
ORIGINAL ARTICLE

Cross-lingual alignments of ELMo contextual embeddings

Matej Ulčar1 • Marko Robnik-Šikonja1

Received: 26 July 2021 / Accepted: 2 March 2022
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
Building machine learning prediction models for a specific natural language processing (NLP) task requires sufficient

training data, which can be difficult to obtain for less-resourced languages. Cross-lingual embeddings map word

embeddings from a less-resourced language to a resource-rich language so that a prediction model trained on data from the

resource-rich language can also be used in the less-resourced language. To produce cross-lingual mappings of recent

contextual embeddings, anchor points between the embedding spaces have to be words in the same context. We address

this issue with a novel method for creating cross-lingual contextual alignment datasets. Based on that, we propose several

cross-lingual mapping methods for ELMo embeddings. The proposed linear mapping methods use existing Vecmap and

MUSE alignments on contextual ELMo embeddings. Novel nonlinear ELMoGAN mapping methods are based on gen-

erative adversarial networks (GANs) and do not assume isomorphic embedding spaces. We evaluate the proposed mapping

methods on nine languages, using four downstream tasks: named entity recognition (NER), dependency parsing (DP),

terminology alignment, and sentiment analysis. The ELMoGAN methods perform very well on the NER and terminology

alignment tasks, with a lower cross-lingual loss for NER compared to the direct training on some languages. In DP and

sentiment analysis, linear contextual alignment variants are more successful.

Keywords Contextual embeddings � Cross-lingual models � ELMo � GAN � Non-isomorphic contextual alignment �
Non-linear vector alignment

1 Introduction

Word embeddings are representations of words in a

numerical form, as vectors of typically several hundred

dimensions. The vectors are used as inputs to machine

learning models; these are generally deep neural networks

for complex language processing tasks. The embedding

vectors are obtained from specialized neural network-based

embedding algorithms. The quality of embeddings depends

on the amount of semantic information expressed in the

embedded space through distances and directions. For that

reason, static pre-trained word embeddings, such as

word2vec [1] or fastText [2], have in large part been

recently replaced by contextual embeddings, such as ELMo

[3] and BERT [4].

Contextual embeddings generate a different word vector

for the same word for every context it appears in. BERT

models and their derivatives are mostly used as a closed

system, where the entire model is fine-tuned on a down-

stream task. On the other hand, ELMo models typically

generate different word vectors for each word occurrence,

and these vectors are used in training natural language

processing (NLP) models. A neural network producing

ELMo embeddings contains three layers of neurons.

Embeddings are typically a concatenation of network

weights in all three layers. BERT models consist of 12 or

24 layers, and vector extraction typically uses a combina-

tion of only the last four layers. Due to the omission of

most network layers, explicit BERT vectors may lack a lot

of information. For that reason, the explicit BERT vectors

are rarely used and are often less successful than ELMo

vectors, see, e.g., [5]. A smaller size of ELMo models

compared to BERT, may also offer better explainability of

the end-task models.

& Matej Ulčar

matej.ulcar@fri.uni-lj.si

Marko Robnik-Šikonja

marko.robnik@fri.uni-lj.si

1 Faculty of Computer and Information Science, University of

Ljubljana, Večna pot 113, Ljubljana, Slovenia

123

Neural Computing and Applications
https://doi.org/10.1007/s00521-022-07164-x(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-3943-5568
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-022-07164-x&domain=pdf
https://doi.org/10.1007/s00521-022-07164-x

Modern word embedding spaces exhibit similar struc-

tures across languages, even when considering distant

language pairs like English and Vietnamese [1]. This

means that embeddings independently produced from

monolingual text resources can be aligned, resulting in a

common cross-lingual representation, called cross-lingual

embeddings, which allows for fast and effective integration

of information in different languages. For less-resourced

languages, training NLP models can be difficult because of

a lack of data for a specific task. The aim of cross-lingual

alignment is to use an already existing model trained on a

resource-rich language and map the word embeddings from

a less-resourced language vector space to the resource-rich

language vector space. In that way, the input in less-re-

sourced language is mapped to resource-rich language and

can be classified with existing models in that language.

This is possible as the words with the same meaning in

both languages have very similar vectors after the cross-

lingual alignment.

Cross-lingual approaches can be sorted into several

groups. The first group of methods uses monolingual

embeddings with (an optional) help from bilingual dic-

tionaries to align the embeddings. These methods are

typically used for static embeddings, such as word2vec and

fastText. The second group of approaches uses bilingually

aligned (comparable or even parallel) corpora for joint

construction of embeddings in all involved languages. An

example of this approach is a joint space of 93 languages

produced by the LASER library [6]. The third type of

approaches is based on large pretrained multilingual

masked language models such as BERT [4], which were

simultaneously trained on many languages and work rea-

sonably well in cross-lingual transfer [7] without the need

for explicit cross-lingual alignment. In this work, we pre-

sent an extension of the first group of approaches to con-

textual embeddings. We focus on improvements of cross-

lingual mappings for ELMo contextual embeddings

(BERT, being multilingual, does not need them). Cur-

rently, the most successful alignment methods assume that

the embedding spaces in different languages are isomor-

phic [8, 9], which is generally not the case. Researchers

have observed that the monolingual embedding spaces of

two different languages are not completely isomorphic,

which is especially true for distant languages [10, 11]. As a

result, many of these methods are unstable or unsuccessful

when confronted with distant language pairs.

We propose novel methods for linear and nonlinear

alignment of contextual embeddings, such as ELMo. For

that purpose, we first construct novel contextual mapping

datasets based on parallel corpora and dictionaries. In the

novel ELMoGAN approach, we use generative adversarial

networks (GANs) [12], that produce nonlinear mappings

between the embedding spaces. The main contributions of

this work are as follows.

1. A novel approach to create datasets needed in the

cross-lingual alignment of contextual embeddings.

2. Novel linear and nonlinear cross-lingual alignment

methods for ELMo embeddings.

3. Evaluation of produced cross-lingual embeddings

using nine languages and four downstream tasks:

named entity recognition (NER), dependency parsing

(DP), terminology alignment, and sentiment analysis.

The results show a successful cross-lingual transfer of

tested approaches. The best alignment method depends on

the task. We publish the code to create the needed datasets

and the code to produce nonlinear cross-lingual alignment

under a permissive license1.

The paper is split into five further sections. In Sect. 2,

we present the background on cross-lingual alignment and

ELMo and cover related work on cross-lingual embed-

dings. The construction of special datasets used for training

the alignments of contextual embeddings is presented in

Sect. 3. In Sect. 4, we describe the proposed nonlinear

ELMoGAN alignment method and linear methods com-

bining the new dataset and existing mapping methods. In

Sect. 5, we evaluate the proposed alignment methods on

four downstream tasks. We summarize our work in Sect. 6

and discuss opportunities for further work.

2 Background and related work

Word embeddings represent each word in a language as a

vector in a high dimensional vector space so that the

relations between words in a language are reflected in their

corresponding embeddings. Cross-lingual embeddings

attempt to map words represented as vectors from one

vector space to the other so that vectors representing words

with the same meaning in both languages are as close as

possible. Søgaard et al. [13] present a detailed overview

and taxonomy of cross-lingual methods.

In Sect. 2.1, we describe how two monolingual

embedding spaces can be aligned with the optional help

from a bilingual dictionary. This work’s main focus is

extending existing approaches that work with non-contex-

tual embeddings to contextual ELMo embeddings. For this

reason, we present the background on ELMo contextual

embeddings in Sect. 2.2. The related work on non-con-

textual mappings is given in Sect. 2.3, and on contextual

mappings in Sect. 2.4.

1 https://github.com/MatejUlcar/elmogan.

Neural Computing and Applications

123

https://github.com/MatejUlcar/elmogan

2.1 Alignment of monolingual embeddings

Cross-lingual alignment methods take precomputed word

embeddings for each language and align them with the

optional use of bilingual dictionaries. Two types of

monolingual embedding alignment methods exist. The

methods of the first type map vectors representing words in

one of the languages into the vector space of the other

language. The methods of the second type map embeddings

from both languages into a common vector space. The goal

of both types of alignments is the same: the embeddings for

words with the same meaning must be as close as possible

in the final vector space. A comprehensive summary of

existing approaches can be found in works by Artetxe et al.

[14]. The open source implementation of the method

described by Artetxe et al. [8, 14], named Vecmap2, is able

to align monolingual embeddings using supervised, semi-

supervised or unsupervised approach.

The supervised approach requires a large bilingual dic-

tionary, which is used to match embeddings of the words

with the same meaning. The embeddings are aligned using

the Moore-Penrose pseudo-inverse, which minimizes the

sum of squared Euclidean distances. The algorithm always

converges but can be caught in a local maximum when the

initial solution is poor. To overcome this, several methods

(stochastic dictionary introduction, frequency-based

vocabulary cutoff, etc.) are used that help the algorithm to

climb out of local maxima. A more detailed description of

the algorithm is given in [8].

The semi-supervised approach uses a small initial

seeding dictionary, while the unsupervised approach is run

without any bilingual information. The latter uses simi-

larity matrices of both embeddings to build an initial dic-

tionary. This initial dictionary is usually of poor but

sufficient quality for later processing. After the initial

dictionary (either by seeding dictionary or using similarity

matrices) is built, the iterative algorithm is applied. The

algorithm first computes an optimal mapping using the

pseudo-inverse approach for the given initial dictionary.

Then optimal dictionary for the given embeddings is

computed, and the procedure is repeated with the new

dictionary.

Besides Vecmap, another well-known library for cross-

lingual embeddings alignment is called MUSE3. This

library can find a cross-lingual map with the use of a

bilingual dictionary (supervised) or without one (unsuper-

vised approach). The unsupervised approach works by

using adversarial training to find the starting linear map-

ping. A synthetic dictionary is extracted from this mapping,

which is used to fine-tune the starting mapping using the

Procrustes approach, described in detail by Conneau et al.

[9].

2.2 ELMo contextual embeddings

ELMo (Embeddings from Language Models) embedding

[3] is an example of a state-of-the-art pre-trained contex-

tual embedding model. It is a neural network model,

composed of three layers. The first layer is a convolutional

neural network (CNN) layer, which operates on a character

level. It is context-independent, so each word always gets

the same embedding from this layer, regardless of its

context. It is followed by two biLM (bidirectional language

model) layers. A biLM layer consists of two concatenated

long short-term memory layers (LSTMs) [15]. In the first

LSTM, the network predicts the following word, based on

the given past words, where the embeddings from the CNN

layer represent each word. In the second LSTM, the net-

work predicts the preceding word based on the given fol-

lowing words. This layer is equivalent to the first LSTM,

just reading the text in reverse.

