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Abstract In the existing affective associative memory neural network circuits, the change of emotions in the
affective associative learning and forgetting processes is abrupt and the intensity of emotions is invariable.
In fact, the transition from one emotion to another is a gradual process. In this paper, to realize the
progressive changes of emotional intensity in the affective associative memory neural network, the gradual
learning, gradual forgetting and gradual transferring processes of emotions are proposed and the memristor-
based circuit of the affective associative memory neural network is designed. In the designed circuit, the
firing frequency of output neurons is closely correlated with the intensity of emotions. The higher the firing
frequency of output neurons, the stronger the emotional intensity. Based on the associative memory rule,
the dynamical change of the synaptic weights leads to the gradual variation of the frequencies of output
neurons. Thus, the function of variable emotional intensity can be realized and the gradual processes can
be achieved. The PSPICE simulation results are given to verify that the proposed circuit could realize the
affective learning, forgetting and transferring functions with gradual processes.

Keywords Memristive neural network, circuit simulation, associative memory, affective model, conditioning
reflex

1 Introduction

Artificial neural networks (ANNs) have always been a hot topic in the field of artificial intelligence. They
abstract the neurons of the human brain from the perspective of information processing and form different
networks according to the different connection methods. In recent years, utilizing artificial neural networks
to imitate biological behaviors and their means of information processing has attracted the attention of
scholars. For example, there is a lot research realized learning, memory and calculation based on the rules
of biological associative memory, non-associative learning, and affective computing [1–11]. Currently, the
calculation and processing of artificial neural networks are mainly carried out by software, which consumes a
lot of time for operating serially. The parallel processing mode of hardware is compatible with the distributed
processing method of biological neural network, which greatly improves operating speed [12]. The hardware
implementation of neural networks is mainly based on transistor devices traditionally, which is limited by the
size and functions of transistors. As a result, the synapse density of artificial neural networks implemented
by transistors is much lower than that of biological neural networks. Since the memristor was predicted by
Chua [13] and first produced by Strukov et al. [14], it has attracted widespread attention. Because of its
nanometer-scale size and resistive characteristics, memristor has become a suitable candidate for building
large-scale artificial neural networks with bionic synapses. Recently, memristive neural networks have been
widely studied in theory and application. The theoretical research mainly focuses on dynamics, such as
stability [15–20], synchronization [21–23], aiming to discover new functions and new phenomena of the
memristive neural networks. Meanwhile, memristive neural networks have made breakthroughs in many
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application fields such as image processing [24–26], pattern recognition [27–30], intelligent control [31,32]
to mimic the biological nervous systems for information processing and calculation.

The Pavlov’s associative memory theory refers to multiple associations between one stimulus and another
unconditioned stimulus with reward or punishment, so that individuals can learn to trigger a conditioned
response similar to the unconditioned response when presented with that stimulus alone. That theory is
the basis to realize affective associative learning and forgetting [33–35]. However, the emotional system of
humans is quite complex, how to simulate the transfer process of human emotions is meaningful [36–38]. In
the field of classical conditioning, “The Case of Peter” is an experiment that shows the transfer process of
affective associative memory [35]. In that experiment, food is an unconditional stimulus that will cause the
pleasure feeling of Peter, while the rabbit is a conditional stimulus that will cause the fear feeling of Peter.
However, when the conditional stimulus (the rabbit) was given combined with the unconditional stimulus
(food) many times, the fear feeling became weaker gradually while the pleasure feeling became stronger
gradually, which means one kind of emotional associative memory transferred to another kind of emotional
associative memory gradually. That is the gradual transferring process, which includes the process of gradual
learning and the process of gradual forgetting of emotions.

So far, a few studies have focused on the circuit design of affective associative memory neural network. In
[39], the associative memory neural network was first proposed to model human emotions in social relations,
but the model lacks the necessary circuits of neurons that conform to the characteristics of biological neurons.
Wang et al. proposed a full-function emotion model based on the associative memory neural network to
simulate the learning and forgetting processes of emotions [40]. And in [41], authors designed the rule
of affective multi-associative learning, which discussed the learning and forgetting of multiple emotions.
However, the intensity of emotions is invariable and the processes of gradual learning and gradual forgetting
are not considered in [39–41]. Actually, the change of emotions in the affective associative learning and
forgetting processes is not abrupt but gradual. In addition, the gradual transferring process from one kind
of emotional associative memory to another is not contained in these emotion models. Considering the
coherent changes of affective associative memory, it is necessary to implement the gradual processes to
better simulate the learning, forgetting and transferring stages of emotions.

Therefore, concerned with the issues mentioned above, this paper proposes the circuit design of affective
associative memory neural network with gradual processes, which includes the gradual learning, gradual
forgetting and gradual transferring stages of emotions. In the designed circuit, neurons with variable firing
frequency and memristor-based synapses constitute the basic framework of the neural network. The firing
frequency of output neurons is closely correlated with the intensity of emotions. Moreover, the dynamic
adjustment of synaptic weights will lead to the change of firing frequency of output neurons, which will
result in the changes of emotional intensity. Combined with the associative memory rules, the emotional
intensity gradually increases or decreases in the learning, forgetting and transferring stages. Thus, the
gradual learning, gradual forgetting and gradual transferring processes are realized. In those stages, as the
degree of associative memory deepens (or weakens) gradually, the intensity of certain emotions will gradually
become stronger (or weaker), which looks like a coherent change in emotions. That’s why these stages are
called ‘gradual’ processes.

