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Abstract
This study investigates a Novel Hybrid Informational model for the prediction of creep and shrinkage deflection of

reinforced concrete (RC) beams containing different percentages of ground granulated blast furnace slag (GGBFS) at

different ages, varying from 1 to 150 days. The percentage of cement replacement by GGBFS varies from 20 to 60%. In

order to examine the effects of the applied load and tensile reinforcement on creep behavior, the magnitude of two-point

loading was varied from 200 kg to a maximum of 350 kg while the percentage of tensile reinforcement (q) was selected as

either 0.77% or 1.2%. The current situation about short-term and long-term deflections due to creep and shrinkage available

in the international standards, including ACI, BS and Eurocode 2, is discussed. The results indicate that RC beams

containing GGBFS have larger deflections than the ones with conventional concrete (i.e., ordinary Portland cement

concrete). After 150 days, the average creep deflection of RC beams containing 20, 40, and 60% GGBFS was 30, 70, and

100% higher than the ones for conventional concrete beams, respectively. A hybrid artificial neural network coupled with a

metaheuristic Whale optimization algorithm has been developed to estimate the overall deflection of concrete beams due to

creep and shrinkage. Several statistical metrics, including the root mean square error and the coefficient of variation,

revealed that the generalized model achieved the most reliable and accurate prediction of the concrete beam’s deflection in

comparison with international standards and other models. This novel informational model can simplify the design

processes in computational intelligence structural design platforms in future.
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1 Introduction

The worldwide construction of various types of structures

relies heavily on concrete. Nevertheless, the presence of

ordinary Portland cement (OPC) as a binder constituent in

concrete is still a major concern because of the significant

carbon dioxide (CO2) emissions and embodied energy

associated with it. Cement production accounts for

approximately 7% of the global CO2 emissions produced

by the construction industry [1–5]. To alleviate this prob-

lem, scientists, engineers, and researchers have been con-

tinuously dedicating their efforts in developing novel and

more sustainable construction materials using alternative

types of binders.

Recently there has been increasing research and pro-

duction of green concrete, an eco-friendly alternative to

ordinary Portland cement concrete (OPCC) [6, 7]. Vast

quantities of industrial by-products are produced annually,

and instead of treating them as waste material, these by-

products can be used in the concrete industry, to produce

the so-called green concrete. Many industrial by-products

have been reported in the literature. Ground granulated

blast furnace slag (GGBFS) -based concrete has received

much attention because of its favorable properties, such as

rapid strength gain, sulphate and acid attack resistance. The

application of GGBFS as a binder constituent in concrete

increases its compressive strength. This is due to the

improvement of the structuring of poorly arranged

microstructure, effects of pores filling, and twin creations

formed during calcium silicate hydrate (C–S–H) gels, and

extremely polymerized units of alkali-activation [8–10].

Although green concrete is a potential alternative as a

sustainable construction material, the current application of

green concrete in the construction industry is limited,

possibly due to the lack of relevant design standards. Long-

term deflections generated by drying shrinkage and creep

in reinforced concrete (RC) beams pose a significant

problem and need to be determined accurately. The long-

term deflection of concrete under loading is referred to as

creep, while the deformation of unloaded concrete is

referred to as shrinkage. The four main types of shrinkage

are autogenous shrinkage (caused by self-desiccation dur-

ing concrete hydration), plastic shrinkage (caused by

moisture loss from the concrete before setting), carbonation

shrinkage (caused by the chemical reactions between

hydrated concrete and CO2 in the atmosphere), and drying

shrinkage (as a result of the long-term dehydration of

concrete over a long period). Shrinkage and creep are

crucial to the long-term serviceability, long-term stability,

durability, and safety of concrete structures. Although

these long-term mechanical properties are fundamental

from a structural design point of view, far too little research

has been conducted on evaluating the drying shrinkage and

creep behavior of RC beams containing industrial

byproducts admixtures, such as GGBFS.

Previous research has shown that these long-term

mechanical properties vary with the mix proportion, types

of binder materials, and concrete curing method [11–13].

Hardjito et al. [14] tested fly ash-based geopolymer con-

crete (GPC) where the results confirmed low creep and

slight drying shrinkage. In another experimental study,

Collins and Sanjayan [15] suggested that larger creep and

drying shrinkage can be achieved by alkali-activated slag

concrete, compared to OPCC. Li and Yao’s study [16] of

the effects of silica fume and ultra-fine GGBFS on the

drying shrinkage and creep characteristics of high-perfor-

mance concrete suggested that GGBFS/silica fume

improved concrete drying-shrinkage and achieved creep

values that were relatively lower than the ones of tradi-

tional high-strength concrete. The effect of curing methods

such as compound curing, moist curing, and air-dry curing

on autogenous and drying shrinkage in normal and light-

weight high-performance concrete was investigated by

Nassif et al. [17]. The results of this study confirmed that

the moist curing method after concrete casting improves

the autogenous-shrinkage performance. In addition, in

concrete mixes with very low water to binder ratios, both

light-weight aggregates and fly ash were found to improve

the autogenous shrinkage. The autogenous shrinkage in

OPCC and silica-fume concrete with different water to

binder ratios and silica-fume contents was investigated by

Zhang et al. [18]. They concluded that autogenous

shrinkage rose with increasing silica-fume content and

decreasing water to binder ratios. In addition, the autoge-

nous shrinkage strains of silica-fume concrete with low

water to binder ratios developed more rapidly than the ones

of the other specimens. The development of drying

shrinkage and strength in self-consolidating concrete con-

taining GGBFS, fly ash, silica fume, and metakaolin was

investigated by Güneyisi et al. [19]. The results of the study

confirmed that increasing fly ash content led to a slight

reduction in the compressive strength, while specimens

prepared with silica-fume and metakaolin provided higher

compressive strength. In addition, replacing OPC with fly

ash, GGBFS, and metakaolin reduced the drying shrinkage

of self-consolidating concrete, while replacing PC with

silica-fume increased the drying shrinkage. The effects of

paste volume and cement type on the compressive strength,

elastic modulus, creep, drying shrinkage, and stress

development in self-consolidating concrete were investi-

gated by Leemann et al. [20]. They concluded that these

two variables influence creep and shrinkage significantly.

