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Abstract
The performance of convolutional neural networks is degraded by noisy data, especially in the test phase. To address this

challenge, a new convolutional neural network structure with data indeterminacy handling in the neutrosophic (NS)

domain, named as Neutrosophic Convolutional Neural Networks, is proposed for image classification. For this task, images

are firstly mapped from the pixel domain to three sets true (T), indeterminacy (I) and false (F) in NS domain by the

proposed method. Then, NCNN with two parallel paths, one with the input of T and another with I, is constructed followed

by an appropriate combination of paths to generate the final output. Here, two paths are trained simultaneously, and neural

network weights are updated using back propagation algorithm. The effectiveness of NCNN to handle noisy data is

analyzed mathematically in terms of the weights update rule. Proposed two paths NS idea is applied to two basic models:

CNN and VGG-Net to construct NCNN and NVGG-Net, respectively. The proposed method has been evaluated on

MNIST, CIFAR-10 and CIFAR-100 datasets contaminated with 20 levels of Gaussian noise. Results show that two-path

NCNN outperforms CNN by 5.11% and 2.21% in 5 pairs (training, test) with different levels of noise on MNIST and

CIFAR-10 datasets, respectively. Finally, NVGG-Net increases the accuracy by 3.09% and 2.57% compared to VGG-Net

on CIFAR-10 and CIFAR-100 datasets, respectively.

Keywords Convolutional neural network � Neutrosophic theory � Data indeterminacy � Image classification

1 Introduction

Although crisp sets with 0 and 1 membership degrees were

developed into fuzzy sets with continuous membership

degrees, the uncertainty of each data point is not consid-

ered and described in the classical fuzzy set. In each

application, uncertainty is a concept that indicates how

membership degree is described for each set. The tradi-

tional fuzzy set describes the membership degree with a

real number lAðxÞ 2 ½0; 1� [1]. In this situation, the

uncertainty about lAðxÞ itself is not considered and handled
[2]. In systems such as expert systems, information fusion,

and belief systems, the truth-membership supported by the

evidence can not solve and model the related problems,

alone. So, the classical fuzzy set cannot solve these prob-

lems as well [2]. To achieve a complete model, falsity and

indeterminacy memberships should be considered. Neu-

trosophic (NS) set is an extension of the fuzzy set that

attempts to solve this problem by considering the truth,

indeterminacy, and falsity memberships. Where the truth

and indeterminacy memberships can be considered inde-

pendently [3].

1.1 Literature review

Neutrosophy theory, proposed by Smarandache in 1995

[4], is a branch of philosophy which studies the nature and

scope of the neutralities and their interactions with differ-

ent ideational spectra which is the basis of neutrosophic

logic and set [5, 6]. This theory has been applied for image

processing first by Guo et. al [3], and then, it has been

successfully used for other image processing domains
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including image segmentation [7–10], image thresholding

[11], image edge detection [12], retinal image analysis

[13–21], liver image analysis [22, 23], breast ultrasound

image analysis [24], data classification [25], uncertainty

handling [26, 27], data clustering [28–30], content-based

image retrieval [31, 32] and skeletal muscle analysis

[33, 34].

Today, deep learning methods have been widely used

for feature extraction, feature compression, and classifica-

tion. Over the past few years, convolutional neural net-

works (CNNs), introduced as one of deep learning

approaches, have significantly improved classification

accuracy and reduced processing costs [35, 36]. CNNs use

variations of multilayer perceptron such as shift invariant

or space invariant artificial neural networks (SIANN) to

analyze visual imagery automatically [37]. Different CNN

architectures have been proposed as reference models for

image processing and machine vision tasks. An eight-layer

CNN named as Alex-Net has been proposed in which CNN

features were visualized [38]. In addition, two proposed

CNN models including a very deep convolutional network

(VGG-Net) [39] and GoogLe-Net [40] have been proposed

by Oxford University’s Visual Geometry Group and Goo-

gle Inc., respectively. CNNs have been applied in many

application such as fluid segmentation [41–43], coron-

avirus disease (covid-19) detection [44], and vegetation

remote sensing [45].

