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Abstract
Conventional training mechanisms often encounter limited classification performance due to the need of large training

samples. To counter such an issue, the field of meta-learning has shown great potential in fine tuning and generalizing to

new tasks using mini dataset. As a variant derived from the concept of Model Agnostic Meta-Learning (MAML), an one-

step MAML incorporated with the two-phase switching optimization strategy is proposed in this paper to improve

performance using less iterations. One-step MAML uses two loops to conduct the training, known as the inner and the outer

loop. During the inner loop, gradient update is performed only once per task. At the outer loop, gradient is updated based

on losses accumulated by the evaluation set during each inner loop. Several experiments using the BERT-Tiny model are

conducted to analyze and compare the performance of the one-step MAML with five benchmark datasets. The performance

of evaluation shows that the best loss and accuracy can be achieved using one-step MAML that is coupled with the two-

phase switching optimizer. It is also observed that this combination reaches its peak accuracy with the fewest number of

steps.
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1 Introduction

Adapting to the scarcity of samples during training is an

essential trait to improve the learning capability of a deep

learning model on specific tasks. Meta-learning [1–3] is an

alternative solution to train the network with fewer exam-

ples to achieve accurate task performance using metadata.

It applies metadata using a two-loops mechanism to guide

the training efficiently to learn the patterns with the least

number of training samples. As a result, meta-learning

[3, 4] is also known as‘‘learning to learn’’ mechanism that

can enable the new model design to rapidly learn new tasks

or adapt to new environments with a few training exam-

ples. This great stride of meta-learning has been made in

the field of few-shot learning from emerging models and

training methods such as Siamese networks [5], matching

networks [6] and memory augmented networks [7].

One of the variants in meta-learning is known as Model

Agnostic Meta-Learning (MAML). MAML [8] was created

with the goal of teaching the base network to be more

versatile and adaptive to more than one tasks. This method

can be used in classification, regression and in reinforce-

ment learning. MAML conducts the training procedure

using two loops, which are known as the inner loop and the

outer training loop. Both the training loops try to achieve

good performance using different objectives. In the inner

loop, MAML tries to guide the model in such a way that

the lowest value for the training loss is achieved for a

particular task. In the outer loop, the objective function is

used to attain the optimum parameters that can generalize

to similar sets of tasks [8]. The main flaw of MAML [9] is

that the performance and stability of this method varies

greatly when the number of parameters is substantially

increased from a base network. This problem is tackled and

solved in the approach known as MAML?? [9].

MAML?? accounts for the instability of MAML by cal-

culating the loss on the target set at every inner loop. These

losses are then weighted and accumulated which is used to

update the meta weights of base network. However,
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MAML?? still preserved certain drawbacks such as large

memory consumption, longer training speed and poor

optimization for larger size of network parameters.

In this paper, a novel meta-learning method called one-

step MAML is developed and applied in the field of meta-

learning. One-step MAML is a variation of MAML where

training is conducted using inner and outer loops. One-step

MAML is trained with the aim of achieving an effective

accuracy score in presence of limited amount of data. It

attempts to tackle the vanishing and exploding gradient

problem that is typically seen during MAML training.

Traditionally, during the outer loop, MAML [8] tries to

unroll through the multiple training steps performed per

task during the inner loop to derive the gradient for the

meta weights. This typically develops into a vanishing and

exploding gradient problem. One-step MAML performs

only one training step during the inner loop per task and

updates the meta weight. This relinquishes the need for

storing the inner loop gradients in memory for it to be

unrolled later. This way the memory usage during training

is also lowered. One-step MAML is then combined with

the SDAGD optimizer that utilizes a two-phase switching

strategy to obtain faster convergence and reduce overfit-

ting. The combination and modification of these techniques

results into a new and improved meta-learning method that

is used for the purpose of achieving a better accuracy score.