Using experimental tests and analytical approaches, Huo

et al. [21] investigated the modulus of elasticity, creep, and

shrinkage of high-performance concrete. They concluded
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that the shrinkage and creep of high-performance concrete

were lower than the ones of OPCC and developed very

rapidly, at early stages.

During the last decade, several authors have studied the

time-dependent deflection of RC members. Zhou and

Kokai [22] developed a simplified method to estimate the

incremental deflection of RC members. They developed a

methodology to estimate the incremental long-term

deflection based on the recommendations of the Canadian

design code. Mari et al. [23] developed a simplified tech-

nique for estimating the time-dependent deflection of RC

beams. They considered constant stress in the tensile

reinforcement subjected to sustained loading, the influence

of exposure conditions, compressive strength, and the

effect of compression reinforcement. In other studies,

Mendis et al. [24] examined the long-term deflection

behavior of composite steel–concrete beams, Xu et al. [25]

developed a methodology for calculating shrinkage and

creep deflections of RC beams, Hariche et al. [26] inves-

tigated the flexural performance of concrete beams, while

Mias et al. [27] investigated the long-term performance of

concrete beams with GFRP reinforcement for a period of

250 days. Shariq et al. [28] performed an experimental

investigation to examine the effect of magnitude of sus-

tained loading on long-term deflection of RC beams. In

another experimental study conducted by Shariq et al.

[29, 30], the effect of GGBFS on the long-term deflection

of simply supported RC beams under two-point sustained

load was examined. A comprehensive experimental study

was conducted to examine the creep and shrinkage

deflection of RC beams containing GGBFS as a partial

replacement of cement by testing RC beams of three design

mixes, two percentages of tensile reinforcement, and dif-

ferent magnitudes of sustained loading. Un [31] investi-

gated the time-dependent behavior of geopolymer RC

beams, while Mias et al. [27] tested RC beams with dif-

ferent percentages of GFRP and steel rebars subjected to

sustained loads.

Several researchers have employed artificial intelligence

techniques to estimate the creep and shrinkage deflection of

reinforced concrete structures. A new computational

framework for Bayesian inference regarding the long-term

deflection of concrete structures was proposed by Han et al.

[32]. The importance-sampling technique and the response

surface method were involved in improving the efficiency

and stability of the computation. Al-Zwainy et al. [33]

investigated the use of ANNs to predict the time-dependent

deflection of reinforced concrete beams and compared their

predictions with the ones obtained by several existing time-

dependent deflection experimental data. They concluded

that to accurately predict the time-dependent deflections at

any time of the service life of concrete beams, the effect of

several parameters, such as concrete compressive strength,

the ratio of flexural reinforcement, environmental condi-

tion, creep coefficient, and shrinkage strain, should be

considered. Zhu and Wang [34] proposed models of creep

and shrinkage based on convolutional neural networks

where the performance was verified by using 906 sets of

creep experiment data and 1114 sets of shrinkage experi-

ment data in the Northwestern University database. Over

simulating creep and shrinkage in simply supported rein-

forced concrete beams, the comparison results of long-term

deformation showed that the maximum error was caused

by various factors such as environmental fluctuations and

the error of models. Nguyen et al. [35] developed a hybrid

data-driven method that employs the extreme gradient

boosting machine and the particle swarm optimization

metaheuristic to predict long-term deflections of rein-

forced-concrete members. A machine learning technique

generalizes a nonlinear mapping function that helps infer

long-term defection results from the input data whereas, a

swarm-based metaheuristic aims at optimizing the machine

learning model by fine-tuning its hyper-parameters.

Although various models have been developed to predict

the creep and shrinkage of concrete, more accurate and

reliable prediction methods are still needed as the precise

estimation of these parameters can significantly enhance

the effectiveness of structural maintenance processes.

Real-world engineering problems are required to be

solved today as the world is shifting very fast in techno-

logical features [36]. The majority of these problems are

high-dimensional and challenging global optimization

problems [37], making them extremely hard to solve as an

increase in the problem’s dimensionality rapidly increases

the size of the search space [38]. Gradient-based and other

traditional optimization techniques have proven ineffective

in solving these complex problems for several reasons,

including the so-called ‘‘curse of dimensionality’’. Fur-

thermore, searching using the gradient-based techniques

for engineering problems with the local solution is rela-

tively time-consuming as these techniques rely on and

depend on the position of an initial point [39]. All these

drawbacks have encouraged researchers to develop new

novel optimization approaches such as metaheuristics or

hybrid methodologies [40] to optimize real-world engi-

neering problems [41]. Metaheuristic optimization algo-

rithms are becoming more and more prevalent in

engineering applications as they: (i) are rather easy to

implement and rely on relatively simple concepts; (ii) can

avoid local optima; (iii) do not require gradient informa-

tion; and (iv) can be applied in a wide range of problems

covering different disciplines. Whale Optimization Algo-

rithm (WOA) is an optimization algorithm developed by

Mirjalili and Lewis [42]. As a swarm intelligence algorithm

proposed for handling continuous optimization problems,

WOA has shown remarkably good performance in a variety
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of problems. WOA is inspired by the hunting attitude of the

humpback whales, where each solution is thought to be a

whale. In this solution, a whale tries to replete a new place

in the search space, considered the best element of the

group as a reference. Whales have used two mechanisms

for searching the prey location and attack. In the first

strategy, preys are encircled, and subsequently, the whale

creates bubble nets following the second strategy [43].

