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Abstract
COVID-19 has taken a toll on the entire world, rendering serious illness and high mortality rate. In the present day, when

the globe is hit by a pandemic, those suspected to be infected by the virus need to confirm its presence to seek immediate

medical attention to avoid adverse outcomes and also to prevent further transmission of the virus in their close contacts by

ensuring timely isolation. The most reliable laboratory testing currently available is the reverse transcription–polymerase

chain reaction (RT-PCR) test. Although the test is considered gold standard, 20–25% of results can still be false negatives,

which has lately led physicians to recommend medical imaging in specific cases. Our research examines the aspect of chest

imaging as a method to diagnose COVID-19. This work is not directed to establish an alternative to RT-PCR, but to aid

physicians in determining the presence of virus in medical images. As the disease presents lung involvement, it provides a

basis to explore computer vision for classification in radiographic images. In this paper, authors compare the performance

of various models, namely ResNet-50, EfficientNetB0, VGG-16 and a custom convolutional neural network (CNN) for

detecting the presence of virus in chest computed tomography (CT) scan and chest X-ray images. The most promising

results have been derived by using ResNet-50 on CT scans with an accuracy of 98.9% and ResNet-50 on X-rays with an

accuracy of 98.7%, which offer an opportunity to further explore these methods for prospective use.
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1 Introduction

SARS-CoV-2 is the virus that is known to cause the

COVID-19 disease [1]. The virus is known to be commu-

nicated through direct or indirect contact with an infected

person. The primary cases of this disease were known to be

reported in The People’s Republic of China. The most

commonly reported symptoms of COVID-19 are fever,

chills, dry cough and drowsiness. However, other symp-

toms like loss of appetite, breathlessness, persistent pain in

the chest and loss of taste or smell may flag the presence of

severe illness due to the presence of the disease. A study

has shown that 1/4th of the infections remain asymptomatic

throughout the course [2]. Although governing bodies

around the world are taking several measures to prevent the

spread of the virus among communities, one efficacious

measure to curb dire consequences is isolation of the

infected individuals. Thus, effective testing measures

become indispensable in this scenario. Those suspected to

be infected by the virus need to confirm its presence to seek

immediate medical attention to avoid adverse outcomes

and also to prevent further transmission of the virus in their

close contacts by ensuring timely isolation. Currently, RT-

PCR testing is followed up to detect the disease. This

laboratory testing method makes use of nasopharyngeal

swabs and the laboratory reports are usually made available

in at least 24 h. However, in many regions of the world,

RT-PCR is known to be reporting a huge number of false

negatives [3]. This has been attributed to many underlying

factors including the new variants of the virus which may

have diluted the efficiency of RT-PCR tests for detection,
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low viral load in the nasal area, low level of viral RNA

during testing, testing too early before the virus incubates,

use of poor-quality reagents, inappropriate conditions

during sample transportation or progression of the virus to

deeper areas in the respiratory tract. Recently, there was an

upsurge of cases which demonstrated acute symptoms of

COVID-19 infection but produced negative RT-PCR

results. Such patients were recommended medical imaging

methods by the physicians to confirm the presence of the

disease. Ai et al. [4] conducted a study on 1014 subjects,

who underwent both RT-PCR & CT-scan, to assess the

performance of CT scan in COVID-19 diagnosis by using

RT-PCR as a reference benchmark. In the findings, it has

been reported that in 413 patients with negative RT-PCR

results, 308 had positive chest CT findings. Of the 308

patients, 48% were considered as highly likely cases. Such

cases, when left untreated may prove fatal to the patients

and pose a serious threat to the community. Since COVID-

19 is caused by acute respiratory syndrome SARS-CoV-2,

it involves the lungs at different stages of disease pro-

gression. On chest imaging, COVID-19 positive cases are

known to report ground glass opacities, vascular enlarge-

ment and bilateral abnormalities [5], which provides room

to further employ them. Authors sincerely acknowledge

that imaging methods have associated demerits relating to

cost and exposure to high radiation. Thus, chest imaging

methods can be recognized not as an alternative to RT-PCR

testing but as an essential complement for specific cases.