The rest of this paper is arranged as follows. Section 2 describes the emotional gradual transfer phe-
nomenon from an experiment in the classical conditioning field. Section 3 presents the diagram of the
affective associative memory neural network model. In Section 4, the basic components that make up the
circuit of the affective associative memory neural network are introduced. Then, the circuit design of the
emotional gradual transferring process is presented in Section 5. Section 6 realizes and analyzes the whole
circuit design of the affective associative memory network with gradual learning, gradual transferring and
gradual forgetting processes.

2 A Case of Emotional Gradual Transferring Phenomenon

The rule of emotional gradual transferring is derived from “The Case of Peter” which is elaborated in
Behaviorism written by John B. Waston [35]. “The Case of Peter” is an experiment to reconstruct affective
associative learning to eliminate fear responses. The process and rules of the experiment are described as
follows.

Peter is a three-year-old child. In the beginning, he was afraid of rabbits. Peter showed fear by crying
when a rabbit was in his sight, which is a previously-established conditioned response before the experiment.
Candy is another unconditional stimulus. Peter showed pleasure when researchers offered him candy, which
is an unconditioned response. It should be noted that candy is not an unconditional stimulus of fear feeling
and the rabbit is not a conditioned stimulus of pleasure feeling. Specifically, Peter showed no fear when
researchers offered him candy and showed no pleasure when the rabbit occurred to his sight. Afterwards,
despite researchers offering Peter candy, he still showed fear when the rabbit was in his sight at first.
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Fig. 1: The diagram of “The Case of Peter” experiment.

After several such simultaneous pairings of the two stimuli (candy and rabbit), the fear response of Peter
gradually became weak and Peter showed tolerance. As the simultaneous pairings process repeated, the
degree of tolerance of Peter was getting higher. Finally, the fear response of Peter disappeared and he
could even play with the rabbit agreeably, which means the process of re-establishing affective associative
learning was completed and the fear emotion transferred to pleasure emotion. When the rabbit came to
Peter’s sight again, the pleasure feeling of Peter replaced the fear feeling, which means Peter conquered fear.
The experimental framework of “The Case of Peter” is shown in Fig. 1.

In the process of the re-establishing affective associative learning, the pleasure feeling was strengthened
gradually while the fear feeling was weakened gradually by repeating the pairings of the two stimuli (candy
and rabbit). In fact, the aforesaid re-establish affective association learning can be explained as the process of
learning one emotion and forgetting another emotion. In this learning and forgetting process, the transition
from one emotional state to another should not be abrupt but gradual. The emotional intensity will change
in the gradual transferring process, this is the gradual transfer phenomenon of emotions.

3 The Diagram of the Affective Associative Memory Neural Network Model

Based on “The Case of Peter” experiment, the diagram of associative memory neural network for mod-
eling emotions is shown in Fig. 2.

As shown in Fig. 2(a), “C” and “R” represent the “candy” signal and the “rabbit” signal, respectively.
N1 denotes the input neuron that receives the “candy” signal. N2 denotes the neuron that receives the
“rabbit” signal. N3 and N4 are output neurons which generate the emotional signal “pleasure” and “fear”
respectively. The synapses that constructed by memristors connect the input neurons and output neurons.
w01, w02, w13, w14, w23 and w24 denote the synaptic weights. The output signals of N3 and N4 are

Out(N3) = f(f(C ∗ w01 − θ1) ∗ w13 + (1)

f(R ∗ w02 − θ2) ∗ w23 − θ3)

Out(N4) = f(f(C ∗ w01 − θ1) ∗ w14 + (2)

f(R ∗ w02 − θ2) ∗ w24 − θ4)

where θ1-θ4 represent the threshold terms of neurons N1-N4. Out(N3) and Out(N4) represent the emotional
intensity of pleasure and fear emotions respectively. f(·) is the activation function defined as

f(x) =

{
g(w) x ≥ 0

0 x < 0
(g(w) ̸= 0, g(w) ∝ w) (3)

It should be noticed that g(w) is a nonlinear function positively related to weights, and g(w) will increase
(decrease) as the corresponding synaptic weights increase (decrease). In this paper, the synaptic weights w01

and w02 are set equal to 1, and the threshold terms θ1 and θ2 are set equal to 0. Because the candy signal
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Fig. 2: The affective associative memory neural network model based on “The Case of Peter” experiment.
(a) The whole neural network computing framework. (b) Single neuron computing framework.

will always cause the pleasure emotion and not cause the fear emotion, the weight w13 is set approximately
equal to 1 while w14 is set approximately equal to 0. At the beginning, the rabbit signal causes the fear
emotion of Peter, so the synaptic weight w24 is set approximately equal to 1, while w23 is set approximately
equal to 0. When the input signal C and R appear simultaneously, the synaptic weight w24 will decrease
while w23 will increase. As a result, the output Out(N4) decreases while Out(N3) increases, which means that
the associative memory between “rabbit” and “fear” gradually transfers to the associative memory between
“rabbit”and “pleasure”. This is the gradual transferring process of emotions. In the learning process, an
increase in synaptic weight w23 will result in the increases of Out(N3). In the forgetting process, an decrease
in synaptic weight w24 will result in the decreases of Out(N4).