Any prediction or classification by CNN may be asso-

ciated with a degree of uncertainty. There are two common

types of uncertainty which stem from the uncertainty in the

training dataset and uncertainty in the model structure

[46–49]. If uncertainty is not handled, it may lead to dis-

astrous consequences. For example, in May 2016, the

perception system confused the white side of a trailer and

the bright sky which caused the first fatality from an

assisted driving system [50]. Also, an image classification

system for racial discrimination erroneously identified two

African Americans as gorillas [51]. In these examples, if

systems were able to handle errors by assigning a high

level of uncertainty to erroneous predictions, better deci-

sions were achieved and disaster could be avoided.

Uncertainty handling has been discussed in CNN struc-

tures. Quantify uncertainty in vision tasks was modeled in

CNN by Kendall and Gal [52]. Considering uncertainty in

the convolution layer was proposed in [53–55]. Also,

uncertainty was processed in FC layers and convolution

layers; e.g., network morphism; by Wei Ma and Jun Lu

[56, 57]. Consideration of uncertainty in CNN layers has

some issues such as needing more memory storage and

more computation. Some state-of-the art methods use

Monte Carlo dropout sampling to extract model uncertainty

in CNN [58].

CNNs have been used in NS domain in the literature. In

[59], a model for skin dermoscopic was proposed based on

NS multiple deep CNNs. Then, NS similarity score (NSS)

was applied to determine the number of training set for

each epoch during the training process. In [60], a hybrid

method using NS and CNNs was introduced for the clas-

sification of tumor region areas in MRI images as benign

and malignant. For this task, MRI images were segmented

using the neutrosophic set expert maximum fuzzy sure

entropy (NS-EMFSE) approach. Feature vectors were

extracted from segmented brain images and CNNs and

classified using SVM and KNN classifiers. Effects of NS

on deep transfer learning models Alexnet, Googlenet, and

Restnet18 were investigated to categorize X-ray images as

COVID-19, normal, pneumonia bacterial, and pneumonia

virus [61]. Breast tumor segmentation was formulated as a

classification problem in the NS domain for removing

speckle noise and enhancing images contrast. The simi-

larity set score and homogeneity value for each pixel were

calculated in the NS domain, and then, seed regions are

selected by an adaptive Otsu-based thresholding method

and morphology operations. Finally, a deep CNN, based on

VGG-16 network, was applied for false-positive rate

reduction [62].

The proposed scheme in this research, named as neu-

trosophic convolution neural network (NCNN), is a CNN

model with uncertainty handling in NS domain for image

classification. This model can be easily adapted for other

applications such as speech processing [63]. In the first

step, images are mapped to three sets True (T), Indeter-

minacy (I) and False (F) in NS domain. The proposed

definition for data indeterminacy leads to more highlighted

noisy pixels in comparison with conventional NS trans-

formation. Then, T and I sets in NS domain are presented

as inputs of the proposed two-path NCNN followed by the

combination of the outputs of two paths to achieve the final

output. In fact, one path is trained with T set and another

with I set. It has been shown that when clean and noisy data

points with the same label are fed to NCNN, the difference

between weight updates for these training samples is not

significant. Also, back-propagation equations are computed

for each path to show its difference with conventional one-

path CNN and it is shown that NCNN is more robust

against noisy images in comparison with conventional

CNN. Key differences between the proposed NCNN and

other CNNs are based on NS. Despite [59–62] which use

NS for training set determination in NCNN, indeterminacy

set in NS domain is used as a part of CNN training set

process. It means that information provided by this set

affects weights of neurons in back-propagation process and

makes CNNs more robust against noisy samples. It is worth

mentioning that path combination in NCNN is different

from conventional combination of current CNNs in which
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each CNN is considered as an independent path. In NCNN,

two paths are trained simultaneously, and each one affects

another for updating weights. As it will be concluded from

experiments and mathematical analysis, NCNN handles

noisy data with higher indeterminacy and it is not overfitted

in the training phase as quickly as conventional CNNs.

The rest of this paper is organized as follows: Sect. 2

presents a review on NS sets. The proposed method is

discussed in Sect. 3. Experimental results are reported in

Sect. 4. Finally, this work is discussed and concluded in

Sects. 5 and 6, respectively.

2 Neutrosophic set

NS is an extension of the fuzzy set in which data indeter-

minacy is considered in addition to truth membership

degree. In fact, for each data point, the confidence of

assigning truth membership degrees is also considered.

