
ORIGINAL ARTICLE

Dynamic scheduling of heterogeneous resources across mobile edge-
cloud continuum using fruit fly-based simulated annealing
optimization scheme

Danlami Gabi1,2 • Nasiru Muhammad Dankolo2 • Abubakar Atiku Muslim2
• Ajith Abraham3

•

Muhammad Usman Joda4 • Anazida Zainal5 • Zalmiyah Zakaria5

Received: 13 February 2021 / Accepted: 29 March 2022 / Published online: 21 April 2022
� The Author(s) 2022

Abstract
Achieving sustainable profit advantage, cost reduction and resource utilization are always a bottleneck for resource

providers, especially when trying to meet the computing needs of resource hungry applications in mobile edge-cloud

(MEC) continuum. Recent research uses metaheuristic techniques to allocate resources to large-scale applications in

MECs. However, some challenges attributed to the metaheuristic techniques include entrapment at the local optima caused

by premature convergence and imbalance between the local and global searches. These may affect resource allocation in

MECs if continually implemented. To address these concerns and ensure efficient resource allocation in MECs, we propose

a fruit fly-based simulated annealing optimization scheme (FSAOS) to serve as a potential solution. In the proposed

scheme, the simulated annealing is incorporated to balance between the global and local search and to overcome its

premature convergence. We also introduce a trade-off factor to allow application owners to select the best service quality

that will minimize their execution cost. Implementation of the FSAOS is carried out on EdgeCloudSim Simulator tool.

Simulation results show that the FSAOS can schedule resources effectively based on tasks requirement by returning

minimum makespan and execution costs, and achieve better resource utilization compared to the conventional fruit fly

optimization algorithm and particle swarm optimization. To further unveil how efficient the FSAOSs, a statistical analysis

based on 95% confidential interval is carried out. Numerical results show that FSAOS outperforms the benchmark schemes

by achieving higher confidence level. This is an indication that the proposed FSAOS can provide efficient resource

allocation in MECs while meeting customers’ aspirations as well as that of the resource providers.

Keywords Mobile edge clouds � Cloud datacenter � Edge datacenter � Simulated annealing � Fruit fly optimization

1 Introduction

The wireless network has with no doubt reshaped infor-

mation technology (IT) as it affects positively the way we

live. A rudimentary connectivity of the wireless networks

is provided with the introduction of packet data services in

cellular systems with a number of online users having a

great impact on the quality of service produced [1, 2]. On

the other hand, the traditional wireless networks are inca-

pable of addressing the exponentially growing demand in

both high data rate and high computational capability

[3–5]. Consequently, compared to the growing demand for

more enhanced user experience, the distance between the

mobile hardware and users demand is expected to hinder

the mobile devices from providing experience-rich mobile

services [6, 7].

Cloud computing can complement the wireless network

to provide the possibility for mobile users to access cloud

resources (infrastructures, platforms, and software) on

demand [8]. The paradigm can provide virtually unlimited

resource and service provision to mobile devices [9]. The

centralized hosts within the cloud datacenters can act as an

agent between the original content providers and mobile

devices, enabling resources sharing in remote datacenters

[10]. Hence, the integration of cloud computing and

wireless mobile environment allows running computation-

intensive applications over resource-constrained mobile

devices to execute computational intensive tasks [11–13].Extended author information available on the last page of the article

123

Neural Computing and Applications (2022) 34:14085–14105
https://doi.org/10.1007/s00521-022-07260-y(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0001-6159-9588
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-022-07260-y&domain=pdf
https://doi.org/10.1007/s00521-022-07260-y

This is called the mobile cloud computing (MCC). The

MCC environment leverages cloud resources to enhance

the performance of resource-constrained mobile devices to

more powerful computing resources. However, the MCC

environment attracts intolerable long latency when

accessing centralized cloud resources. Hence, several

applications may miss their deadline due to low bandwidth

data transmission, causing delays that are unacceptable in

certain cases [5, 14]. It is assumed in [6, 15] that a possible

way to mitigate the challenge of unacceptable delay is to

make sure computational resources are at the proximity of

end-users.

Recently, mobile edge clouds (MECs) emerged as a

promising solution to offer a service environment that is

characterized by proximity, low latency, and high data rate

access to mobile subscribers via a radio access network

[16, 17]. Although the scale of the edge cloud seems lim-

ited in capacity to execute high computational tasks, the

remote cloud is used to compliment resource scarcity for

mobile devices [15, 18]. One of the challenges faced by

MECs is limited resources. This could potentially cause

hungry resource applications to miss their deadline. Hence,

for MECs to realize its full potentials, the resource allo-

cation challenge needs to be resolved. Dynamic resource

allocation is a promising goal that can reduce the quality of

service degradation in MEC scenarios if well carried out.

Although MEC users often suffer unfair resource alloca-

tion, most especially for the resource hungry applications

[19–21], the need to provide an ideal resource allocation

scheme for MECs is necessary. This can reduce access

overhead of the end users’ mobile devices in both time

consumption and costs of executing their application [22].

In this article, we study how resources allocation meet

the computing need of resource-hungry applications in

MECs. Makespan (known as the minimum time required

for a task to be executed on a virtual machine) and costs

minimization and resource utilization are the main con-

straints of optimization. The literature presents several

heuristics and metaheuristic procedures used in solving the

challenge of resource allocations in MECs. However, the

heuristic techniques are known to be problem dependent

and are usually trapped in a local optimum due to their

greedy nature, thereby finding it difficult to reach the

global optimum solution. This often affects resource allo-

cation if implemented in MECs. On the other hand, the

metaheuristic techniques are promising as well as problem

independent. They can schedule a large number of resource

and tasks while providing a decent approach to run away

from local search to the global one, which mostly guar-

antees the achievability of the global optimality [16].

Therefore, to provide and efficient resource allocation in

MECs, a suboptimal solution is then required.

The metaheuristic fruit fly is a swarm optimization

algorithm put forward by When Tsao Pan in 2011 [23]. The

development was based on food findings of the fruit fly.

Since the fruit flies adopt a special smell and vision, they

can smell food from a far distance. Two phases are asso-

ciated with the fruit fly: smell and vision phases. The smell

phase is also known as the local search phase where the

flies fly through the food by using their smell capability. As

they come closer to the source of food, the vision phase

starts. This phase is also known as the global search phase,

which is repeated until the fruit fly reaches the food. One of

the basic challenges of the fruit fly is the convergence

speed of its smell capability. When the smell value

becomes smaller, entrapment at the local optimum

becomes possible, which could lead to poor resource

allocation if implemented. The simulated annealing (SA) is

used. It is used to increase the diversity of a local search

and discover the effect of the parameter settings for the

possibility of getting better results [24]. In order to deal

with the limitations of the conventional FOA, the SA-based

approach is incorporated into the local search of the FOA

to not only address the challenge of convergence speed but

to also increase its diversity at the early phase of the search

process, making it more efficient for resource scheduling in

MECs. This led to the proposed fruit fly-based simulated

annealing optimization scheme (FSAOS). Simulation

results show that the FSAOS outperformed particle swarm

optimization (PSO) and FOA in terms of makespan and

execution costs, and resource utilization.

The contribution of this article is as follows:

(a) Formulation of a resource-scheduling optimization

problem.

(b) Mathematical modelling of the optimization problem

for the derivation of makespan and cost models.

(c) Utilization of the proposed FSAOS to solve the

models.

The rest of this article is organized as follows: Related

work are discussed in Sect. 2. Section 3 provides discussion

on the optimization algorithms. Section 4 provides the

system model. Problem formulation and proposed

approach are discussed in Sect. 5. Section 6 provides dis-

cussion on the experiment and the results obtained, while

Sect. 7 concludes the article.

2 Related work

This section reviews the literature associated with our

research work and pointed out the limitations of the

existing techniques.

14086 Neural Computing and Applications (2022) 34:14085–14105

123

2.1 Review on resource allocation

Research toward resource allocation in cloud and edge

computing has been studied extensively [17] with focus on

several resource providers, with each provider contributing

a part of the resources (e.g., infrastructure) for service

continuity and profit gain. As stated in the existing litera-

ture, this is to potentially meet objectives of the consumers

and service providers. Therefore, a broad review on the

area of economics of MECs with focus on resource pricing

and allocation/task scheduling is carried out. As a result,

profit maximization and resource utilization are some of

the goals of any service provider to achieve. Although lack

of pricing standard often affects customer quality-of-ser-

vice (QoS) expectation in such environment, to offer a

promising architecture that will mitigate this concern, [25]

put forward an incentive-compatible auction mechanism

(ICAM) that allows resource trading among mobile end-

users and service providers. A model to incentivize budget

balance and truthfulness is introduced to test the efficiency

of the ICAM approach. The theoretical analysis and

numerical results revealed by the researchers show that

ICAM can guarantee efficiency in terms of budget balance

and truthfulness for both end-users and service providers.