More recent research has focused on experimentally

evaluating the creep and shrinkage deflection of RC beams

with and without admixtures. Only limited information is

available on the prediction of creep and shrinkage deflec-

tion of RC beams containing GGBFS. The predicted

models can play an important role in improving the design

and reducing construction time. Therefore, to address the

issue of limited information in the literature on the pre-

diction of long-term deflection of green concrete (i.e.,

GGBFS based concrete), a hybrid artificial neural network

coupled with a metaheuristic Whale optimization algorithm

(WOA) was proposed to estimate the overall deflection

(i.e., sum of instantaneous or elastic, creep and shrinkage)

of RC beams containing GGBFS. Experimental data on the

creep and shrinkage deflection of RC beams containing

GGBFS, presented in earlier studies of the authors [29, 30],

have been used for the analysis and the development of the

prediction model. The current situation about short-term

and long-term deflections due to creep and shrinkage

available in international standards is also discussed in

detail. The proposed hybrid artificial neural network model

considers various key RC beam parameters. Several sta-

tistical metrics have been used for ensuring the robustness

and reliability of the proposed methodology against test

results and international standard models.

2 State of the art

2.1 Existing methods for estimating long-term
deflection of RC beams due to creep
and drying shrinkage

This section presents the current state of the art and

investigates the empirical equations recommended by

international standards for estimating short and long-term

deflections of RC beams due to creep and drying shrinkage.

2.1.1 Short-term deflection

The short-term deflection is defined as the initial elastic

deflection produced by the instantaneously applied load. If

the magnitude of the sustained load is low, the section is

considered uncracked, and therefore the elastic theory can

be used to estimate the short-term deflection as follows.

di ¼
Pa

24EcIg
3l2 � 4a2
� �

ð1Þ

where P is the magnitude of the concentrated load applied

on the beam, a is the distance between the support and the

concentrated load, Ec is the modulus of elasticity of con-

crete at the loading age, Ig is the gross moment of inertia of

the RC beam cross section, and l is the effective span of the

beam.

The cross section properties of the RC beam with overall

depth D and width b are given in Table 1 for the different

standards.

In the formulas of Table 1, fc is the cube compressive

strength at 28 days, fc
0
is the cylinder compressive strength

at 28 days, K0 is a constant related to the modulus of

elasticity of aggregate, taken as 20 kN/mm2 for normal

strength concrete, z is the lever arm, x is the depth of

neutral axis, d is the effective depth, As is the area of

tension steel, ae is the modular ratio, yt is the distance from

the neutral axis to the extreme tension face, and M is the

maximum moment under service load.

2.1.2 Long-term deflection

The procedure to estimate the drying shrinkage and creep

deflection recommended by different design codes is dis-

cussed in this section.

2.1.2.1 American Concrete Institute (ACI 318-19) Fol-

lowing ACI 318-19 [44], additional time-dependent

deflection resulting from creep and shrinkage of flexural

members shall be calculated as the product of the imme-

diate deflection caused by sustained load and the factor kD
given by

kD ¼ k
1 þ 50q0

ð2Þ

where k is the time-dependent multiplier given in Table 2,

and q0 is the ratio of As
0 to bd. Eq. (2) was developed by

Branson and Christiason [47], where the term (1 ? 50q0)
accounts for the effect of compression reinforcement in

reducing the time-dependent deflections.

2.1.2.2 British Standard (BS 8110) The BS 8110 standard

[45] considers the classical modular ratio method to esti-

mate the long-term deflection due to creep, excluding

shrinkage effects [48], as follows

dc ¼ Kl2
1

rc
ð3Þ

where K is a constant depending on the support condition,

and 1/rc is the curvature due to creep, which can be com-

puted as M
Eeff Ig

.
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BS 8110 recommends the following equation to estimate

the deflection due to shrinkage, using the moment–curva-

ture relationship theorem.

ds ¼ Kl2
1

rs

ð4Þ

where 1=rs is the curvature due to shrinkage, calculated by

1

rs

¼ esaesu

Ig
ð5Þ

where es is the free shrinkage strain, Su is the first moment

of area of the reinforcement about the centroid of the

section, As(d - x), I is the second moment of area of the

section, and ae is the effective modular ratio, Es

Eeff
.

2.1.2.3 Eurocode 2 (EN 1992-1-1:2004) Eurocode 2 [46]

considers the curvature method to estimate the long-term

deflection resulting from creep and shrinkage, using the

following equation

dt ¼ Kl2
1

rt

ð6Þ

where 1=rt is the total curvature due to creep and shrink-

age, equal to 1
rc
þ 1

rs
; defined in Eqs. (3) and (5).

2.2 Experimental program

The experimental data on the creep and shrinkage deflec-

tion of RC beams containing GGBFS, presented in earlier

studies of the authors [29, 30], have been used for the

analysis and the development of the prediction model of

the present study.

2.2.1 Materials and sample preparation

The locally available river sand retained on IS sieve #15

(150-micron size) and passing through IS sieve #480

(aperture 4.75 mm square) was selected as fine aggregate,

according to IS 383 [49]. The crushed stone aggregate

prepared from quartzite rock with a maximum nominal size

of 16 mm was selected as coarse aggregate. The physical

properties of the fine and coarse aggregates are presented in

Table 3.