Suppose that there are two observers which are going to

detect a flower in a picture. The first one assigns 0.8 truth

membership degree for the existence of flower, while the

second one assigns 0.5. At a higher level, the confidence

for the observer’s decision is also considered. Therefore, if

these confidences for first and second observers are 0.3 and

0.9, respectively, the first observer affects the final decision

with more weight. In NS, the confidence level for each

observer is considered in the indeterminacy set. These are

the main differences between NS and fuzzy sets. Generally,

considering set A in NS, each member x in A is denoted by

three real subsets: true, false and indeterminacy in the

interval [0, 1] referred as T, F and I, respectively. Each

element is expressed as x(t, i, f) which means that it is t%

true, i% indeterminate, and f% false. In each application,

domain experts propose the concept behind true, false and

indeterminacy.

To use NS in the image processing domain, each pixel is

considered as a data point and should be mapped to NS

sets. The first method for this mapping was proposed by

Guo [3]. Mapping methods completely depend on the

image processing application. An image g in pixel domain

is represented with three subsets: T, I and F in NS domain.

Therefore, pixel p(i, j) in g is shown with PNSði; jÞ ¼
Tði; jÞ; Iði; jÞ;Fði; jÞÞ or PNS(t, i, f). T, I and F indicate

white, noise and black pixel sets, respectively. PNS(t, i, f)

provides useful information about white, noisy and black

percentages in this pixel that is t% to be a white pixel, i%

to be a noisy pixel and f% to be a black pixel. T, I and F are

computed as follows [2, 3].

Tði; jÞ ¼ gði; jÞ � gmin

gmax � gmin

ð1Þ

Fði; jÞ ¼ 1� Tði; jÞ ð2Þ

Iði; jÞ ¼ dði; jÞ � dmin

dmax � dmin

ð3Þ

gði; jÞ ¼ 1

w2

Xm¼w
2

m¼�w
2

Xn¼w
2

n¼�w
2

gðiþ m; jþ nÞ ð4Þ

d ¼ jgði; jÞ � gði; jÞj ð5Þ

where g is grayscale image, g is filtered image g with mean

filter, w is window size for mean filter, and gmax and gmin

are the maximum and minimum of the g, respectively. d is

the absolute difference between g and g, and dmax and dmin

are the maximum and minimum values of d, respectively.

3 Proposed method

The main contributions of this work are first proposing data

indeterminacy concept as well as the truth set in NS

domain and then using these concepts in CNN models

which leads to a new two-path network. It is theoretically

and experimentally proved that the proposed CNN struc-

ture handles noisy and outlier data points more efficiently

than conventional CNN models and converges quicker.

Mentioned contributions are discussed in the following

sections.

3.1 Data indeterminacy in NS domain

In the proposed scheme, noisy data points are modeled as

high indeterminacy data. This is the first and the most

important step since it should interpret noisy pixels for

CNN model correctly. Therefore, in the proposed definition

for data indeterminacy, it is expected that a high indeter-

minacy is assigned to noisy pixels and this concept is used

for the proposed CNN structure. The proposed method for

pixel indeterminacy is summarized in Eqs.(6)–(9):

Tði; jÞ ¼ gði; jÞ
gmean

ð6Þ

Iði; jÞ ¼ dði; jÞ
dmean

ð7Þ

gði; jÞ ¼ 1

x� y

Xm¼x
2

m¼�x
2

Xn¼y
2

n¼�y
2

gðiþ m; jþ nÞ ð8Þ

d ¼ gði; jÞ � gði; jÞ
���

��� ð9Þ
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where gði; jÞ is the input image convolved by the mean

filter, and gmean and dmean represent the mean of pixels in g

and d, respectively. The reason for dividing by mean is that

pixels with higher indeterminacy are revealed brighter.

Therefore, as shown in Fig. 1, edges and noisy pixels are

appeared brighter in comparison with the basic NS

operator.

3.2 Proposed network structure

Presenting indeterminacy (I) and truth (T) sets for CNN

structures leads to a two-parallel-path network referred as

Neutrosophic CNN. Indeterminacy and truth membership

degrees are trained in the first (I-path) and second path (T-

path), respectively. The outputs of these paths are com-

bined to compute the final label predicted by the network.

The proposed structure is illustrated in Figs. 2 and 3.

It may be worth mentioning that two paths are trained

simultaneously in contrast with two-path structures in

which each path is trained separately, and then, frozen

weights are combined in the final step.