To this end, authors are proposing to leverage neural net-

work architectures for COVID-19 diagnosis to assist

physicians in determining COVID-19 in chest CT & X-ray,

which might facilitate them to correlate or verify their

diagnosis with AI-based determination to diminish false

negative rate. In this study, authors are performing com-

parative analysis of neural network models to achieve

promising results for using artificial intelligence for rapid

testing of suspected populations. Further, authors have used

the COVID-19 radiography database for X-ray images

[6, 7], and a dataset maintained by iCTCF for CT scan

images [8]. These databases were truncated and the final

dataset included 4000 CT images and 4000 X-ray images.

Four different architectures applied to these data are:

ResNet-50, EfficientNet, VGG-16 and a custom CNN with

hyperparameter tuning.

This work achieves the state-of-the art accuracy on CT-

scan and X-ray images which have been extracted from

two data sources. Moreover, the four network architectures

employed for our study have not yet been comparatively

analyzed to study performance over the mentioned data-

base. Thus, this research propounds the following

contributions:

Deploying 4 CNN architectures to diagnose the presence

of COVID-19

Comparing the performance of these models on X-ray

and CT images

Evaluating various model metrics and compare

performances

2 Literature review

Diverse research work has been carried out to study the

diagnosis of COVID-19 by maneuvering AI. With the

assistance of deep learning, chest imaging, including CT

scans and X-ray have been tested to provide a basis for

classification of positive and negative cases [9]. Zheng

et al. [10] developed a weakly supervised deep learning-

based software system for COVID-19 detection. They used

499 and 131 CT volumes, respectively, for the purpose of

training and testing their model. Their deep learning model

obtained 0.959 ROC AUC and 0.976 PR AUC. A study for

finding out the correlation of RT-PCR testing and chest CT

was carried out by Ai et al.[11]. They arrived at a sensi-

tivity value of 97% in the chest CT findings to indicate

COVID-19. Bernheim et al. [5] performed a retrospective

study on 121 symptomatic patients that were infected by

the coronavirus disease and found common CT observa-

tions of bilateral lung involvement, peripheral ground-glass

and consolidated pulmonary arteries. They also reported

frequent CT findings at the progressive stages of the dis-

ease. Lassau et al. [12] administered a study on 1003

patients that were suffering from the coronavirus disease

and constructed a deep learning-based model on CT ima-

ges. The model was used with 5 clinical variables and was

reported to explain a 0.03 increase in AUC in addition to

clinical factors. Yousefzadeh et al. [13] used 3 datasets to

obtain 7184 scans, distinguished in 3 classes in a Effi-

cientNetB3-based architecture to develop ai-corona and

reported elevation in speed and accuracy of expert diag-

nosis with the assistance of their framework. Huang et al.

[14] measured the lung opacification in CT scan of the

chest using deep learning and noted varying quantification

among groups with different clinical severity. Wang et al.

[15] collected 5372 patients with CT images and created a

deep learning-based system that classified COVID-19 from

viral pneumonia and other pneumonia with an AUC of 0.86

and 0l87, respectively. Their system also classified patients

into two distinct risk groups: high and low. In their work,

Jain et al.[16] used the PA view of chest X-ray images and

obtained an accuracy of 97.97% in classifying the infected

patients from healthy individuals using the Xception

model. Yoo et al. [17] created a Covid-19 diagnostic

classifier using a deep learning model that consists of three
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decision trees, each performing its own function. In their

research work, Basu et al. [18] introduced domain exten-

sion transfer learning ( DETL), which was used with pre-

trained CNN on a dataset of X-ray images and obtained an

accuracy of 90.13% ± 0.14. Sedik et al. [19] used CNN

and convolutional long short-term memory model for

coronavirus detection from chest imaging. Acar et al. [20]

used deep learning methods to ameliorate the efficiency of

models in coronavirus detection from CT images.

3 Methods

For this research work, two datasets have been used:

COVID-19 Radiography Database and HUST-19 for chest

X-ray images (See Fig. 1) and chest CT scan images (See

Fig. 2), respectively. Originally, the two datasets contain

over 15,000 images.

However, for the study, datasets have been truncated to

include 4000 CT and 4000 X-ray images. The data were

used in the ratio of 75:25 for training and testing purposes.