OPC grade 43, in accordance with IS 4031 [50] and the

GGBFS procured from the Indorama cement industry,

Raipur, Maharashtra, India in compliance with IS 8112

[51], were selected as concrete binders in the experiments.

The mechanical properties of the selected aggregates (in-

cluding setting time, compressive strength), OPC, and

GGBFS addressed the requirements of the relevant code

specifications, including IS 383 [49], IS 456 [52], IS 4031

[50], and IS 12089 [53]. For the tensile reinforcement,

thermo-mechanically treated (TMT) steel rebars with 8 and

10 mm nominal diameter, 445 MPa yield strength, and

561 MPa ultimate strength were used.

Table 1 Cross section properties of RC beam

Design code Modulus of elasticity of concrete,

Ec (MPa)

Moment of inertia (MI) of RC beam section Cracking

moment, Mcr

Modulus of rupture of

concrete, f cr

ACI 318-19

[44]
Ec ¼ 4700

ffiffiffiffi
f 0c

p
Effective MI

Ieff ¼ Mcr

M

� �3
Ig þ 1 � Mcr

M

� �3
� �

Icr

Mcr ¼ fcrIg
yt

fcr ¼ 0:62
ffiffiffiffi
f 0c

p

BS 8110

[45]

Ec ¼ K0 þ 0:2fc Cracked MI

Icr ¼ 0:34bx3 þ aeAsðd � xÞ2

Un-cracked MI

Ig ¼ bD3

12
þ bD D

2
� x

� �2þaeAsðd � xÞ2

– –

Eurocode 2

[46]
Ecð Þ28¼ 9:975 fc þ 8ð Þ0:33 Cracked MI

Icr ¼ bx3

3
þ aeAsðd � xÞ2

Un-cracked MI

Ig ¼ bD3

12
þ bD D

2
� x

� �2þðae � 1ÞAsðd � xÞ2

Mcr ¼ fcrIg
h�xu

fcr ¼ 0:3f 0:67
c

Table 2 Time-dependent factor for sustained loads recommended by

ACI 318

Duration of sustained load (days) Time-dependent multiplier, k

10 0.11

30 0.36

90 1.00

120 1.13

150 1.17
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2.2.2 Mixture proportions

In the experiments, three groups of concrete mixes desig-

nated as M1, M2 and M3 (with four mixes in each group)

were prepared by varying the percentages of binder mass,

as shown in Table 4 and considered in earlier studies by the

authors [54]. In each group, the fine aggregate to coarse

aggregate ratio was kept constant at 0.6 to address the

maximum density of combined aggregate, while the water

to binder ratio varies between 0.45 to 0.55. Three OPCC

mixes are considered, designated as M10, M20 and M30,

with 28 days cube (150 mm) compressive strength of

46.51, 37.03 and 27.09 MPa, respectively. The OPC was

replaced by 20, 40, and 60% GGBFS in OPCC mixes to

prepare GGBFS based modified concretes. The Mix ID in

Table 4 (for example, M32) is defined as follows: the first

term (M1) represents the mix group (1, 2, or 3), the second

term (2 in M32) indicates the percentage replacement of

GGBFS where 0 means 0% GGBFS, 1 means 20%

GGBFS, 2 means 40% GGBFS and 3 means 60% GGBFS.

2.2.3 Test specimens and loading protocol

Figure 1 shows the geometry of the tested specimens and

the test setup for the measurement of the long-term

deflection due to shrinkage and creep. Two OPCC beams

of each mix group (M10, M20, and M30) of size

100 9 150 9 1800 mm (B 9 D 9 L) were tested to

determine the first crack load. The first crack load and the

ultimate load carrying capacity of the specimens are pre-

sented in Table 5, where the sustained load for creep

deflection of GGBFS modified concrete was taken as 25%

of these first crack loads.

To record the creep deflection, the sustained two-point

load was applied on the RC beams of size

100 9 150 9 1800 mm (B 9 D 9 L) at the age of

28 days using different weight of blocks of concrete, as

shown in Fig. 1. The schematic diagram of RC beam

geometry and reinforcement detailing is also shown in

Fig. 1. To measure the mid-span deflection, a dial gauge

with a least count of 0.01 mm was mounted at the mid-

span of the RC beam. The position of the specimens during

the test was controlled in a regular basis and the tests were

performed at ambient temperature (27 ± 2 �C) with rela-

tive humidity 60–65%. Once the sustained two-point load

Table 3 Physical properties of

fine and coarse aggregates
Characteristic Fine aggregate Coarse aggregate

Grading Zone-II of (IS 383) [49] –

Fineness modulus 2.45 6.8

Specific gravity 2.61 2.63

Density (Loose) (kN/m3) 15.4 14.3

Water absorption (%) 0.85 1.5

Table 4 Concrete mix properties [54]

Mix

group

Mix

ID

GGBFS

replacement (%)

Cement

(kg/m3)

GGBFS

(kg/m3)

FA (kg/

m3)

CA (kg/

m3)

w/

b ratio

Slump

(mm)

CF 28-day cube compressive

strength (MPa)

M1 M10 0 400 0 665 1107 0.45 41 0.90 46.51

M11 20 320 80 43 0.90 38.38

M12 40 240 160 49 0.92 35.22

M13 60 160 240 51 0.91 30.14

M2 M20 0 350 0 680 1132 0.50 46 0.91 37.03

M21 20 280 70 45 0.91 32.96

M22 40 210 140 51 0.92 30.93

M23 60 140 210 54 0.90 26.87

M3 M30 0 320 0 688 1145 0.55 51 0.92 27.09

M31 20 256 64 53 0.93 24.51

M32 40 192 128 59 0.95 22.80

M33 60 128 192 61 0.96 18.97

FA Fine aggregate, CA coarse aggregate, w/b water to binder ratio, CF compaction factor
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was applied on the beams, the corresponding deflection

was immediately recorded. The creep deflection was

recorded at the time of 1, 3, 7, 14, 21, 30, 60, 90, 120, and

150 days after applying the sustained two-point load. No

sign of cracking was observed in the specimens during the

sustained loading test. To examine the effect of the tensile

reinforcement percentage, a similar series of tests with the

same beam geometry and loading protocol was performed;

however, the reinforcement percentage q was increased

from 0.77% (two 8 mm rebars) to 1.21% (two 10 mm

rebars).