In fact, in the first epoch of training, weights in two

paths are updated simultaneously by multiplying the out-

puts of paths which leads to gradient switching. In this

case, paths affect and help each other resulting in robust

weight updates.

3.3 Network training

Suppose that WT and WI are two weights in I-path and

T-path, respectively, shown in Fig. 3. It is clear from the

figure that these weights are multiplied by the neurons in

the previous layer to construct I and T. Note that I and T are

the predicted labels by I-path and T-path networks,

respectively. These labels are combined (multiplied) to

compute the final label f (see Fig. 3).

To prove how NCNN handles noisy data points with the

indeterminacy concept, we discuss how network weights

are updated for noisy and clean data points. Here, we

explain the weight update for T-path. The scenario for

I-path is the same.

Each weight in T-path network is updated by the general

update rule as follow:

WT ¼ WT þ DWT ð10Þ

where DWT is computed based on the neural networks

update rule in Eq. (11)

DWT ¼ �g:
oE

owT
ð11Þ

Applying chain rule to compute oE
owT

leads to:

oE

owT
¼ oE

of
:
of

oT
:
oT

owT
ð12Þ

Based on network structure in Fig. 3, f and T are computed

by Eq. (13):

f ¼ T:I and T ¼
X

wT :yT ð13Þ

In addition,g is learning rate. Therefore,

of

oT
¼ I and

oT

owT
¼ yT ð14Þ

By substituting (14) in (12):

oE

owT
¼ oE

of
:I:yT ð15Þ

To compute oE
of , chain rule is used again which tends to:

oE

of
¼ oE

oe
:
oe

op
:
op

of
ð16Þ

In Eq. (16), p is the final network output, e represents

difference between data label L and predicted label p. E is

sum squared error. These parameters are defined by

Eq. (17):

e ¼ p� LðLabelÞ ; EðnÞ ¼ 1

2

X
e2ðnÞ and p ¼ uðf Þ

ð17Þ

Applying derivation rules leads to Eq. (18):

Fig. 1 Proposed pixel

Indeterminacy: a Input image,

b Indeterminacy matrix

computed by basic NS and

c Indeterminacy matrix

computed by the proposed

method
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oE

oe
¼ e;

oe

op
¼ 1 and

op

of
¼ u0ðf Þ ð18Þ

Therefore, oE
of is computed as follow:

oE

of
¼ e:u0ðf Þ ð19Þ

By substituting (19) in (15), the update rule is done by:

oE

owT
¼e:u0ðf Þ:I:y ð20Þ

DwT ¼� g:e:u0ðf Þ:I:y ð21Þ

It can be concluded from these equations that weight

updates for neurons in T-path are affected by I subset in NS

domain and vice versa.

3.4 Network behavior analysis

Finally, in this section, it is explained how the proposed

idea for NCNN leads to better results in comparison with

CNN. The main difference between the weight update rule

in NCNN and conventional CNN is the parameter I. To find

out the effect of I in Dwt computation, Eq. (21) is extended

to Eq. (22) as follow:

Fig. 2 The proposed NCNN

model

Fig. 3 Network weights for

NCNN
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DwI ¼
h
� g:ðp� LÞ:u0ðf Þ:I:y

i

�
h
� g:ðf � LÞ:u0ðf Þ:I:y

i

� ½ðf � LÞ:I� ¼ jf � Lj:I

¼ ½jT :I � Lj:I�

¼ jT:I2 � L:Ij

ð22Þ

here there are two possible class labels 0 and 1 for L.

Therefore, separated values in Eq. (23) can be considered

in Eq. (22):
���I � T:I2

���; if L ¼ 1
���T :I2

���; if L ¼ 0

8
><

>:
ð23Þ

Since T and I are the output of softmax layer, these

parameters are also 0 and 1, therefore:
���T :I2 � I

���; if L ¼ 1
���T :I2

���; if L ¼ 0

8
><

>:
ð24Þ

Equation (24) in NCNN is compared with Eq. (25) in

conventional CNN which is as follows:

j1� T j; if L ¼ 1

jT j; if L ¼ 0

�
ð25Þ

One of the main challenges of CNN is its sensitiveness

against noisy data. It means that when clean data are fed as

input and its label is predicted correctly, network weights

are updated slightly. If the same data (with the same label)

with noise are fed to the network, it tries to update weights

significantly. It means that in CNN, weight update for clean

and noisy data with the same label is significantly different.