Both datasets contain images belonging to two classes:

COVID-19 Positive and COVID-19 Negative. The CT scan

and X-ray training set comprises 1500 positive and

1500 negative images each. The CT scan and X-ray test set

comprises 500 positive and 500 negative images each. The

validation split for all the models was fixed as 0.1. For

uniformity, the images were resized to 224X224. Post this,

four varying neural network architectures which have been

used are: custom CNN, EfficientNetB0, ResNet-50 &

VGG-16 to classify the X-rays and CT scans of COVID-19

infected individuals from the healthy ones.

The architecture of the custom CNN used on X-ray

images is represented in Fig. 3.

To optimize the filter size, kernel size and learning rate,

random search hyperparameter tuning has been used. The

tuner returned the parameters that yielded the maximum

validation accuracy after 10 trials. The resultant model (re-

ferred to as custom CNN 1 in the figure) was trained for

40 epochs using Adam optimizer and had 2.2 million

parameters. The same process was repeated for creating a

CNN architecture (referred to as customCNN 2) for CT scan

images and the finalmodel contained 3.6million parameters.

Further, images were fed the to an EfficientNetB0

model, having 5.3 million parameters. The model had been

pre-trained on ImageNet. EfficientNet uses the compound

scaling method that scales the dimensions by an identical

value, uniformly [21]. The top layers were frozen and

flattened the output of the base model. Also, a dense layer

having rectified linear unit (ReLU) activation function and

a dropout value of 0.5 was added. Then, a fully connected

layer with sigmoid activation was also included. The model

was compiled using Adam optimizer with a learning rate of

1*e-3 and trained for 40 epochs.

Authors also tried the VGG-16 model [22] for the

classification of chest CT and X-ray images into COVID-

19 positive and negative. This model had 13 convolutional

layers, 3 dense layers and 5 pooling layers. The top layers

were made non-trainable and flattened the output layer of

the base model to 1 dimension. A fully connected layer was

also added to the model with ReLU activation and com-

bined a dropout of 0.5. Then, a final layer with sigmoid

activation was added and the model was compiled using

Adam optimizer and trained for 40 epochs.

Later, authors resorted to trying ResNet-50, which is a

50-layer deep convolutional neural network, possessing

25.6 million parameters [23], on X-ray and CT images.

ResNet helps improve accuracy by by-passing the layers

between every two convolutional layers. A model pre-

trained on the ImageNet database is used to fetch advan-

tage of its feature rich knowledge and compiled the model

using Adam optimizer for a learning rate of 1*e-3 and

Fig. 1 X-ray images
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Fig. 2 CT scan images

Fig. 3 Custom CNN architecture

Table 1 summarizes the parameters used in neural network architectures employed

Model Epochs Learning rate Optimizer Loss function Parameters (in millions)

Custom CNN 40 1e-3 to 1e-4 Adam Sparse categorical cross entropy 2.2 (X-ray)

3.6 (CT)

EfficientNetB0 40 1e-4 Adam Binary cross entropy 5.3

VGG-16 40 1e-4 Adam Binary cross entropy 138

ResNet-50 40 1e-4 Adam Binary cross entropy 25.6
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trained it for 40 epochs on our data. A sigmoid activation

function is then used for generating classification proba-

bilities and calculating the corresponding labels (Table 1).

4 Results

We evaluated the models through the recall, test accuracy,

precision, specificity and F1 score. The confusion matrices

corresponding to the models are also presented.

The custom CNN yielded the following metrics on

X-ray images:

The confusion matrix generated for custom CNN is

presented in Fig. 4.

Out of the 1000 test images, 906 images were

classified correctly, thus resulting in a testing accuracy

of 90.6%.

Of the 500 X-ray images that were COVID-19 positive,

473 were correctly identified, whereas 27 were deter-

mined as false negatives. Thus, the recall is 94.6%.

Of the 500 COVID-19 negative X-ray images, 433

images were correctly classified as negative, whereas 67

were marked as false positives. Thus, the specificity of

the model is 86.6%.

The custom CNN yielded the following metrics on CT

scan images:

The confusion matrix is presented in Fig. 5.

Out of the 1000 test images, 970 images were classified

correctly, thus resulting in a testing accuracy of 97%.