Fig. 2(b) shows the single neuron computing framework. X represents the input signal of the neuron Nj .
The output signal Out(Nj) = f(X ∗w− θj). When X occurs and X ∗w > θj , the neuron Nj will be activated
to firing. Afterwards, the increases (decreases) in the synaptic weight w will result in the excitement of
neuron Nj to increase (decrease). Then, the firing frequency of Nj will increase (decrease). If w does not
change, g(w) and Out(Nj) will maintain as a constant, and the firing frequency will not change. Thus, the
increases (decreases) of Out(Nj) will be manifested by the increases (decreases) in firing frequency of the
neuron Nj . Moreover, the firing frequency of output neurons is correlated with the intensity of emotions.
Specifically, the higher the firing frequency of output neurons, the stronger the emotional intensity. The
dynamical change of the synaptic weights leads to the gradual variation of the frequency of output neurons,
then the intensity of emotions gradual changes in the learning, forgetting and transferring stages. Therefore,
the affective associative memory neural network with emotional gradual processes could be achieved.

4 Circuit Components in Affective Associative Memory Neural Network

4.1 Memristor Model

In memristive neural network, memristors are key components to simulate synaptic functions. At present,
various memristor models with different materials have appeared one after another. Meanwhile, the cor-
responding mathematical models of the memristors have also been proposed. For example, HP Labs [14]
first proposed the T iO2 memristor model but it does not contain the characteristics of voltage threshold or
current threshold. The paper [42] proposed a flexible TEAM memristor mathematical model, which includes
the characteristics of current threshold and state variable dependence. But voltage control models of the
memristors are often needed in practical applications. In [43], the authors proposed an extended VTEAM
voltage control model based on the TEAM model. Nevertheless, due to the fixed change rate of the state
variables, this model is difficult to describe the principles of synaptic strength change. The memristor model
with voltage thresholds used in this paper is proposed in [44], which is named memristor synapse model
and based on the experimental data of the AIST memristor [29]. The mathematical model is expressed as
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Table 1: Parameter settings of memristor

Parameters Setting

Ron(Ω) 10
Roff (Ω) 1000
VT−(V ) −4.1
VT+(V ) 4.1
D(nm) 3
µv(m2s−1Ω−1) 3× 10−8

ion(A) 0.025
ioff (A) 0.02
i0(A) 1× 10−5

follows.

dw(t)

dt
=


µv

Ron

D

ioff
i(t)− i0

f(w(t)) v(t) > VT+ > 0

0 VT− ≤ v(t) ≤ VT+

µv
Ron

D

it
ion

f(w(t)) v(t) < VT− < 0

(4)

f(w(t)) = 1− (
2w(t)

D
− 1)2p (5)

Where w(t) and D denote the width of doped region and thickness of memristive device respectively, i0,
ioff and ion are currents fixed with constant values, v(t) is the voltage applied across the memristor, VT+

and VT− are threshold voltages. Ron is a low memristance, which represents the memristor is completely
doped. Roff represents a high memristance when the memristor is completely undoped. f(w(t)) is a window
function with an adjustable parameter p.
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Fig. 3: PSPICE simulation results of memristor.

The parameter settings of the memristor in this paper are shown in Table 1. The voltage thresholds
VT+ and VT− are set to 4.1V and −4.1V , respectively. Only when the input voltage of memristor is greater
than VT+ or less than VT−, the memristance will change. Fig. 3 shows the change of the memristor under
the effect of the input voltage. When positive voltage pulses greater than VT+ are applied to the positive
terminal of the memristor, the memristance first decreases at fast speed, and then approaches the minimum
at gentle speed. Similarly, the memristance will increase when negative voltage pulses less than VT− are
applied to the negative terminal of the memristor.
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4.2 Neuron Model

Neurons are the most basic structure and function unit of biological nervous system, which equip the
ability to transmit bioelectric signals. The leaky integrate-and-fire neuron is an effective model with discharge
process similar to biological neurons [45]. In Fig. 4, the leaky integrate-and-fire neuron model is presented
and the differential monostable trigger is added. The frequency of output pulses of this neuron model will
be adjusted by the amplitude of the input current. Moreover, the width of output pulses can be adjusted
by setting the parameters of the differential monostable trigger. The firing principles of this neuron are
presented as follows.

IN Tn1

C1

Tn2

Tn3

Tn4

Tn5

Tn6

Tn7

C2

C3

R1 R2

OUT

Vb

Vc

Vdd Vdd

Fig. 4: Circuit of the neuron model.

The input terminal IN acts as a signal receiver to receive the input signal or the output signal from the
pre-neuron. The neuron is at an inactive state when there are no input signals. C1 and C2 are membrane
capacitors, which will integrate the input current. As the input current flows in, the voltage Vc will increase.
When the voltage Vc reaches the threshold Vth of the inverter composed by the transistors Tn2 and Tn3,
the neuron will be activated and output a high level pulse. At that time, the input signal is blocked and
the neuron experiences the refractory period while the transistor Tn6 is turned on and Tn1 is turned off.
Meanwhile, capacitors C1, C2 are discharging through the transistors Tn6 and Tn7 and the voltage Vc
gradually decreases. When Vc drops below the threshold of the inverter, there is no output pulse and the
transistor Tn6 is turned off and Tn1 is turned on, the neuron is restored to the inactive state and will ready
to meet the next input signal. The PSPICE simulation result of the neuron model is shown in Fig. 5.
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Fig. 5: The simulation of the neuron model. VC is the voltage on the membrane capacitors C1 and C2 in
Fig. 4. VOUT represents the voltage pulse output by the neuron in the ‘OUT’ terminal in Fig. 4.