The actual embeddings are constructed from the internal

states of the bidirectional LSTM neural network. Two

higher-level LSTM layers capture context-dependent

aspects, while the first CNN layer captures aspects of

syntax [3]. To train the ELMo network, one puts one

sentence at a time on the input. The representation of each

word depends on the whole sentence, i.e., it reflects the

contextual features of the input text and thereby polysemy

of words. For an explicit word representation, one can use

only the top layer. Still, more frequently, one combines all

layers into a vector. The representation of a word or a token

tk at position k is composed of

Rk ¼ fxLMk ; h
!LM

k;j ; h
 LM

k;j j j ¼ 1; . . .; Lg ð1Þ

where L is the number of layers (ELMo uses L ¼ 2), index

j refers to the level of bidirectional LSTM network, x is the

initial token representation (either word or character

embedding), and hLM denotes hidden layers of a forward or

a backward language model. In NLP tasks, a weighted

average of layers is usually used, where the weights are

learned during the training of the model for the specific

task. Alternatively, the entire ELMo model can be fine-

tuned on a specific end-task.

At the time of its introduction, ELMo has been shown to

outperform previous pre-trained word embeddings like

word2vec and GloVe on many NLP tasks, e.g., question

answering, named entity extraction, sentiment analysis,

textual entailment, semantic role labelling, and coreference

resolution [3]. Later, BERT models turned out to be even

more successful on these tasks. However, concerning the

quality of extracted vectors, ELMo can be advantageous as
2 https://github.com/artetxem/vecmap.
3 https://github.com/facebookresearch/MUSE.

Neural Computing and Applications

123

https://github.com/artetxem/vecmap
https://github.com/facebookresearch/MUSE

its information is condensed in only three layers. In com-

parison, the information in multilingual BERT is scattered

over 12 layers [16, 17] and a reasonably sized embedding

drops most of them. Peters et al. [18] found that the word

vector extraction is advantageous for ELMo compared to

fine-tuning, while the opposite is true for BERT. Further-

more, on some tasks, the ELMo embeddings outperform

BERT [5, 19].

2.3 Related work on non-contextual mappings

Cross-lingual alignment methods align precomputed

monolingual word embeddings from two or more lan-

guages. The word vectors from all the languages are

mapped into a common vector space. This can be the same

vector space as one of the original monolingual embed-

dings or a completely independent vector space. These

methods aim to represent the words with the same meaning

in different languages with as similar vectors as possible.

Concerning the data used, the alignment methods can be

split into supervised and unsupervised methods. Supervised

methods determine the alignment of the embeddings with

the use of bilingual dictionaries. Unsupervised methods do

not use any bilingual data. Conneau et al. [9] trained the

unsupervised alignment using adversarial training. Artetxe

et al. [8] first constructed a low-quality seed dictionary

using the assumption that the two vector spaces are iso-

metric and then iteratively updated the mapping and dic-

tionary until convergence.

Artetxe et al. [14] comprehensively summarize existing

linear methods, showing that the state-of-the-art linear

alignment methods can be summarized as an orthogonal

mapping. The difference between various methods is solely

due to different approaches to vector manipulation (such as

normalization, whitening, etc.) before the mapping

extraction.

Nakashole and Flauger [20] show that, in a small

neighbourhood, linear mapping methods work well; how-

ever, the linearity assumption does not hold in general,

especially for distant languages [10]. A few nonlinear

alignment methods have been proposed. Lu et al. [21]

trained nonlinear mapping using Deep Canonical Correla-

tion Analysis (DCCA) [22], which is an expanded version

of a linear Canonical Correlation Analysis (CCA) method,

using deep neural networks. They showed that DCCA

performs better than linear CCA. Recently, Zhao and Gil-

man [23] proposed a nonlinear mapping method, using

kernel CCA (KCCA). KCCA projects the vectors into a

higher dimensional space and then performs CCA in the

new vector space. Zhao and Gilman [23] report that DCCA

has to fine-tune many hyper-parameters and show that

KCCA outperforms both DCCA and CCA, especially when

data is scarce. In contrast, Lu et al. [21] observe that DCCA

scales better with data size than KCCA.

Conneau et al. [9] used the adversarial training based on

GANs to train a linear mapping between vector spaces.

Yang et al. [24] have used full GAN models for neural

machine translation. Fu et al. [25] trained a bidirectional

GAN for cross-lingual alignment of sentence embeddings,

improving the results over linear and nonlinear state-of-

the-art methods on the sentence alignment task.

In contrast to the above works which deal with non-

contextual embeddings, our work is focused on contextual

ELMo embeddings. While we use some of the same

techniques (GANs for nonlinear mappings and Procrustes

approach for linear mappings), the task we tackle is dif-

ferent and much more difficult as we have to find a map-

ping for each context a word appears (and not just each

word). The work on contextual mappings, closer to our

approach, are outlined below.

2.4 Related work on contextual mappings

All the above work only concerned static embeddings, not

dynamic, contextual embeddings. Schuster et al. [26] pro-

duced cross-lingual alignments of contextual ELMo

embeddings. While each occurrence of a word in contex-

tual embeddings is represented by a different vector,

Schuster et al. [26] hypothesized that these vectors form

clusters. Based on this assumption, they assigned each

word a single static vector by calculating the average

vector of all word occurrences in a large corpus. They used

a linear MUSE method to calculate the alignments of the

averaged vectors. This approach’s problem is the assump-

tion of isomorphic spaces and loss of information if this

assumption is not true in the local context.

Aldarmaki and Diab [27] used parallel corpora to pro-

duce the embedding vectors. They aligned the corpora on

the word level, using Fast Align [28], calculated the ELMo

embeddings on the aligned corpora, and extracted a dic-

tionary from the word-level alignments. Their approach

showed good results in a sentence translation retrieval task.

They measured the accuracy of retrieving the correct

translation from the target side of a test parallel corpus

using nearest neighbour search and cosine similarity. They

applied their approach to three languages (English, Ger-

man, Spanish). This approach is similar to the linear

mappings applied to ELMo, which we describe in

Sect. 4.3. The difference is that we use much larger dic-

tionaries and test on many more language pairs. Our non-

linear approach, presented in Sects. 4.1 and 4.2, has no

counterpart in the existing works.

Neural Computing and Applications

123

3 Datasets for alignment of contextual
embeddings

This section explains the training datasets produced for

cross-lingual alignment of contextual ELMo embeddings.

These datasets are essential for both linear and nonlinear

mappings presented in Sect. 4. Besides the datasets, we

also present the language resources used in their creation.

Supervised cross-lingual vector alignment approaches

assume the existence of a bilingual dictionary, where each

word from the dictionary has its own embedding vector.

For static, non-contextual embeddings this is straightfor-

ward as one can take any of human- or machine-created

dictionaries. In contextual embeddings, word vectors

depend on the context words appears in. For every context,

a word gets a different vector. Schuster et al. [26]

approached this by averaging all the vectors of a given

word, as described in Sect. 2. This approach loses infor-

mation, as words have multiple meanings. For example, the

word ‘‘bark’’ can refer to the sound a dog makes, a sailing

boat, or the outer part of a tree trunk. Furthermore, two

meanings may be represented with one word in one lan-

guage but with two different words in another language.

We solve these issues by separately aligning each

occurrence of a word. We start with a parallel corpus,

aligned on a paragraph level to have matching contexts in

two languages. Let i indicate the index of a context from a

parallel corpus P. Let A and B represent the first and the

second language in a language pair. Then PA
i is the i-th

paragraph/context from corpus P in language A. Given a

bilingual dictionary D, let j indicate the index of a word

pair in the dictionary so that the dictionary is composed of

pairs ðDA
j ;D

B
j Þ, 8j 2 f1; :::; jDjg.

We construct our dataset by parsing the parallel corpus.

For each word a 2 PA
i , we check whether its lemma

appears in DA. If it does, given its dictionary index j, we

check whether DB
j is a lemma of any word from PB

i . If it is,

we add the tuple

ðiDA
j ; iD

B
j ; eðDA

j ;P
A
i Þ; eðDB

j ;P
B
i ÞÞ

to our dataset, where eðDA
j ;P

A
i Þ and eðDB

j ;P
B
i ÞÞ are (ELMo)

embeddings of the two dictionary words DA
j and DB

j ,

computed in the context Pi for each of the languages,

respectively. We considered at most 20 different contexts

of each lemma to not overwhelm the dataset with frequent

words (such as stop words). For the lemmatization of the

corpora, we used the Stanza tool [29] in all analyzed lan-

guages. Note that we only used lemmatized corpora for

dictionary look-up; for generating the embedding, we used

the non-lemmatized corpora.

As we explained in Sect. 2.2, ELMo models are deep

neural networks with three hidden layers. The first layer is

a non-contextual CNN, followed by two contextual

biLSTM layers. The final embedding vectors are con-

structed from vectors of all three layers. The first vector is

contextually independent, while the second and third layers

are contextually dependent. In the proposed cross-lingual

alignment approaches for ELMo, we align vectors from

each of the three layers separately. Thus, we need a sepa-

rate dataset for each layer, i.e., iDA
j ; iD

B
j components of the

learning tuples are the same in the datasets but

eðDA
j ;P

A
i Þ; eðDB

j ;P
B
i Þ components are computed separately

for each contextual LSTM layer. We created two such

contextual datasets for each language pair, one for each of

the contextual ELMo layers. For the non-contextual CNN

layer, we produce embeddings for every word pair in the

bilingual dictionary. As the non-contextual ELMo vectors

are the same for all word contexts, the size of this dataset is

identical to the bilingual dictionary size.

We split the created datasets into a training and evalu-

ation part. We separately split data for each language pair

and each ELMo layer. The training part has 98.5% of word

vector pairs, and the evaluation part has 1.5% of word

vector pairs.

In our work, we considered eleven language pairs from

nine different languages. The language pairs along with the

sizes of bilingual dictionaries, parallel corpora, and the

final training dataset are presented in Table 1. For English,

we used the original English 5.5B ELMo model4. For

Russian, we used the ELMo model trained by DeepPavlov5

on the Russian WMT News. For other seven languages, we

used ELMo models trained by Ulčar and Robnik-Šikonja

[30]6.