On the other hand, a revenue auction algorithm is intro-

duced to improve locally the end-users experience. Their

main objective is to ensure nearby data are processed to

reduce transmission delay and ensure minimum processing

cost. A reverse auction is used to distribute overloaded data

to the edge server as well as balance server load. In another

development, [2] exploit the Lagrange function to develop

an optimal sales price and bandwidth allocation scheme for

internet service providers (ISPs). Their objective is to

address the challenge of end users’ denial when requesting

online service as well as address low connection speeds

below their stipulated contract speed limit agreement. As

revealed by the researchers, their method can achieve a

market equilibrium price and better bandwidth resource

allocation compared to the benchmarked scheme.

Homogeneous study on MEC was carried out in [26]. A

dual auction framework was developed for heterogeneous

MECs. The developed system enabled offload tasks from a

large-scale region using both a single and double auction-

based model. Simulation results show significant

improvement compared with the benchmarked schemes.

Lin [1], in their part, studied dynamic resource allocation

strategy for mobile edge cloud. The researchers noted that

physical resource layer in network model was responsible

for providing hardware resources, computing resources and

storage resources. According to the researchers, the exist-

ing strategies were not efficient enough in providing

solution that could potentially address existing concerns.

Hence, they considered that deployment of virtual machine

monitors at the physical base stations can serve as a

potential solution while considering connections between

virtual machine stations. Furthermore, study on automated

deployment and run-time management of microservice-

based applications for cloud and edge computing envi-

ronments was carried out in [6]. According to the

researchers, management of applications and tasks at the

cloud-to-edge continuum is far from trivial, due to the lack

of robust and production-level solutions. Hence, they put

forward an application-level cloud orchestration frame-

work that utilized both edge and fog nodes. Experimental

results via simulation using two realistic case studies are

used by the researchers to demonstrate the effectiveness of

their developed solution. On the virtues of the existing

challenges affecting allocation of resource in cloud com-

puting, the need to provide more efficient resource allo-

cation techniques is paramount. These motivated [27], to

propose a QoS-based resource allocation scheme using

swarm-based ant colony optimization. The effectiveness of

their proposed solution was demonstrated via simulation,

and results show significant performance than the bench-

marked schemes. On their part, [14] put forward both

resource allocation algorithm and task scheduling strategy

to reduce average completion latency of an environmental

monitoring application. According to the researchers,

simulation results have shown significant improvement

compared with the benchmarked algorithms. Consequently,

on virtue of limited performance when allocating better

resources across network nodes, a joint optimization

algorithm that improved resource utilization, reduced

energy consumption, increase network capacity was put

forward by [11]. Simulation results show the developed

technique can be better compared to the benchmarked

schemes. On the other hand, [18] proposed a cloud

resource allocation algorithm based on a parallel and

improved NSGA-II (RAA-PI-NSGAII) algorithm. The

algorithm computes fitness values of individuals and

improved on quality of solution set. According to the

researchers, simulation results show significant perfor-

mance when compared to the benchmarked scheme.

Resource allocation multi-player domain is a concern,

especially when considering user mobility. These moti-

vates [16] to develop a metaheuristic-based service allo-

cation framework to optimize the trade-off between energy

consumption and makespan as well as to deal with

resources heterogeneity. In [28], the researchers introduced

a market-based framework to provide efficient resource

allocation in heterogeneous edge nodes. An equilibrium

concept in economics was then explored to generate a

market equilibrium solution that maximizes resource uti-

lization and allocates optimal resource bundles to services

given their budget constraints. An approach to guarantee

Neural Computing and Applications (2022) 34:14085–14105 14087

123

fair resource allocation under constraints’ mobile users’

transmission rates and throughput maximization is studied

in [29]. The researchers first unveiled a mathematical

model based on fair Nash bargaining resource allocation

game. A near-optimal bargaining resource allocation

strategy for mix integer nonlinear programming optimiza-

tion through time-sharing variable is later developed to

solve the model. The results of the simulation as revealed

by the researchers shows that their developed scheme can

provide a fair allocation of resources that increase the

system throughput. In a similar development, [30] stated

that to realize spectrum virtualization, multi-service

resource allocation needs to be addressed. As a result, a

service-centric wireless virtualization model is put forward

by the researchers. These then followed with a multi-ser-

vice resource allocation algorithm derived by decoupling

of existing scheduling algorithms to meet the expectations

of the end users. According to the researchers, numerical

results show that their developed scheduling algorithm can

schedule specific services effectively compared to the

benchmarked algorithms.

These motivated [31] to develop an auction model that

facilitates resource trading between mobile service provi-

ders and mobile end-users. Simulation results according to

the researchers have shown that their developed

scheme can fairly allocate tasks and determine the trading

price of the resources compared to the benchmarked

schemes. Wang et al. [3] in their part developed a multi-

plier-based algorithm aiming at addressing in-network

caching and computational offloading. The simulation

results according to the researchers show their scheme can

achieve a promising performance. On the other hand, as

services are now moving towards cloud continuum, data-

centers are becoming cumbersome with increased in

workload, causing growth in datacenters, and therefore

required more energy consumption. This motivated [32] to

propose a hybrid approach that uses genetic algorithm

(GA) and random forest (RF) known as GA-RF to address

such concerns. In their approach, a training dataset for

random forest model was generated using genetic algo-

rithm. The effectiveness of their proposed approach was

verified via simulation, and their proposed GA-RF model

was able to improve resource utilization, energy con-

sumption and execution time compared to the bench-

marked models. In a similar development, [33] stated that

the development of big data and artificial intelligence

provide more concern to the cloud resource requests,

thereby presenting more complex features like being sud-

den, arriving in batches and being diverse. According to the

researchers, these could potentially cause resource alloca-

tion to lag far behind the resource requests and an unbal-

anced resource utilization that wastes resources. Hence,

they proposed a proactive resource allocation method

based on the adaptive prediction of the resource requests in

cloud computing using nondominated sorting genetic

algorithm with the Elite Strategy (NSGA-II). Simulation

results show their proposed approach reduced resource

allocation. In another development, improving efficiency

of a resource allocation on cloud computing is the utmost

priorities of several researchers. This led [34] to propose an

improved particle swarm optimization (IPSO) algorithm.

According to the researcher, his proposed approach com-

pared to conventional PSO shows significant improvement

in resource allocation on cloud computing. Nabi et al. [35]

in their part put forward an adaptive particle swarm opti-

mization (AdPSO) to reduce task execution time and

increased throughput and average resource utilization ratio.

The results of the simulation as stated by the researchers

show some improvement compared to the benchmarked

scheme.

Moreover, a system may decide to allocate both high

wireless bandwidth and too many computation resources to

a task leading to faster processing, but the system can only

accommodate a few tasks with little profits in return. As a

concern, a new optimization scheme using the Lyapunov

technique was introduced by [31] to address a stochastic

resource scheduling problem. The experimental results

show that the developed algorithm can reach time average

profit close to the optimum while maintaining the strong

system stability and low congestion. [36–39], in their part,

developed an efficient online multi-resource allocation

algorithm that allows deadline-sensitive tasks to be pro-

cessed at the edge-cloud system. This is to maximize the

profit edge-cloud gains from meeting users’ service-level

agreements (SLAs). The results of the simulations achieved

according to the researchers show a better profit in returns

with moderate resource augmentation.

2.2 Findings from the literature review

From the related work, resource allocation in MECs is a

non-deterministic polynomial-time hard (NP-hard) prob-

lem [16, 40, 41]. Inefficient resource allocation will con-

tinue affecting the performance of MECs due to its limited

capacity and variation in workload. These causes delay in

critical application that requires large sum of resources to

be processed. Findings from the literature show that an

ideal resource allocation scheme is needed for MECs to

solve the challenge of resource-hungry applications. Con-

sidering QoS constraints such as execution costs, lack of

standard pricing model in MECs is a concern, especially

where resource providers from both the cloud and edge are

self-interested or non-cooperative to agree on a unify

resource price. Although few literatures addressed eco-

nomic factors such as profit, cost, and revenue, majority

focused on system performance metrics given system

14088 Neural Computing and Applications (2022) 34:14085–14105

123

parameters and constraints. Another vital issue when con-

sidering consumers QoS expectations is to bear in mind

each consumer has conflicting objectives and different

constraints (e.g., budget and technology). Achieving sus-

tainable profit advantage, cost reduction and resource uti-

lization is always a bottleneck when trying to meet the

computing needs of resource hungry applications [42–47].

Therefore, an optimal trade-off policy that will allow a

resource provider to allocate its resources in such a way to

ensure other allocations cannot provide strictly higher

efficiency and at the same time be fairer to service con-

sumers [48]. It is therefore imperative to develop an ideal

resource allocation scheme that not only allocates resour-

ces effectively at the MECs but also meet the expectations

of consumers in terms of QoS.