In the PSPICE simulation, the PMOS transistors Tn1, Tn2 and Tn4 are based on the M2SJ136 model,
and the threshold voltage is about −2.0V . The NMOS transistors Tn3, Tn5, Tn6 and Tn7 are based on the
M2SK530 model, where the corresponding threshold voltage is about 2.1V . The membrane capacitors C1

and C2 are set to 10uF , and their capacitance can be adjusted appropriately to control the firing frequency
of neurons. Besides, we set R1 = 2(kΩ), R2 = 2(kΩ) and C3 = 0.2(uF ) in this simulation. By adjusting
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the resistance R2 and the capacitance C3 of the differential monostable trigger, it is flexible to change the
output pulses’ width of the neuron.
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Fig. 6: The circuit of the synapse model. (a) The Control Signal Module. (b) The Weight Adjustment
Module.

4.3 Synapse module

Synapses are key bonds which connect pre-neurons and post-neurons. By adjusting the synaptic weights,
the association between the pre-neurons and the post-neurons is strengthened or weakened. Memristor plays
a key role in realizing the synaptic function in this paper, which dynamically strengthens or weakens the
synaptic strength between neurons by adjusting the memristance. For the convenience of description, the
synapse module is explained in two parts, the first part is the Control Signal Module and the second part is
the Weight Adjustment Module. The circuit design of the entire synapse is shown in Fig. 6. In this paper,
the operational amplifiers in the synapse module are all based on the TL082 type for simulation, where the
power supplies are set as +15V and −15V . The value of R1 − R6 are set 1kΩ to assist the amplifiers to
complete the sum operation and inversion operation. R7 is initialized to 500Ω, it is a threshold resistor to
set the thresholds of the synaptic weight and its detailed settings are described in the next section.

The Control Signal Module is designed to receive control signals, which is presented in Fig. 6(a). Amplifier
OP1 is a summing operational amplifier while OP2 is an inverting operational amplifier. The Pre-neuron
signal is the output signal from the pre-neuron. When the pre-neuron is at active state, the switch S1 will
be turned on and the high-level voltage Vp will be applied to the Weight Adjustment Module. The learning
signal is used to establish associative memory in the learning stage. Specifically, when the learning signal
and the input signal of pre-neuron are generated at a certain time synchronously, the switches S1 and S2

will be turned on and the sum of voltages Vp and Vc will be applied to strengthen the synaptic strength.
When the inhabiting signal is generated in the gradual transferring stage, the switches S1 and S2 will also
be turned on but the sum of voltages Vp and Vc will be applied to weaken the connection strength between
the pre-neurons and post-neurons. The forgetting stage can be explained as a reverse process of the learning
stage. In the forgetting stage, there are neither learning signal nor inhibiting signal. Only the switch S3 will
be turned on and the voltage Vf will be applied to weaken the synaptic strength.

In Fig. 6(b), the Weight Adjustment Module is presented. The transistors T1, T2, T3 and T4 are controlled
by the learning signal, which aim to determine the direction of input current flowing through the memristor
Rmem. Specifically, when the learning signal is at high level, the transistors T2 and T3 will be turned on
while T1 and T4 will be turned off. The input current flows from the input terminal through T3, Rmem and
T2 to post-neuron. When the learning signal is at low level, the transistors T1 and T4 will be turned on
while T2 and T3 be turned off and the current will flow from T1, through Rmem and T4 to the post-neuron
terminal. The role of the diode D1 is to prevent the reverse current flowing from the post-neuron terminal.
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4.4 Repeatable Monostable Trigger

Most rules of associative memory neural networks demand that the signals are generated synchronously
to establish associative memory. However, it is difficult to control the spikes output by neurons to be
synchronous due to the different initial parameters and initial state of the leaky integrate-and-fire neuron,
which means time delay will occur. This may require strictly setting the parameters of the pre-neuron and
the post-neuron to be consistent. Nevertheless, if the input signals do not appear at the same time, the
output spikes of the neurons will be also asynchronous. For example, as shown in Fig 7, the voltage Vin1
is the input signal of Neuron 1 while Vin2 is the input signal of Neuron 2, the parameters of Neuron 1 and
Neuron 2 are set to be exactly same. It is worth noting that the frequencies and amplitudes of Vin1 and Vin2
are identical, but Vin2 is applied earlier than Vin1. As a result, the output spikes of Neuron 1 and Neuron 2

are not synchronized.

Neuron 2

Neuron 1Neuron 1

Neuron 2

(a) (b)

 Time (ms)    

0
 0 Vout2(V)  2.0  3.0  4.0  5.0

2.5

5.0

0 
Vout1(V)

2.5

5.0

0 
Vin2(V)

2.5

5.0

0 
Vin1(V)

2.5

5.0

 1.0

Vin1

Vin2

Vout1

Vout2

Fig. 7: Simulation of the signals “asynchronous” problem between neurons. (a) The connection diagram of
Neuron 1 and Neuron 2. (b) The input and output signals of Neuron 1 and Neuron 2. Vin1 and Vin2 are
the input voltages of Neuron 1 and Neuron 2 respectively. Vout1 and Vout2 are the output of Neuron 1 and
Neuron 2 respectively. The parameters of Neuron 1 and Neuron 2 are set to be the same as the parameters
in Fig. 4. If the input voltage Vin1 is applied earlier or later than Vin2, the output pulses of Neuron 1 and
Neuron 2 will be asynchronous.

Considering the issues of time delay and asynchronism between the output spikes of neurons, the repeat-
able monostable trigger is used to establish associative memory. The repeatable monostable trigger used
in this paper is proposed in the paper [7], which is simplified from the integrated repeatable monostable
trigger MC14528. The circuit schematic is shown in Fig. 8.