As sources of parallel texts, we used OpenSubtitles

parallel corpora7 [31] from the Opus web page8 for each

pair of languages. The dictionaries we used are bilingual

dictionaries extracted from Wiktionary, using the wikt2-

dict9 tool [32]. The tool allows for direct dictionary

extraction, as well as triangulation via a third language. In

the triangulation case, given three languages, A, B and C,

one constructs a bilingual dictionary for languages A and B

so that for every word a 2 A, one finds its translation c 2 C

from A� C dictionary. Next, the translation of the word c

in language B is found in the C � B dictionary and labeled

b. The dictionary created using triangulation consists of

pairs a� b.

4 https://allennlp.org/elmo.
5 https://github.com/deepmipt/DeepPavlov.
6 http://hdl.handle.net/11356/1277.
7 https://www.opensubtitles.org/.
8 http://opus.nlpl.eu.
9 https://github.com/juditacs/wikt2dict.

Neural Computing and Applications

123

https://allennlp.org/elmo
https://github.com/deepmipt/DeepPavlov
http://hdl.handle.net/11356/1277
https://www.opensubtitles.org/
http://opus.nlpl.eu
https://github.com/juditacs/wikt2dict

The dictionaries made using the wikt2dict tool are noisy,

so we manually filtered them. We replaced the accented

vowels with their non-accented variants in languages that

do not use accented letters for vowels (e.g., Slovene and

Russian). We removed the extra non-alphabetic characters,

such as hash symbol, brackets, pipe, etc. We also removed

all the entries which contained multiple-word terms. We

leave the extension to the alignment of multi-word terms

for further work.

We used direct bilingual dictionaries for all language

pairs, where one of the languages was English. We used

direct dictionaries and dictionaries created with the trian-

gulation via English for all the other pairs (i.e., if neither

language is English). For the English-Slovene pair, we also

tested a large, high quality, manually created, proprietary

Oxford English-Slovene dictionary.

4 Contextual alignments

This section describes the proposed methods for cross-

lingual alignment of ELMo contextual embeddings. We

start with the ELMoGAN method for nonlinear alignment.

In Sect. 4.1, we describe the architecture of the proposed

alignments, followed by their training in Sect. 4.2. Based

on the constructed contextual alignment datasets, it is also

possible to align contextual embeddings with classical

linear mappings. We describe this approach in Sect. 4.3.

4.1 Architecture of ELMoGAN

The proposed ELMoGAN nonlinear cross-lingual contex-

tual embedding alignment method uses GANs [12]. GANs

consist of two connected neural models, a generator and a

discriminator. The two models are trained simultaneously

via an adversarial process. The discriminator attempts to

discern whether the data passed to its input is real or fake

(i.e., artificially generated). At the same time, the generator

attempts to generate artificial data, which can fool the

discriminator. GANs play a zero-sum game, where the

discriminator’s success means the generator’s failure and

vice versa. By simultaneously training both networks, they

both improve. GANs are mostly used on images, where the

described process can lead to compelling new generated

images.

Following the success of GANs in neural machine

translation [24] and cross-lingual embeddings alignment

[9, 25], we propose a novel supervised nonlinear mapping

method using bidirectional GANs. We based our contex-

tual alignment method, called ELMoGAN, on the model of

Fu et al. [25]. Contrary to Fu et al. [25], who only used

their method with non-contextual fastText embeddings [2]

to align sentences, we align contextual ELMo embeddings

[3], which is only possible by constructing a special con-

textual mapping datasets, described in Sect. 3. As these

datasets encode words in context, they are much larger and

the resulting GANs have to more precisely map between

Table 1 The sizes of

dictionaries and parallel corpora

used in the creation of ELMo

contextual mapping datasets, as

well as the size of the resulting

datasets

Language pair Type Dictionary Parallel corpus ELMo dataset

English-Estonian Direct 11,022 12,486,898 77,800

English-Finnish Direct 89,307 27,281,566 283,000

English-Croatian Direct 3448 35,131,729 44,800

English-Lithuanian Direct 13,960 1,415,961 62,800

English-Latvian Direct 10,224 519,553 43,800

English-Russian Direct 103,850 25,910,105 363,800

English-Slovenian Direct 9634 19,641,457 89,800

English-Slovenian OES 182,787 19,641,457 294,318

English-Swedish Direct 51,961 17,660,152 270,000

Estonian-Finnish Direct 2191 9,504,879 12,800

Estonian-Finnish Triang 43,313 9,504,879 78,200

Croatian-Slovenian Direct 266 15,636,933 3400

Croatian-Slovenian Triang 3669 15,636,933 31,600

Lithuanian-Latvian Direct 2478 219,617 11,200

Lithuanian-Latvian Triang 14,545 219,617 28,200

The sizes of dictionaries are reported in the number of word pairs, the sizes of parallel corpora in the

number of matching contexts, and the sizes of resulting datasets in the number of matched words in

matched sentence pairs. The Type column describes the dictionary creation approach; ‘‘direct‘‘ and ‘‘tri-

ang‘‘ denote that the dictionary was created directly from Wiktionary or with triangulation via English,

respectively; ‘‘OES‘‘ stands for the Oxford English-Slovene dictionary

Neural Computing and Applications

123

cross-lingual vector spaces compared to non-contextual

mappings.

The GAN-based cross-lingual embedding mapping

comprises the generator module and discriminator module.

The generator module (see Fig. 1) contains two generators

that map vectors from one vector space to the other.

Specifically, for a pair of languages L1 and L2, one gen-

erator will map from L1 to L2, and the second will map

from L2 to L1. The two generators are completely inde-

pendent of one another, and they do not share the data

during training. The discriminator module (Fig. 2) contains

two discriminators. The first discriminator (Dvalid) tries to

predict whether a given pair of vectors ðlx1; l
y
2Þ represent the

same token, i.e., if the first vector represents the word x in

L1 and the second vector represents the translation of the

word x in L2 (i.e., y). The second discriminator (Ddomain)

attempts to learn the difference between the direction of

mapping. For a given pair of vectors, it predicts whether

they are a vector from L1 and its mapping to L2 or a vector

from L2 and its mapping to L1.

Compared to the ABSent model by Fu et al. [25] that

was trained on a much smaller and easier problem of non-

contextual mapping, in ELMoGAN we increased the size

of all hidden layers in generators and discriminators. We

also significantly lowered the learning rate as we achieved

poor results with the learning rate used by Fu et al. [25].

The two generators in ELMoGAN have the same archi-

tecture: the input layer is followed by three fully connected

feed-forward layers of 2048, 4096, and 2048 nodes. We

used the ReLU activation function for all three layers. We

added a batch normalization layer between each fully

connected layer. The output layer has the same size as the

input layer. It uses a hyperbolic tangent as the activation

function so that the output is between �1 and þ1. Both
discriminators also have the same architecture. We first

concatenate the two input vectors, then feed them to the

three consecutive fully connected feed-forward layers with

leaky ReLU (a ¼ 0:2). The output layer is a single neuron

with sigmoid activation.

Typically, generators in GANs are optimized via the

loss function, which compares the discriminator’s output

with the correct label. In our setup, generators did not

successfully learn the mapping with this method, so we

added another loss function, which aims to minimize the

distance between lx1 and G2ðly2Þ, and between ly2 and G1ðlx1Þ,
as shown in Fig. 1. The total loss function is defined as:

L ¼ aLG þ bLDvalid
þ cLDdomain

LG ¼
1

kZk
X

ðx;yÞ2Z
�Scosðly2;G1ðlx1ÞÞ � Scosðlx1;G2ðly2ÞÞ
� �

LDvalid
¼� 1

kZk
X

ðx;yÞ2Z
rðx;yÞ � logðDvalidðG1ðlx1Þ;G2ðly2ÞÞÞ
�

þ ð1� rðx;yÞÞ � logð1� DvalidðG1ðlx1Þ;G2ðly2ÞÞÞ
�

LDdomain
¼� 1

kZk
X

ðx;yÞ2Z
rðx;yÞ � logðDdomainðly2;G2ðly2ÞÞÞ
�

þ ð1� rðx;yÞÞ � logð1� Ddomainðlx1;G1ðlx1ÞÞÞ
�

where Scos is cosine similarity metric, and (x, y) is the pair

of words from the contextual dataset Z, described in

Sect. 3. Specifically, (x, y) is equivalent to ðiDA
j ; iD

B
j Þ, and

ðlx1; l
y
2Þ is equivalent to ðeðDA

j ;P
A
i Þ; eðDB

j ;P
B
i ÞÞ. rx;y is the

label (1 or 0) for the given pair of words (x, y) as displayed

in Fig. 2. We set the factors a, b, and c experimentally to
2
12
, 5
12
, and 5

12
, respectively. The results achieved using dif-

ferent a, b, and c weights are shown in ‘‘Appendix C’’.

G1

G2

L1 L2
l11

l12

l1x

l1n

...

G2(l2y)

...

l21

l2y

...

G1(l1x)

l2n

...

l22

Fig. 1 The schema of the two generators for sentence alignment.

Generator G1 maps from L1 to L2 and generator G2 does vice-versa.

For a given pair of matching words x and y, where x is from L1 and y
from L2, the generator G1 attempts to map the vector lx1, so that its

output G1ðlx1Þ is as close as possible to ly2. The generator G2 attempts

to map ly2, so that G2ðly2Þ is as close as possible to lx1

Dvalid Ddomain

(l1x, l2y)

(rand(l1), rand(l2))

(l1x, G1(l1x))

(l2y,G2(l2y))

real/valid [1] fake/invalid [0]

[1]

[0]

[0]
[0]

(l1x, G1(l1x)) (l2y,G2(l2y))

[0] [1]

L1 to L2 [0] L2 to L1 [1]

Fig. 2 The schema of the two discriminators for sentence alignment.

Each discriminator receives a pair of vectors on input. During training

Dvalid receives a pair ðlx1; l
y
2Þ labelled as a real pair, a pair of random

word vectors labelled as a fake pair, and outputs from generators

labelled as fake pairs. The Ddomain discriminator receives outputs from

generators on its input and attempts to discern between them

Neural Computing and Applications

123

4.2 Training of ELMoGAN

We jointly trained the generator and discriminator modules

using the parallel ELMo vectors datasets, described in Sect.

3. We trained ELMoGAN with the batch size of 256, Adam

optimizer with the learning rate of 2� 10�5, and the

learning rate decay of 10�5. For each language pair, we

trained three mapping models, one for each of the ELMo

layers. For all three models, we used the same settings.