2.3 Discussion on the shrinkage and creep
deflection of RC beams based
on the experiment

All tested beams are unsymmetrical with respect to their

centroid since the reinforcement rebars were only mounted

at the bottom of the sections. Therefore, concrete in the

compression zone shrunk more than the one in the tension

zone, resulting in a downwards deflection. Figure 2 shows

the development of shrinkage and creep deflection at dif-

ferent ages for all three mix designs with 8 mm rebars.

Figure 3 shows the same for all three mix designs with

10 mm rebars. Considering specimens with 8 mm rebars,

the same behavior was observed where the rate of the

overall deflection was increased by increasing the GGBFS

replacement. By increasing q from 0.77% (two 8 mm

rebars) to 1.21% (two 10 mm rebars), the overall deflection

increased in all mix groups by an average of 17% due to an

increase in the first crack load carrying capacity. Such an

increase is more evident in design mixes that contain high

content GGBFS (i.e., M13, M23, and M33).

A detailed description of the experimental setup and the

corresponding test results can be found in some other

works by the authors [29, 30]. The following points sum-

marize the observations made in the experiments:

(i) On average, shrinkage was responsible for around

12% of the overall deflection of RC beams

regardless of the binder constituents.

(ii) The shrinkage and creep deflection of all tested

specimens increased with time. However, the rate

of the overall deflection increased by increasing

the GGBFS replacement. At the age of 150 days,

the overall deflection of mix design M13 in the M1

mix group containing 60% GGBFS was 72%

higher than the OPCC-based beam.

(iii) On average, 70% of the shrinkage deflection at the

age of 150 days was achieved within 60 days,

while this percentage increased to 73% for the

creep deflection.

(iv) Decreasing the OPC content by 20% and increas-

ing the water to binder ratio by 22% (mix group 1

to mix group 3) led to an increase in the overall

deflection by 40% in OPCC based beam and by an

average of 30% in GGBFS modified concrete

beams. In other words, the creep and shrinkage

deflection are inversely proportional to the com-

pressive strength of concrete.

Fig. 1 a Creep and shrinkage deflection testing setup, b Specimen’s geometry and reinforcement detailing

Table 5 First crack load and ultimate capacity of OPCC beams [29]

Mix Average load at first crack (t) Average ultimate load (t)

M10 1.2 2.1

M20 1.0 1.8

M30 0.8 1.5
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3 Developing informational models
to estimate the overall deflection of RC
beams

To develop a reliable model for estimating the overall

deflection of RC beams as a result of creep and shrinkage,

it is imperative to elucidate the physical phenomena and

the underlying mechanisms associated with the key geo-

metrical and mechanical parameters involved. This study

investigates the development of an informational model

based on a hybrid ANN coupled with a Whale optimization

algorithm. Using the comprehensive experimental dataset

developed in this study, an informational model is devel-

oped to estimate the overall deflection as a result of creep

and shrinkage determined by the fundamental geometrical

and mechanical input parameters (GGBFS content, fc
0
,

magnitude of the sustained load, area of tensile reinforce-

ment, and time). ANN is a data processing system that

learns from experience and can generalize its knowledge to
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Fig. 2 Time-dependent shrinkage and creep deflection of RC beams

with 8 mm rebars for different mix groups: a M1, b M2, c M3
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Fig. 3 Time-dependent shrinkage and creep deflection of RC beams

with 10 mm rebars for different mix groups: a M1, b M2, c M3
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new data, unfamiliar to the model [55–57]. Inspired by the

structure of the biological brain, ANN comprises a group of

neurons that operate locally to solve a particular problem.

Neural networks acquire knowledge through learning via a

simplified human brain-like approach in customary com-

putations that capture the underlying mechanisms in a

dataset. The multilayer feed-forward network used in this

study is a reliable and commonly used ANN architecture

[58]. The multilayer feed-forward network comprises three

types of layers: the input layer where the data are intro-

duced to the model; the hidden layer(s) where the network

processes the data; and subsequently, the output layer

where the network results are obtained as outputs. Each

layer consists of a group of nodes referred to as neurons

that are connected to the neurons of the previous and the

next layers. The neurons in the output and the hidden layers

consist of three elements: an activation function, weights,

and biases. Standard and commonly used activation func-

tions include the nonlinear sigmoid functions (logsig,

tansig) and linear functions (poslin, purelin) [59]. Training

algorithms aim to optimize the weight and bias values by

minimizing an error function. The backpropagation (BP)

algorithm is one of the most reliable and widely used ANN

training algorithms [60, 61].