1

Fig. 8: The circuit schematic of the repeatable monostable trigger.
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(ms)V(Vout1) V(Vout2)

0V

2.5V

5.0V

0V 
V(Vn2)

2.5V

5.0V

0V 
V(Vn1)

2.5V

5.0V

Dt Dm

Vn1

Vn2

Vout1

Vout2

(b)

(a)

Vin1

Vin2

Fig. 9: The simulation of the repeatable monostable trigger. (a) Connected circuit diagram between neurons
and triggers. (b) The simulation results. Vn1 and Vn2 are the output signals of Neuron 1 and Neuron 2

respectively. Meanwhile, Vn1 and Vn2 are used as the input signals of Trigger 1 and Trigger 2. Vout1 and
Vout2 are the output signals of Trigger 1 and Trigger 2, respectively.

In the initial state, the voltage Vu3 = 1, Vu8 = 0 and the circuit is at steady state. The transistor M1

is turned off while the capacitor C1 is charged by the voltage Vdd. If there are no positive voltage signals
entering, the circuit will keep at a steady state. When a positive pulse enters the IN terminal of the trigger,
Vu3 and Vu8 will turn to 0 and 1 respectively, then the transistor M1 will be turned on and the capacitor
C1 will discharge via the transistor M1. As a result, the voltage Vc will decrease gradually. When Vc drops
below the threshold voltage Vth10 of the NOT gate U10, the circuit enters a transient steady state, but
this state cannot be always maintained and the voltage Vc continues to decrease. When Vc drops below the
threshold voltage Vth9 of the U9, Vu9 = 0 and Vu3 = 1. Meanwhile, the transistor M1 is turned off again and
C1 begins to recharge. Finally, the circuit will return to the steady state when the voltage Vc exceeds the
threshold of U10 again. The function of U11 and U12 is to shape the signal output by U10 terminal, which
makes the final output waveform of the trigger closer to the rectangle wave. According to the above analysis,
the capacitor C1 will recharge and the voltage Vc will rise after the circuit experiences the transient steady
state. Especially, while Vc is rising from Vth9 to Vth10 and another positive signal triggers the circuit,Vu3 = 0,
Vu8 = 1. Then, the transistor M1 will turn on and the capacitor C1 will discharge again, which means the
circuit returns to the transient steady state. The trigger will not return to the steady state until the capacitor
C1 keeps charging to the condition V c > Vth10 and there are no trigger signals applied to the IN terminal
in certain time interval.

The simulation of the repeatable monostable trigger is shown in Fig. 9. The voltage Vn1 and Vn2 are
output signals of Neuron 1 and Neuron 2, as well as the input signals of Trigger 1 and Trigger 2. Vout1 and
Vout2 are the corresponding output signals of Trigger 1 and Trigger 2, respectively. When a high-level voltage
signal enters the trigger, the duration of this signal will be last for a period of time Dt. In this duration, if
there are other input signals that continue to trigger the trigger, the lasting time will be extended to Dm as
indicated in Fig. 9. Therefore, the trigger will be able to judge the neuron whether at firing state while there
are continuous output spikes in the neuron. When two or more neurons are at firing state and the firing time
intervals do not exceed the maximum lasting time Dt of the trigger, although the frequencies of the spikes
are different and the spikes appear asynchronously, associative memory can be established conveniently.
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Fig. 10: The circuit design of the gradual transferring stage based on “The Case of Peter” experiment.

5 Circuit Design of Emotional Gradual Transfer Process

5.1 Circuit Analysis

The circuit design of “The Case of Peter” for showing the emotional gradual transfer process is presented
in Fig. 10.

Neuron 1 represents a taste receiver, which is renamed as the candy neuron in the circuit design for
convenience. It can receive the taste signal of tasting candy. Neuron 2 represents a visual receiver and can
receive the visual signal of seeing the rabbit, which is named as the rabbit neuron similarly. When Neuron 1

and Neuron 2 receive the taste signal from the candy and the visual signal from the rabbit, and these signals
make the voltages of the membrane capacitors exceed the threshold voltages of the two neurons, the two
neurons will be activated and at the excited state. Neuron 3 and Neuron 4 are both emotional expression
neurons and can be named as the fear neuron and the pleasure neuron, respectively. The connected synapse
between the candy neuron and the fear neuron is Synapse 1. And Synapse 2 connects the candy neuron and
the pleasure neuron. As “The Case of Peter” described as above, Peter felt pleasure once he received candy
because the candy is an unconditioned stimulus, which means the synaptic strength between the candy
neuron and the pleasure neuron is strong. Meanwhile, the synaptic strength between the candy neuron and
the fear neuron is weak. Therefore, the weights of Synapse 1 and Synapse 2 are set to a high value and
a low value, respectively, and they will not change during the experiment. Synapse 3 connects the rabbit
neuron and the fear neuron while Synapse 4 connects the rabbit neuron and the pleasure neuron. Since the
rabbit is a conditioned stimulus, the synaptic strength of Synapse 3 and Synapse 4 will change during the
experiment. The weights of Synapse 3 and Synapse 4 are set to a high value and a low value before the
experiment, respectively, which represents the connection strength between the Neuron 2 and Neuron 3 is
strong while the synaptic strength between the Neuron 2 and Neuron 4 is weak at the beginning. In this
paper, the synaptic weight is defined as following:

W =
Roff −Rm

Roff −Ron
(6)

where Rm is the memristance, Roff and Ron are the maximum resistance and minimum resistance of
memristor respectively.