Each training iteration was done in two phases. In the

first phase, we trained both discriminators independently.

In the second phase, we trained the generator by training

the whole GAN, while keeping the discriminator weights

frozen.

To train the discriminators, we feed the discriminator

Dvalid four different types of vector pairs, as shown in

Fig. 2. The first type are matching pairs (True), repre-

senting the same token in each respective language. Other

types represent pairs of mismatching vectors (False). For

the vector pairs labelled as True, we take the matching

pairs from our training dataset. For the vector pairs labelled

as False, we have three types of pairs. The first type is two

randomly selected vectors from our dataset (one from each

vector space). The second type is vectors from L1 and their

mappings, using the G1 generator. The third type is vectors

from L2 and their mappings, using the G2 generator. We

chose to explicitly compare the mappings G1ðlx1Þ and

G2ðly2Þ with their original vectors (i.e., lx1 and ly2, respec-

tively) and not with each other. If we fed the discriminator

a pair (G1ðlx1Þ, G2ðly2Þ), the model could learn to map each

vector to an unrelated vector space. Additionally, by

feeding the discriminator two randomly selected vectors,

we wish to keep the two vector spaces disjunctive.

In the discriminator input pair ðI1; I2Þ, one of the vectors
is from L1 and the other is from L2, but not always in the

same order. During the discriminator training, the inputs

are shown in Fig. 2, and in the second phase, the inputs to

Dvalid are ðG1ðlx1Þ;G2ðly2ÞÞ. For the first phase, we tested

various combinations of the vector order, such as: I1 always

from L2 and I2 always from L1; half of input pairs have I1
from L1 and I2 from L2, the other half has I1 from L2 and I2
from L1; etc. The best results among the tested combina-

tions were achieved using the ordering shown in Fig. 2.

The proportion of the four input types for Dvalid was equal,

that is, in each iteration, the number of vector pairs of each

described type above was the same. We tested various

proportions of the vector pairs and described the results in

‘‘Appendix C’’.

For the second phase of the training, we feed the gen-

erators the word vectors from our training dataset. On the

input of the first generator are the vectors from L1, and on

the output, there are the matching vectors from L2; vice-

versa is true for the second generator.

We produced two different versions of ELMoGAN

models, based on the number of iterations used in the

training. The first version of models, called ELMoGAN-

10k, were trained for a fixed number of 10,000 iterations

for each layer of each language pair. The second version of

models, called ELMoGAN-O, were trained models with

several different numbers of iterations. We evaluated them

on a dictionary induction task and selected the number of

iterations that gave the best result. The details of selecting

the number of iterations are presented in ‘‘Appendix A’’.

4.3 Cross-lingual linear mappings for contextual
embeddings

Besides nonlinear mappings with GANs described above, it

is also possible to compute cross-lingual mappings between

contextual embeddings based on the standard assumption

that the aligned spaces are largely isomorphic. This

assumption may be approximately valid for similar lan-

guages. Below, we shortly describe methods for this type

of alignments.

With a large enough collection of words in matching

contexts (as described in Sect. 3), we compute their con-

textual embedding vectors and align them with any of the

non-contextual mapping methods (described in Sect. 2.1).

We use two such well-know and successful methods. The

Vecmap methods [14] change both source and target

embedding space, which makes them computationally less

efficient on downstream tasks analyzed in Sect. 5.6.

Methods from the MUSE library [9] only align source

vectors to target vectors and are therefore computationally

more efficient. As discussed in Sect. 2.4, a similar

approach was proposed by Aldarmaki and Diab [27] but

did not use large contextual datasets (presented in Sect. 3)

based on high-quality dictionaries as we did.

5 Evaluation

In this section, we compare the four proposed alignment

methods for contextual ELMo embeddings: two nonlinear

ELMoGAN methods and two linear methods. We evalu-

ated the methods on four downstream tasks: NER

(Sect. 5.1), DP (Sect. 5.2), terminology alignment

(Sect. 5.3), and sentiment analysis (Sect. 5.4). We compare

two nonlinear methods, ELMoGAN-10k and ELMoGAN-

O methods, trained as described in Sect. 4.2, with two

linear mapping methods, MUSE [9] and Vecmap [8, 14],

adapted for contextual embeddings, as described in

Sect. 4.3. These two are linear cross-lingual mapping

methods that assume linear transformation between vector

Neural Computing and Applications

123

spaces. For training of all alignments, we used the same

datasets, described in Sect. 3. In all the experiments, we

use embedding mappings from a target (i.e., evaluation)

language to a train language; namely, we map the

embeddings of the language used for the evaluation to the

vector space of the language, which was used during the

training of the model.

To better interpret the obtained results, we conducted

two further ablation studies. In Sect. 5.5, we tested the

importance of alignment dataset size. We used the English-

Slovene pair, where we have available a large high-quality

proprietary Oxford English-Slovene dictionary, instead of

the publicly available Wiktionary. In Sect. 5.6, we tested

different variants of the Vecmap alignment approach to

check if we can avoid transforming both the source and

target vector space and thereby significantly speed-up the

approach.

5.1 Named entity recognition

NER is an information extraction task that seeks to locate

and classify named entities mentioned in text into pre-de-

fined categories such as person names, organizations,

locations, medical codes, time expressions, quantities,

monetary values, etc. In our experiments, the labels in the

used NER datasets are simplified to a common label set of

four labels present in all the addressed languages. These

labels are ‘‘person’’, ‘‘location’’, ‘‘organization’’, and

‘‘other’’. The latter encompasses all named entities that do

not fall in one of the three mentioned classes and all the

tokens that are not named entities. The datasets used in the

evaluation on the NER task are shown in Table 2, along

with some basic statistics of the datasets.

In Table 3, we present the results using the Macro F1

score, which is an average of F1 scores for each class we

are trying to predict, excluding the class ‘‘other’’ (i.e., not a

named entity). The upper part of Table 3 shows a typical

cross-lingual transfer learning scenario, where the model is

transferred from resource-rich language (English) to less-

resourced languages. In this case, the nonlinear ELMoGAN

methods, in particular the ELMoGAN-10k variant, are

superior to linear Vecmap and MUSE approaches. In this

scenario, ELMoGAN-10k is always the best or close to the

best mapping approach. This is not the case in the lower

part of Table 3, which shows the second most important

cross-lingual transfer scenario: transfer between similar

languages. In this scenario, linear Vecmap and MUSE

perform best in all twelve language pairs (seven times

Vecmap and five times MUSE). We hypothesize that the

reason for better performance of linear mappings is the

similarity of tested language pairs and therefore lesser

violation of the isomorphism assumption the Vecmap and

MUSE method make. The results of the MUSE method

support this hypothesis. While MUSE performs worst in

most cases of transfer from English, the performance gap is

smaller for transfer between similar languages. MUSE is

sometimes the best method for similar languages, but the

results of MUSE fluctuate greatly between language pairs.

The second possible factor explaining the results is the

quality of the dictionaries, which are in general better for

combinations involving English. In particular, dictionaries

obtained by triangulation via English are of poor quality,

and nonlinear transformations might be more affected by

the imprecision of anchor points.

In general (for NER and other tasks presented later),

even the best cross-lingual prediction models lag behind

the model without cross-lingual transfer (the column Direct

in Table 3). The differences in Macro F1 score are small

for some languages (e.g., 5.5% for English-Swedish), but

they are significantly larger for most of the languages.

5.2 Dependency parsing

The DP task constructs a dependency tree of a given sen-

tence. In DP, all the words in a sentence are arranged into a

hierarchical tree, based on their semantic dependencies.

Each word has at most one parent node, and only the root

word has no parent. A word can have multiple children

nodes. In addition to predicting the tree’s structure, the task

is also to label the hierarchical dependencies.

As the DP architecture, we use the SuPar tool by Yu

Zhang10, which is based on the deep biaffine attention [41].

We modified the SuPar tool to accept ELMo embeddings

on the input; specifically, we used the concatenation of the

three ELMo layers. We made the modified code publicly

available11. We trained the parser for 10 epochs, using

datasets in nine languages (Croatian, English, Estonian,

10 https://github.com/yzhangcs/parser.
11 https://github.com/MatejUlcar/parser/tree/elmo.

Table 2 The datasets for the NER task and their properties: the

number of sentences and number of tagged words

Language Corpus Sentences Tags

Croatian hr500k [33] 25,000 29,000

English CoNLL-2003 NER [34] 21,000 44,000

Estonian Estonian NER corpus [35] 14,000 21,000

Finnish FiNER data [36] 14,500 17,000

Latvian LV Tagger train data [37] 10,000 11,500

Lithuanian TildeNER [38] 5476 7024

Slovene ssj500k [39] 9500 9500

Swedish Swedish NER [40] 8500 7500

Neural Computing and Applications

123

https://github.com/yzhangcs/parser
https://github.com/MatejUlcar/parser/tree/elmo

Finnish, Latvian, Lithuanian, Russian, Slovene, and

Swedish). The datasets are obtained from the Universal

Dependencies [42] version 2.3. The datasets used and their

basic statistics are shown in Table 4.

We used two evaluation metrics in the DP task, the

unlabelled and labelled attachment scores (UAS and LAS)

on the test set. The UAS and LAS are standard accuracy

metrics in DP. The UAS score is defined as the proportion

of tokens that are assigned the correct syntactic head. The

LAS score is the proportion of tokens assigned the correct

syntactic head and the correct dependency label [44].

The results in Table 5 show that the Vecmap and MUSE

mapping methods outperform both ELMoGAN methods on

most language pairs in this task. Larger dictionaries, cre-

ated with triangulation, performed better than smaller

direct dictionaries, despite the triangulated dictionaries

being of worse quality. Language pairs with similar lan-

guages performed better than when the training language

was English.

The MUSE method is stable on the DP task, which is not

the case on the NER task. While MUSE outperforms

Vecmap on a few language pairs, its results still lag behind

Vecmap on average.

5.3 Terminology alignment

Terms are single words or multi-word expressions denoting

concepts from specific subject fields (e.g., embedding or

machine learning). The bilingual terminology alignment

task aligns terms between two candidate term lists in two

different languages. Given a pair of terms t1 and t2, where

t1 is from one language and t2 is its equivalent from the

second language, we measured the cosine distance between

vector of t1 and vectors of all terms from the second lan-

guage. If the vector of t2 is the closest to t1 among all the

terms from the second language, we count the pair as

correctly aligned. For example, for a pair of terms from the

Slovenian-English term bank ‘‘računovodstvo - account-

ing’’, we map the Slovene word embedding of the word

‘‘računovodstvo’’ from Slovene to English and check

among all English word vectors for the vector that is the

closest to the mapped Slovenian vector for ‘‘računovod-

stvo’’. If the closest vector is ‘‘accounting’’, we count this

as a success, else as a failure. This measure is called

accuracy@1 score or 1NN score and is defined as the

number of successes divided by the number of all exam-

ples, in this case term pairs.