3 Optimization algorithms

3.1 Fruit fly optimization algorithm (FOA)

The fruit fly optimization algorithm (FOA) is a method for

finding global optimization based on the food-finding

behavior of the fruit fly put forward by When Tsao Pan in

2011 [23]. Because the fruit fly uses special smell and

vision to smell food from a far distance, they are superior

to other species. Two phases are associated with the fruit

fly: smell and vision phases. The smell phase is also known

as the local search phase where the flies fly through the

direction of the food using their smell capability. As they

come closer to the source of food, the vision phase triggers.

This phase, which is also known as the global search phase,

is repeated until the fruit fly reaches the food. Figure 1

shows the food-finding process of the fruit fly, and the

pseudocode for the FOA is shown in Algorithm 1 [23].

In the context of resource scheduling, each fruit fly is

encoded as a task from the edge network, which also rep-

resents the network position of the fly. The resources (e.g.,

virtual machines) at the edge network are food search by

the flies. Once the service location has been determined,

the scheduling process is executed to find the optimal

composition of the quality of service (makespan and costs)

virtual resource. Each of the position of the fruit flies

represents the initial solution of the flies.

Neural Computing and Applications (2022) 34:14085–14105 14089

123

3.2 The need to improve FOA

The conventional fruit fly has some advantages such as its

fastness in solving an optimization problem, updating

strategy and its simplicity in understanding. However, the

smell value Si in the conventional fruit fly is extremely

small due to the dispersion of distance value to a global

search region. This causes the fitness value to converge

early, leading to its entrapment into the local optimum.

Similarly, the smell value S is always bigger than zero (0).

This means the FOA fitness function value is always pos-

itive. When these values become fixed, it is difficult for the

smell value S to get a value in a uniform distribution,

thereby making it impossible for the FOA to generate a

uniform solution. At this point, the ability of the fruit fly

toward a global solution search will be lost. Therefore,

solving complex optimization problems effectively will be

difficult using the fruit fly technique. Another limitation of

the fruit fly optimization algorithm is that multidimensional

problem cannot be handle as it was suggested for solving

only two-dimensional parameter optimization problems.

As a result, the two-dimensional random values cause slow

convergence at the beginning of the search, while at the

later search, it cannot obtain optimal solution [23, 49].

These concerns if not address may cause the FOA to pro-

vide inefficient resource allocation that will lead to

resource underutilization, poor revenue and high process-

ing time and hence the need to make FOA adaptable for

resource allocation in MECs.

3.3 Improved fruit fly optimization algorithm (I-
FOA)

In the conventional FOA, Si ¼ 1=Disti. This shows it has a

weak exploration. On the other hand, with Xaxis and Yaxis
having fixed values, Si does not follow uniform distribu-

tion. Hence, in the improved FOA, Si is changed according

to Eq. 8, where randðÞ is used to generate a random value

in the interval [0,1]. This improvement eliminates the

possibility of Si falling into local optimal point. A control

parameter is used by the I-FOA to moderately speed up

search efficiency in the earlier stage of searching. The

I-FOA is shown in Algorithm 2.

14090 Neural Computing and Applications (2022) 34:14085–14105

123

3.4 Simulated annealing

Simulated annealing (SA) is a local search probabilistic

approximation algorithm [41] put forward by Kirkpatrick

et al. in 1983. The SA algorithm often begins with an initial

solution X according to some neighborhood function N

with an updated solution X0 created. A neighborhood-based

mutation operator strategy can be incorporated into the SA

algorithm for enhancing population diversity. Assuming S

is the search space, each solution X [S can be represented

by its nð[0Þ components, i.e., X ¼ x1; x2; . . .; xnð Þ, where
xi 2 Xi; i ¼ 1; 2; . . .; n. The neighborhood N of a solution X

is defined as:

NX ¼ X0 X0 2 S;Pro X;X0; Tð Þj iR 0; 1ð Þf g ð13Þ

where X 62 NX ; and X 2 NX0 iff X0 2 NX , Pro is the proba-

bility of deciding whether to accept or reject a new solution

and R is a random number generated uniformly between 0

and 1. As to how the particle tends to adopt a state, which

is an improvement over current one, the algorithm gener-

ates a solution when fitness value f X0ð Þ becomes lower than

f Xð Þ. Assume X0 has the higher fitness, it will occasionally
be accepted if the defined probability shown in Eq. 14 is

satisfied [24]:

Pro X;X0; Tð Þ ¼ exp � Dfð Þ � T�1
� �

ð14Þ

where Df is the difference between the fitness values and

Df ¼ f X0ð Þ � f Xð Þ, f X0ð Þ is the fitness evaluation function

and f Xð Þ the current solution of the neighbor accordingly;

T represents the temperature parameter. This parameter is

determined according to the cooling rate used in [24].

T ¼ ri þ TO þ Tfinal ð15Þ

where ri = temperature descending rate,80\r\1; i ¼ the

number of stints, which neighbor solutions have been

generated so far; TO ¼ initial temperature; Tfinal ¼ final

temperature. When the initial value of the temperature is

low, the algorithm becomes limited in locating global

optimal solution as the computation time of the algorithm

is believed to be shorter. At each iteration performed by the

SA algorithm, the comparison between the currently

obtained solution and a solution newly selected is carried

out. A solution that shows improvement is always accep-

ted. The non-improving solutions are still accepted since

there is a possibility that they may escape being trapped at

local optima while searching for a global optimum solu-

tion. Based on the defined probability in Eq. 14, the

acceptance of the non-improving ones is often determined

by the temperature parameter. This makes SA algorithm

one of the most powerful optimization mechanism for the

improvement of a local search. The basic SA procedure is

represented in Algorithm 3.

Neural Computing and Applications (2022) 34:14085–14105 14091

123

4 System model

We assume a paradigm with a distributed cloud resource

provider (DCRP) that manages resources at the centralized

cloud. The edge resource is managed by an edge resource

provider, but coexist with DCRP at the centralized cloud to

allocate resources to the edge consumers. Figure 2 shows

the system framework. Three types of entities are involved

in this scenario: resource provider (RP) at the edge, a

distributed cloud resource provider (DCRP), and a pool of

consumers known as mobile users (MUs). The FSAOS

algorithm is situated within the edge orchestrator and does

the resource optimization and allocation purposes. If an

MU requires high computation-intensive resources at the

edge, more resources are requested by the FSAOS algo-

rithm to argument the already existing one at the edge.

With the coexistence of the edge service providers, an MU

that requests for resource having budgetary constraint need

not to concern as the proposed FSAOS dynamically assign

resources to customer’s application using the right com-

puting resource.

In the resource and task scheduling process, each fruit

fly within the swarm is initialized as a set of tasks uploaded

by the mobile consumers to the edge resources. The fruit

flies are encoded as a set of tasks emanating from the edge

network, which also represents the network position of the

flies. The resources at the edge network are food search by

the flies as indicated in Fig. 1. Once the service location

has been determined, the algorithm within the FSAOS

executes the scheduling process to find the optimal com-

position of the quality of service (makespan and costs)

virtual resource. The position of the fruit flies represents

the initial solution of the flies. Instead of assigning tasks to

resources at random, the algorithm within the FSAOS

schemes selects the best resource that meets the computing

need of each uploaded tasks and assign these resources

according to the boundary location. This process is repe-

ated until the QoS is achieved for all tasks scheduled on the

computing resources.

5 Problem formulation and proposed
approach

This section discusses the resource allocation problem and

the proposed approach that is used in solving the model

derived from the resource allocation problem.

Fig. 1 Fruit fly swarm iteration process of food searching (18)

Mobile edge
Layer-1

Mobile edge
Layer-2

Exchange Servier

DCRP

Core cloud layer Edge layer

FSAOS Algorithm

orchestrator

End consumer layerFig. 2 Framework model for

resource scheduling in MECs

14092 Neural Computing and Applications (2022) 34:14085–14105

123

5.1 Problem formulation

Due to workload variation and the limited capacity of

resources at the MECs, the performance of an application

may be affected unless an ideal resource scheduling opti-

mization scheme is designed. We assume the costs of

resource usage consist of both the virtual machine and data

transfer cost. Consequently, a resource provider cannot be

paid less than its resource unit cost, while the allocated

providers’ resources must fulfill a service consumer’s

demand. Therefore, the expected time of computation of

each resource (e.g. virtual machines) is taken into consid-

eration based on their capacity (ability) to execute tasks.

