

1.3239e ? 07

1.4555e ? 07

1.3167e ? 07

7.2390e ? 05

7.3976e ? 04

3.2774e ? 05

1.4352e ? 06

4.9662e 1 05

4.4267e ? 05

1.9686e ? 07

1.9835e ? 07

2.0073e ? 07

1.9868e ? 07

1.7567e ? 05

1.7861e ? 07

1.9947e ? 07

2.0317e ? 07

1.9248e ? 07

1.2673e ? 06

F7 Best

Median

Worst

Mean

Std

1.3083e ? 09

1.7299e ? 09

2.0005e ? 09

1.7102e 1 09

2.4558e ? 08

2.0432e ? 13

4.6735e ? 13

5.1538e ? 14

1.0400e ? 14

1.4957e ? 14

4.6628e ? 10

6.2946e ? 10

1.5931e ? 11

7.3297e ? 10

3.2527e ? 10

6.0392e ? 10

8.1327e ? 10

1.0211e ? 11

8.1724e ? 10

1.3181e ? 10

5.9279e ? 11

1.2642e ? 12

1.9517e ? 12

1.3035e ? 12

5.5130e ? 11

1.2764e ? 11

1.6919e ? 11

2.5879e ? 11

1.9109e ? 11

6.2565e ? 10

F8 Best

Median

Worst

Mean

Std

4.6868e ? 09

6.2015e ? 09

1.2757e ? 10

6.9842e ? 09

2.5889e ? 09

1.0082e ? 18

1.0712e ? 18

1.1125e ? 18

1.0662e ? 18

3.7550e ? 16

3.0385e ? 14

4.6240e ? 14

9.7152e ? 14

5.6671e ? 14

2.5688e ? 14

2.9923e ? 08

4.0148e ? 08

5.0636e ? 08

3.9180e 1 08

6.7384e ? 07

2.6765e ? 16

3.0181e ? 16

3.1786e ? 16

2.9738e ? 16

1.9547e ? 15

3.5186e ? 15

5.9064e ? 15

8.3792e ? 15

5.6005e ? 15

2.0058e ? 15

F9 Best

Median

Worst

Mean

Std

4.3561e ? 09

4.5738e ? 09

4.8799e ? 09

4.5915e 1 09

1.6658e ? 08

8.9819e ? 11

9.2339e ? 11

9.3707e ? 11

9.2298e ? 11

1.1524e ? 10

6.6803e ? 10

7.5959e ? 10

9.1954e ? 10

7.6976e ? 10

8.8065e ? 09

9.7943e ? 10

1.0200e ? 11

1.1517e ? 11

1.0320e ? 11

5.0416e ? 09

2.0783e ? 11

2.2127e ? 11

2.2824e ? 11

2.2032e ? 11

8.2515e ? 09

1.2854e ? 11

1.3227e ? 11

1.4251e ? 11

1.3331e ? 11

5.5935e ? 09

13620 Neural Computing and Applications (2022) 34:13599–13624

123



Table 11 (continued)

