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1 Introduction

Motivated by the evidence in Psychology [1] and Physiology [2], nonnegative
matrix factorization(NMF) is firstly proposed in Nature [3] to learn the part
of object. It can be expressed as follows:

X ~ ABT

X € R"™" is the data matrix, A € R"*¢ is the basis matrix, B € R’*“ is the
coefficient matrix. NMF gets feature whose basis are the column vector of A,
so row vector of B can replace the original data and be seen as the extracted
feature. ¢ is the number of components defined according to demands. For
clustering, it can be set to the number of clusters. For data reconstruction, the
bigger c is, the better the data matrix X is reconstructed. It’s one of the most
popular algorithm for data processing, which is widely used in hyperspectral
unmixing [4], text mining[5], medical data [6], gene selection and tumor clas-
sification [7]. Many algorithms are proposed based on NMF, such as sparse
NMF |[8], spectral-spatial joint sparse NMF [9] and NMFAN [10]. Besides, as
a non-convex optimization problem, a variety of methods are proposed to find
the global optimal solution [11-15].

Graph nonnegative matrix factorization(GNMF) [16] is one of variants. Based
on the local invariance in the manifold learning, it discovers deeper structure
of the data and extracts more representative features. The superior perfor-
mance of GNMF makes it very popular on hyperspectral unmixing [17], gene
clustering [18], computer vision|[19] and disease detection [20].

However, there can be some noise existing in data or introduced by map-
ping data from the high-dimensional space to the low-dimensional space, and
GNMF is sensitive to these noise and outliers [21]. To avoid these problems,
sparsity of the factorized matrices is required to enhance the robustness of the
performance of GNMF. In [21, 22|, l5 and [; norm are introduced to alleviates
the impact of noise and outliers. In [18], I2,; norm is used to measure the error
of matrix factorization to enhance robustness.

Sparsity is defined by Iy norm which aims to compute the number of nonzero
elements in a vector. But [y norm is discontinuous and minimizing it is a NP-
hard problem. [; norm is the convex relaxation of /[y norm and some smooth
functions are proposed to approximate it to make the problem enable to solve.
In [23], the inverted Gaussian function is proposed to approximate {y norm
which is used in [11] to get a sparser solution. In [24], a neurodynamic approach
is proposed to optimize [y norm constrained problem where the inverted Gaus-
sian function is used as an approximation of ly norm. In [25], a Hyperbolic
Tangent functions which is closer to [y norm is proposed to get a sparse solu-
tion of NMF.

Motivated by the above work and idea, in this paper, sparsity-constrained
graph nonnegative matrix factorization (SGNMF) is proposed to enhance the
robustness and eliminate noise. A fraction with absolute value of variable is
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proposed to approximate the [y norm. Additionally, other four previously pro-
posed functions are introduced to compare the performance. Besides, a general
algorithm is proposed for GNMF with approximate function-based reguliza-
tion and the convergence of the algorithm is proven.

The structure of rest paper is as follows: in the second section, preliminaries are
provided including NMF, GNMF. In the third section, some functions used to
approximate [y norm and the algorithm are given. Optimization algorithm and
the proof of convergence are given in the fourth section. Then the experiment
results are shown in the fifth section and conclusions are in the last.

2 Preliminaries

In this section, basic formulations and definitions of NMF and GNMF are
given.

2.1 Nonnegative Matrix Factorization

Denote X = [@1, T2, ..., @,] € RY™™ as the data matrix, ©; € R7 is the j-th
sample, it’s the j-th column vector of X. NMF can be expressed as follows:

min | X — ABT || 1)
st.A>0,B>0.

The Frobenius norm is used to measure the loss of two matrices in (1). A €

R"*¢ is the basis matrix, B € R} is the coefficient matrix, ¢ is the number

of basis. Denote b; € Rixc as the i-th row of B.