2 Related work

Conventional training of neural architecture [10] has a lot

of limitations which needs to be tackled before a neural

network can perform well in real life conditions. One such

limitation [11, 12] is the requirement of huge amounts of

diverse data, before a model can perform well for the

purpose that it was trained for. Various objectives [13]

might lack such copious proportion of data and thus

learning to complete that objective becomes increasingly

difficult for various models. Traditional deep learning

models [2] suffer from restrictive performance in the sense

that it might only perform effectively on one specific task.

These models might be significantly less effective if it

encounters a task that has a slightly different aim than the

one it was trained on. Meta-learning [14] is a field that tries

to address these barriers toward performance, by creating a

scenario where models train with the aim of learning meta-

data that affects the performance for a given objective. It

can be sub-classified into three categories, i.e., Metric-

based approach, Model-based approach and Optimization-

based approach. Each of these approaches is discussed in

detail in the following sub-sections.

2.1 Metric-based meta-learning

Metric-based methods [1] are based upon the same core

ideology that various statistical models use in machine

learning. The performance of such techniques is evaluated

upon the ’metric’ used and the accuracy of the calculated

value. The metrics taken under consideration can be any

model hyper-parameter or even the loss function. Identifi-

cation of the ideal criterion to be optimized is heavily

influenced by the problem statement that the model is

trying to overcome. These methods conceptualize the input

data and the correlation between them on a n-dimensional

feature space and performs the updates based on that.

Koch et al. [5] devised a mechanism using Siamese

Networks to utilize a metric that calculates a distance value

based on the similarity of the inputs. The aim of this model

is to perform training on image classification with as few as

one input image, formally known as ’one-shot learning’. In

Siamese Networks, two images are passed as input at the

same time. These inputs undergo operations that extracts

the features in the images and converts them into image

embeddings. These operations are run parallelly, and the

two embeddings, belonging to the two inputs, are then used

to compute the distance metric. For one-shot learning,

training is conducted with the purpose of learning the

similarities and differences between the two images. Dur-

ing inference, the model compares the new input to its

already learned embeddings which leads to identification of

the target class.

Vinyals et al. [6] incorporates the concepts of attention

and meta-learning and introduces ’Matching Networks’.

Like Siamese networks, Matching Networks also converts

input features into a vector embedding. This time however,

the computations for calculating the two embeddings are

different. One function is used to arrive at the embedding

for the support set used during training, while another

different function is used to transform the test sample.

Attention is used to analyze these two separate represen-

tations and then classification is done based on that. On the

other hand, Snell et al. [15] demonstrated a technique of

representing the target classes as vectors. These vectors are

known as ’prototype vectors’, and each target class will

have an associated prototype vector referring to it. The

vectors generated are multi-dimensional in nature. When

an input is passed to the model, several distance values are

computed based on its embedding vector and the prototype

vectors, which are then passed through a Softmax layer to

identify the correct class.

Guo et al. [16] proposes a metric-based meta-learning

method to tackle the problem of deep learning models

over-fitting during the training process due to insufficient

training data. The first stage of this method combines two
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different attention modules to extract the features embed-

ded in the inputs. The output of the attention modules is

then passed to an ensemble of different models. The out-

puts of the ensemble mechanism are then used to calculate

the distance which is the desired metric for the optimiza-

tion process. The ensemble section of the process is the one

responsible for the reduction of over-fitting. This method

was then tested in a one-shot and a multi-shot setting,

where it was displayed to have better results compared to

other meta-learning methods such as Siamese networks [5],

Matching networks [6] and Prototypical networks [15].

Ji et al. [17] contributes toward solving the problem of

Zero-Shot Learning (ZSL) by proposing a novel model

named Unseen Prototype Learning model. At first, an auto-

encoder is used to convert an image to its semantic rep-

resentation. From this representation, the original image is

rebuilt using the decoder part of the auto-encoder. This

method is then coupled with triplet loss which aids to lower

the classification bias. After the training process, the model

was tested on four different ZSL tasks and was shown to

have high testing scores compared to various other

methods.