More precisely as it relates to this problem, the resources

are considered heterogeneous in nature and the tasks to

utilize these resources also vary differently from mobile

users based on various factors, like costs, and wireless link

performance (makespan). Each mobile consumer submits

its bid to the edge provider by selecting the best service

that relates to its demand. Our goal is to ensure resources

are distributed effectively to execute users’ applications

without compromising their quality of service while still

ensuring better resource utilization. The scheduling model

is as follows:

Let T ¼ tij1� i� nf g represents the tasks groups and n

is the overall number of tasks. V ¼ vjj1� j�m
� �

are the

sets of virtual machines and m is the number of virtual

machines. The goal is to assign the most needed virtual

machine vj8j ¼ 1; 2; . . .;mf g to execute users’ task ti8i ¼
1; 2; . . .; nf g at the edge taking the following objectives:

makespan and cost, and resource utilization. Hence, the

makespan time of the tasks executed on a virtual machine

is reduced using Eq. 16,

min : Makespan Mð Þ ¼ max TEij

� �
; 1� j�m ð16Þ

TEij ¼
Xn;m

i;j

exeTimeij; 1� i� n; 1� j�m ð17Þ

exeTimeij ¼ xij:
task sizei

vnpej
; 1� i� n; 1� j�m ð18Þ

xij ¼
1; if virtual machine vj is assigned to execute task ti

0; if virtual machine vj is not assigned to execute task ti

�

ð19Þ

where Makespan Mð Þ represents the maximum time of

execution among all virtual machines at the edge and cloud

servers; TEij represents the total execution time; exeTimeij

represents the execution time of task i on virtual machine

vj; xij is equal to 1 if vj is assigned to execute task ti and

zero (0) otherwise; n is the number of tasks ti and m is the

number of virtual machine vj; vnpej represents the com-

puting capacity of the virtual machine vj.

On the other hand, let C ¼ fcjjm� j1g represent the unit
cost of virtual machine vj per time quantum. The unit cost

of executing a task ti on a virtual machine vk in this

research is considered per hour (/hr), which is computed in

US dollar ($). Therefore, the amount of time a task spent

running on a virtual machine in seconds is converted into

hours. We assume the costs of resource usage comprises

both the cost of virtual machine and the cost of data

transmission. Equation 20 computes the total execution

cost of task i on all virtual machine vj;

Tcost ¼
Xn

i

Cexeij ; 1� i� n ð20Þ

Cexeij ¼
Xn

i

xij:
task sizei

npe � vjspeed
:Cj; 1� i� n; 1� j�m

ð21Þ

where Tcost represents the total execution cost of processing

all tasks; Cexe represents the execution cost of a resource

usage when a task ti assigned on virtual machine vj; Cj is

the price of a unit cost of resource per second as specified

by the resource provider. Thus, the trade-off factor a for all

mobile users can now be introduced to the model for

optimizing the trade-off between makespan time and costs

based on service preference. This factor is within 0� a� 1

and does help the mobile users to make better realization of

the optimization objective. Therefore, the scheduling

problem, which is also the fitness function of the

scheduling problem, can be presented as shown in Eq. 22.

Minimize : a �Makespan þ 1� að Þ � Tcost; ð22Þ

where a is the trade-off factor, Makespan is the average

execution time of the entire tasks processed as achieved by

the algorithms, and Tcost is the total cost of processing all

the tasks. For equation of the fitness function, relevant

information concerning the decision variables and a fitness

value is encapsulated into the proposed algorithm, which

has an indicator of its performance. The best fitness value

shows the highest degree of adaptation of the proposed

schemes in providing better scheduling solution. It also

helps check whether loads were shared equally on the

entire system while trying to minimizing the makespan and

Neural Computing and Applications (2022) 34:14085–14105 14093

123

increases the processing capacity of a given task set. The

resource utilization is the actual amounts of resources

consumed at both the edge and the cloud datacenter. One of

the main objectives of resource utilization is making sure

resources are well utilized to provide better profit to the

resource providers in terms of revenue and profits. Equa-

tion 23 is used to compute the resource utilization Rutil on

both edge and the cloud environment [41].

Rutil ¼

Pm
j¼1

TEij

exeTimeij

m
: ð23Þ

where TEij is the total execution time of the whole virtual

machines, exeTimeij is the execution time of task ti on

virtual machine vj, and m is the number of virtual

machines.

5.2 Proposed approach

An ideal resource and task allocation scheme that can

schedule both resource and task to meet the computing

demand of mobile cloud users is needed. This led to the

developed FSAOS scheduling scheme. The developed

FSAOS is a combination of both the FOA and SA algo-

rithms. The local search of the FOA is constrained by

premature convergence, causing the FOA to be entrapped

at local optima. This can lead to providing poor scheduling

performance when implemented in MEC. The procedure of

Algorithm 2 and that of Algorithm 3 combined led to the

developed Algorithm 4. With the developed FSAOS,

moving out of the local optima region is possible for the

best resource allocation. To increase the performance

parameter estimation of the proposed FSAOS, the local

search is enhanced with the SA. The SA also functions in

the stabilization of both the local and global search pro-

cedures of the FSAOS scheme while ensuring its diversity

of solutions. Hence, more powerful optimization search

procedures that search for a global optimum solution are

made possible using a uniform distribution in the FSAOS

scheme.

In the resource scheduling and task allocation process,

each fruit fly within the swarm is initialized as a set of tasks

to be sent by mobile users to the edge resources and the

available resources at the edge are food searched by the

flies. In this research, the fruit flies are encoded as a set of

tasks emanating from at the edge network. These also

represent the network position of the flies. The position of

the fruit flies represents the initial solution of the past flies.

Instead of assigning tasks to resources randomly, the

FSAOS algorithm selects the best resources to compute the

need of each task and assign such resources according to

the boundary location. The smell sense is then used to

update the position of the flies according to Eq. 24,

xi axis ¼ n� randValueðÞ þ wo � a� randvalueðÞ;
8i ¼ 1; 2; 3; . . .; n

ð24Þ

where xi represent the coordinates for the resource services

obtained by FSAOS, n is the searching coefficient, wo is the

initial weight and a is the weight coefficient. Distance xi
measure is found for each dimension of the objective space

by including the effect of an individual’s constraint viola-

tion into its objective function. The major steps in calcu-

lating the distance measure start with obtaining the

minimum and maximum values of each objective function

in the population. The objective space is modified to

account for the performance and constraint violation of

each individual. The objective (fitness) function of the

individual fruit flies is computed using Eq. 25. The

objective functions are used to facilitate the search of

optimal solutions not only in the feasible space but also in

the infeasible regions. The cost and the makespan value are

used for the computation of the fitness value.

minimize fð Þ ¼ a makespan of virtual machineð Þ
þ 1� að ÞTcost ð25Þ

where a is the weight coefficient that allows mobile users

to select their preferred services. The fruit fly with the best

fitness among the fruit fly swarm is selected using Eq. 26.

½Smellbest0 bestindex0� ¼ min fð Þ ð26Þ

For the minimization process, the new fitness is accep-

ted for an update according to the probability function

defined in Eq. 27. The new fitness is designed to carry out

search both at the feasible and infeasible space to exploit

those individuals with better objective values. The number

of feasible individuals in the population is used to guide the

search process either toward finding more feasible solu-

tions. The number of feasible individuals in the population

adaptively controls the emphasis given to objective values

or constraint violation in the objective function formula-

tion. If there is no feasible individual in the population, the

algorithm selects the optimum from the best solutions.

14094 Neural Computing and Applications (2022) 34:14085–14105

123

Pro X
0

i;Xi; T
� �

¼ exp � f X
0

i

� �
� f Xið Þ

� �
� T�1

� �
ð27Þ

where f X
0
i

� �
and f Xið Þ denote fitness functions of the

fruit flies and current solutions, and T represents the

temperature. The fly with the best fitness is stored at

each run of the scheme and is compared with the initial

best solution. The probability of accepting a neighbor

solution into a new generation of fruit flies using SA is

obtained according to Eq. 27. The FSAOS algorithm is

described as shown in Algorithm 4.

6 Experiment and results discussion

This section provides detail information about the experi-

ment conducted as well as the results obtained.

6.1 Parameter setup

The EdgeCloudSim simulator tool [41] is used for the

experiments. The EdgeCloudSim supports the simulation

of multi-tier scenarios where several servers are running in

coordination with upper layer cloud solutions. Tasks are

Neural Computing and Applications (2022) 34:14085–14105 14095

123

generated randomly. We extended the edge orchestrator

module being the decision layer to implement our devel-

oped resource scheduling scheme. The edge/cloud

parameter settings for the datacenter (as illustrated in

Table 1) were based on [50]. The settings for the

scheduling scheme are shown in Table 2.

The parameters of the algorithms are employed by

predefining in the initialization stage. Constant value of the

coefficients c1 and c2, together with the random vectors r1

and r2, is automatically adjusted for each numeric bench-

mark function based on greedy search while computing the

step size based on greedy search. The parameters are

investigated within given ranges and incremental steps.

The complexity of a problem is then measured as a func-

tion of those parameters. As the coefficients c1 and c2[0,

each particle finds the best position in its neighborhood by

replacing the current best position. On the other hand, the

number of iterations ni is fixed in which it helps the

algorithms to reach a good solution. Although too few

iterations may terminate the search prematurely, a too large

number of iterations has the consequence of unnecessary

added computational complexity, provided that the number

of iterations is the only stopping condition. As seen in the

literature, this paper uses 1000 as its stopping criteria.