The updating rules are given in (2) to solve the problem, the a;; is number in

the i-th row and k-th column of the A, bj; has similar definition for B.

P ——  _(XB)ix
kTR (ABTB) i -
b — b (XTA)ji
gk = Tk (BAT A),j,

In [26], it has proven that the objective function value is non-increasing under
the updating rules (2). Besides, in [27], an optimization method based on
discrete-time projection neural network is proposed to find a solution closer to
global optimal solution.

2.2 Graph Regularized Nonnegative Matrix Factorization

Based on the local invariance in the manifold learning, Cai et al propose the
GNMF [16]. Compare to NMF, GNMF exploits the intrinsic geometry of the
data distribution and learns a more sparse matrix.

To observe the local structure of the original data, a k-nearest graph or a full
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connected graph W is required, which is called adjacency matrix. The weight
between two vertexes can be defined in the following ways:

¢ 0-1 weight: if two vertexes x; and x; are connected, the weight w;; between
them is 1, otherwise it’s 0. However, it can’t be used in the full connected
graph.
| 1 (=, and x; are connected)
Wit {0 (others) (3)
¢ Gaussian kernel weight: if x; and «; are connected, the wj; is defined as
follows:

e —=; 12

wj = e~ 5T (z; and x; are connected) ) (4)
0 (others)

It reflects the nonlinear local structure, but there is a parameter o.

The objective function of the local invariance is described as follows:

> N1y = bl wji (5)

jl=1

D is the degree matrix, it can be computed as follows:

g = I Zimwi (1=17)
gt 0 (others) ’

Besides Laplacian matrix L is defined as follows:
L=D-W. (6)

So the (5) is simplified as follows:

> lIbs = bl W

jl=1

n - n - (7)
= b/b;D;; — > b bWy
j=1 7,0=1
=Tr(B"DB) - Tt/(B"WB) = Tr(BTLB).
Add (7) as a regularizer and get the objective function of GNMF:
|X — ABT|| + Tv(B"LB). (8)

The problem is formulated as follows:

min | X — ABT||p + \Tr(B'LB)
st.A>0,B>0.
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(9) is convex for A or B. But it’s not convex for both of them. Like NMF, the
updating rules are given in (10) .

(X B)ir
(ABTB),
(XTA+AWB),,
(BATA+\DB);,

Ak < ik
(10)

bjk < bjk

In [16], it’s proven that the objective function (8) is non-increasing under the
updating rules.

3 Sparsity-constrained Graph Nonnegative
Matrix Factorization

3.1 Alternative smoothed [y approximate functions

lp norm computes the number of nonzero elements of a vector which is used to
enforce the required sparsity. Sparsity is always required to eliminate useless
information and enhance interpretability.

lo norm is described as follows:

I(@)llo = Z 1—o(zi). (11)

o () is the unit impulse function, it’s discontinuous and minimizing it is a NP-
hard problem. To solve it, each situation needs to be enumerated.

However, there are several functions used to approximate [y norm, they all
have following form:

o—00 0 (others)

lim f(z,0) = { L(z=0) (12)

o is used to controls the degree of approaching Iy norm. In this paper, four
functions previously proposed are used to approximate [y norm to measure the
sparsity of the matrices factorized by GNMF:

Inv. Gaussian [23]: fi(z) =1 —e o2,
Inv. Laplacian [28]: fa(z) =1 — e ToI.
Comp. inv. func [29]: f3(z) =

T
2402

Symmetric. CT [30]: f4(z) = sin (arctan (Zf—i))

For functions f1, f3, f4, they have following properties:

ili% vz, 0) =0. (13)
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As the update rules of NMF and GNMF are equivalent to the gradient descent
method [16], they may just lead values to be very small but not zero, so the
sparsity is not gotten.