2.2 Model-based meta-learning

Model-based meta-learning [2] uses features of the model

architecture to improve the learning flexibility with a few

training steps (e.g., MetaNet, MANN). This is often done

using recurrent neural networks with internal or external

memory. These mechanisms do not modify or deal with the

probability distribution of the model outputs. Rather, these

methods are mostly developed to boost the speed at which

the models reach the optimum parameters. This is achieved

through careful design of the model architecture or through

the assistance of another neural network.

Santoro et al. [7] approached this concept of accelerated

learning and proposed the architecture named ’Memory

Augmented Neural Network’ (MANN). MANNs are sim-

ilar to RNNs or LSTM models in the sense that they also

utilize the conventions of memory. For Meta-learning

however, MANN performs the operations related to storing

in memory at a much quicker pace than RNN models. The

data flow for this network is designed in such a way that

target labels for the previous step are passed alongside the

input for the current step and then the label for the current

step is made available to the model in the next step. This

process is repeated throughout the entire training. This

causes the model to retain all the features in memory to be

accessed later.

Munkhdalai and Yu [18] tackled this prospect using

their proposed MetaNet. Traditionally, model parameters

are updated using a gradient-based optimizer. This, how-

ever, is a relatively slow process. MetaNet [18]

demonstrates that weights of a network can also be derived

as an output of another neural network. Weights obtained

through this process is referred to as ’fast weights’. During

the inference stage, the model uses a concatenation of the

’slow’ and ’fast’ weights to perform the testing.

Li et al. [19] demonstrates a method that attempts to

merge various benefits of generative adversarial networks

with the aim of solving the classification bias problem in

Zero-Shot Learning. First, the source image and the target

images are converted to their semantic representation.

From these representation, four types of features are cre-

ated which are source features, target features, fake fea-

tures, and cycle features. These features are then assessed,

and the training loss is generated. The cycle features assist

to retain the essential features of the data. This method was

displayed to have highly effective performance on both

traditional Zero-Shot Learning and generalized Zero-Shot

Learning tasks.

2.3 Optimization-based meta-learning

Optimization-based approach [20–22] optimizes the model

parameters explicitly for fast learning, so that the model

can be good at learning with a few examples (e.g., LSTM

Meta-learner, MAML). It focuses on the backward phase of

the model training, where the gradients are calculated

through differentiation. Traditional optimization methods

were not developed with the aim of few-shot learning or to

account for training time. Optimization-based methods of

meta-learning attempts to solve this problem while main-

taining a relatively effective model performance.

Ravi and Larochelle [23] presented the way they tackled

the concept of innovating the optimization procedure,

through ’meta-learners’. Meta-learners have a high

resemblance with LSTM networks, in the sense that the

operation for obtaining the new parameters is similar to the

forget gate of the LSTM module. Meta-learners have the

benefit of remembering previous gradients and thus can

observe the trend between them. This enables the

methodology to have a more efficient gradient calculation.

Furthermore, this method also has the ability of deter-

mining how much of previous gradients to take into con-

sideration and how much of it can be deleted.

Similar to MetaNet [18], Finn et al. [8] also demon-

strated the use of ’fast weights’ to perform the training

step. Unlike MetaNet, this method utilizes the gradient

descent optimizer to determine the fast weights. This

method was named as Model Agnostic Meta-Learning

(MAML) [8]. Through this method, optimum parameters

can be obtained that used to perform more than one task.

Training process with MAML is incorporated with two

loops, where ideal parameters are obtained for a specific

task in the inner loop and in the outer loop the parameters
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obtained can be equated to perform well on all the tasks.