Of the 500 CT scan images that were COVID-19

positive, 479 were correctly identified, whereas 21 were

determined as false negatives. Thus, the recall is 95.8%.

Of the 500 CT scan images that were COVID-19

negative, 491 images were correctly classified as nega-

tive, whereas 9 were marked as false positives. Thus, the

specificity of the model is 98.2%.

The EfficientNetB0 model yielded the following

metrics on X-ray images:

The confusion matrix generated for EfficientNetB0 is

presented in Fig. 6.

Out of the 1000 test images, 967 images were classified

correctly, thus resulting in a testing accuracy of 96.7%.

Of the 500 X-ray images that were COVID-19 positive,

491 were correctly identified, whereas 9 were deter-

mined as false negatives. Thus, the recall is 98.2%.

Of the 500 COVID-19 negative X-ray images, 476

images were correctly classified as negative, whereas 24

were marked as false positives. Thus, the specificity of

the model is 95.2%.

The EfficientNetB0 yielded the following metrics on

CT scan images:

The confusion matrix is presented in Fig. 7.

Out of the 1000 test images, 962 images were classified

correctly, thus resulting in a testing accuracy of 96.2%.

Of the 500 CT scan images that were COVID-19

positive, 475 were correctly identified, whereas 25 were

determined as false negatives. Thus, the recall is 95.0%.
Fig. 4 Confusion matrix

Fig. 5 Confusion matrix

Fig. 6 Confusion matrix
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Of the 500 CT scan images that were COVID-19

negative, 487 images were correctly classified as nega-

tive, whereas 13 were marked as false positives. Thus,

the specificity of the model is 97.4%.

The VGG-16 yielded the following metrics on X-ray

images:

The confusion matrix generated for VGG-16 is presented

in Fig. 8.

Out of the 1000 test images, 958 images were classified

correctly, thus resulting in a testing accuracy of 95.8%.

Of the 500 X-ray images that were COVID-19 positive,

467 were correctly identified, whereas 33 were deter-

mined as false negatives. Thus, the recall is 93.4%.

Of the 500 COVID-19 negative X-ray images, 491

images were correctly classified as negative, whereas 9

were marked as false positives. Thus, the specificity of

the model is 98.2%.

The custom VGG-16 yielded the following metrics on

CT scan images:

The confusion matrix generated for the VGG-16 model

is presented in Fig. 9.

Out of the 1000 test images, 938 images were classified

correctly, thus resulting in a testing accuracy of 93.8%.

Of the 500 CT scan images that were COVID-19

positive, 473 were correctly identified, whereas 27 were

determined as false negatives. Thus, the recall is 94.6%.

Of the 500 CT scan images that were COVID-19

negative, 465 images were correctly classified as nega-

tive, whereas 35 were marked as false positives. Thus,

the specificity of the model is 93%.

The ResNet-50 model yielded the following metrics

on X-ray images:

The confusion matrix is presented in Fig. 10.

Out of the 1000 test images, 987 images were classified

correctly, thus resulting in a testing accuracy of 98.7%.

Of the 500 X-ray images that were COVID-19 positive,

488 were correctly identified, whereas 12 were deter-

mined as false negatives. Thus, the recall is 97.6%.

Of the 500 COVID-19 negative X-ray images, 499

images were correctly classified as negative, whereas 1

was marked as false positive. Thus, the specificity of the

model is 99.8%.

Fig. 7 Confusion matrix

Fig. 8 Confusion matrix

Fig. 9 Confusion matrix

Fig. 10 Confusion matrix
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The ResNet-50 model yielded the following metrics

on CT scan images:

The confusion matrix is presented in Fig. 11.

Out of the 1000 test images, 989 images were classified

correctly, thus resulting in a testing accuracy of 98.9%.

Of the 500 CT scan images that were COVID-19

positive, 493 were correctly identified, whereas 7 were

determined as false negatives. Thus, the recall is 98.6%.

Of the 500 CT scan images that were COVID-19

negative, 496 images were correctly classified as nega-

tive, whereas 4 were marked as false positives. Thus, the

specificity of the model is 99.2% (Table 2).