Before giving our algorithm, we give a function fs, it’s easy to calculate and
concave for Ry :

|z |

T)=——. 14
The second derivative of f5 is less than 0:
) 20

=—-——-=<0. 15

fs (0 +x)3 (15)

It’s obvious that f5 satisfies (12). In fig: 1, it’s shown that the derivation

Derivative of f1_s Derivative of f; _s Derivative of f; s
2.00{ |
1.75{ |
1.50{ |\

1.25
. 1.00
0.75
0.50
0.25
0.00 —
0.000.250.500.751.00 1.25 1.50 1.75 2.00 0.000.250.500.75 1.00 1.25 1.50 1.75 2.00 00 02 04 06 08 10 12 14
X X X

0.0

(a) o=1 (b) 0 =0.5 (¢c) o=0.1

Fig. 1 The derivative of five alternative approximation functions.

-2.0-1.5-1.0-0.50.0 0.5 1.0 1.5 2.0 -2.0-1.5-1.0-0.5 0.0 0.5 1.0 1.5 2.0 -15 -10 -05 0.0 05 10 15
x x X

(a) o =1 (b) 0 =0.5 (¢) o=0.1

Fig. 2 The comparisons of five function with different o.

becomes much larger when x approaches zero. This makes f5 more efficient to
lead sparsity. In fig: 2, it’s shown that the smaller o is, f1_5 is closer to [y norm.

3.2 Sparsity-constrained GNMF

The sparsity of the features extracted by GNMF can be expressed by [y norm

as following equation:
n

> 1B))llo- (16)

Jj=0
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And the optimization problem is described as follows:
ggg)zo 1®5)lo- (17)
=

As lp norm is discontinuous and the problem is NP-hard, so we use f(z,0)
to replace the [y norm to make the problem enable to solve and obtain the
followings problem:

wind > f(bjk.0). (18)
7=0 k=0
Add it as a regulization, the sparsity-constrained GNMF (SGNMF) is
n c
. B T T ,
i | X~ ABT|[p + AT (BTLB) +6z;)kzof(bmo)~ (19)
= =

By solving problem (19), the extracted features can get deeper structure of the
original data by the regularizer of GNMF, some noise can be eliminated and
it’s guaranteed that NMF learns part of the object. Besides interpretability of
the data led by sparsity is obtained.

4 Optimization Algorithm

4.1 Updating Rules

The problem of NMF and GNMF is non-convex, the optimal solution is not
guaranteed. So a solution can find local optima of SGNMF.

Denote @ € R, © € R}*¢ respectively as the Lagrangian multipliers for
the constraint a;r = 0,bj; > 0, wsi is the element in the 4-th row and k-
th column of €. §;;, is the element in j-th row and k-th column of ©. The
objective function can be transformed as follows:

Tr (X — ABT) (X — AB")") + \Tx (BTLB)

+B8Y D fbjk,0)
7=0 k=0 (20)
=Tr (XX7) —2Tr (XBA") + Tr (AB" BAT)

ATr (BTLB) + 8> Y f(bjk,0).

§=0 k=0
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The Lagrangian function
L=Tr(XX")-2Tr (XBA") + Tr (AB"BAT)
ATr (BTLB) +Biif(bjk7a) (21)
Jj=0 k=0

+Tr (QAT) + Tr (0B7).

Denote f(? as d-th derivative. The partial derivatives of £ with respect to A
and B are

oL
= = - 92XB+2ABTB+Q 22
5A + +Q, (22)
oL
——~ =-92XTA+2BATA +2)\LB
OB * - (23)

+ ﬂf(l)(bjk,g) + ©.
Using the KKT conditions a;rw;r = 0 and 0,3b;; = 0, the following equations
for a;, and b, are obtained:

— (XB)iraix + (AB"B),,_ai, =0, (24)
- (XTA)jk bjr + (BATA)jk bjk (25)

+ MEB)jxbji + B (b, 0)bji = 0.