One of the disadvantages of MAML is that it computa-

tionally heavy, as the gradients obtained from it are of a

higher order, due to the back-propagation step must reverse

through multiple inner steps. Nichol et al. [24] provides a

solution to this problem, through their implemented

method known as ’REPTILE’. REPTILE was created with

the aim of achieving reducing the amount of total training

steps required to achieve the maximum performance. The

training process of REPTILE is very similar to MAML,

apart from the operation to calculate the gradients and to

change the model weights.

3 One-step MAML using SDAGD

One of popular techniques used in optimization-based

meta-learning is known as MAML [8]. MAML [8]

attempts to reach faster convergence toward the optimum

parameters by using a two-loop training strategy. However,

MAML [8] faces the problem of instability in presence of

large model parameter size. To tackle this issue, this study

proposes a novel meta-learning strategy named one-step

MAML. One-step MAML is developed with the aim of

achieving effective accuracy scores in presence of limited

data. It is a variation of MAML [8] that conducts training

using two training loops namely the inner and outer loop.

The inner loop of one-step MAML is run once per task, and

the model parameters are updated based on the support set

of that task. The support set consists of ’n’ different types

of data and ’k’ samples of each type of data. After the

forward pass with the support set, the model is run again

with the query set, and the loss obtained on the query set is

recorded. In the outer loop, the query losses for all the tasks

are added together, and the resultant loss is used to update

the model parameter.

Figure 1 demonstrates the training process of the pro-

posed one-step MAML method. The training process

contains two loops, the inner and outer loop. The inner loop

runs once for every different task. For example, if we set

the number of tasks to five, the inner loop will be run 5

times for every outer loop. For every task, the model is run

with the support set from that task. The support loss is

calculated which is used to update the model. The target

loss for that task is calculated and added to the summation

of all the task losses. In the outer loop, that summation of

losses is used to calculate the gradient and update the

model.

In the inner loop of the process, the parameter updates

can be defined by the equation:

h ¼ h� arhLSbðfhb�1
Þ; ð1Þ

where a refers to the learning rate of the model, b refers to

the task number, Sb refers to the support set for that task,

fhb�1
refers to the model equipped with initial weights for

task b, and LSb is the loss obtained for support set b. In the

outer loop of the process, parameter update is performed

with the accumulation of all the query losses which is

represented by,

h ¼ h� brh

XB

b¼1

LTbðfhb�1
Þ ð2Þ

where b represents the learning rate used in the outer loop,

B refers to the total task number, Tb is the target set or the

query set for that task.

Algorithm 1 shows the basic flow of the one-step

MAML procedure. At first, the BERT Tiny model is ini-

tialized with its pre-trained weights. Then, a number of

batches of tasks is sampled from the entire dataset. For

each task, the gradient is calculated based on the loss for

the support set of that task and then the model weights are

updated. After this update, process is done for all the tasks,

the model is updated again based on the loss derived from

the summation of all the query set losses.

One-step MAML is performed in an iterative process to

update the weight of neural network using inner and outer

loops. It neither changes the model structure nor does it

interact with the format of the model inputs. Due to this, it

makes one-step MAML suitable to be used in fields such as

natural language processing, image classification and other

machine learning tasks. One-step MAML accounts for the

stability issues present in MAML by using a summation of

query set losses rather one query set loss. This stops the

fluctuation of the gradients due to a single loss value.

Summation of the query set losses, in the outer loop, is also

implemented in MAML?? [9]. MAML?? [9] multiplies

the query loss from each inner loop with a vector to assign

its importance. One-step MAML does not utilize multiple

inner loops, and thus, such vectors are not utilized when

calculating the summation. Furthermore, since one-step

MAML uses only one inner step per task, less parameters

are stored in memory during the training process as com-

pared to MAML and MAML?? that uses multiple inner

loops per task.
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Algorithm 1: One-step MAML
Require: p(τ): distribution over tasks
Require: α, β: step size hyper-parameters

1 Initialize the pretrained BERT Tiny weights;
2 while not done do
3 Sample batch of tasks τi ∼ p(τ);
4 for all τi do
5 Evaluate ∇θLSτi