This behavior misleads the network for noisy data. Here, it

is shown that NCNN handles noisy data and does not

update weights for clean and noisy data with the same label

differently. To compare the amount of weight updates for

clean and noisy data in NCNN and CNN, if true label 1 is

considered for noisy and clean data, weight updates for

clean and noisy data in CNN are ð1� TcÞ and ð1� TnÞ,
respectively. Therefore, the difference between weight

updates for clean and noisy data in CNN is:

Tc � Tn ð26Þ

Also, weights update for clean and noisy data in NCNN is

ðIc � TcI
2
c Þ and ðIn � TnI

2
nÞ, respectively. The difference

between weight update for clean and noisy data in NCNN

is as follows:

In � TnI
2
n � Ic þ TcI

2
c ¼

�
In � Ic

�
þ
�
TcI

2
c � TnI

2
n

�
ð27Þ

If it is proved that (27) is less than (26), it is equivalent to

this fact that NCNN does not make a difference in weight

update for clean and noisy data in comparison with CNN. It

means that NCNN is more robust against noisy data.

It is clear that for a data point with label 1, Ic and Tc are

bigger than In and Tc. Since ðIn � IcÞ is a negative value, to
show that (27)\ (26), it is enough to show that:
�
TcI

2
c � TnI

2
n

�
\

�
Tc � Tn

�
þ
�
Ic � In

�
ð28Þ

As it will be shown numerically in the discussion section, if

the I-path and T-path networks are trained separately, they

almost predict the same label. Therefore, elements in pair

Tc and Ic as well as pair Tn and In have near values. Note

that in each image, I-path learns labels from noisy pixels

and pixels with a high gradient, while T-path learns labels

from all pixels in the image. Therefore, in NCNN, both

noisy pixels (with a high indeterminacy) and clean pixels

are used to predict the label. From the result of Table 8 in

the Discussion section, it can be concluded that:
�
Tc � Tn

��
T2
c þ TnTc þ T2

n

�
\2

�
Tc � Tn

�
ð29Þ

�
T2
c þ TcTn þ T2

n

�
\2 ð30Þ

It is worth mentioning that inequality (30) does not satisfy

when ðTn; TcÞ\0:8. Clean data have high values for Tn and

Tc. Therefore, inequality (30) is not satisfied for clean data.

Therefore, in clean datasets, NCNN not only does not

improve the performance but also has lower accuracy in

comparison with CNN. For noisy datasets, Tn and Tc are far

from each other and Tn leads to values near to zero.

Therefore, inequality (30) is almost satisfied for noisy data.

As experimental results will also show, this is the main

reason that NCNN handles noisy data points and has a very

good performance for noisy data classification.

4 Experimental results

4.1 Dataset

NCNN model is proposed for the image classification task.

Therefore, to show the effectiveness of NCNN, it has been

evaluated on MNIST, CIFAR-10 and CIFAR-100 datasets.

To evaluate the robustness of NCNN and other models

against noise, Gaussian noise with different means and

standard deviations is added to images. For each dataset in

each model, 5 levels of noise are considered. Since we

evaluate 2 models and 2 datasets for each model, a total of

20 noise levels are used. In this section, each dataset is

described briefly.
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4.1.1 MNIST

The first dataset is MNIST (Modified National Institute of

Standards and Technology database), which is a common

dataset used for evaluating various image processing and

machine learning methods. This dataset contains 70,000

images of handwritten digits divided into 60,000 training

images and 10,000 testing images. All images in MNIST

were normalized to fit into a 28 � 28 pixel bounding box

and anti-aliased in grayscale levels [64].

4.1.2 CIFAR-10

The second dataset is CIFAR-10 (Canadian Institute For

Advanced Research) which is the most widely used for

research in machine learning and computer vision algo-

rithms. The CIFAR-10 dataset contains 60,000 color ima-

ges with a dimension of 32 � 32 in 10 different classes

including airplanes, cars, birds, cats, deer, dogs, frogs,

horses, ships, and trucks with 6000 images in each class.

The main purpose of CIFAR-10 is to teach a computer how

to recognize objects. This dataset allows researchers to

quickly try different machine learning and machine vision

algorithms since images are in low-resolution (32 � 32).