6.2 Performance metrics

The performance metrics used to evaluate the proposed

FSAOS is makespan, costs and utilization as indicated in

Table 3. These metrics are used to determine the stability

improvement of the proposed scheme.

Table 1 Parameter settings for

the edge and cloud computing

data center

Datacenter Parameter Values

Host No. of edge/cloud 2

No. of data center per edge/Cloud 1

Host RAM on edge/cloud 10/20 GB

No. of hosts per edge datacenter/cloud 1

Storage on edge/cloud 0.5/ITB

Bandwidths on edge/cloud 5/10 GB/s

Accumulated host processing power on edge/cloud 250,000/1000000 MIPS

Operating systems Linux

Virtual machine monitor Xen

Tasks No. of tasks [100–1000]

Average task length [100, 1000] MIS

File size [200, 400] MB

Output size [300]

Virtual machine Virtual machine number per edge server/cloud 30

Accumulated Ram on edge/cloud 0.5 GB/2 GB

Accumulated storage on edge/cloud 5/10 GB

WAN/WLAN bandwidth 20/300 Mbps

VMs processing power per edge server/cloud 1000-/20000 MIPS

Number of processing elements edge/cloud 1–2/3–4

VM Policy Time-shared

Costs per unit VM based on edge/cloud 0.022–0.12/0.051–0.1$/hour

Table 2 The parameter setting for the four task scheduling schemes

Algorithm Parameter Value

PSO Population size 100

coefficients (c1, c2) 2.0

Uniform random number (R1) [0,1]

Minimum iteration number ðniÞ 5

Maximum iteration 1000

Variable inertia weight (W) 90–40%

FOA Population size ðsizepopÞ 100

Minimum iteration number ðniÞ 5

Maximum iteration number (maxgen) 1000

FSAOA Population size ðsizepopÞ 100

Minimum iteration number ðniÞ 5

Maximum iteration number (maxgen Þ 1000

Searching coefficient 2

Initial weight ðwoÞ 1

Final temperature 0.001

Weight coefficient 90%

Initial temperature 10

Cooling rate 0.9

14096 Neural Computing and Applications (2022) 34:14085–14105

123

6.3 Results discussion

Ten (10) independent simulation runs were conducted, and

an average of the simulation results was reported [51]. To

show how efficient is the resource scheduling scheme,

makespan and execution cost, and resource utilization were

used in the evaluation. The FSAOS resource scheduling

scheme is compared against that of the particle swarm

optimization algorithm (PSO) and fruit fly optimization

algorithm as well as the state-of-the-art approaches. Our

scheduling model is used in the evaluation of both the PSO,

FOA and the state-of-the-art schemes to show their effec-

tiveness against our developed FSAOS resource scheduling

schemes. Tables 4 and 5 show the makespan time obtained

simultaneously when optimizing resources and tasks.

Tables 6 and 7 show results obtained in terms of the

average execution cost, while Tables 8 and 9 show the

resource utilization at both the edge and cloud datacenters.

Table 10 shows comparison with state-of-the-art

approaches.

To demonstrate the effectiveness of the resource

scheduling schemes in terms of performance at the edge

and cloud computing environments, we show the results of

makespan indicated in Tables 4 and 5. As the number of

tasks increases, the makespan solutions of the FSAOS,

FOA and PSO schemes also increase exponentially on both

edge and cloud computing environments. However, with

increase in ratio of number of tasks from 100 to 1000

allocated to the virtual machines, the makespan in cloud

environment is significantly less than that in the edge

environment. These can be attributed to the load variation,

Table 3 Evaluation metrics for the scheduling schemes

Metric Definition Equation

Makespan

time

This is the total time required to process all tasks [12] M ¼ max ETij

� �
; ð28Þ where M is the makespan; ETij is

the expected time to compute

Cost The amount payable according to resource usage. This consists of both

the bandwidth and virtual machine cost

Using Eq. (20)

Utilization This is the overall amount of resources that is consumed in the

datacenters [31]

Using Eq. (23)

Table 4 Average makespan time achieved by the three scheduling

schemes at the edge

TASKS PSO FOA FSAOS

100 8418.54 8757.33 7986.41

200 9458.57 9599.95 8793.48

300 9740.22 9604.81 9863.37

400 9984.06 9772.88 9904.64

500 10,085.53 9752.65 9826.34

600 9865.53 9970.42 8819.14

700 10,089.20 9751.09 9280.14

800 9717.16 9906.16 9902.74

900 9875.22 9866.02 9655.15

1000 9804.01 9838.66 8819.14

Table 5 Average makespan time achieved by the three scheduling

schemes at the cloud

TASKS PSO FOA FSAOS

100 222.53 232.68 217.98

200 411.59 428.40 414.29

300 586.65 597.47 599.32

400 785.39 1564.55 824.67

500 963.82 1024.24 975.02

600 1173.99 1200.51 1217.49

700 1296.34 1435.63 1369.22

800 1719.09 1581.66 1547.83

900 2874.87 1773.44 1764.64

1000 3652.53 2005.93 1975.69

Table 6 Average costs of execution achieved by the three scheduling

schemes at the edge

Tasks PSO FOA FSAOS

100 1800.94 1974.77 1988.37

200 2185.87 2167.60 2133.12

300 2224.18 2165.92 2196.4

400 2233.47 2203.79 2251.40

500 2215.84 2199.22 2274.24

600 2198.42 2253.19 2224.67

700 2260.64 2198.89 2365.12

800 2233.97 2233.83 2191.22

900 2177.23 2224.79 2226.86

1000 2193.42 2218.61 2190.78

Neural Computing and Applications (2022) 34:14085–14105 14097

123

as several tasks are executed using the edge datacenter

resources, while few tasks that require high computation

resources are executed using the cloud datacenter resour-

ces. Consequently, further analysis on the makespan solu-

tion demonstrated that the FSAOS has achieved better

makespan at the edge and cloud computing environment

than the PSO and FOA scheduling schemes. On the other

hand, the impact on the makespan solutions achieved by

the resource scheduling scheme is revealed on the total

execution cost as indicated in Tables 6 and 7. Fluctuation

in the simulation results is an indication that all the

scheduling schemes try to allocate resources to tasks to

guarantee the least execution cost. However, these impact

significantly on the execution cost, especially when the

scheduling schemes on the other hand maps these resources

with low processing time to tasks, thus incurring high

execution cost. In a similar development, costs’ solutions

obtained by PSO and FOA also show some improvement

inasmuch as the FSAOS does returned better average

execution cost solutions on both edge and cloud computing

environments.

In Tables 8 and 9, the performance utilization of the

three resource scheduling schemes on both edge and cloud

computing environments is provided. In the overall

resource utilization, the FSAOS provides better utilization

of resources than the benchmarked schemes. It can also be

seen from Tables 6 and 7 an average execution costs

solution obtained by the FSAOS is better than those of the

benchmarked schemes in both the edge and cloud envi-

ronments under a task scheduling interval of 100–1000.

Although FSAOS resource scheduling scheme was able to

optimized resources and allocate tasks to the most needed

computing resources, its performance can still be

improved.