(fθb
);

6 Update the meta weight using one step, θ = θ − α∇θLSτi
(fθτi−1

);

7 end
8 Update the meta weight, θ = θ − β∇θ

∑
τi∼p(τ) LTτi

(fθτi−1
);

9 end

Traditional optimizing methods [25] face the issue of

having slow convergence rates as well as failing to arrive at

optimal minima. One optimizer that tackles this problem is

known as Stochastic Diagonal Approximate Gradient

Descent (SDAGD) [26]. SDAGD differs from other opti-

mizer such that it uses back-propagation in two-phases.

The first phase of SDAGD [26] attempts to arrive at the

global minima at a relatively fast rate. It tries to achieve

this by identifying the local search regions and formulating

the largest step required for each of those regions. In phase-

2, SDAGD [26] utilizes the Newton method to arrive at the

desired value at a quick pace. To reduce the convergence

time, SDAGD considers first order differentials. After the

Hessian is calculated, the diagonals are disregarded in

accordance to the weights. These steps also help prevent

over-fitting during the training process. The resultant

weight update for the next training step results to [26]:

hkþ1 ¼ hk þ ½lk þ �HðhkÞ��1JðhkÞ; ð3Þ

where lk denotes the step length relative to search regions.

It can be expressed as lk � gðwkÞk k=Rk. In this equation,

gðwkÞ refers to the loss derivative, and thus, gðwkÞk k
denotes the value after the derivative was normalized. Rk

refers to the search area radius at step k.

The use of SDAGD optimizer within one-step MAML

could improve the gradient calculation using the adaptive

step-length computation. It is proved in [26] to be out-

performed the conventional weight updating rules such as

SGD and ADAM. Comparison of the parameter update

step in both methods, it can be seen that the gradient of the

loss equates to arhLSbðfhb�1
Þ ¼ ½lk þ �HðhkÞ��1JðhkÞ. as

shown in Algorithm 1.

Fig. 1 One-step MAML training process
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4 Experimental setup

The model training was conducted using five datasets from

the Glue Benchmark [27], these datasets are MNLI [28],

RTE [29], QQP [30], STS-2 [31] and QNLI [32] datasets.

For training, a limit of maximum 10000 sentence pairs

were selected. During testing, there was no limit applied,

and the entire test dataset were used. For datasets, that have

less than 10000 samples, the entire set was used for

training. The Glue Benchmark [27] is designed to have

sentence pair tasks that represents various scenarios when

it comes to understanding the English language. These

datasets cover a large range of complexity when it comes to

the English language.

Data processing was used to convert the datasets such

that it fits a few-shot learning scheme. For each outer loop,

a certain number of tasks is selected. For the experiments

discussed in these paper, number of tasks was set to five.

For each task, the number of classes n and the number of

samples per class k is selected. Therefore, each batch

contains n� k sentence pairs. For example, the MNLI

dataset [28] has three classes, and the value of k was set to

five. Thus, each batch would have 15 different input

samples. For all the experiments discussed in this paper,

the value of k is assigned to 5.

The measurement metrics used for these datasets is

accuracy, which is calculated as follows, [27],

Acc ¼ TPþ TN

TPþ FPþ TNþ FN
; ð4Þ

where TP and TN refer to true positive and true negatives,

and TN and FN refer to true negative and false negative.

Essentially, the numerator refers to the amount of samples

correctly classified, and the denominator refers to the total

value.

The loss metric used for datasets training is cross

entropy loss. It is calculated using the following equation

[33]:

lossðx; classÞ ¼ �log
expðx½class�ÞP

j expðx½j�Þ

 !
; ð5Þ

where x refers to the activation function score, class refers

to the target class. The loss function can also be expressed

as lossðx; classÞ ¼ �x½class� þ logð
P

j expðx½j�ÞÞ.