Based on (24) and (25), the following updating rules are proposed
(X B)ik
i kA BT R 2
ak%ak(ABTB)ik (6)
(XTA+I\WB)

bjk — bjk J (27)

(BATA + )\DB)jk +0.58f M) (bjg,0)
It’s obvious that the updating rules equal to that of NMF if the A = 0 and
B = 0. They equal to that of GNMF if 8 = 0. The whole algorithm of SGNMF
is described in Algorithm 1.

4.2 Convergence Study

The proof of convergence about updating rules (26) is the same with NMF.
So the convergence is needed to prove under updating rule (27). To prove the
convergence, following definition and lemmas are given.

Definition 1. ¢(b,b’) is the auxiliary function for a function F(b) if

©(b, b/) > F(b), (p(b/, bl) = F(b/)'

The property of the auxiliary function is shown in the following lemma.
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Algorithm 1 Algorithm of SGNMF

Require: X: data matrix(X € R7T™", each column vector is a sample);

r: max iteration; k: number of components; e: max error tolerance;
A, B,01: parameters in SGNMF; o5: parameter in f;_5; p: number of
neighborhoods.

Ensure: A: basis matrix; B: coefficient matrix.

1:
2:

3:
4:

2o

®

10:
11:
12:

14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

if X is from images then
for element x in X do
normalize x
end for
end if
counter =0
initialize the basis matrix A(A € R"*¢) and the coefficient matrix B(B €
R7}*¢) with NNDSVD|31].
W + Adjacency matrix
D < Degree matrix
Laplacian matrix: L =D — W
error < objective function value of SGNMF
while error > e and counter < r do
for element ¢ in A do
Deny < denominator of updating rule(26) for a
if Deny # 0 then
a < the new a(computed by updating rule(26))
end if
end for
for element b in B do
Dengy < denominator of updating rule(27) for b
if Deng # 0 then
b < the new b(computed by updating rule(27))
end if
end for
error < value of (19)
counter = counter + 1
end while
return A, B

Lemma 1. If ¢ is an auxiliary function of the F'. Under the following updating
rule, F' is non-increasing:

V't = argmin ¢ (b,b'). (28)
b

Proof: F (b'1) < o (b1, b") < ¢ (b',0") = F (b').
Theorem 1.
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If o(x) is concave, for objective function
F=|X—-AB"|p+\Tx(BLB")+ Y Bo(b) (29)

will be non-increasing under the following updating rules:

(XTA-I—)\WB)jk
(BATA+ ADB);;. +0. 580l 1)(bt )

st =), (30)

Proof: Denote F as the objective function of SGNMF with respect to B,
Fi) = (-2XTA+2BAT A+ 20LB) , + B (by), (31)
FG =2(ATA), +2\Lj; + B (bjy,). (32)
Denote ¢ as the auxiliary function of the Fj; as follows:

(b, b") = Fin(b') + Fiy) () (b — b)

., (BATA)jk + A(DB) i + 0.58a ) (b))

(33)
2

> (b—bi)?.

jk

By finding the extreme point of (33), it’s easy to derive updating rules (27)
and if the ¢ is the auxiliary function of F, the convergence is proven with
Lemma 1. As «(z) is concave, the first-order Taylor approximation of «(b) is
bigger than or equals to a(b).

al(bjy) + oV (05 (b = bly.) > albjn)
Then get the following:

<o) (bt,) |
Tjk(bfbt ) <0. (34)

=2
Add (29) to both sides of the (34). Get the following function ¢ is bigger than

F:

1 (b V5) =Fix0') + F53) (05, (h = B) (35)
+ ((ATA),, + ALj;) (b—b%,)*.