Different models of CNNs have tried to achieve the best

accuracy in recognizing CIFAR-10 images [65].

4.1.3 CIFAR-100

CIFAR-100 is the same as CIFAR-10 except for the

number of classes and samples in each class. CIFAR-100

contains 100 classes with 600 samples in each class. The

number of training and testing samples in each class is 500

and 100, respectively. Classes are further divided into 20

superclasses. Therefore, each sample is assigned to ‘‘fine’’

and ‘‘coarse’’ labels which are the label of class and

superclass, respectively. Classes are aquatic mammals, fish,

flowers, food containers, fruit and vegetables, household

electrical devices, household furniture, insects, large car-

nivores, large man-made outdoor things, large natural

outdoor scenes, large omnivores and herbivores, medium-

sized mammals, non-insect invertebrates, people, reptiles,

small mammals, trees, vehicles 1 and vehicles 2 [66].

4.2 CNN models

NCNN is a structure that can be applied to any CNN

model. It means that CNN models with a different number

of layers can be placed in NCNN structure. In this section,

we want to show how NCNN can be applied to any CNN

model to improve its robustness against noisy data with

higher indeterminacy. For this task, two basic CNN models

are considered. The first one is the proposed 11-layer CNN

model, and the second one is the reference model VGG-

net. Applying NS-based two parallel paths idea to the first

and second mentioned models constructs NCNN and

NVGG-net, respectively. NCNN and CNN have been

applied to MNIST and CIFAR-10 datasets. VGG-net and

NVGG-net are evaluated on CIFAR-10 and CIFAR-100

datasets. All CNN structures have been implemented with

python and TensorFlow libraries installed in Linux oper-

ating system on a machine with 3.26 GHz Corei7 CPU, 32

GB of DDR4 RAM and GeForece 1080ti 8GB RAM GPU.

4.2.1 The first model

The first proposed model is an 11-layer CNN shown in

Fig. 4. In this structure, ‘‘5 9 5 conv, 64’’ means convo-

lution layer with 64 filters in dimension 5 � 5. ‘‘3 � 3

Pooling’’ means polling layer with a 3 � 3 filter, and ‘‘FC,

384’’ means fully connected layer with 384 neurons. In

each convolution layer, the step size is 1 � 1; therefore,

the first and second dimensions of the input image remain

fixed, while the third layer may be changed depending on

the number of convolution layers. In the pooling layer,

since the step size is 2 � 2, the first and second dimensions

are reduced by half. Finally, there are three fully connected

layers with different numbers of neurons shown in Fig. 4.

After each convolution and pooling layer, activation

function ‘‘RELU’’ is used.

NCNN and CNN have been evaluated on MNIST and

CIFAR-10 datasets. In each experiment, a level of Gaus-

sian noise is considered which makes different combina-

tions of training and test sets with noise levels including

‘‘clean,’’ ‘‘NT1: Mean = 0.8, Std = 0.6,’’ ‘‘NT2:

Mean = 0.6, Std = 0.9,’’ ‘‘NT3: Mean = 0.7, Std = 1.2’’

and ‘‘NT4: Mean = 0.8, Std = 1.6.’’ Therefore, from each

dataset, we obtain 25 datasets. The first dataset is the

original dataset with clean training and clean test data. The

25th dataset is a dataset in which training and test data are

added with NT4 noise. The classification accuracies on

MNIST test data are reported in Table 1. In all tables,

vertical and horizontal data types are used for training and

test sets, respectively.

It can be concluded from the reported results in Table 1

(where it is also shown mathematically in Sect. 3) that if

both training and test data are clean, CNN outperforms

NCNN slightly. The best performance of NCNN is

revealed in cases which noise is presented either in training

or test data. For example, when training data are clean and

test data are NT4, NCNN outperforms CNN with 10.02%.

This behavior of NCNN is shown in Fig. 5. It can be seen

that the higher amount of noise, the better improvement in

NCNN (in comparison with CNN) is achieved. These

results verify the main advantage of NCNN for uncertainty

handling in noisy data.
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Another conclusion from reported results on MNIST

dataset is that training network with noisy data makes it

more robust against noisy data in the test phase. Figure 6

illustrates the results of CNN and NCNN with NT3 training

data and all noise levels for test data. In this experiment,

similar to Fig. 5, applying more noise (NT3) in test data

leads to a better improvement (3%) in the results of NCNN

in comparison with CNN. When clean data are considered

in the test phase, CNN outperforms NCNN by about 1%.