5 Result and discussion

In this experiment, four different training methods were

implemented, and their performances were compared, i.e.,

training without meta-learning, training with MAML??,

One-step MAML with ADAM optimizer and one-step

MAML with SDAGD optimizer. The model used to exe-

cute the training procedures is the BERT Tiny Model.

These methods were trained and tested on five benchmark

GLUE datasets. Table 1 demonstrates the lowest validation

loss values obtained after the experiments were conducted

on the different datasets. For some datasets, only a portion

of the training data is used, for example, only 10000

samples were used from the MNLI dataset. This was done

Table 1 Evaluation losses observed on several benchmark NLP datasets using the fine-tuning algorithms

Training method Optimizer Datasets

MNLI-M MNLI-MM RTE QQP STS-2 QNLI Average

Training w/o MAML [12] Adam 1.0300 1.0250 0.6669 0.5060 0.5027 0.5272 0.7096

MAML?? [9] 1.1138 1.1028 0.6909 0.6547 0.6910 0.6947 0.8247

One-step MAML 0.9727 0.9835 0.6634 0.5705 0.5150 0.5278 0.7054

One-step MAML SDAGD [26] 0.9065 0.9154 0.7392 0.6785 0.4905 0.4736 0.7006

Table 2 Evaluation accuracy on several benchmark NLP datasets using the fine-tuning algorithms

Training method Optimizer Datasets

MNLI-M MNLI-MM RTE QQP STS-2 QNLI Average

Training w/o MAML [12] Adam 0.4764 0.4672 0.59928 0.7294 0.7694 0.7525 0.63228

MAML?? [9] 0.3184 0.3056 0.5270 0.6318 0.54243 0.5015 0.4711

One-step MAML 0.5743 0.5547 0.6131 0.7443 0.7809 0.7539 0.6702

One-step MAML SDAGD [26] 0.6018 0.5846 0.6209 0.7628 0.7878 0.7825 0.6901
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to create a scenario where sufficient data are not present

and to observe the model’s performance on limited data.

From this table alone, it is observed that the lowest losses

obtained is for most of the case of using one-step MAML

optimized using SDAGD. The only exceptions being for

the QQP dataset, where only the one-step MAML has

lower losses.

Comparing the validation accuracy obtained for the

same experiments in Table 2, it is seen that the best scores

are also for the one-step MAML method combined with a

SDAGD optimizer. Figure 2 displays the highest accuracy

values obtained for the experiments conducted. We observe

an increment in scores for all the datasets, with the highest

increase being for the MNLI dataset. For the MNLI dataset,

we observe an increase of almost 13% for the matched and

12% for the mismatched category. One-step MAML seems

to demonstrate an increment in accuracy, and addition of

the SDAGD optimizer boosts the accuracy by another 2%

to 3%.

Two evaluation curves using MNLI and QQP dataset are

shown in Fig. 2 to demonstrate the change of accuracy

values obtained from the testing datasets after every inner

and outer loop of training process is completed at each

step. The weights of neural network are trained using meta-

learning approaches to obtain the best optimum parameters

along with the training iterations. As demonstrated in

Fig. 2, one iteration after MAML training refers to the

evaluation result after both completion of inner and outer

loops training. On the other hand, the performance of the

network is also compared with the training without fine-

tuning using MAML algorithms. In the case of training

where meta-learning methods are not applied, one com-

plete iteration refers to the execution of the algorithm on

one batch of training set.

Fig. 2 Evaluation accuracy

curves a MNLI dataset and

b QQP dataset
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Figure 2a displays the evaluation accuracy curves

obtained for the MNLI dataset [28]. From the four exper-

iments conducted, it seems that the combination of one-

step MAML and the SDAGD optimizer yields the highest

accuracy. It can be observed from the graph that the

accuracy for this case is higher than the others at the

beginning of the plot. This means that for the case of the

MNLI dataset, this combination is able to arrive at the

optimal solution using several steps. It can be also noted

that one-step MAML optimized using SDAGD reaches its

highest accuracy at around 500 steps, which is relatively

much faster than the other MAML algorithms.