The maximum recall for X-ray images has been pro-

vided by EfficientNetB0 followed by ResNet-50, custom

CNN and VGG-16. However, ResNet-50 has outperformed

the other models by yielding precision score of 99.8%,

specificity of 99.8% and F1 score of 98.7% in the case of

X-rays.

However, in case of CT scan images, ResNet-50 has

achieved an F1 score of 98.9%, recall of 98.6%, specificity

of 99.2% and precision of 99.2%.

5 Discussion

Figures 12 and 13 represent the radar plot of the evaluated

metrics for neural network architectures employed on

X-ray and CT-scan images, respectively. For CT-scan

images, ResNet-50 has clearly surpassed the other three

networks in terms of recall, precision, specificity and F1-

Fig. 11 Confusion matrix

Table 2 Illustrates the various metrics including recall, precision, specificity and F1-score evaluated for the 4 models trained and tested on X-ray

and CT scan images. Some of the values have been rounded to the nearest decimal point

X-ray CT scan

Recall (%) Precision (%) Specificity (%) F1-score (%) Recall (%) Precision (%) Specificity (%) F1-score (%)

Custom CNN 94.6 87.6 86.6 90.9 95.8 98.2 98.2 96.9

EfficientNetB0 98.2 95.3 95.2 96.7 95.0 97.3 97.4 96.2

VGG-16 93.4 98.1 98.2 95.7 94.6 93.1 93.0 93.9

ResNet-50 97.6 99.8 99.8 98.7 98.6 99.2 99.2 98.9

Fig. 12 Radar plot for X-ray

images
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Fig. 13 Radar plot for CT-scan

images

Fig. 14 False positive rate of

neural network architectures on

X-ray images

Fig. 15 False positive rate of

neural network architectures on

CT-scan images
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score, whereas for X-ray images, EfficientNetB0 reports a

slight increase in recall by 0.006.

Since medical chest imaging is suggested to address the

issue of false-negative reports in RT-PCR, we evaluated

the false positive rate for the four network architectures to

understand their scope of application. Figures 14 and 15

indicate the false positive rate trends observed in the net-

works for X-ray and CT scan images, respectively. It can

be clearly established that ResNet-50, pre-trained on Ima-

geNet, reports the minimum false positive rate of 0.002 on

X-ray images and 0.008 on CT-scan images.

Thus, ResNet-50, which has been pre-trained on Ima-

geNet, has reportedly surpassed the other networks. Its

performance could be attributed to its structural design,

which stacks residual blocks with skip-connections, which

allows the activation to forward from one layer to another,

deeper in the network, sustaining the learning parameters

unlike other neural network architectures, where activation

vanishes as depth increases. Also, the feature-rich knowl-

edge acquired by the network due to transfer learning

applied via pre-training on ImageNet also contributes to the

exhibited performance in determining areas of air-space

consolidation opacities or ground glass opacities in the

images. These aspects of the ResNet model also make it

suitable for extending it to other disease diagnosis such as

breast cancer identification from histopathological images,

as studied by Al-Haija et al. [24]

However, all the models had certain misclassifications,

i.e., false positives and false negatives; the results obtained

from these models are still promising. The image quality

improvement and some advanced pre-processing on them

could further improve the classification accuracy to address

the issue and make it appropriate to be used in clinical

settings.

6 Conclusion

Deep learning has facilitated in extending functional

solutions to diverse problems in the domain of healthcare.

Our work is one such instance which leverages deep

learning for COVID-19 diagnosis using chest imaging

methods, CT-scan and X-ray. The metrics, especially

accuracy and low false positive rate, encourage the pro-

spect of applying deep learning, particularly, ResNet-50 to

diagnose COVID-19. This method will assist physicians in

laboratory settings for clinical verification of their analysis,

thus making it an essential supplement to the traditional

benchmark method of RT-PCR in specific cases. However,

it may also be noted that training, testing and evaluation

have been completed by combining data from two sources

only. Future work may involve extraction of data from

varied sources and applying more methods and architecture

to them for better results. We seek to inspire the research

community to contribute ideas that create a lasting impact

and achieve solutions to real-world problems such as dis-

ease diagnosis. We also hope that our research work could

be availed as a reference to conduct future studies that

pursue deep learning-based solutions in healthcare.
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