Function Fitness Algorithm

REHHO BAT PSO DE AOA HHA

F10 Best

Median

Worst

Mean

Std

1.6334e ? 04

1.6526e ? 04

1.6897e ? 04

1.6559e ? 04

169.1596

3.6158e ? 04

3.6548e ? 04

3.6681e ? 04

3.6479e ? 04

183.8412

1.8758e ? 04

1.9327e ? 04

1.9866e ? 04

1.9264e ? 04

432.9254

1.5455e ? 04

1.5655e ? 04

1.5844e ? 04

1.5653e 1 04

145.2213

1.6946e ? 04

1.7056e ? 04

1.7207e ? 04

1.7056e ? 04

101.6452

1.6843e ? 04

1.6944e ? 04

1.7287e ? 04

1.6998e ? 04

172.8607

F11 Best

Median

Worst

Mean

Std

221.5103

222.7064

224.8432

222.8913

1.0573

1.5455e ? 04

1.5655e ? 04

1.5844e ? 04

1.5653e ? 04

145.2213

223.7311

227.7812

232.7328

228.0433

2.6885

235.0548

235.3412

235.6772

235.3281

0.1939

228.7676

228.8919

229.2603

228.9525

0.1849

229.6113

230.0050

230.3229

229.9827

0.3204

F12 Best

Median

Worst

Mean

Std

1.9385e ? 06

2.0562e ? 06

2.1350e ? 06

2.0461e 1 06

6.9452e ? 04

2.2378e ? 09

2.8304e ? 09

4.1252e ? 09

2.9619e ? 09

6.0028e ? 08

8.0008e ? 06

9.0053e ? 06

9.6380e ? 06

8.9379e ? 06

6.0593e ? 05

1.1730e ? 07

1.3104e ? 07

1.4362e ? 07

1.3093e ? 07

6.5046e ? 05

1.1215e ? 07

1.4421e ? 07

1.5800e ? 07

1.3817e ? 07

1.8030e ? 06

6.7499e ? 06

7.6562e ? 06

8.1844e ? 06

7.5167e ? 06

5.6543e ? 05

F13 Best

Median

Worst

Mean

Std

1.1077e ? 08

1.3137e ? 08

1.6626e ? 08

1.3441e 1 08

1.5571e ? 07

1.2709e ? 13

1.2883e ? 13

1.2938e ? 13

1.2866e ? 13

6.7440e ? 10

4.3093e ? 11

5.6566e ? 11

7.5955e ? 11

5.6360e ? 11

9.8735e ? 10

8.9269e ? 10

1.0461e ? 11

1.1624e ? 11

1.0477e ? 11

7.4351e ? 09

6.6945e ? 11

6.7833e ? 11

6.8313e ? 11

6.7714e ? 11

5.2862e ? 09

6.6277e ? 11

6.6784e ? 11

6.8071e ? 11

6.6928e ? 11

7.4645e ? 09

F14 Best

Median

Worst

Mean

Std

6.2729e ? 09

6.6919e ? 09

8.0578e ? 09

6.7559e 1 09

5.0437e ? 08

9.0032e ? 11

9.2654e ? 11

9.3724e ? 11

9.2284e ? 11

1.2867e ? 10

5.8034e ? 10

7.0696e ? 10

7.9735e ? 10

7.0374e ? 10

6.6447e ? 09

1.5575e ? 11

1.6093e ? 11

1.6536e ? 11

1.6057e ? 11

3.2319e ? 09

2.3567e ? 11

2.3947e ? 11

2.6200e ? 11

2.4443e ? 11

1.0479e ? 10

1.4172e ? 11

1.4433e ? 11

1.6292e ? 11

1.4773e ? 11

8.6053e ? 09

F15 Best

Median

Worst

Mean

Std

1.6416e ? 04

1.6534e ? 04

1.6927e ? 04

1.6568e 1 04

145.8575

3.4679e ? 04

3.4896e ? 04

3.5081e ? 04

3.4896e ? 04

116.2722

1.8985e ? 04

1.9517e ? 04

1.9770e ? 04

1.9503e ? 04

217.1941

1.6483e ? 04

1.6919e ? 04

1.7140e ? 04

1.6870e ? 04

230.8942

1.6628e ? 04

1.6770e ? 04

1.6945e ? 04

1.6788e ? 04

115.2534

1.6793e ? 04

1.6952e ? 04

1.7109e ? 04

1.6962e ? 04

137.9735

F16 Best

Median

Worst

Mean

Std

404.9208

409.7903

410.9187

409.1372

1.7926

411.5244

412.4078

413.3157

412.4006

0.5727

420.8667

423.6429

425.6089

423.4740

1.6473

428.9731

429.2859

429.5783

429.2628

0.1800

416.3841

416.8878

417.0327

416.7921

0.2488

418.8719

419.4299

419.5139

419.3333

0.2649

F17 Best

Median

Worst

Mean

Std

2.7638e ? 06

2.9555e ? 06

3.1423e ? 06

2.9464e 1 06

1.1326e ? 05

4.8625e ? 09

6.3958e ? 09

7.7926e ? 09

6.3036e ? 09

9.4376e ? 08

1.3717e ? 07

1.5410e ? 07

1.6907e ? 07

1.5218e ? 07

9.9786e ? 05

2.4597e ? 07

2.7451e ? 07