Another example of the evaluation accuracy curve is

displayed in Fig. 2b, which is for the QQP dataset [30].

Similar to the case of MNLI, one-step MAML with

SDAGD optimizer can achieve the best performance for

the QQP dataset. Unlike the MNLI dataset, this method

does not start with the highest accuracy from the very first

few steps. It is observed that the curve slope of the one-step

MAML optimized using SDAGD starts increasing until

around 1.5k steps and then keeps oscillating around a

constant value. This is an indication that using this method,

the model is able to grasp the features of the MNLI dataset

quicker than the QQP dataset. Again, as observed for the

MNLI dataset, this method converges faster than the other

methods displayed in the graph.

Qualitative analysis displays the performance of the

model in action. For example, in a sample input from the

MNLI dataset [28], text A is‘‘The new rights are nice

enough’’, and text B is‘‘Everyone really likes the newest

benefits’’. The label for this sentence pair is neutral, as it

can be clearly seen by viewing the two sentences. The

model trained with one-step MAML and SDAGD correctly

classifies this as neutral and obtains a loss of 9:205� 10�2.

In another sample input from the same dataset, text a is

‘‘You and your friends are not welcome here, said Severn’’,

and text b is‘‘Severn said the people were not welcome

there’’. The model trained with the same method as the

previous example, correctly classifies this and gets a loss of

6:707� 10�2.

In the meta-learning methods, the differences between

MAML and one-step MAML might give us a clearer pic-

ture for the reason behind the better performance of one-

step MAML. MAML [8] and MAML?? [9] holds in

memory all the gradients calculated during the inner loop

which is later unrolled during the outer loop. This causes a

problem of exploding and vanishing gradients when deal-

ing with models with large number parameters. MAML??

tries to accommodate this by taking a summation of query

losses which is weighted by an importance vector, then

calculating the gradient based on that sum during the outer

loop. However, MAML?? continues to face the same

issue when it is used to train very large models. One-step

MAML adopts the summation process of the query losses

discounting the importance vector, since this method only

takes one gradient step per inner loop and the importance

vector’s purpose is to assign value to the multiple inner

steps. On top of this, one-step MAML updates the meta

weights during the inner loop itself, to avoid the problem of

exploding and vanishing gradients during the backpropa-

gation process of the outer loop. This variations in com-

bination could attribute to the more effective performance

of the one-step MAML.

6 Conclusion

The task in natural language processing differs a lot in

terms of complexities due to the high magnitude of varia-

tions present in words and sentences. Hence, maintaining a

high accuracy score becomes crucial for language learning

generalization. In this paper, a new meta-learning strategy

named as one-step MAML is proposed to perform gradient

updates using two loops mechanism. During the inner loop,

weights are updated once per task and during the outer

loop, weights are updated based on summation of all the

target set losses. This study demonstrates the performance

of four different methods, i.e., training without meta-

learning, training with MAML??, One-step MAML with

ADAM optimizer and one-step MAML with SDAGD

optimizer. The performance for these methods is recorded

and compared for five GLUE datasets. It is observed that

one-step MAML performs best when combined with the

SDAGD optimizer. This combination obtains the highest

accuracy and lowest loss for all the datasets. Most signif-

icant jump in accuracy is observed for the MNLI dataset,

One-step MAML with SDAGD optimizer achieves an

accuracy of 60.18% which is around 13% higher than

simply training without MAML. It was also demonstrated

that using this process the model can converge much faster.

From the accuracy curve, it was displayed that One-step

MAML with SDAGD optimizer reaches peak accuracy

with only around 700 steps. Qualitative analysis is also

done to view the sentence pairs that were correctly

classified.
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