We extracted aligned bilingual term lists from Eurovoc

[45], a multilingual thesaurus with more than 10,000 terms

Table 3 Comparison of

different methods for cross-

lingual mapping of contextual

ELMo embeddings evaluated on

the NER task

Source Target Dictionary Vecmap ELMoGAN-O ELMoGAN-10k MUSE Direct

English Croatian Direct 0:385 0.274 0.365 0.024 0.810

English Estonian Direct 0.554 0.693 0:728 0.284 0.895

English Finnish Direct 0.672 0.705 0:780 0.229 0.922

English Latvian Direct 0.499 0.644 0.652 0.216 0.818

English Lithuanian Direct 0.498 0.522 0:553 0.208 0.755

English Slovenian Direct 0.548 0.572 0:676 0.060 0.850

English Swedish Direct 0.786 0.700 0.780 0.568 0.852

Croatian Slovenian Direct 0.387 0.279 0.250 0.418 0.850

Croatian Slovenian Triang 0:731 0.365 0.420 0.592 0.850

Estonian Finnish Direct 0:517 0.339 0.316 0.278 0.922

Estonian Finnish Triang 0:779 0.365 0.388 0.296 0.922

Finnish Estonian Direct 0.477 0.305 0.324 0.506 0.895

Finnish Estonian Triang 0.581 0.334 0.376 0.549 0.895

Latvian Lithuanian Direct 0:423 0.398 0.404 0.345 0.755

Latvian Lithuanian Triang 0.569 0.445 0.472 0.378 0.755

Lithuanian Latvian Direct 0.263 0.312 0.335 0.604 0.818

Lithuanian Latvian Triang 0.359 0.405 0.409 0.710 0.818

Slovenian Croatian Direct 0.361 0.270 0.307 0.485 0.810

Slovenian Croatian Triang 0:566 0.302 0.321 0.518 0.810

Average gap for the best cross-lingual transfer in each language 0.147

The best Macro F1 score for each language pair is in bold. The ‘‘Direct‘‘ column represents the upper bound

of achievable score using direct learning on the target language without cross-lingual transfer. The upper

part of table contains a scenario of cross-lingual transfer from English to a less-resourced language, and the

lower part of table shows a transfer between similar languages

Neural Computing and Applications

123

available in all EU languages. For building contextualised

vector representations of these terms, we used the Europarl

corpus [46, 47]. For Croatian, Europarl is not available, so

we used DGT translation memory [48] instead.

For each word, we concatenate the three ELMo vectors

into one 3072-dimensional vector. For single-word terms,

we represent each term as the average vector of all con-

textual vector representations for that word, found in the

corpus. For multi-word terms, we used a two-step

approach. First, we check whether the term appears in the

corpus. If it does, we represent each term occurrence as the

average vector of the words it is composed of. We then

average over all the occurrences, as with single-word

terms. If the term does not appear in the corpus, we rep-

resent it as the average of all words it is composed of,

where word vectors are averaged over all occurrences in

the corpus. For each language pair, we evaluate the ter-

minology alignment in both directions. That is, given the

terms from the first language (source), we search for the

equivalent terms in the second language (target), then we

repeat the process in the other direction.

Table 4 Dependency parsing

datasets and their properties: the

treebank, language ISO 639-1

code, number of sentences,

number of tokens, and

information about the size of the

split

Language Code Treebank Tokens Sentences Train Validation Test

Croatian hr SET 199,409 9010 6914 960 1136

English en EWT 254,855 16,622 12,543 2002 2077

Estonian et EDT 438,171 30,972 24,633 3125 3214

Finnish fi TDT 202,697 15,135 12,216 1364 1555

Latvian lv LVTB 220,536 13,643 10,156 1664 1823

Lithuanian lt ALKSNIS [43] 70,051 3642 2341 617 684

Russian ru GSD 98,000 5030 3850 579 601

Slovene sl SSJ 140,670 8000 6478 734 788

Swedish sv Talbanken 96,858 6026 4303 504 1219

Table 5 Comparison of

different contextual cross-

lingual mapping methods on the

DP task

Train Eval. Vecmap ELMoGAN-O ELMoGAN-10k MUSE Direct

lang. lang. Dict. UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

en hr Direct 73.96 60.53 68.73 50.29 66.74 40.93 71.01 54.89 91.74 85.84

en et Direct 62.08 40.62 52.01 30.22 44.80 24.59 58.76 34.07 89.54 85.45

en fi Direct 64.40 45.32 50.80 25.23 42.65 22.66 55.03 37.61 90.83 86.86

en lv Direct 77.84 65.97 68.51 49.47 67.09 39.41 76.26 63.45 88.85 82.82

en lt Direct 63.33 40.56 50.04 31.26 49.22 25.15 58.70 37.78 82.84 72.16

en ru Direct 72.00 16.62 60.74 8.92 60.68 8.18 65.23 14.77 89.33 83.54

en sl Direct 79.01 59.84 68.82 48.20 67.04 43.34 77.18 56.53 93.70 91.39

en sv Direct 82.08 72.74 74.39 59.70 73.81 59.63 82.17 72.78 89.70 85.07

hr sl Direct 85.47 72.70 51.88 31.50 53.68 33.40 83.45 69.08 93.70 91.39

hr sl Triang 87.70 76.51 54.34 36.32 59.61 38.83 87.70 76.40 93.70 91.39

et fi Direct 79.14 66.09 55.67 36.85 51.35 30.66 76.66 60.01 90.83 86.86

et fi Triang 80.94 67.35 52.63 29.94 52.83 28.70 76.96 63.37 90.83 86.86

fi et Direct 75.81 57.32 54.69 33.99 53.27 32.28 74.96 58.14 89.54 85.45

fi et Triang 79.04 61.86 53.64 32.73 53.86 30.13 76.74 60.27 89.54 85.45

lv lt Direct 76.43 54.24 64.44 37.16 64.73 35.86 75.45 53.02 82.84 72.16

lv lt Triang 76.26 53.59 65.91 37.91 65.45 33.62 75.12 51.14 82.84 72.16

lt lv Direct 63.27 24.53 56.43 26.93 62.51 31.84 73.70 44.62 88.85 82.82

lt lv Triang 61.32 27.29 61.89 29.39 61.95 30.11 72.39 43.15 88.85 82.82

sl hr Direct 77.89 62.58 47.34 29.39 52.27 32.48 72.87 55.70 91.74 85.84

sl hr Triang 81.32 67.51 50.96 32.82 56.17 35.96 78.63 63.96 91.74 85.84

Avg. gap for the best cross-lingual transfer in each language 9.89 23.79

Results are reported as unlabelled attachments score (UAS) and labelled attachment score (LAS). The

column ‘‘Direct‘‘ stands for direct learning on the target (i.e., evaluation) language without cross-lingual

transfer. The languages are represented with their international language codes ISO 639-1

Neural Computing and Applications

123

We present the results of cross-lingual terminology

alignment of contextual ELMo embeddings in Table 6. We

compared the same four mapping methods as in the pre-

vious tasks. For terminology alignment between English

and other languages, the two nonlinear mappings perform

the best on all language pairs. With English as the target

language, ELMoGAN-10k always performs the best. In

cases where English is the source language, ELMoGAN-O

is usually the best.

Table 6 Comparison of

contextual cross-lingual

mapping methods for ELMo

embeddings, evaluated on the

terminology alignment task

Source Target Dict (Dir) Vecmap EG-O EG-10k MUSE

en sl Direct (sl!en) 0.079 0.152 0.151 0.096

sl en Direct (sl!en) 0.099 0.139 0.195 0.126

en hr Direct (hr!en) 0.080 0.153 0.135 0.116

hr en Direct (hr!en) 0.084 0.139 0.153 0.102

en et Direct (et!en) 0.092 0.177 0.167 0.128

et en Direct (et!en) 0.091 0.117 0.133 0.118

en fi Direct (fi!en) 0.092 0.166 0.176 0.132

fi en Direct (fi!en) 0.087 0.083 0.116 0.112

en lv Direct (lv!en) 0.084 0.157 0.147 0.102

lv en Direct (lv!en) 0.091 0.122 0.140 0.111

en lt Direct (lt!en) 0.095 0.181 0.172 0.114

lt en Direct (lt!en) 0.097 0.132 0.171 0.102

en sv Direct (sv!en) 0.125 0.183 0.187 0.161

sv en Direct (sv!en) 0.112 0.111 0.167 0.109

sl hr Direct (hr!sl) 0.109 0.037 0.031 0.102

sl hr Triang (hr!sl) 0.130 0.056 0.046 0.156

sl hr Direct (sl!hr) 0.109 0.039 0.038 0.100

sl hr Triang (sl!hr) 0.130 0.053 0.057 0.155

hr sl Direct (hr!sl) 0.084 0.029 0.028 0.082

hr sl Triang (hr!sl) 0.097 0.042 0.044 0.121

hr sl Direct (sl!hr) 0.084 0.023 0.021 0.084

hr sl Triang (sl!hr) 0.097 0.039 0.033 0.121

fi et Direct (et!fi) 0.130 0.092 0.078 0.121

fi et Triang (et!fi) 0.130 0.102 0.080 0.124

fi et Direct (fi!et) 0.129 0.085 0.089 0.122

fi et Triang (fi!et) 0.130 0.090 0.094 0.145

et fi Direct (et!fi) 0.143 0.091 0.094 0.167

et fi Triang (et!fi) 0.148 0.095 0.103 0.166

et fi Direct (fi!et) 0.143 0.108 0.092 0.166

et fi Triang (fi!et) 0.148 0.118 0.097 0.189

lv lt Direct (lt!lv) 0.102 0.080 0.061 0.123

lv lt Triang (lt!lv) 0.119 0.090 0.076 0.134

lv lt Direct (lv!lt) 0.102 0.059 0.071 0.123

lv lt Triang (lv!lt) 0.119 0.065 0.077 0.128

lt lv Direct (lt!lv) 0.099 0.061 0.069 0.102

lt lv Triang (lt!lv) 0.112 0.064 0.076 0.116

lt lv Direct (lv!lt) 0.099 0.071 0.057 0.102

lt lv Triang (lv!lt) 0.112 0.083 0.069 0.110

Results are reported as accuracy@1, based on the cosine distance metric. The best results for each language

and type of transfer (from English in the top part and from similar language the bottom part of table) are

typeset in bold. The languages are represented with their international language codes ISO 639-1. The

labels ‘‘Dict’’ and ‘‘Dir’’ in the third column represent the type of the dictionary and the direction of vector

mappings: from!to

Neural Computing and Applications

123

For terminology alignment between similar languages,

we also compared the mapping of embeddings in both

directions, that is we mapped source terms embeddings to

target terms space and vice-versa. Linear methods outper-

form the nonlinear methods on similar languages. In most

cases, MUSE is the best method. If we just look at the best

dictionary and mapping direction for each language pair,

MUSE is the best in each language pair not involving

English. The terminology alignment is in most cases better

from English than from a similar language as a source, the

exceptions are Croatian and Finnish (as targets).