3.1 Whale optimization algorithm

The Whale optimization algorithm (WOA) is a meta-

heuristic optimization algorithm, imitating the hunting

mechanism of humpback whales in the ocean, and was

proposed by Mirjalili and Lewis [42]. The bubble-net

feeding method employed by humpback whales is con-

sidered one of the most intelligent hunting techniques, as

explained by Watkins and Schevill [62]. Humpback whales

are interested in hunting small fish or schools of krill that

swim close to the water surface. It has been observed that

the hunting is done by creating distinctive bubbles along a

9’-shaped path or circle, as shown in Fig. 4a. Before 2011,

this hunting behavior was only examined via surface

observation. Goldbogen et al. [63] was the first to explore it

utilizing tag sensors. They recorded 300 tag-derived bub-

ble-net feeding events from nine individual humpback

whales. They observed two maneuvers associated with

producing bubbles: upward-spirals and double-loops. In the

upward-spirals maneuver, humpback whales dive around

12-m down in the water, begin to produce bubbles in a

spiral shape over the prey and then swim up to the water

surface. The double-loop maneuver includes three dis-

tinctive phases: coral loop, lobtail, and capture loop.

Detailed information about this hunting technique can be

found in [63]. The spiral bubble-net feeding maneuver is

mathematically simulated to perform optimization in this

study [64]. A flowchart of the method is presented in

Fig. 4b.

3.2 Production of training and testing data sets

To predict the creep and shrinkage deflection of RC beams

containing different percentage of GGBFS at different ages

(varying from 1 to 150 days), a dataset consisting of three

mix designs was developed as discussed in a previous

section. As mentioned earlier, the independent input

parameters are the following: GGBFS content; compres-

sive strength (fc
0
); magnitude of sustained load; area of

tensile reinforcement; and time, forming a 5 9 1 matrix

while the dependent output parameter (the overall deflec-

tion i.e., summation of instantaneous ? shrinkage ? creep

deflection) is a scalar value (1 9 1 matrix). The minimum

and maximum values for each input variable along with

other statistical properties are reported in Table 6, where

STD stands for Standard Deviation.

In statistics, any statistical relationship, whether causal

or not, between two random variables is called correlation

or dependency. In the broadest sense, correlation refers to

the degree to which a pair of parameters are linearly

associated. A correlation matrix is a table that provides the

correlation coefficients among the various input variables.

Figure 5 shows the correlation matrix for the 6 (5 input and

1 output) variables of the study. Considering the range of

data for each variable and to avoid any divergence in the

results, the variables were first normalized in the range of

- 1 to 1 using the following equation:

Xn ¼
2ðX � XminÞ
Xmax � Xmin

� 1 ð7Þ

where Xn is the normalized value of the variable in the

region [- 1, 1], Xmax is the maximum value of X, and Xmin

is its minimum value. X is the original (non-normalized)

value of the variable.

The statistical behavior of the output parameter (the

overall deflection) needs to be evaluated. For this purpose,

a distribution plot is constructed as shown in Fig. 6. This

plot reveals that the overall deflection is mainly distributed

in the range of 0.5–2 mm.

A trial-and-error method is often employed to obtain the

most efficient ANN model architecture that best reflects the

characteristics of the experimental test data. In the present

study, the number of neurons in the hidden layers is

determined according to Eq. (8) [65, 66], where NH is the

number of neurons in the hidden layer(s), NI is the number

of input variables (i.e., 5) and NTR is the number of training

samples in the database (i.e., 70% out of 264 samples).
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Fig. 4 a Spiral bubble-net

feeding maneuver of humpback

whales, and b optimization

flowchart using WOA

Table 6 Input and output

variables’ properties
Parameter Unit Type Min Max Average STD

GGBFS content % Input 0 60 30 22.4032

28-day cube compressive strength, fc MPa Input 18.97 46.51 30.9508 7.31785

Area of tensile reinforcement mm2 Input 100.5 157.08 128.79 28.3437

Sustained two-point load kg Input 200 350 275 47.9623

Time (age) days Input 0 150 45.0909 50.3955

Creep ? Shrinkage (C ? S) mm Output 0.41 3.71 1.55708 0.765

Fig. 5 Correlation matrix for

the 6 variables (5 input and 1

output variables)
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NH � min 2NI þ 1;
NTR

NI þ 1

� �
ð8Þ

Since the number of input variables is 5, the empirical

equation reveals that the number of neurons in the hidden

layers should be less than 11. Therefore, several networks

with different topologies, with a maximum of two hidden

layers and a maximum of 11 neurons at each hidden layer,

were trained and examined in this study. The hyperbolic

tangent transfer function and Levenberg–Marquardt train-

ing algorithm were used in all networks. Moreover, various

statistical metrics, including the mean absolute relative

error (MARE), coefficient of determination (R2), variance

accounted for (VAF), and mean squared error (MSE),

which are expressed in Eqs. (9)–(10), were used to evaluate

the performance of the different network topologies. In the

following equations, Ai denotes the actual value, Pi denotes

its prediction, n is the number of data points, A is the mean

(average) of the actual values, function var() denotes the

variance of a variable, and function covar() denotes the

covariance of two variables.

MARE ¼ 1

n

Xn

i¼1

Pi � Ai

Ai

				

				 ð9Þ

MSE ¼ 1

n

Xn

i¼1

Pi � Aið Þ2 ð10Þ

VAF ¼ 1 � var P� Að Þ
var Að Þ ð11Þ

R2 ¼ covðP;AÞð Þ2

varðPÞ � varðAÞ ð12Þ

In case of a perfect match between predicted and actual

values, the metrics take the values MARE = 0, MSE = 0,

VAF = 1 (or 100%), and R2 = 1. In total, 12 different

network topologies were examined, all having two hidden

layers which is in general enough for handing such prob-

lems, according to the experience of the authors. It was

found that the network with a 5–4–5–1-layer architecture

achieved the lowest error values for MSE and the highest

value of R2 and VAF to estimate the output parameter (i.e.,

the overall deflection), as shown in Table 7.

Figure 7 illustrates the proposed 5–4–5–1 topology of

the feed-forward neural network with two hidden layers,

five input variables (neurons), and one output parameter.