In Fig. 10, the Trigger is the repeatable monostable trigger mentioned in Section 3. The control module
is utilized to judge the stage of the circuit. The resistors R1, R2, R8 and R14 aim to adjust the weight
thresholds of Synapse 1, Synapse 2, Synapse 3 and Synapse 4, respectively. When the input voltage of the
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n-IN terminal is less than the threshold Vth of these neurons, there will be no spikes output from their
OUT terminal, in other words, these neurons will be at an inactive state. Therefore, in order to trigger
the neuron, the input voltage must exceed the threshold Vth. For example, if there is rabbit signal alone,
in order to trigger the pleasure neuron, the following condition must be satisfied ignoring the effects of
parasitic capacitance, resistance, and inductance of transistors:

V5 + V6

RM4 +R14
×R14 > Vth + Vd4 (7)

where Vd4 is the forward voltage drop of the diode D4. RM4 is the memristance of the memristor M4. From
the formulas (6) and (7), the condition is rewritten as:

W4 >
(R14 +Roff )(Vth + Vd1)− (V5 + V6)R14

(Vth + Vd4)(Roff −Ron)
(8)

Therefore, the weight threshold Wth4 of Synapse 4 is derived as:

Wth4 =
(R14 +Roff )(Vth + Vd1)− (V5 + V6)R14

(Vth + Vd4)(Roff −Ron)
(9)

According to the formula (9), the synaptic weight can be adjusted by the resistor R14. The other three
thresholds of synaptic weight Wth1, Wth2 and Wth3 can be calculated in the same way. Thereby, when the
synaptic weight W4 exceeds the threshold Wth4, Neuron 2 can trigger Neuron 4 alone.

Because the experiment does not involve the natural forgetting process, the forgetting state is not shown
in the circuit, which will be presented in the next section.

5.2 Simulation Results of The Circuit

The simulation result completed by PSPICE is presented in Fig. 11. V (N1), V (N2), V (N3) and V (N4)
are the output spikes from Neuron 1, Neuron 2, Neuron 3 and Neuron 4, respectively.

    Time 

0s 0.5s 1.0s 1.5s 2.0s 2.5s 3.0s 3.5s 4.0s 4.5s 5.0s
V(N4)

0V

2.5V

5.0V
V(N3)

0V

2.5V

5.0V
V(N2)

0V

2.5V

5.0V
V(N1)

0V

2.5V

5.0V

Test 1 Test 2 Gradual transferring Test 3

Fig. 11: The simulation results of “The Case of Peter” experiment for showing the gradual transferring
stage.

In Test 1, there is only the candy signal that triggers the candy neuron. When the high-level pulses are
output from the candy neuron, the switches S1 and S2 will turn on and the voltages V1 and V2 are applied
to the Synapse 1 and Synapse 2, respectively. Because the memristance of M1 is set very high and then the
synaptic weight is lower than the threshold Wth1 of Synapse 1, the fear neuron cannot be triggered, which
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means the fear feeling is not produced. On the contrary, the memristance of M2 is set very low and then
the synaptic weight is higer than the threshold Wth2 of Synapse 2, the pleasure neuron is triggered and the
feeling of pleasure is produced.

In Test 2, only the pre-neuron Neuron 2 is triggered by the rabbit signal and the Neuron 1 is at an inactive
state. Thus, when the spikes are output from Neuron 2, the AND gate U1 is closed, only the switches S4

and S5 will turn on and the voltages V4 and V6 will be apply to the Synapse 3 and Synapse 4, respectively.
Because of the strong strength of Synapse 3 and the weak strength of Synapse 4 at first, the fear neuron is
triggered by Neuron 2 alone but the pleasure neuron not. Meanwhile, the learning signals of Synapse 3 and
Synapse 4 are at a low level, V4 and V6 are lower than the threshold voltages of the memristors M3 and
M4. Therefore, the memristance of M3 and M4 will not change while the synaptic weight of Synapse 3 and
Synapse 4 remains unchanged.

In the Gradual transferring stage, both the candy neuron and the rabbit neuron are at excited state,
which means Peter received the candy signal and the rabbit signal almost simultaneously. The repeatable
monostable trigger is triggered at this stage and then the gate U1 is opened. Meanwhile, The switches S1−S6

are turned on, the voltages V1 and V2 are applied to Synapse 1 and Synapse 2, respectively. The sum of V3

and V4 , which is higher than the absolute value of the voltage threshold of memristor M3 (V3+V4 > |VT−|)
is applied to Synapse 3. Because there is no unconditional stimulus related to fear feeling, the learning signal
is at low level and the transistors T2, T4 are turned on while T1 and T3 are turned off. As a result, the
memristance of M3 increases, which means the synaptic strength is weakened gradually. Meanwhile, the
voltages V5 and V6 (V5 + V6 > |VT+|) are applied to the Synapse 4 and the transistors T2, T4 are turned off
while T1 and T3 are turned on. As a result, the memristance of M4 decreases and then the synaptic strength
is strengthened gradually. The change process of synaptic weight is shown in Fig. 12. At first, the rabbit
neuron can trigger the fear neuron alone. As the weight of Synapse 3 decreases, the firing frequency of the
fear neuron continues to decrease. When the synaptic weight of Synapse 3 drops down below the threshold
Wth3, the rabbit neuron loses the ability to trigger the fear neuron alone and the fear neuron stops to fire,
which means the feeling of fear is gradually weakened and disappears at last. At the same time, when the
synaptic weight of Synapse 4 exceeds the threshold Wth4 as the weight of Synapse 4 increases, the rabbit
neuron can trigger the pleasure neuron alone and the firing frequency of the pleasure neuron increases
gradually. The excitement of pleasure neurons is gradually strengthened, and the excitement of fear neurons
is gradually weakened or even suppressed. As a result, the pleasure feeling is gradually strengthened. The
Gradual transferring stage is completed, the pleasure feeling replaced the fear feeling and became the core
emotion.