Overall, it seems that results on the terminology align-

ment task follow the same pattern as in the NER task:

dominance of nonlinear methods in the transfer from

English and prevalence of linear methods in the transfer

from similar languages.

5.4 Sentiment analysis

We treat the sentiment analysis task as a sentence-level

classification. Given a sentence or a short text of a few

sentences, we label it with one of the three predefined

categories: positive, negative, or neutral, based on the

text’s sentiment. We used large Twitter sentiment datasets

by Mozetič et al. [49], extracting the four languages we are

analysing in other tasks, i.e., English, Croatian, Slovenian,

and Russian.

We trained the classifiers using the same approach and

hyper-parameters as for NER (described in Sect. 5.1), but

with a different neural network architecture. We trained

models with four hidden layers, three bidirectional LSTMs

and one fully connected feed-forward layer. The three

LSTM layers have 512, 512, and 256 units, respectively.

The fully connected layer has 64 neurons.

We present the results using the macro F1 score in

Table 7. The difference between transfer from English and

transfer from a similar language is much smaller in this

task. Similarly, the performance between direct

dictionaries and those created using triangulation is not

large in most cases. Triangulated dictionaries perform

better overall, but not for every mapping method. MUSE

method outperforms the other three methods in all, but one

example, transfer from English to Croatian, where all

methods perform on par, but MUSE slightly worse than the

other three. For transfer from Slovenian to Croatian, both

ELMoGAN methods show large variance between indi-

vidual runs and outperform MUSE on some runs. However,

averaged over several runs they perform significantly

worse.

Overall, the results on the sentiment analysis task follow

the same pattern as on the DP task: dominance of the linear

mapping methods.

5.5 Dataset size importance

We tested the importance of dataset size on the English-

Slovene language pair. In the contextual dataset creation,

we used a large, high-quality Oxford English-Slovene

dictionary instead of Wiktionary. We kept all the other

resources and settings the same. We evaluated ELMoGAN-

10k on NER and DP tasks using various sizes of the dataset

to train contextual alignments. One of the dataset sizes is

89800 entries, which is the same size as the dataset created

with the low-quality Wiktionary dictionary. We included

that size for easier comparison between both dictionaries.

The results on the NER task are shown in Fig. 3. When

we increase the size of the dataset, the performance on the

NER task improves. The dataset size matters, and we

presume that the performance would further increase with

an even larger dataset. Surprisingly, the results achieved

with the dataset of size 89800 are significantly worse than

the results achieved with the dataset of the same size,

created with the low-quality dictionary (see Table 3).

Using the Oxford English-Slovene dictionary, we achieved

the F1 score of 0.450 when trained on English and evalu-

ated on Slovene. Using Wiktionary bilingual dictionary, we

Table 7 Comparison of

different methods for cross-

lingual mapping of contextual

ELMo embeddings, evaluated

on the sentiment analysis task

Source Target Dict. Vecmap ELMoGAN-O ELMoGAN-10k MUSE Direct

en hr Direct 0.44 0.44 0.44 0.43 0.59

en sl Direct 0.45 0.45 0.46 0.47 0.51

en ru Direct 0.45 0.35 0.37 0.48 0.68

hr sl Direct 0.45 0.39 0.39 0.48 0.51

hr sl Triang 0.46 0.40 0.41 0.47 0.51

sl hr Direct 0.33 0.28 0.36 0.48 0.59

sl hr Triang 0.47 0.29 0.31 0.50 0.59

The best macro F1 score for each language pair is in bold. The ‘‘Direct‘‘ column represents direct learning

on the target language without cross-lingual transfer. The upper part of table contains a scenario of cross-

lingual transfer from English to a less-resourced language, and the lower part of table shows a transfer

between similar languages

Neural Computing and Applications

123

achieved the F1 score of 0.676 on the same language pair

with the same alignment method.

The results in the DP task show different behavior. At

first, the performance quickly increases with larger data-

sets, and then it stays the same or even starts to drop (see

Fig. 4). The best results are achieved with the dataset of

size 50,000 when mapping from English to Slovene. When

mapping from Slovene to English, datasets of size only

10,000 (based on the UAS) and 5000 (based on the LAS)

produce the best results.

The better performance of Wiktionary bilingual dic-

tionary over high-quality Oxford dictionary, when datasets

are of the same size, is observed in the DP task as well. On

Slovene to English mapping, the dataset from Oxford

dictionary scores 59:90% UAS and 33:53% LAS.

Fig. 3 Comparison of different sizes of cross-lingual contextual

datasets based on different dictionaries used for cross-lingual

mapping of contextual ELMo embeddings, evaluated on the NER

task. LQsize represents the size of the dataset equal to the size of the

low-quality dictionary (89,800 total entries, 88,453 entries in the

training dataset). The mapping method used was ELMoGAN-10k

Fig. 4 Comparison of different sizes of cross-lingual contextual

datasets based on different dictionaries used for cross-lingual

mapping of contextual ELMo embeddings, evaluated on the DP task.

LQsize represents the size of the dataset based on the low-quality

dictionary (89800 total entries, 88453 entries in train dataset). We

used the ELMoGAN-10k mapping method

Neural Computing and Applications

123

Wiktionary-based dataset scores 67:04% UAS and 43:34%

LAS.

The results on dataset size and results from Sects. 5.1

and 5.2 lead us to the conclusion that the quality of the

dictionary used does not play a large role. The more

important parameter is the size of the dictionary. On the

NER task, larger dictionary sizes always improve results.

The DP task results remain inconclusive, as the larger

dictionary created with triangulation outperformed the

smaller direct dictionary for similar language pairs on the

DP task.

5.6 Vecmap optimizations

In computing cross-lingual alignments of two languages,

the Vecmap method changes both embedding spaces. This

means that we have to train a separate embedding for each

language pair. In our case, we had to train eight different

English models on English data for each downstream task,

one for each pair of languages, when using Vecmap for

alignments. The reason is that the English vectors change

during the alignment as well, and we have to apply that

change at the time of classifier model training. This con-

siderably slows down the training and evaluating proce-

dure. We tested several approaches to avoid retraining

separate models, but none was successful. A detailed

description of our experiments is contained in ‘‘Appendix

B’’.

6 Conclusion

We present four novel methods for cross-lingual mapping

of contextual ELMo embeddings. The two ELMoGAN

methods (ELMoGAN-O and ELMoGAN-10k) do not

assume isomorphic embedding spaces and use GANs to

compute the alignments. The two linear methods use

Vecmap and MUSE libraries, but map words in matching

contexts. To construct the contextual mappings, all four

methods need contextual embeddings datasets. We con-

structed fifteen such datasets for eleven language pairs. We

created a matching set of contextual word embeddings for

each language pair and each ELMo layer from parallel

corpora and bilingual dictionaries.

The presented methods can be adapted for cross-lingual

alignments of other contextual (and non-contextual)

embeddings with a few caveats. As the methods align word

vectors prior to their usage in a downstream model, this

precludes their usage in models which are fully fine-tuned

on a downstream task (e.g., a typical use of BERT models).

For embeddings other than ELMo, the architecture of the

generator and discriminators presented in Sect. 4.1 should

be adapted to the size of the embedding vectors.

Furthermore, a different set of training hyper-parameters

should be used for method to converge and learn optimal

alignment. For non-contextual embeddings, the creation of

contextual dataset presented in Sect. 3 is not necessary,

otherwise the alignment methods can be used with the

same alterations described for the contextual embeddings.

Nonlinear ELMoGAN methods outperformed linear

mappings on the NER and terminology alignment, espe-

cially on distant languages where the assumption of iso-

morphic embedding spaces is strongly violated. The

nonlinear methods performed worse on the DP and senti-

ment analysis tasks. There are substantial differences

between languages and we advise users to test both linear

and nonlinear methods on a specific task and language. The

ELMoGAN approach is sensitive to the values of training

Table 8 The number of iterations ELMoGAN-O was trained for, for

each embedding layer and language pair

Language 1 Language 2 Dictionary Layer 1 Layer 2 Layer 3

English Croatian Direct 15000 50000 30000

English Estonian Direct 12000 50000 40000

English Finnish Direct 40000 50000 50000

English Latvian Direct 10000 40000 50000

English Lithuanian Direct 30000 50000 40000

English Slovenian Direct 30000 50000 25000

English Swedish Direct 50000 50000 50000

Croatian Slovenian Direct 15000 40000 10000

Croatian Slovenian Triangular 25000 50000 25000

Estonian Finnish Direct 30000 25000 15000

Estonian Finnish Triangular 30000 50000 20000

Latvian Lithuanian Direct 25000 40000 30000

Latvian Lithuanian Triangular 50000 30000 25000

The optimal number of iterations was determined on the dictionary

induction task

Fig. 5 The average precision score on dictionary induction task for

English-Finnish alignment at different numbers of iterations of

alignment algorithm

Neural Computing and Applications

123

parameters, mostly the learning rate and the number of

iterations. To find a set of well-performing hyper-param-

eters, the method has to be fine-tuned for each task.

There are still some open questions in practical appli-

cation of ELMoGAN approach. First, it is not clear what is

the best methodology for choosing the right number of

iterations for each task. The dictionary induction task we

currently use internally to determine the right number of

iterations works well for the NER and terminology align-

ment tasks, but seems inappropriate for the DP task where

greater emphasis is on syntactic properties of the language

(and not so much on the words as in the NER task).