The ANN used in this study was a feed-forward back-

propagation network (newff in MATLAB), where 70% of

the experimental data was used for training, and the

remainder 30% was used for network testing. The Whale

optimization algorithm was used to provide the least pre-

diction error for the trained structure and to optimize the

ANN’s weights and biases. The parameters of the WOA

used in the study are presented in Table 8.

3.3 Multiple linear regression and genetic
algorithm models

To validate the proposed WOA-ANN model used in this

study, a multiple linear regression (MLR) model and a

genetic algorithm combined with an ANN (GA-ANN) were

also developed. In an MLR model, two or more indepen-

dent variables significantly affect the dependent variable,

as shown in the following equation.

y ¼ f ðx1; x2; . . .Þ*) ! y ¼ a0 þ a1x1 þ a2x2 þ � � � ð13Þ

where y is the dependent variable; x1, x2, …, are the

independent variables; a1, a2, … are the linear equation

coefficients.

MiniTab software has been used for developing the

multiple linear regression models, where models having

two and up to five independent variables were examined.

The following equation shows the most suitable coeffi-

cients for the MLR model to estimate the overall deflection

of the studied specimens, using five parameters.

Y ¼ 0:344 þ 0:01521X1 þ 0:0078X2 þ 0:00503X3

� 0:00255X4 þ 0:012589X5 ð14Þ

where Y is the output (Creep and Shrinkage deflection), and

the parameters X1, X2, X3, X4 and X5 are the GGBFS (%),

28-day cube compressive strength (fc), Area of tensile

reinforcement in RC beams, Sustained two-Point Load and

Time, respectively.

A genetic algorithm (GA) combined with an ANN (GA-

ANN) was implemented for the second evaluation. The

parameters of the method are presented in Table 9. A

genetic algorithm is classified as a heuristic optimization

approach. The algorithm mimics the process of natural

evolution by adapting a population of individual solutions.

Fig. 6 Distribution plot for the output parameter (overall deflection)
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GA randomly chooses individuals from the current popu-

lation to be parents and applies various genetic operators to

generate the next generation. Over consecutive genera-

tions, the population approaches an optimum solution as an

evolutionary process and the principle of the ‘‘survival of

the fittest’’. GA can be applied to solve various

optimization problems in many applications that are not

suited for conventional optimization methods.

Table 7 Statistics of WOA-ANN algorithm on training and testing data

1st Layer 2nd Layer 1st TF 2nd TF Training data (70%) Test data (30%)

MSE R2 MARE VAF (%) MSE R2 MARE VAF (%)

3 3 Tansig Purelin 0.001 0.982 0.011 98 0.001 0.985 0.011 99

3 4 Purelin Purelin 0.007 0.858 0.055 86 0.007 0.877 0.040 88

3 5 Poslin Purelin 0.002 0.959 0.013 96 0.002 0.960 0.006 96

4 3 Logsig Purelin 0.024 0.824 0.022 83 0.031 0.864 0.050 81

4 4 Tansig Tansig 0.001 0.982 0.020 98 0.001 0.982 0.022 98

4 5 Tansig Purelin 0.001 0.986 0.039 98 0.001 0.986 0.041 98

5 3 Purelin Purelin 0.007 0.859 0.063 86 0.007 0.881 0.051 88

5 4 Poslin Purelin 0.002 0.963 0.051 96 0.002 0.974 0.041 97

5 5 Logsig Purelin 0.001 0.976 0.038 98 0.001 0.977 0.049 98

6 3 Tansig Tansig 0.004 0.952 0.016 93 0.004 0.955 0.030 94

6 4 Tansig Purelin 0.004 0.939 0.024 93 0.004 0.947 0.065 94

6 5 Tansig Tansig 0.001 0.984 0.013 98 0.002 0.972 0.031 97

TF transfer function

Fig. 7 The proposed 5–4–5–1

topology of a feed-forward

neural network

Table 8 WOA parameters used in the study

Parameter Value

Lower limit of the optimization parameters (Lb) - 0.2

Upper limit of the optimization parameters (Ub) 0.2

Search agents (N) 25

Loop counter (t) 0

Decrease linear (a) 2

Coefficient vectors (A) - 0.8

Coefficient vectors (C) ? 0.6

Table 9 Parameters of the Genetic Algorithm combined with ANN

(GA-ANN)

Parameter Value

Max generations 100

Recombination (%) 15

Lower/upper bound [- 1, 1]

Crossover (%) 50

Crossover method Single point

Selection method Steady-State

Population size 150
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3.4 Comparison of accuracy of informational
models versus international standards

Figure 8 depicts a comparison between (a) the actual

experimental data; (b) prediction of the novel WOA-ANN

computational intelligence model developed in this study;

(c) MLR; and (d) GA-ANN models, and the results from

calculations based on the international standard design

code models. Figure 8 indicates that the WOA-ANN model

provided more reliable estimations of the overall deflection

of RC beams compared to that of the MLR and GA-ANN

models and also compared to the international standards.

Table 10 shows the statistical metrics of Eqs. (9)–(10),

for all models. The results indicate that the proposed hybrid

WOA-ANN model provided the most reliable results for

the overall deflection of RC beams. The maximum values
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Fig. 8 Comparison between experimental and theoretical models for the overall deflection of RC beams
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of VAF and R2 of the WOA-ANN model were closest to

unity, indicating a very good and robust prediction

performance.

Another visual representation of the comparison of the

performance of the hybrid WOA-ANN model against the

other models and the international standard models can be

provided by the Taylor diagram, which is presented in

Fig. 9. This diagram depicts a graphical illustration of each

model’s adequacy based on the root mean-square-centered

difference, the correlation coefficient, and the standard

deviation. The results indicate that the closest prediction of

the overall deflection to the point representing the actual

experimental deflection due to shrinkage and creep is the

WOA-ANN model proposed in this study, followed by the

GA-ANN model. The ACI 318 model resulted in higher

values of root mean-square-centered difference and stan-

dard deviation, indicating a rather low accuracy model in

estimating the experimental data than the Eurocode and BS

code models.