Then to prove that ob, b;k) is bigger than ¢4 (b, b;k), the following is given:

(BATA), Zh (ATA), =V (ATA), (36)
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ADB)j =AY Dbl > AD;;bly,
= (37)
> \D - W)jjb§k = )\ijbgk.
With the inequality above, it’s easy to check that the third term of po(h h(t))

» "Pab
is bigger than the third term of gol(h,h((fb)), so ¢(h, hfltl,)) > gpl(h,hgtb)) holds.
Besides,

@(Paps haw) = Fap(hgy)-
So cp(h7hflb) is the auxiliary function of F, the proof completes. The proof
mainly follows the idea in [16].
Lemma 2.: the update rules (27) is equivalent to gradient descent method.
Proof: : the gradient descent method has following format:

oOF

bjk — bjk — njk@'

(38)

7 is the learning rate. In Deng Cai’s[16] paper, there is a technique to set 7,
Follow the idea, i can be set to

bk
2(BGTG + ADB);, + BaM (b;r,)’

Then get the following:

b g OF
ik Nik ab]k -
. bjk W) 08
b~ aBATA +2DB), Y g,

b
:b —_ J
77 2(BATA+ADB),, + B (bjr)

((_2XTA +2BATA+2\LB),, + ﬂa(l)(bjk))
. (XTA+\WB)
~M(BATA +\DB),; + 0.56a™ (b;,)°

(39)

It’s obvious that (39) is the same with (27). The proof completes.
Lemma 2 indicates that the objective function is updated along with negative
gradient direction in the feasible region.

5 Experimental Results

In this section, SGNMF is used to cluster on five public dataset. The cluster-
ing results, the convergence performance and the effect of the parameters are
discussed.
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5.1 Description of Dataset

The information of the datasets are listed as follows and the summary of the
datasets is in TABLE 1:

Table 1 Dataset description.

Dataset “ Feature Number  Sample Number  Clustering Number
YALE 77760 165 15
USPS 256 400 10
UMIST 2576 564 20
LIBRAS 90 360 15
JAFFE 65536 213 10

® YALE ': It contains 165 grayscale image of 15 persons, each person has
different facial expression or configuration.

e USPS 2: A dataset consists of 9298 images which are 16*16 grayscale pixels.
In our experiment 400 images are used to cluster to show the performance
of algorithm.

e UMIST: 3 It consists of 564 images of 20 persons, each person is in shown
in a range of poses from profile to frontal views. Each image is resized in
46*56 pixels.

e LIBRAS: It’s a dataset from UCI dataset [32], it consists of 15 classes of
24 instances, each class references to a hand movement type in LIBRAS.

e JAFFE: * It consists of 213 images from 10 Japanese female expressers with
different facial expressions which are all 256*256 pixels.

5.2 Compared Algorithms

To compare the performance of the proposed approach, Accuracy(ACC) and
normalized mutual information(NMI) are used, the detailed information of the
comparison algorithms is listed as follows:

e K-means: it’s the most classic clustering algorithm. Through several itera-
tions, it can cluster very quickly and efficiently.

e K-means++: It is an algorithm based on K-means. But it avoids the
uncertain performance caused by random initialization of K-means.

® Spectral clustering(SP-clustering): It is a clustering method based on graph
theory which transforms the partition of data into the segmentation of graph.
In the experiment, K-means++ is used to get the label of each sample. Ncut
is used to cut the graph. And K-neighborhoods is used to construct the
graph. The weight on the edge is computed by Gaussian kernel function.

http://vision.ucsd.edu/content /yale-face-database
https://www.kaggle.com/bistaumanga/usps-dataset
https://www.visioneng.org.uk/datasets/
https://zenodo.org/record/3451524# .Y ZVNGsWHqUk
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o NMF-based clustering: NMF is used to extract the features of each sample.
Then, K-means++ is used to get the tag of sample. When extracting the
feature, the number of columns of the basis matrix in NMF is set to the
number of items, and the number of iterations of the algorithm is 200. SVD
initialization and normalization of basis matrix is used to increase stability
and speed up convergence.

o KKM/(kernel K-means): the algorithm is almost the same with K-means, but
it pays more attention on kernel space other than Euclidean space.