To have a better understanding on the performance of

the FSAOS, FOA and PSO schemes, figures are used to

show the trend as illustrated in Figs. 3, 4, 5, 6, 7, 8 in terms

of makespan, average execution cost and resource utiliza-

tion. For the convergence graphs in terms of makespan and

average execution costs, the trend on the graphs indicates

that the FSAOS obtains lowest makespan time and exe-

cution cost solutions at the edge and cloud datacenters,

respectively, compared to the benchmarked schemes. We

Table 7 Average costs of execution achieved by the three scheduling

schemes at the cloud

Tasks PSO FOA FSAOS

100 54.95 52.45 55.86

200 103.98 107.52 103.30

300 150.42 149.96 147.24

400 206.98 205.31 197.13

500 244.70 257.08 241.92

600 305.57 301.32 294.67

700 343.67 360.33 325.38

800 388.50 396.99 384.24

900 442.82 445.13 431.48

1000 660.24 503.48 485.06

Table 8 Resource utilization

achieved by the three

scheduling schemes at the edge

Tasks PSO FOA FSAOS

100 5.612 5.324 5.838

200 6.305 5.862 6.399

300 6.493 6.575 6.403

400 6.656 6.603 6.515

500 6.723 6.550 6.501

600 6.577 5.879 6.646

700 6.726 6.186 6.500

800 6.478 6.601 6.604

900 6.583 6.436 6.577

1000 6.536 6.486 6.559

Table 9 Resource utilization

achieved by the three

scheduling schemes at the cloud

Tasks PSO FOA FSAOS

100 0.155 0.145 0.148

200 0.285 0.276 0.274

300 0.398 0.399 0.391

400 1.043 0.549 0.523

500 0.682 0.650 0.642

600 0.800 0.811 0.782

700 0.957 0.912 0.864

800 1.054 1.031 1.916

900 1.182 1.176 1.146

1000 1.337 1.317 2.435

Table 10 Results of the

makespan time for the resource

allocation algorithms

Tasks Instances GA-RF IPSO Improved NSGA-II AdPSO FSAOS

200 3564.32 2974.06 3013.01 2814.76 2485.74

400 4703.01 4603.56 4457. 22 4372.67 4123.35

600 5163.33 5446.43 5291.12 5102.83 5087.45

800 7869.15 7098.34 6739.15 6596.21 6201.11

1000 8743.65 8654.89 8506.13 8379.42 7878.45

14098 Neural Computing and Applications (2022) 34:14085–14105

123

notice that when the tasks scheduling interval increases, the

execution time and costs solutions also increase for all the

scheduling schemes. The real reason is that the edge dat-

acenter starts allocating resources where the number of

tasks to execute these resources increases as well. These

increases can be viewed as illustrated on the figures show-

ing the trend of the solutions for both edge and cloud

datacenter. We also notice that FSAOS resource scheduling

scheme is able to optimize resources and tasks that guar-

antee an acceptable cost of execution and makespan

compared to that of the benchmarked schemes. In a similar

development, Figs. 7 and 8 show the resource utilization

performances. The resource utilization achieved by

FSAOS, FOA and PSO at the edge is significantly higher

than at the cloud and thus maintain a relatively better

performance. In the overall performance, FSAOS has

proven to be more robust in ensuring better utilization of

resources than PSO and FOA.

The reason why the FSAOS was able to achieve such

performance in terms of makespan, costs and resource

utilization is believed to be attributed to the incorporation

of SA, which energizes the smell vector within FSAOS that

is capable of preventing premature convergence. This also

ensures that inactive solutions not needed are eliminated

and introducing a more active solutions thus pushing away

search processes from local optima. Such incorporation

gives local search of the proposed FSAOS exploitative

power to traverse the best solution, which makes the

FSAOS to obtain near-optimal solution than PSO and FOA.

0 100 200 300 400 500 600 700 800 900 1000
0

2000

4000

6000

8000

10000

M
ak

es
pa

n(
s)

 o
n

ed
ge

Number of Tasks

PSO
FOA
FSAOS

Fig. 3 Performance based on

makespan time on edge

0 100 200 300 400 500 600 700 800 900 1000
0

2000

4000

6000

8000

10000

M
ak

es
pa

n(
s)

 o
n

ed
ge

Number of Tasks

PSO
FOA
FSAOS

Fig. 4 Performance based on

makespan time on cloud

Neural Computing and Applications (2022) 34:14085–14105 14099

123

6.4 Comparison with state-of-the-art
Approaches

To compare the proposed FSAOS resource allocation

algorithm based on makespan time with that of the state-of-

the-art approaches (e.g., in [32–35]), the population size,

minimum and maximum iteration parameters used were

similar for the benchmarked schemes. Twenty (20) inde-

pendent simulation runs were conducted on the tasks

instances: 200, 400, 600, 800 and 1000, and an average of

the results obtained from the clod platform is reported in

Table 10.

Moreover, based on the results obtained in Table 10, for

every task instance used, study shows that proposed

FSAOS resource allocation scheme is able to achieve the

best global optimal solution at low searching time on an

average of 20 simulation runs and achieve a solution better

than GA-RF, IPSO, improved NSGA-II and AdPSO. It can

therefore be concluded that the performance of FSAOS was

attributed the increase in its convergence speed that

improves its local search while maintaining its best global

search procedure.

0 100 200 300 400 500 600 700 800 900 1000

1800

1900

2000

2100

2200

2300

2400

Av
er

ag
e

ex
ec

ut
io

n
co

st
 (/

hr
) o

n
ed

ge

NumberTasks

PSO
FOA
FSAOS

Fig. 5 Average cost of

execution on edge

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

Av
er

ag
e

ex
ec

ut
io

n
co

st
(/h

r)
on

 c
lo

ud

Number of Tasks

PSO
FOA
FSAOS

Fig. 6 Average cost of

execution on cloud

14100 Neural Computing and Applications (2022) 34:14085–14105

123

6.5 Statistical analysis on confidence interval

To further elaborate on the performance of our developed

scheme, a 95% confidential interval based on execution

time for the 10 independent simulation runs is computed.

The computed values are derived using Eq. 29 [52], and

results are shown in Table 11. These results based on 95%

confidence interval are used to examine whether the exe-

cution time obtained by FSAOS is significantly less com-

pared to FOA and PSO for all application instances.

Confidential Interval CIð Þ ¼ X 	 Z 0S
. ffiffiffiffi

N
p ð29Þ

where X is the mean; Z 0 represents the distribution from the

standard normal distribution; S represents the standard

deviation of the sample data derived after running task

instances on a virtual machine, and N represents the

number of generated task sizes.

As can be seen from Table 11, the FSAOS has (9156.17,

9413.95) confidence levels at the edge and (975.87,

1205.37) at the cloud. On the other hand, FOA has

achieved (9595.72, 9727.26) confidence levels at the edge,

while it achieves (1066.94, 1301.96) at the cloud com-

puting environments. Finally, the PSO has (9607.96,

9799.64) confidential interval at the edge cloud, while it

achieved (1152.03, 1585.33). The smaller the value of the

0 100 200 300 400 500 600 700 800 900 1000

4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0

6.2

6.4

6.6

6.8

Re
so

ur
ce

 u
til

iz
at

io
n

at
 th

e
ed

ge

Number of Tasks

PSO
FOA
FSAOS

Fig. 7 Resource utilization on

edge

0 100 200 300 400 500 600 700 800 900 1000
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Re
so

ur
ce

 u
til

iza
tio

n
at

 th
e c

lo
ud

Number of Tasks

PSO
FOA
FSAOS

Fig. 8 Resource utilization on

cloud

Neural Computing and Applications (2022) 34:14085–14105 14101

123

confidence intervals, the more the acceptable results. The

statistical analysis indicated that for 95% confidential

intervals, the computed value of the FSAOS is less in both

upper and lower bounds on edge and cloud environment,

respectively, compared to the values obtained by FOA and

PSO. These means that there is a difference between the

performance of an FSAOS and the benchmarked schemes

in terms of execution time. Although the smaller estimate

of the CI is an indication of a significant performance in

terms of execution time, this shows that FSAOS can

achieve minimum execution time.

Moreover, to further show the statistical significance of

the proposed resource scheduling algorithm, an H-test was

carried out to examine whether a significant difference in

terms of makespan obtained by the three resource

scheduling algorithms exists for all task instances. The

Kruskal–Wallis H-test procedures were adopted as a non-

parametric test for comparing these algorithms, and the H

value is computed using Eq. 30 [53].

H ¼ 12

N N þ 1ð Þ
Xk

i¼1

R2
i

ni
� 3 N þ 1ð Þ ð30Þ

where N = number of values obtained from every grouped

sample, R2
i = summation of ranks taken from a particular

sample and ni = number of values from the equivalent sum

of rank. The values for each of the scheduling algorithm

(PSO, FOA and FSAOS) in Table 4 were ranked using the

rank average function and results shown in Table 12.

The ranks on the statistical analysis of performance of

PSO, FOA and FSAOS under different data instances as

shown in Table 12 indicate that the sum of rank obtained

by FSAOS is significantly less compared to PSO and FOA.

This shows that there is a difference between the sum of

rank (121) obtained by the proposed FSAOS in terms of

achieving minimum makespan time compared to the PSO

and FOA, which obtained 183 and 161, respectively. To

compute the H value according to Eq. 30, data in Table 13

above were used. The alternative hypothesis (Ha) was set

as the statement of the test to determine whether there is no

Table 11 The parameter setting for the three resource scheduling schemes

PSO FOA FSAOS

Total population size 1000 1000 1000

Degree of freedom 9 9 9

Confidence level 0.025 0.025 0.025

Z�-distribution 1.96 1.96 1.96

Mean on edge/cloud 9703.80/1368.68 9961.99/1184.45 9285.06/1090.62

Standard Deviation on edge/cloud 488.98/1105.34 333.03/599.54 657.62/585.45

Lower bound on edge/cloud 9607.96/1152.03 9595.72/1066.94 9156.17/975.87

Upper bound on edge/cloud 9799.64/1585.33 9727.26/1301.96 9413.95/1205.37

95% Confidential Interval on

edge/cloud

(9607.96, 9799.64)/(1152.03,

1585.33)

(9595.72, 9727.26)/(1066.94,

1301.96)

(9156.17,9413.95)/

(975.87,1205.37)