3.0764e ? 07

2.7800e ? 07

1.9342e ? 06

3.2326e ? 07

4.1700e ? 07

5.2378e ? 07

4.0235e ? 07

8.1691e ? 06

1.3599e ? 07

1.5993e ? 07

1.6212e ? 07

1.5448e ? 07

1.0856e ? 06

F18 Best

Median

Worst

Mean

Std

2.4614e ? 09

2.7451e ? 09

3.1012e ? 09

2.7693e 1 09

2.0060e ? 08

2.5509e ? 13

2.5680e ? 13

2.5809e ? 13

2.5679e ? 13

1.1376e ? 11

2.6656e ? 12

2.9985e ? 12

3.4511e ? 12

3.0392e ? 12

2.2922e ? 11

7.8896e ? 11

8.5376e ? 11

9.0947e ? 11

8.4958e ? 11

3.9012e ? 10

1.4444e ? 12

1.4519e ? 12

1.4572e ? 12

1.4513e ? 12 4.6140e ? 09

1.4367e ? 12

1.4437e ? 12

1.4579e ? 12

1.4450e ? 12

8.8728e ? 09
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Table 11 (continued)

Function Fitness Algorithm

REHHO BAT PSO DE AOA HHA

F19 Best

Median

Worst

Mean

Std

7.4615e ? 06

1.0164e ? 07

1.3475e ? 07

1.0020e 1 07

1.7817e ? 06

4.4343e ? 10

2.1524e ? 11

1.0737e ? 12

3.0652e ? 11

3.0170e ? 11

2.5408e ? 07

3.0163e ? 07

3.3165e ? 07

3.0359e ? 07

2.2188e ? 06

4.3615e ? 07

5.4726e ? 07

6.0344e ? 07

5.3491e ? 07

4.7828e ? 06

4.5429e ? 07

5.7205e ? 07

1.0451e ? 08

6.9834e ? 07

2.5767e ? 07

3.2616e ? 07

4.0733e ? 07

4.2488e ? 07

3.8587e ? 07

4.0426e ? 06

F20 Best

Median

Worst

Mean

Std

2.7733e ? 09

3.0091e ? 09

3.2906e ? 09

3.0219e 1 09

1.8120e ? 08

2.6682e ? 13

2.6791e ? 13

2.6862e ? 13

2.6773e ? 13

5.8015e ? 10

2.6541e ? 12

3.4566e ? 12

3.8441e ? 12

3.3432e ? 12

3.6053e ? 11

8.2017e ? 11

8.4314e ? 11

9.2415e ? 11

8.5322e ? 11

3.6249e ? 10

1.6122e ? 12

1.6327e ? 12

1.6350e ? 12

1.6288e ? 12

9.4358e ? 09

1.6243e ? 12

1.6272e ? 12

1.6453e ? 12

1.6318e ? 12

9.0083e ? 09

Bold values indicate the best mean value (i.e., average minimum)

Table 12 The p - values of
statistical t - test

Function HHO REHHO BAT PSO DE AOA HHA

F1 0.0049 0.0000 0.0000 0.0000 0.0000 0.0000

F2 0.0036 0.0000 0.0000 0.1725 0.0000 0.0000

F3 0.0015 0.0000 0.0000 0.0002 0.0000 0.0000

F4 0.0140 0.0000 0.0000 0.0000 0.0000 0.0000

F5 0.0000 0.0000 0.1370 0.9669 0.0000 0.0000

F6 0.0672 0.0000 0.0000 0.9004 0.0000 0.0000

F7 0.0021 0.0412 0.0000 0.0000 0.0000 0.0000

F8 0.0025 0.0000 0.0000 0.3267 0.0000 0.0000

F9 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000

F10 0.0012 0.0000 0.0000 0.4640 0.0000 0.0000

F11 0.0048 0.0277 0.0000 0.0000 0.0000 0.0000

F12 0.0023 0.0000 0.0000 0.0000 0.0000 0.0000

F13 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000

F14 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000

F15 0.0012 0.0000 0.0000 0.0026 0.0000 0.0000

F16 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000

F17 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000

F18 0.0033 0.0000 0.0000 0.0000 0.0000 0.0000

F19 0.0021 0.0048 0.0000 0.0000 0.0000 0.0000

F20 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000

Bold values indicate the best mean value (i.e., average minimum)

Table 13 The detailed settings of the PC

Item Settings

CPU i7 - 8700

Frequency 3.2 GHz

RAM 32 GB

Hard drive 512 GB SSD

Operating system Windows 10

Language MATLAB 2021a

Table 14 Computational time analysis

HHO REHHO

Time (second) 324 358
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