Gradual

transferring Test 3Test 1 and Test 2

 Synapse 3

 Synapse 4

Fig. 12: The change of the synaptic weights W3 and W4. In the gradual transferring stage, the synaptic
weight W3 is deceasing while the synaptic weight W4 is increasing.

The Test 3 stage is to judge whether the Gradual transferring stage is completed. As Fig. 11 shows, when
only the rabbit neuron fires, the pleasure neuron, instead of the fear neuron, is triggered. In other words,
the fear feeling disappears and the pleasure feeling is produced.
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6 Affective Associative Memory Neural Network with Gradual Processes

6.1 Circuit Design
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Fig. 13: The circuit design of affective associative memory neural network with the functions of gradual
learning, gradual transferring and gradual forgetting.

Emotions are important psychological and physical phenomena. In daily life, people will show pleasure
expression about good news and upset expression about bad news, which can be defined as the unconditioned
responses in the associative memory theory. The good (bad) news is the unconditioned stimulus of pleasure
(upset) emotion. If there is a news notification signal which represents the neutral stimulus, people will
show no emotions at first. When the news notification always follows good news, people will show pleasure
and the pleasure emotion will gradually rise until becoming stable. After that, though only the notification
of news is coming without the content of news, people will also show pleasure. Same as above, when the
notification is always followed by bad news, people will also show upset without the content of news after
the notification coming. As a result, the news notification gradually turns to be the conditioned stimulus.
This is the gradual learning stage in the process of affective associative memory. Besides, if the notification
is re-associated with the bad news (good news) after it has been associated with the good news (bad news),
the pleasure (upset) emotion will decline gradually and the upset (pleasure) emotion will rise gradually. This
is the gradual transferring stage. If there is no news notification for a long time, the association between
the news notification and good or bad news will gradually be weakened until it disappears, which is called
the forgetting stage.

The circuit of the affective associative memory neural network is shown in Fig. 13. The neural network
has three input neurons and two output neurons. Specifically, as shown in Fig. 13, the neurons Ng, Nn and
Nb are the input neurons while Np and Nu are the output neurons. Besides, the neurons Ng, Nn and Nb

receive the signals of good news, notification and bad news, respectively. When received the corresponding
signal, the neurons will be activated and output spikes. The neurons Np and Nu are emotion expression
neurons. When the feeling of pleasure (upset) is produced, the Np (Nu) neuron will be activated. The
Synapse 1 -Synapse 6 connect the pre-neurons and post-neurons. The appearance of good news will not
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0s 2.0s 3.0s 4.0s 5.0s 

Time 
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Test 1 Test 2 Test 3 Test 4
Gradual 

Transferring 1
Test 5

Gradual 

Transferring 2
Test 6 Gradual Forgetting Test 7

V(Nu)

Gradual 

learning

Fig. 14: PSPICE simulation result of the affective associative memory neural network with the gradual
learning, gradual transferring and gradual forgetting stages

cause the upset emotion, so the synaptic strength of Synapse 1 is weak and the synaptic weight WS1 is
less than the threshold Wth1 of Synapse 1. For the same reason, the synaptic weight WS6 is less than the
threshold Wth6. Similarly, the good news will always cause the pleasure emotion while the bad news will
cause the upset emotion, thus the synaptic weight WS2 and WS5 are set as a constant value higher than the
thresholds Wth2 and Wth5 of Synapse 2 and Synapse 5, respectively. The weight of Synapse 3 and Synapse 4

will be strengthened or weakened in the stage of gradual learning, gradual transferring or gradual forgetting.
The change of weight ∆W can be calculated as follows.

∆W t = ∆W t
learn −∆W t

tran −∆W t
forg (10)

where ∆W t
learn, ∆W t

tran, ∆W t
forg are the changed weight in the gradual learning, gradual transferring

and gradual forgetting stage respectively. Specifically, for the Synapse 4, the rules for calculating ∆W t
learn,

∆W t
tran, ∆W t

forg are listed as the following equations.
∆W t

learn = ∆ωl × sgn(Nb)sgn(Nn)

∆W t
tran = ∆ωt × sgn(Ng)sgn(Nn)

∆W t
forg = ∆ωf × [1− sgn(Nn)]

(11)

where ∆ωl is the change of WS4 in the gradual learning stage and ∆ωt is the change of WS4 in the gradual
transferring stage and ∆ωf is the change of WS4 in the gradual forgetting stage. The sgn is a function
defined as

sgn(Nx) =

{
1 Nx is activated

0 Nx is not activated
(12)

where Nx represents the neurons Ng, Nn or Nb. The synaptic weight change rule for Synapse 3 can be derived
in the same way as for Synapse 4. At the learning stage, the memristance (M3 or M4) will decrease, which
leads to the increase of the synaptic weight. If the circuit is at the gradual forgetting stage, the memristance
will increase and the synaptic weight will decrease. In the gradual transferring stage, the increase or decrease
of the synapse weights are determined by the input neurons and the control module. However, before the
learning stage, the synaptic weights of Synapse 3 and Synapse 4 are less than the synaptic thresholds, thus
the neurons Np and Nu will not be activated by firing the Nn neuron alone.