Table 12 Average rank obtained for the three resources scheduling

algorithms

Tasks instances PSO FOA FSAOS

100 2 3 1

200 8 9 4

300 12 10 5.5

400 13 14 5.5

500 17 15 7

600 21 16 11

700 23 19 18

800 28 22 20

900 29 26 24

1000 30 27 25

Sum of Rank 183 161 121

Bold values indicate the sum of the ranks in all the scheduled tasks

(100–1000) instances for the resource scheduling algorithms to

determine if an obtained rank is significantly less with respect to

another

Table 13 Data derived from the resource scheduling algorithms

NI Count samples in PSO 10

N2 Count samples in FOA 10

N3 Count samples in FSAOS 10

N Total number of samples 30

K Number of groups 3

Df Degree of freedom(K-1) 2

a Significance 0.05

14102 Neural Computing and Applications (2022) 34:14085–14105

123

difference between ranks of the three resource scheduling

algorithms, while the null hypothesis (H0) was set as the

complementary statement to determine whether the dif-

ference between the ranks of the three resource scheduling

algorithms in term of makespan time exists. The minimum

p� value (also called the significance) was set at 0.05 for

the same stopping criteria at 95% confidence level, and the

H value obtained was 2.5497 and the calculated p� value

is 0.27948 based on tasks instances (100–1000). This value

is greater than the minimum p� value (0.05), which

indicates that there is a significant difference between the

performance of PSO, FOA and FSAOS for these data

instances. This leads to acceptance of Ha for data instances

100 through 1000. This means as the tasks instances keep

increasing, makespan obtained by FSAOS is significantly

less than that of PSO FOA using same 95% confidence

level. It can be concluded that FSAOS outperforms PSO

and FOA as well as the state-of-the art approaches (shown

in Table 10) as the search space becomes larger.

7 Conclusion

This article focuses on resource allocation in MECs, by

considering an edge resource provider that offers hetero-

geneous resources to the mobile consumers in close prox-

imity based on their computing demand. To improve

resource utilization of the provider while meeting mobile

consumers’ quality-of-service expectations, we have pro-

posed a fruit fly-based simulated annealing optimization

scheme (FSAOS) for resource scheduling in MECs. The

FSAOS can overcome premature convergence (which is

attributed to conventional FOA), to guarantee market-ori-

ented characteristic of mobile edge clouds in terms of

minimum makespan, costs and resource utilization. A

series of simulation with FSAOS over some benchmarked

schemes shows that our proposed FSAOS can ensure

profits and revenue gain through the minimization of the

makespan and overall execution costs, and efficient

resource utilization. Further research is to look at multi-

domain resource allocation where resource providers

coexist to share resources with individual resource provider

having monopoly over his/her resource cost.

Funding Open access funding provided by Umea University.

Declarations

Conflict of interest There is no conflict of interest for this manuscript.

All authors agreed to its submission.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visithttp://creativecommons.

org/licenses/by/4.0/.

References

1. Lin Q (2021) Dynamic resource allocation strategy in mobile

edge cloud computing environment. Hindawi Mobile Inf Syst

2021:10. https://doi.org/10.1155/2021/8381998

2. You P-S, Lee C-C, Hsieh Y-C (2011) Bandwidth allocation and

pricing problem for a duopoly market. Yugoslav J Oper Res

21(1):65–78

3. Wang C, Liang C, Yu RF, Chen Q, Tang L (2017) Computation

offloading and resource allocation in wireless cellular networks

with mobile edge computing. IEEE Trans Wirel Commun

16(8):4924–4938

4. Hung PP, Huh N-E (2015) An adaptive procedure for task

scheduling optimization in mobile cloud computing. Hindawi

Publ Corp Math Probl Eng 2015:1–13

5. Arshad H, Khattak AH, Shah AM, Abbas A, Ameer Z (2018)

Evaluation and analysis of bio-inspired optimization techniques

for bill estimation in fog computing. Int J Adv Comput Sci Appl

9(7):191–198

6. Ullah A, Dagdeviren H, Ariyattu CR, DesLauriers J, Kiss T,

Bowden J (2021) MiCADO-edge: towards an application-level

orchestrator for the cloud-to-edge computing continuum. J Grid

Comput 19:47. https://doi.org/10.1007/s10723-021-09589-5

7. Johansson K (2007) Cost effective strategies for heterogeneous

wireless networks. PhD Thesis. KTH Information and Commu-

nication Technology, Stockholm, Sweden.

8. Sardellitti S, Scutari G, Barbarossa S (2015) Joint optimization of

radio and computational resources for Multicell mobile-edge

computing. IEEE Trans Signal Inf Process Over Netw

1(2):89–103

9. Shabeera TP, Kumar MDS, Salam MS, Krishnan MK (2017)

Optimizing VM allocation and data placement for data-intensive

application in cloud using ACO metaheuristic algorithm. Eng Sci

Technol Int J 20(1):616–628

10. Zhou B, Buyya R (2018) Augmentation techniques for mobile

cloud computing: a taxonomy, survey, and future directions.

ACM Comput Surv 51(1):1–38

11. Liu J, Zhu L (2021) Joint resource allocation optimization of

wireless sensor network based on edge computing. Hindawi

Complex 2021:11. https://doi.org/10.1155/2021/5556651

12. Wang X, Sui Y, Wang J, Yuen C, Wu W (2018) A distributed

truthful auction mechanism for task allocation in mobile cloud

computing. IEEE Trans Serv Comput. https://doi.org/10.1109/

TSC.2018.2818147

13. Jin L-A, Song W, Zhuang W (2018) Auction-based resource

allocation for sharing cloudlets in mobile cloud computing. IEEE

Trans Emerg Top Comput 6(1):45–57

14. Zhao T, Zhou S, Guo X, Niu, Z (2017) Tasks scheduling and

resource allocation in heterogeneous cloud for delay-bounded

mobile edge computing. In: Proceedings of the 2017 IEEE

Neural Computing and Applications (2022) 34:14085–14105 14103

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8381998
https://doi.org/10.1007/s10723-021-09589-5
https://doi.org/10.1155/2021/5556651
https://doi.org/10.1109/TSC.2018.2818147
https://doi.org/10.1109/TSC.2018.2818147

international conference on communications (ICC). 21–25 May,

Paris, France pp 1–7

15. Fang J, Hu J, We J, Liu T, Wang B (2020) An efficient resource

allocation strategy for edge-computing based environmental

monitoring system. Sensors 20:6125. https://doi.org/10.3390/

s20216125

16. Mishra KS, Puthal D, Rodrigues CPJJ, Sahoo B, Dutkiewicz E

(2018) Sustainable service allocation using a metaheuristic

technique in a fog server for industrial applications. IEEE Trans

Ind Inf 14(10):4407–4506

17. Chen H, An B, Niyato D, Soh CY, Miao C (2017) Workload

factoring and resource sharing via joint vertical and horizontal

cloud federation networks. IEEE J Sel Areas Commun

30(3):557–570

18. Chen J, Du T, Xiao G (2021) A multi-objective optimization for

resource allocation of emergent demands in cloud computing.

J Cloud Comput Adv Syst Appl 10:20. https://doi.org/10.1186/

s13677-021-0237-7

19. Zhu Z, Peng J, Gu X, Li H, Liu K, Zhou Z, Liu W (2018) Fair

resource allocation for system throughput maximization in

mobile edge computing. IEEE Access 6(1):5332–5340

20. Wei Z, Jiang H (2018) Optimal offloading in fog computing

systems with non-orthogonal multiple access. IEEE Access

6(1):49767–49778

21. Yang N, Fan X, Puthal D, He X, Nanda P, Guo S (2018) A novel

collaborative task offloading scheme for secure and sustainable

mobile cloudlet networks. IEEE Access 6(1):44175–44189

22. Tärneberg W, Mehta A, Wadbro E, Tordsson J, Eker J, Kihl M,

Elmroth E (2017) Dynamic application placement in the Mobile

Cloud Network. Future Gener Comput Syst 70(1):163–177

23. Iscan H, Gunduz M (2015) A survey on fruit fly optimization

algorithm. In: Proceedings of the 11th international conference on

signal-image technology and internet-based systems. pp 520–527

24. Gabi D, Ismail AS, Zainal A, Zakaria Z, Al-Khasawneh A (2018)

Hybrid cat swarm optimization and simulated annealing for

dynamic task scheduling on cloud computing environment. J Inf

Commun Technol 17(3):435–467

25. Jin A-L, Song W, Zhuang W (2015) Auction-based resource

allocation for sharing cloudlets in mobile cloud computing. IEEE

Trans Emerg Top Comput 6(1):45–57

26. Lu W, Wu W, Xu J, Zhao P, Yang D, Xu L (2022) Auction

design for cross-edge task offloading in heterogeneous mobile

edge clouds. Comput Commun 181(2022):90–101

27. Singh H, Bhasin A, Kaveri RP (2020) QRAS: efficient resource

allocation for task scheduling in cloud computing. SN Appl Sci

3:474. https://doi.org/10.1007/s42452-021-04489-5

28. Nguyen TD, Le BL, Bhargava V (2018) Price-based resource

allocation for edge computing: a market equilibrium approach.