¢ RKKM(robust kernel K-means): by introducing sparsity induced norm, the
effects of outliers which is sensitive for K-means can decrease and a more
stable result is obtained.

e AASC(affinity aggregation for spectral clustering): an algorithm is proposed
in [33], it extends spectral clustering to a setting with multiple affinities
available.

o RMKKM(robust multi-kernel K-means): based on RKKM it introduces mul-
tiple kernel functions to explore a better Hilbert space which is proposed in
[34].

¢ CFSFDP(clustering by fast search and find of density peaks): it’s a clustering
algorithm based on density of data samples, which is proposed in [35].

For KKM, RKKM, RMKKM and AASC, they can be executed by following
codes °. The rest algorithms can be executed in our repository®.

5.3 Basis normalize and NNDSVD initialization

The basis of data matrix X’ space are basic unit vector group. SGNMF learns
a space whose basis are the column vector of the matrix A. To remain length
of the basis the same, we can achieve it by follows:
Qik
Ak = 7

_— 40
Diso (40

b]’k = b]’k X

Besides, NNDSVD [31] is used to accelerate convergence and enhance stability
in the experiment.

5.4 Clustering Results

In the comparison experiments, the component number is set to the number
of clusters for each dataset. Each algorithm clusters on a dataset for 20 times,
the mean and standard error of the Accuracy and NMI are given. For image
datasets, the data is normalized before clustering. The clustering results are

5 https://github.com/csliangdu/RMKKM
6 https://github.com/chen12304/SGNMF
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recorded in Tables 2, 3 where top three NMI and Accuracy’s means are bold.
The results are summarized as follows:

¢ SGNMF has a better performance than others. For the proposed algorithms
with five smooth functions, at least one are ranked in the top three each time.
For ACC, SGNMF gets top three all on JAFFE and UMIST, especially on
JAFFE where has a 7%-8% higher ACC than others. For NMI, SGNMF gets
top three all on UMIST and LIBRAS, especially on UMIST where almost
are 15%-17% higher than others.

¢ SGNMF has a more stable result. these five functions used in SGNMF
have at least three which have a standard error less than 1, for comparison
algorithms, the standard errors are almost higher than 1.

¢ From fig. 3, the objective function values decrease with the increase of the
iterations.

5.5 Sparsity Discussion

Sparsity can eliminate noise, increase the interpretability of data and ensure
NMEF to learn part of object. Sparsity performance is discussed as follows.
To observe the performance on sparsity, we plot the B as a grayscale image
factorized by NMF, GNMF and SGNMF. To better show the sparsity, 20 x
20 grayscale patches of original pictures are shown in figs 4-8. The original
pictures can be found through the link of footnote”. Furthermore, the sparsity
of the matrices which are plotted is given in Tables 4. Sparsity is calculated
by followings:

Sparsity(X) = Sl;ff) (42)
SF(X) is the sparseness factor of X which is used in [36]. It’s described as
follows:

SF(X) = sz(%)’
1(z<T)
m<x){0(m>7) .

7 is the threshold value to decide whether an element can be regard as zero.

For B in the figs: 4-8, both 8 and A are set to 5. o is set to 0.001. In the fig:
4, it’s obvious that the B of SGNMF with f1, fo, f3, f1, f5 are smoother than
NMF and GNMF, in fig: 5, only SGNMF with f; learns a smoother result
Jbut for SGNMF with f5, a much sparser B is gotten on USPS. In the fig: 6
SGNMF with the proposed f5 also learns a much sparser matrix, but for fi,
f2, f3, f1, they learn a smoother matrix. In the fig: 7 only SGNMF with f;
learns a smoother matrix B, others shown in fig: 7(d)-7(g) learn sparser B.
It’s concluded that SGNMF with f;_4 may lead smoother results other than
sparser results. But if using our proposed functions f5 as a regularizer, the

7 https://github.com/chen12304/SGNMF /tree/main/pic_spar
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Fig. 3 Convergence behaviors of the objective function value on five datasets.