The control module is utilized to judge the state of the affective associative memory neural network.
The Trigger is used to solve the problems of time delay and asynchronism between the output spikes of
neurons.
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6.2 Simulation and analysis

The simulation result of the affective associative memory neural network is shown in Fig. 14. The test
stages aim to test the current emotional state. In Test 1, there is only good news signal, the Ng neuron
will be activated and output spikes. Because of the strong weight between neurons Ng and Np, Np will
be triggered, which means the pleasure feeling is produced. On the contrary, the synaptic weight between
neurons Ng and Nu is weak, Nu will not respond and there is no upset feeling. In Test 2, there is only
bad news and the neuron Nb is activated , the neuron Nu will be activated while the neuron Np will not
respond.

In the Gradual learning stage, both the good news signal and the notification signal are input to the
neurons Ng and Nn, Ng and Nn are triggered together. At this time, the learning signal of Synapse 3 is
at high level and the transistors T1 and T3 will be turned on while T2 and T4 will be turned off, the sum
of voltages V3 and V4 will be applied to Synapse 3. The current flows through T3, M3 and T1 to the neuron
Np, which causes the memristance of M3 decreasing and the synaptic weight of Synapse 3 increasing. As
a result, the firing frequency of the neuron Np gradually increases, which means the feeling of pleasure is
stronger and stronger gradually when the notification comes. This is the learning process with gradually
increasing emotional intensity. The purpose of Test 4 is to verify whether the learning process has been
completed.

In the Gradual Transferring 1 stage, the neurons Nn and Nb send out spikes together, before the forgetting
stage, the association between the notification and good news has not been forgotten. Due to the strong
strength of Synapse 3 and Synapse 4 at this time, the neurons Np and Nu are all activated, which means
the complex emotion is generated. The voltages V3, V4 are applied to the Synapse 3 while V5, V6 are applied
to Synapse 4. While the learning signal of Synapse 3 is at low level state, the transistors T2, T4 are turned
on and T1, T3 are turned off. The current flows through T2, M3 and T4 to the Np neuron, which causes the
decreases of the synaptic weight of Synapse 3. Therefore, the firing frequency of the neuron Np decreases,
which means the feeling of pleasure becomes weaker gradually. Meanwhile, the current flows through T7, M4

and T5 causing the increase of the firing frequency of the neuron Nu. As a result, the neuron Np is inhibited
and the firing frequency of Nu exceeds the peak. The Test 5 is to verify the gradual transferring result in
the Gradual Transferring 1 stage. From the Test 5, the feeling of pleasure is weakened and disappears while
the feeling of the upset is strengthened in the process.

In the Gradual Transferring 2 stage, the neurons Nn and Nb send out spikes together. After the Gradual

Transferring 1 stage, the feeling of fear has not been forgotten. Therefore, the mixed complex emotions are
generated again. In contrast with the Gradual Transferring 1 stage, the synaptic weight WS3 of Synapse 3

increases gradually while the synaptic weight WS4 of Synapse 4 decreases gradually. Therefore, the firing
frequency of the neuron Np increases and the feeling of pleasure gradually becomes stronger. Meanwhile,
the feeling of upset is weaker and weaker with the decreasing firing frequency of the neuron Nu. In Test 6,
there is only a notification signal, the feeling of pleasure is generated and the upset feeling has disappeared,
which means the pleasure feeling has become the core emotion and replaced the fear feeling.

In the Gradual Forgetting stage, there are no notification signals input to the Nn neuron, so the forgetting
process takes place. In this stage, the forgetting signals of Synapse 3 and Synapse 4 are at high-level states
and the switches S2 and S5 are turned on, the voltages V2 and V7 are applied to Synapse 3 and Synapse 4 to
make the memristors M3 and M4 return to a high-impedance state gradually. Therefore, the synaptic weights
of Synapse 3 and Synapse 4 are weaker and weaker, which means the association between the neurons Nn

and Ng or the neurons Nn and Nb is forgotten. As a result, the firing frequencies of the emotional expression
neurons will decrease and the generated emotions will become weaker gradually and disappear at last. In
Test 7, it is verified that no emotions will be generated when the notification appears, which means the
forgetting process is completed.

7 Conclusion

The affective associative memory neural network has been studied in recent years. In the existing
memristor-based affective associative memory model, the change of emotions in learning and forgetting
processes is abrupt and the intensity of emotions is invariable. Further, the gradual processes in learning,
forgetting and transferring stages are not considered. In this work, a memristor-based affective associative
neural network has been proposed, which includes the gradual learning, gradual forgetting and gradual
transferring functions with variable emotional intensity. In the designed circuit, the memristors are utilized
to define the synaptic weights. When the memristance decreases, the corresponding synaptic weight will
increase and the synapse strength will be stronger. Making use of the leaky integrate-and-fire neuron model,
the firing frequency of the output neurons is variable. By correlating the emotional intensity with the firing
frequency of output neurons, the intensity of emotions can gradually change from strong to weak or from
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weak to strong, which is in line with the changing laws of human emotions. Compared with the existing
affective associative memory neural network model, the circuit proposed in this paper can better imitates
the changing process of human emotions, which provides new ideas for modeling the intelligent functions
of the human brain and realizing emotional robots. Future works will focus on the design of more compact
circuit and more efficient practical applications based on affective associative memory neural network.
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