IEEE Trans Cloud Comput. https://doi.org/10.1109/TCC.2018.

2844379

29. Zhu X, Zhang Z, Wang Y, Wang G (2018) Resource allocation

based on reverse auction algorithm in edge computing environ-

ment. In: X Sun et al. (Eds.), Proceedings of the 4th international

conference. LNCS 11065: Springer Nature Switzerland

pp 245–252

30. Li L, Deng N, Ren W, Kou B, Zhou W, Yu S (2018) Multi-

service resource allocation in future network with wireless vir-

tualization. IEEE Access 6(1):53854–53868

31. Wang X, Wang K, Wu S, Di S, Jin H, Yang K, Ou S (2018)

Dynamic resource scheduling in mobile edge cloud with cloud

radio access network. IEEE Trans Parallel Distrib Syst

29(11):2429–2445

32. Madhusudhan HS, Kumar TS, Mustapha SMFD, Gupta P, Tri-

pathi PR (2021) Hybrid approach for resource allocation in cloud

infrastructure using random forest and genetic algorithm.

Hindawi Sci Program 2021:1–10. https://doi.org/10.1155/2021/

4924708

33. Chen J, Wang Y, Liu T (2021) A proactive resource allocation

method based on adaptive prediction of resource requests in cloud

computing. J Wirel Commun Netw 2021:24. https://doi.org/10.

1186/s13638-021-01912-8

34. Yu H (2020) Evaluation of cloud computing resource scheduling

based on improved optimization algorithm. Complex Intell Syst

7:1817–1822. https://doi.org/10.1007/s40747-020-00163-2

35. Nabi S, Ahmad M, Ibrahim M, Hamam H (2022) AdPSO:

adaptive PSO-based task scheduling approach for cloud com-

puting. Sensors 22:920. https://doi.org/10.3390/s22030920

36. Yin B, Cheng Y, Cai XL, Cao X (2017) Online SLA-aware multi-

resource allocation for deadline sensitive jobs in edge-clouds. In:

Proceedings of the 2017 IEEE global communications confer-

ence. 4–8 December, Singapore, Singapore pp 1–6

37. Gabi D, Ismail AS, Zainal A, Zalmiyah Z (2019) Quality of

service (QoS) task scheduling for time-cost trade-off scheduling

problem in cloud computing environment. Int J Intell Syst

Technol Appl 18(5):448–469

38. Balouek-Thomert D, Renard GE, Zamani RA, Simonet A, Para-

shar M (2019) Towards a computing continuum: enabling edge-

to-cloud integration for data-driven workflows. Int J High Per-

form Comput Appl 33(6):1–14

39. Gabi D, Ismail AS, Zainal A, Zalmiyah Z (2017) Scalability-

aware scheduling optimization algorithm for multi-objective

cloud task scheduling problem. In: Proceedings of the 2017 6th

ICT-international student project (ICT-ISPC-2017). Faculty of

Computing, Universiti Teknologi Malaysia. 23–24 May, Malay-

sia pp 1–6

40. Bendechache M, Svorobej S, Endo TP, Lynn T (2020) Simulating

resource management across the cloud-to-thing continuum: a

survey and future directions future internet. 12(95)

41. Gabi D, Ismail AS, Zainal A, Zakaria Z, Abraham A (2018)

Orthogonal Taguchi-based cat algorithm for solving task

scheduling problem in cloud computing. Neural Comput Appl

30(6):1845–1863

42. Ramachandra A, Guruprasad A (2020) Resource provisioning

techniques in cloud/edge computing. Int J Ser Multidiscip Res

Arch Comput Eng 2(2020):1–11

43. Zahoor S, Javaid S, Javaid N, Ashraf M, Ishmanov F, Afzal KM

(2018) Cloud–fog–based smart grid model for efficient resource

management. Sustainability 10(2079):1–21

44. Gabi D, Ismail AS, Zainal A, Zakaria Z, Dankolo NM, Abraham

A (2020) Cloud customers service selection scheme based on

improved conventional cat swarm optimization. Neural Comput

Appl 32(18):14817–14838

45. Toczé K, Nadjm-Tehrani S (2018) A taxonomy for management

and optimization of multiple resources in edge computing. Wirel

Commun Mob Comput 2018:1–23

46. Sediq BA, Gohary HR, Yanikomeroglu H (2012) Optimal

tradeoff between efficiency and Jain’s fairness index in resource

allocation. In: Proceedings of the 2012 IEEE 23rd international

symposium on personal, indoor and mobile radio communica-

tions (PIMRC). 9–12 September. Sydney, NSW, Australia,

pp 577–583

47. Liu M, Liu Y (2018) Price-based distributed offloading for

mobile-edge computing with computation capacity constraints.

IEEE Wirel Commun Lett 7(3):420–423

48. Deng R, Lu R, Lai C, Luan HT, Liang H (2016) Optimal

workload allocation in fog-cloud computing toward balanced

delay and power consumption. IEEE Internet Things J

3(6):1171–1181

49. Shan D, Cao GH, Dong HJ (2013) LGMS-FOA: an improved

fruit fly optimization algorithm for solving optimization

14104 Neural Computing and Applications (2022) 34:14085–14105

123

https://doi.org/10.3390/s20216125
https://doi.org/10.3390/s20216125
https://doi.org/10.1186/s13677-021-0237-7
https://doi.org/10.1186/s13677-021-0237-7
https://doi.org/10.1007/s42452-021-04489-5
https://doi.org/10.1109/TCC.2018.2844379
https://doi.org/10.1109/TCC.2018.2844379
https://doi.org/10.1155/2021/4924708
https://doi.org/10.1155/2021/4924708
https://doi.org/10.1186/s13638-021-01912-8
https://doi.org/10.1186/s13638-021-01912-8
https://doi.org/10.1007/s40747-020-00163-2
https://doi.org/10.3390/s22030920

problems. Math Probl Eng 2013:1–9. https://doi.org/10.1155/

2013/108768

50. Sonmez C, Ozgovde A, Ersoy C (2017) EdgeCloudSim: an

environment for performance evaluation of edge computing

systems. In: Proceedings of the second international conference

on fog and mobile edge computing (FMEC). 8–11 May 2017.

Valencia, Spain, pp 39–44

51. Madni HHS, Abd Latiff SM, Coulibaly Y, Abdulhamid MS

(2017) Recent advancement in resource allocation techniques for

cloud computing environment: a systematic review. Clust Com-

put 20(1):2489–2533

52. Hosmer DW, Lemeshow S (2015) Confidence interval estimation

of interaction. Epidemiology 3(5):452–456

53. Vianee B, Girish J, Lovena N, Krisen P, Veldy MMAE (2021)

Project on non-parametric test. Access online at: https://www.

researchgate.net/publication/323546900, 2021

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Danlami Gabi1,2 • Nasiru Muhammad Dankolo2 • Abubakar Atiku Muslim2
• Ajith Abraham3

•

Muhammad Usman Joda4 • Anazida Zainal5 • Zalmiyah Zakaria5

& Danlami Gabi

danlami@cs.umu.se

Nasiru Muhammad Dankolo

nasirdankolo@gmail.com

Abubakar Atiku Muslim

alatiku@gmail.com

Ajith Abraham

ajith.abraham@ieee.org

Muhammad Usman Joda

umjoda@gmail.com

Anazida Zainal

anazida@utm.my

Zalmiyah Zakaria

zalmiyah@utm.my

1 Department of Computing Science, Umeå University, Umeå,

Sweden

2 Department of Computer Science, Kebbi State University of

Science and Technology, Aliero, Nigeria

3 Machine Intelligence Research Labs, Scientific Network for

Innovation and Research Excellence, Auburn, WA 98071,

USA

4 Department of Mathematical Sciences, Bauchi State

University Gadau, Bauchi 81007, Nigeria

5 Faculty of Engineering, School of Computing, Universiti

Teknologi Malaysia, Johor Bahru, Malaysia

Neural Computing and Applications (2022) 34:14085–14105 14105

123

https://doi.org/10.1155/2013/108768
https://doi.org/10.1155/2013/108768
https://www.researchgate.net/publication/323546900
https://www.researchgate.net/publication/323546900
http://orcid.org/0000-0001-6159-9588

	Dynamic scheduling of heterogeneous resources across mobile edge-cloud continuum using fruit fly-based simulated annealing optimization scheme
	Abstract
	Introduction
	Related work
	Review on resource allocation
	Findings from the literature review

	Optimization algorithms
	Fruit fly optimization algorithm (FOA)
	The need to improve FOA
	Improved fruit fly optimization algorithm (I-FOA)
	Simulated annealing

	System model
	Problem formulation and proposed approach
	Problem formulation
	Proposed approach

	Experiment and results discussion
	Parameter setup
	Performance metrics
	Results discussion
	Comparison with state-of-the-art Approaches
	Statistical analysis on confidence interval

	Conclusion
	Open Access
	References