In further work, we intend to work on a robust method to

find hyper-parameters. Testing more GAN architectures to

find a more robust mapping might be a promising research

direction. An issue worth investigating is multiple-word

terms which are not included in the current contextual

mapping datasets but could be useful in tasks requiring

their correct cross-lingual recognition.

Appendix A: Tuning the number of iterations
of ELMoGAN-O

ELMoGAN mapping models have been trained for a dif-

ferent number of iterations for each language pair and each

ELMo layer. We have trained all models for the numbers

of iterations set between 6000 and 50,000. We evaluated

each model on the dictionary induction task on the evalu-

ation part of our contextual mapping dataset, presented in

Sect. 3. We have used the average score of precision@1,

precision@5, and precision@10 for both directions of our

bidirectional mapping model (i.e., from the first to the

second language and reverse). The number of iterations

that produced the best result on the evaluation set was

selected as the optimal and was used in the model called

ELMoGAN-O in other evaluations. The selected numbers

of iterations are presented in Table 8.

We opted not to check more than 50000 iterations

because the precision on the evaluation task rises quite

quickly and then saturates or drops. For example, on the

English-Finnish pair, the selected iterations were 40,000

for layer 1 and 50000 for layers 2 and 3. Still, these

numbers do not fully reflect the optimal behavior for all

languages and dictionaries. The precision scores for dif-

ferent iterations for this language pair are shown in Fig. 5.

Appendix B: Vecmap speed-up experiments

As explained in Sect. 5.6, the Vecmap method changes

both languages’ embedding spaces when computing the

cross-lingual alignments. This means that we have to train

a separate embedding for each language pair. In our case,

we had to train eight different English models, one for each

pair of languages. This considerably slows down the

training and evaluating procedure. We tested six different

sets of options for the Vecmap method to avoid retraining

separate models. In this experiment, the training language

was always English and we used the DP task. By default,

Vecmap first normalizes both vector sets of a language pair

and then calculates the mapping matrix, which maps vec-

tors from one language to the other language (in our

experiment, from each language to English). Finally, it re-

weighs both sets of vectors. In the results below, we denote

this approach as ‘‘ELMoVM’’ and it is identical to how we

used the Vecmap method elsewhere in this paper. We

tested five alternative approaches on the DP task; all of

them were unsuccessful. This extra step of mapping both

source and target languages seems to be unavoidable. The

results for all the approaches are shown in Table 9.

The options for all the approaches are summarized in

Table 10. The approach ‘‘et’’ is identical to ELMoVM,

except that we used the English model trained for Estonian-

English pair for all language pairs. The following four

approaches do not alter English vectors in any way.

Table 9 Various options used

with the Vecmap method on the

DP task

Eval. ELMoVM et orth nonorm evalnorm def

lang. UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

hr 73.96 60.53 26.79 1.83 13.22 1.14 17.03 2.29 25.67 6.10 16.54 0.72

et 62.08 40.62 62.08 40.62 11.97 1.21 9.38 0.76 20.05 1.62 13.82 1.53

fi 64.40 45.32 11.38 0.76 15.41 0.49 18.11 0.62 24.50 1.94 18.53 0.83

lv 77.84 65.97 25.32 2.21 12.82 1.26 12.88 0.63 29.10 7.89 20.39 1.96

lt 67.92 39.62 9.43 0.00 7.55 0.00 7.55 0.00 15.09 0.00 11.32 1.89

sl 79.01 59.84 28.92 2.53 13.72 0.87 12.06 0.48 25.22 6.45 14.33 0.83

sv 82.08 72.74 26.23 5.23 13.50 1.46 11.27 0.81 26.45 11.92 15.22 1.41

Train language is always English

Neural Computing and Applications

123

Approach ‘‘orth’’ removes the normalization performed

during the evaluation, but the normalization was still used

for both languages to calculate the mapping matrix.

Method ‘‘nonorm’’ is identical to ‘‘orth’’, except that we

removed the normalization also during the mapping matrix

calculation. Method ‘‘evalnorm’’ adds the normalization

during the evaluation but does not use it during the map-

ping matrix calculation. Finally, the approach ‘‘def’’ uses

the normalization both during the evaluation and mapping

matrix calculation.

Appendix C: Ablation studies

The loss function of the ELMoGAN model, defined in

Sect. 4.1 contains three tunable parameters, a, b, and c:

L ¼ aLgen þ bLDvalid þ cLDdomain

We show that the first factor of the loss function above is

important to successfully train the model. We evaluated

eight different sets of weights a, b, and c (Table 11) on the

dictionary induction task, in the same manner as explained

in ‘‘Appendix A’’, and on the NER task for the Slovenian-

English pair.

On the same two tasks we also evaluated different

approaches to training the Dvalid discriminator, explained in

Sect. 4.2. Specifically, the various amounts of each type of

vector pairs it is trained on. We present the eleven different

combinations tested in Table 12.

The results for the different loss function weights from

Table 11 and inputs of the Dvalid discriminator from

Table 12 are shown in Table 13. We tested the alignment

between English and Slovene ELMo embeddings. The

results for the dictionary induction task are given as the

average of P@1, P@5 and P@10 in both directions

(English to Slovene, and Slovene to English). The results

on the NER task show the performance of the NER model,

trained on English data and evaluated on a portion of the

Slovene train dataset, using Slovene ELMo embeddings

and ELMoGAN-10k alignment model. At no point during

the training of the English NER model or the alignment

model was the Slovene NER train dataset seen.

The upper third of Table 13 shows the results for vari-

ous weight sets from Table 11, while keeping every other

setting unchanged (i.e., same as used in Sect. 5). The

middle part of Table 13 shows the results for various sizes

of inputs of the Dvalid discriminator, while keeping the loss

function weights the same as in Sect. 5, i.e., set A from

Table 11. In the upper part of Table 13, we see that set D

performs the best on average. In the bottom part of table,

we show the results for various sizes of inputs of the Dvalid

discriminator, but using the loss function weights set D.

Although we can see that some settings achieve poor

results, there is no clear best set of parameters. There does

not appear to be any correlation between the results of

dictionary induction task and the results of the NER task,

as a certain set of parameters may perform the best on one

task, but poorly on another.

Table 10 Options used (y) or

not used (n) for different

variants of Vecmap mapping

Method ELMoVM et Orth Nonorm Evalnorm Def

Train lang. mapped Y Y N N N N

Normalization at train time Y Y N N N N

Eval lang. mapped Y Y Y Y Y Y

Normalization at eval time Y Y N N Y Y

Normalization used for mapping calc. Y Y Y N N Y

Table 11 Various sets of loss function weights

Weight set a b c

A 0.167 0.417 0.417

B 0.333 0.333 0.333

C 0.500 0.250 0.250

D 0.667 0.167 0.167

E 0.500 0.500 0.000

F 0.500 0.000 0.500

G 0.000 0.500 0.500

H 0.083 0.458 0.458

Table 12 Relative sizes of different inputs of the Dvalid discriminator

x, y rand1,rand2 x, G(x) y, G(y)

1 1 1 1 1

2 1 1 1 0

3 1 1 0 1

4 1 0 1 1

5 1 1 0 0

6 1 0 1 0

7 1 0 0 1

8 1 0.5 0.5 0

9 1 0 0.5 0.5

10 1 0.5 0 0.5

11 1 0.333 0.333 0.333

Neural Computing and Applications

123

Acknowledgements The work was partially supported by the Slove-

nian Research Agency (ARRS) core research programme P6-0411

and project J1-2480. This paper is supported by European Union’s

Horizon 2020 research and innovation programme under grant

agreement No 825153, project EMBEDDIA (Cross-Lingual Embed-

dings for Less-Represented Languages in European News Media).

Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

References

1. Mikolov T, Le QV, Sutskever I (2013) Exploiting similarities

among languages for machine translation. arXiv preprint

13094168

2. Bojanowski P, Grave E, Joulin A, Mikolov T (2017) Enriching

word vectors with subword information. Trans Assoc Comput

Ling 5:135–146

3. Peters M, Neumann M, Iyyer M, Gardner M, Clark C, Lee K,

Zettlemoyer L (2018) Deep contextualized word representations.

In: Proceedings of the 2018 conference of the North American

chapter of the association for computational linguistics: human

language technologies, Volume 1 (Long Papers), pp 2227–2237

4. Devlin J, Chang MW, Lee K, Toutanova K (2019) BERT: Pre-

training of deep bidirectional transformers for language under-

standing. In: Proceedings of the 2019 conference of the North

American chapter of the association for computational linguis-

tics: human language technologies, Volume 1 (Long and Short

Papers), pp 4171–4186

5. Škvorc T, Gantar P, Robnik-Šikonja M (2022) MICE: mining

idioms with contextual embeddings. Knowl Based Syst 235

6. Artetxe M, Schwenk H (2019) Massively multilingual sentence

embeddings for zero-shot cross-lingual transfer and beyond.

Trans Assoc Comput Ling 7:597–610

7. Robnik-Šikonja M, Reba K, Mozetič I (2021) Cross-lingual

transfer of sentiment classifiers. Slovenščina 2.0 9(1):1–25,

https://doi.org/10.4312/slo2.0.2021.1.1-25

8. Artetxe M, Labaka G, Agirre E (2018) A robust self-learning

method for fully unsupervised cross-lingual mappings of word

embeddings. In: Proceedings of the 56th annual meeting of the

association for computational linguistics (Volume 1: Long

Papers), pp 789–798

9. Conneau A, Lample G, Ranzato M, Denoyer L, Jégou H (2018)

Word translation without parallel data. In: Proceedings of inter-

national conference on learning representation (ICLR)

10. Ormazabal A, Artetxe M, Labaka G, Soroa A, Agirre E (2019)

Analyzing the limitations of cross-lingual word embedding

mappings. In: Proceedings of the 57th annual meeting of the

association for computational linguistics ACL, pp 4990–4995

11. Søgaard A, Ruder S, Vulić I (2018) On the limitations of unsu-

pervised bilingual dictionary induction. In: Proceedings of the

56th annual meeting of the association for computational lin-

guistics (Volume 1: Long Papers), pp 778–788

12. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D,

Ozair S, Courville A, Bengio Y (2014) Generative adversarial

nets. In: Advances in neural information processing systems,

pp 2672–2680

13. Søgaard A, Vulić I, Ruder S, Faruqui M (2019) Cross-lingual

word embeddings. Morgan & Claypool Publishers, San Rafael

14. Artetxe M, Labaka G, Agirre E (2018) Generalizing and

improving bilingual word embedding mappings with a multi-step

framework of linear transformations. In: Thirty-second AAAI

conference on artificial intelligence

15. Hochreiter S, Schmidhuber J (1997) Long short-term memory.

Neural Comput 9(8):1735–1780

16. Rogers A, Kovaleva O, Rumshisky A (2020) A primer in

BERTology: what we know about how BERT works. Trans

Assoc Comput Ling 8:842–866

17. Puccetti G, Miaschi A, Dell’Orletta F (2021) How do BERT

embeddings organize linguistic knowledge? In: Proceedings of

deep learning inside out (DeeLIO): the 2nd workshop on

knowledge extraction and integration for deep learning archi-

tectures, pp 48–57

18. Peters ME, Ruder S, Smith NA (2019) To tune or not to tune?

Adapting pretrained representations to diverse tasks. In:

Table 13 Dictionary induction results (average of P@1, P@5 and

P@10) and NER results for different loss function weights and Dvalid

discriminator inputs

Parameters CNN layer LSTM 1 LSTM 2 NER

A1 0.294 0.236 0.267 0.660

B1 0.317 0.290 0.286 0.636

C1 0.307 0.314 0.299 0.640

D1 0.312 0.328 0.301 0.621

E1 0.271 0.342 0.292 0.486

F1 0.303 0.293 0.290 0.648

G1 0.002 0.000 0.000 0.019

H1 0.267 0.175 0.253 0.646

A1 0.294 0.236 0.267 0.660

A2 0.295 0.277 0.278 0.616

A3 0.293 0.246 0.269 0.672

A4 0.297 0.354 0.286 0.665

A5 0.296 0.297 0.274 0.632

A6 0.283 0.339 0.281 0.546

A7 0.303 0.367 0.351 0.546

A8 0.297 0.286 0.276 0.527

A9 0.290 0.339 0.289 0.614

A10 0.294 0.253 0.277 0.672

A11 0.310 0.261 0.274 0.656

D1 0.312 0.328 0.301 0.621

D2 0.284 0.336 0.294 0.537

D3 0.297 0.327 0.294 0.649

D4 0.299 0.361 0.313 0.649

D5 0.283 0.338 0.291 0.553

D6 0.276 0.342 0.295 0.491

D7 0.303 0.377 0.367 0.517

D8 0.283 0.336 0.292 0.536

D9 0.299 0.361 0.314 0.659

D10 0.310 0.334 0.295 0.610

D11 0.309 0.330 0.301 0.623

The best result in each of the three parts (upper, middle, lower) of

table is underlined, the best result overall is in bold

Neural Computing and Applications

123

https://doi.org/10.4312/slo2.0.2021.1.1-25

Proceedings of the 4th workshop on representation learning for

NLP (RepL4NLP-2019), pp 7–14

19. Krone J, Zhang Y, Diab M (2020) Learning to classify intents and

slot labels given a handful of examples. In: Proceedings of the

2nd workshop on natural language processing for conversational

AI, pp 96–108

20. Nakashole N, Flauger R (2018) Characterizing departures from

linearity in word translation. In: Proceedings of the 56th annual

meeting of the association for computational linguistics (Volume

2: Short Papers), pp 221–227

21. Lu A, Wang W, Bansal M, Gimpel K, Livescu K (2015) Deep

multilingual correlation for improved word embeddings. In:

Proceedings of the 2015 Conference of the North American

Chapter of the Association for Computational Linguistics:

Human Language Technologies, pp 250–256

22. Andrew G, Arora R, Bilmes J, Livescu K (2013) Deep canonical

correlation analysis. In: International conference on machine

learning, pp 1247–1255

23. Zhao J, Gilman A (2020) Non-linearity in mapping based cross-

lingual word embeddings. In: Proceedings of the 12th language

resources and evaluation conference, pp 3583–3589

24. Yang Z, Chen W, Wang F, Xu B (2018) Improving neural

machine translation with conditional sequence generative adver-

sarial nets. In: Proceedings of the 2018 conference of the North

American chapter of the association for computational linguis-

tics: human language technologies, Volume 1 (Long Papers),

pp 1346–1355

25. Fu Z, Xian Y, Geng S, Ge Y, Wang Y, Dong X, Wang G,

de Melo G (2020) ABSent: cross-lingual sentence representation

mapping with bidirectional GANs. In: Proceedings of the AAAI

conference on artificial intelligence pp 7756–7763

26. Schuster T, Ram O, Barzilay R, Globerson A (2019) Cross-lin-

gual alignment of contextual word embeddings, with applications

to zero-shot dependency parsing. In: Proceedings of the 2019

conference of the North American chapter of the association for

computational linguistics: human language technologies, Volume

1 (Long and Short Papers), pp 1599–1613

27. Aldarmaki H, Diab M (2019) Context-aware cross-lingual map-

ping. In: Proceedings of the 2019 conference of the North

American chapter of the association for computational linguis-

tics: human language technologies, Vol 1 (Long and Short

Papers), pp 3906–3911

28. Dyer C, Chahuneau V, Smith NA (2013) A simple, fast, and

effective reparameterization of IBM Model 2. In: Proceedings of

NAACL-HLT, pp 644–648

29. Qi P, Zhang Y, Zhang Y, Bolton J, Manning CD (2020) Stanza: A

Python natural language processing toolkit for many human

languages. In: Proceedings of the 58th annual meeting of the

association for computational linguistics: system demonstrations

30. Ulčar M, Robnik-Šikonja M (2020) High quality ELMo embed-

dings for seven less-resourced languages. In: Proceedings of the

12th language resources and evaluation conference, LREC 2020,

pp 4733–4740

31. Lison P, Tiedemann J (2016) OpenSubtitles2016: extracting large

parallel corpora from movie and TV subtitles. In: Proceedings of

the 10th international conference on language resources and

evaluation LREC

32. Acs J (2014) Pivot-based multilingual dictionary building using

Wiktionary. In: Proceedings of the ninth international conference

on language resources and evaluation LREC

33. Ljubešić N, Klubička F, Željko Agić, Jazbec IP (2016) New

inflectional lexicons and training corpora for improved mor-

phosyntactic annotation of Croatian and Serbian. In: Proceedings

of the LREC 2016

34. Tjong Kim Sang EF, De Meulder F (2003) Introduction to the

CoNLL-2003 shared task: language-independent named entity

recognition. In: Proceedings of CoNLL-2003, pp 142–147

35. Laur S (2013) Nimeüksuste korpus. Center of Estonian Language

Resources

36. Ruokolainen T, Kauppinen P, Silfverberg M, Lindén K (2020) A

Finnish news corpus for named entity recognition. Lang Resour

Eval 54(1):247–272

37. Paikens P, Auziņa I, Garkaje G, Paegle M (2012) Towards named

entity annotation of Latvian national library corpus. Front Artif

Intell Appl 247:169–175

38. Pinnis M (2012) Latvian and Lithuanian named entity recognition

with TildeNER. In: Proceedings of the eighth international con-

ference on language resources and evaluation (LREC’12),

pp 1258–1265

39. Krek S, Dobrovoljc K, Erjavec T, Može S, Ledinek N, Holz N,

Zupan K, Gantar P, Kuzman T, Čibej J, Arhar Holdt Š, Kavčič T,

Škrjanec I, Marko D, Jezeršek L, Zajc A (2019) Training corpus

ssj500k 2.2. Slovenian language resource repository CLARIN.SI

40. Klintberg A (2015) Training a Swedish NER-model for Stanford

CoreNLP. Accessed 22 July 2021. https://medium.com/

@klintcho/training-a-swedish-ner-model-for-stanford-corenlp-

part-1-3e3f281a753a

41. Dozat T, Manning CD (2017) Deep biaffine attention for neural

dependency parsing. In: Proceedings of 5th international con-

ference on learning representations, ICLR 2017

42. Nivre J, Abrams M, Agić Ž (2020) Universal Dependencies 2.6.

http://hdl.handle.net/11234/1-2988

43. Bielinskiene A, Boizou L, Kovalevskaite J (2016) Lithuanian

dependency treebank. In: Human language technologies—the

baltic perspective: proceedings of the seventh international con-

ference baltic HLT 2016, vol 289, p 107

44. Jurafsky D, Martin JH (2009) Speech and language processing,

2nd edn. Prentice-Hall Inc, New York

45. Steinberger R, Pouliquen B, Hagman J (2002) Cross-lingual

document similarity calculation using the multilingual thesaurus

Eurovoc. Comput Ling Intell Text Process 101–121

46. Koehn P (2005) Europarl: a parallel corpus for statistical machine

translation. In: The tenth machine translation summit proceedings

of conference, international association for machine translation,

pp 79–86

47. Tiedemann J (2012) Parallel data, tools and interfaces in OPUS.

In: Proceedings of the eighth international conference on lan-

guage resources and evaluation LREC’12

48. Steinberger R, Eisele A, Klocek S, Pilos S, Schlüter P (2012)

DGT-TM: A freely available translation memory in 22 languages.

In: Proceedings of the 8th international conference on language

resources and evaluation LREC 2012

49. Mozetič I, Grčar M, Smailović J (2016) Multilingual Twitter

sentiment classification: the role of human annotators. PLOS

ONE 11(5)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications

123

https://medium.com/%40klintcho/training-a-swedish-ner-model-for-stanford-corenlp-part-1-3e3f281a753a
https://medium.com/%40klintcho/training-a-swedish-ner-model-for-stanford-corenlp-part-1-3e3f281a753a
https://medium.com/%40klintcho/training-a-swedish-ner-model-for-stanford-corenlp-part-1-3e3f281a753a
http://hdl.handle.net/11234/1-2988

	Cross-lingual alignments of ELMo contextual embeddings
	Abstract
	Introduction
	Background and related work
	Alignment of monolingual embeddings
	ELMo contextual embeddings
	Related work on non-contextual mappings
	Related work on contextual mappings

	Datasets for alignment of contextual embeddings
	Contextual alignments
	Architecture of ELMoGAN
	Training of ELMoGAN
	Cross-lingual linear mappings for contextual embeddings

	Evaluation
	Named entity recognition
	Dependency parsing
	Terminology alignment
	Sentiment analysis
	Dataset size importance
	Vecmap optimizations

	Conclusion
	Appendix A: Tuning the number of iterations of ELMoGAN-O
	Appendix B: Vecmap speed-up experiments
	Appendix C: Ablation studies
	Acknowledgements
	References