17

smoother results can be avoided and sparser result can be gotten. Besides, it’s
shown in Table 4 that SGNMF with the proposed f; always gets the sparsest

B.

5.6 Parameter Setting

GNMF has two parameters(p and A), p is used to construct the graph, A is
used to ensure local invariance. Two more parameters(3 and o) are introduced

than GNMF. § is used to ensure the sparsity of the result, ¢ is used to ensure
f(z,0) close to Iy norm. The impact of 5 and & to the performance on different
datasets is shown in figs: 9 and 10. The ACC and NMI plotted in figure are
the mean result of 20 times.

For 3, it’s shown in figs: 9 that performance decrease with a larger 8 on



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

18 Keyi Chen

Springer Nature 2021 IMTEX template

Table 4 The Sparsity of the algorithms’ results.

dataset YALE(%) USPS(%) UMIST(%) LIBRAS(%) JAFFE(%)
NMF 6.91 42.88 9.70 7.59 2.95
GNMF 8.57 2.20 1.17 0.33 3.33
f1 7.72 1.40 1.71 0.46 2.86
2 8.40 33.5 11.73 37.89 3.28
SGNMF {3 9.25 24.45 12.17 27.04 3.66
f4 9.05 38.03 16.10 55.04 4.69

5 15.19 95.50 86.96 97.04 13.29

MF

) N

) SGNMF with f3

) GNMF

(f) SGNMF with f4

(g) SGNMF with f5

Fig. 4 The comparisons of sparsity performance on YALE.

MF

) N

(e) SGNMF with f3

) GNMF

) SGNMF with f;

(f) SGNMF with f4

(g) SGNMF with f5

Fig. 5 The comparisons of sparsity performance on USPS.

) SGNMF with f;

) SGNMF with fo

(d) SGNMF with f;
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MF

) N (b) GNMF ) SGNMF with f; (d) SGNMF with fs

) SGNMF with f3 (f) SGNMF with f4s (g) SGNMF with f5

Fig. 6 The comparisons of sparsity performance on UMIST.

MF

) N (b) GNMF ) SGNMF with f; (d) SGNMF with f»

) SGNMF with f3 (f) SGNMF with f4s (g) SGNMF with f5

Fig. 7 The comparisons of sparsity performance on LIBRAS.

the whole. But in figs: 9(d) and 9(b), if 8 € (1072,1071), the performance
increases with larger 8 and gets the best performance.

For o, it’s shown in figs: 10(e) and 10(f) that if o € [1074,1073] or o € [1, 10],
better performance can be gotten. If o € [107%,1], SGNMF with f5 gets a
much worse performance. Similarly, in figs: 10(a)-10(d), if o € [107%,107}],
SGNMF with f5 gets a much worse performance, but SGNMF with f5 get
the best performance when ¢ is set to an appropriate value in these figures.
Such as ¢ = 1 in fig: 10(a), o = 1072 in fig: 10(b), 0 = 4 x 102 in both figs:
10(c) and 10(d). In summary, when using SGNMF with f5, o can be set in
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MF

) N (b) GNMF ) SGNMF with f; (d) SGNMF with fs

) SGNMF with f3 (f) SGNMF with f4s (g) SGNMF with f5

Fig. 8 The comparisons of sparsity performance on JAFFE.

(1072,1071) or larger than 1. For f1, fo, f3 and f4, o is better to be set to
larger than 1 or smaller than 1072.

6 Conclusions

In this paper, sparse graph nonnegative matrix factorization is formulated
as a global optimization problem by using the sum of the different smooth
functions to approximate lop norm. A general algorithm with guaranteed con-
vergence is designed. The clustering results on five public datasets show the
proposed approach can enhance robustness of GNMF with high sparsity.
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Fig. 9 Bisset as {1073,4x 1073,7 x 1073,1072,...,100} to show the effect on accuracy

and NMI.
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