4 Sensitivity analysis of overall deflection
to geometrical and mechanical
parameters

In this section, a sensitivity analysis of the overall deflec-

tion resulted from shrinkage and creep to the geometrical

and mechanical parameters (GGBFS content, f 0c, the mag-

nitude of sustained load, area of tensile reinforcement, and

time) is conducted using the WOA-ANN model. The

Sensitivity analysis (SA) reveals how significantly the

model output is affected by changes within the input

variables. There are two main types of SA: global and local

sensitivity analysis. Local sensitivity analysis concentrates

Table 10 Statistics of the various models on all datasets for creep and

shrinkage deflection

Model MSE MARE VAF% R2

WOA-ANN 2L(4–5) 0.012 0.082 98% 0.9858

Multiple linear regression

(MLR)

0.077 0.204 87% 0.8671

GA-ANN 2L(3–5) 0.016 0.079 97% 0.9735

British standard 0.453 0.354 79% 0.9131

Eurocode 0.955 0.531 61% 0.9121

ACI 1.651 0.759 49% 0.7514

Fig. 9 Taylor diagram

visualization of the predictions

of the various models
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on the local impact of individual input parameters on the

overall performance. Global sensitivity analysis (GSA)

evaluates the influence of individual input parameters over

their entire spatial range and measures the uncertainty of

the overall performance (output) caused by input uncer-

tainty, either in interaction with other parameters, or indi-

vidually [67]. Therefore, considering the nature of the

complex nonlinear behavior of the Vn parameter in this

study, GSA was considered as the best option for investi-

gating the impact of input parameters on the overall model

performance.

Among GSA methods, variance-based approaches have

been widely used in the literature for sensitivity analysis.

The method provides a specific methodology for defining

total and first-order sensitivity indices for each ANN model

input parameter. Assuming a model of the form Y = f (X1,

X2,…, Xk) where Y is a scalar, the variance-based technique

takes a variance ratio to evaluate the impact of individual

parameters using variance decomposition according to the

following equation:

V ¼
Xk

i¼1

Vi þ
Xk

i¼1

Xk

j[ i

Vij þ � � � þ V1;2;...;k ð15Þ

where V is the variance of the ANN model output, Vi is the

first-order variance for the input Xi, and Vij to V1,2, …, k

corresponds to the variance of the interaction of the k

parameters. Vi and Vij, which denote the significance of the

individual input to the variance of the output, are a function

of the conditional anticipation variance, according to the

following equation

Vi ¼ Vxi Ex� i YXið Þð Þ ð16Þ

Vij ¼ Vxixj Ex� i YXi;Xj

� �� �
� Vi � Vj ð17Þ

where X*i designates the set of all input variables apart

from Xi. The first-order sensitivity index (Si) represents the

first-order impact of an input Xi on the overall output

provided by the following equation.

Si ¼
Vi

VðYÞ ð18Þ

The above-mentioned methodology for calculating the

first-order sensitivity index was considered in this study.

The results of the SA are presented in Fig. 10. Apart from

the time parameter, the results indicate that the GGBFS

content had the major influence, while the area of tensile

reinforcement and f 0c have the least effect on the output

parameter (i.e., the overall deflection). The magnitude of

the sustained load can be classified as the second most

influential input variable.

5 Conclusions

This research work investigated the creep and shrinkage

deflection of RC beams containing different percentages of

GGBFS at different ages, between 1 to 150 days. The

empirical equations recommended by the international

standards for estimating short and long-term deflections of

RC beams due to creep and drying shrinkage were exam-

ined and discussed. In addition, a hybrid artificial neural

network coupled with a metaheuristic Whale optimization

algorithm was developed to estimate the overall deflection

in RC beams due to shrinkage and creep, based on exper-

imental data. The main findings of this study are summa-

rized below.

• On average, shrinkage was responsible for around 12%

of the overall deflection of RC beams regardless of

binder constituents.

• The rate of the overall deflection was increased by

increasing the GGBFS content where at the age of

150 days, the overall deflection of RC beam containing

60% GGBFS was 72% higher than the one of the

OPCC-based beam.

• By increasing the reinforcement ratio (q) from 0.77 to

1.21%, the overall deflection was increased by an

average of 17%. Such an increase is more evident in

design mixes that contain high GGBFS content.

• Various statistical metrics were calculated and exam-

ined to compare the overall deflection of RC beams,

versus the corresponding values predicted by the

various models. The results confirmed that the proposed

informational WOA-ANN model attained the most

reliable and robust results for the determination of the

overall deflection of RC beams. The MSE and MARE

values were estimated as 0.012 and 0.082, respectively,

indicating superior accuracy of the proposed WOA-

ANN model that can achieve more reliable predictions

of the overall deflection. This powerful feature

0.63

0.19

0.07 0.05 0.05

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

Time GGBFS Point load Area f'c

Se
ns

iti
vi

ty
 In

de
x

Parameters

Fig. 10 Sensitivity of the overall deflection to geometrical and

mechanical parameters
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simplifies the design and provides a more generalized

process for future generative design driven by artificial

intelligence.

• The sensitivity analysis results indicate that apart from

the time passed, the GGBFS content has the major

influence on overall deflection, while the area of tensile

reinforcement and fc
0

have a minor contribution. The

magnitude of the sustained load can be classified as the

second most influential variable on the overall

deflection.
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