CIFAR-10 is the second dataset considered for evalua-

tion of the first model. By applying 5 models of data

including ‘‘Clean,’’ ‘‘NT5: Mean = 0.1, Std = 0.1,’’

‘‘NT6: Mean = 0.4, Std = 0.2,’’ ‘‘NT7: Mean = 0.2,

Std = 0.4’’ and ‘‘NT8: Mean = 0.3, Std = 0.6,’’ 25 data-

sets are created. The classification accuracies on test data

for CIFAR-10 are reported in Table 2. Here, each column

shows experiments with the same training data and test

data with different levels of noise, while each row is for the

training data with different noise levels and the same test

data. In CIFAR-10, the best improvement of NCNN

(3.74%) appeared in the case that training and test data are

contaminated with NT7 noise.

The two columns with ‘‘Clean’’ header report the clas-

sification accuracies of NCNN and CNN with the clean

training data and test data with all noise levels. These

classification accuracies are depicted in Fig. 7. For these

experiments, NCNN outperforms CNN by 3.45% for test

data with NT6 noise. In CIFAR-10 dataset, the trend is the

same with MNIST with a slower slope. It means that

Fig. 4 The first proposed CNN model

Table 1 Results of CNN and

NCNN for MNIST
Clean NT1 NT2 NT3 NT4 Average

Clean CNN 98.97 49.51 35.23 24.27 18.63 45.32

NCNN 98.47 48.83 43.4 32.84 28.65 50.43

NT1 CNN 97.16 93.96 80.67 63.07 46.2 76.21

NCNN 97.9 94.86 85.85 70.3 54.88 80.75

NT2 CNN 96.58 94.41 87.95 75.36 57.31 82.32

NCNN 95.66 94.52 88.21 75.41 59.01 82.56

NT3 CNN 94.72 89.16 86.32 76.99 61.78 81.79

NCNN 90.17 92.6 87.39 76.85 62.26 81.85

NT4 CNN 90.24 90.05 84.09 74.87 61 80.05

NCNN 88.85 91.28 85.69 76.06 64.83 81.34

Average CNN 95.534 83.418 74.852 62.912 48.984 –

NCNN 94.21 84.418 78.108 66.292 53.926 –

Fig. 5 NCNN and CNN accuracies with clean training and noisy test

data for MNIST

Fig. 6 NCNN and CNN accuracies with noisy training and noisy test

data for MNIST
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MNIST is more affected by noisy test data in comparison

with MNIST.

Evaluation of NCNN and CNN with NT7 training data

and different noise levels in test data is shown in Fig. 8. In

these cases, instead of a down trend toward increasing

noise, the trend is upward after NT6 which means the

similarity between noise applied to training and test data.

Generally, as it is illustrated in Figs. 9, 10, 11 and 12, if

the noise is increased from NT5 to NT8, the accuracies of

both networks are decreased with negative slopes in all

charts. In cases where the noise level in training and test is

Table 2 Results of CNN and

NCNN for CIFAR-10
Clean NT5 NT6 NT7 NT8 Average

Clean CNN 71.35 63.13 45.94 23.61 16.84 44.174

NCNN 72.76 65.12 49.39 22.73 19.23 45.846

NT5 CNN 68.56 67.3 58.29 35.41 23.17 50.546

NCNN 71.06 70.68 61.39 36.91 22.27 52.462

NT6 CNN 62.67 62.78 61.59 40.29 29.04 51.274

NCNN 64.08 64.75 63.83 43.33 28.83 52.964

NT7 CNN 51.72 49.08 36.06 51.24 43.48 46.316

NCNN 53.77 51.45 36.38 54.98 46.03 48.522

NT8 CNN 41.77 39.45 23.96 48.22 45.5 39.78

NCNN 44.77 41.46 24.08 48.46 48.42 41.438

Average CNN 59.214 56.348 45.168 39.754 31.606 –

NCNN 61.288 58.692 47.014 41.282 32.956 –

Fig. 7 NCNN and CNN accuracies with clean training and noisy test

data for CIFAR-10

Fig. 8 NCNN and CNN accuracies with noisy training and noisy test

data for CIFAR-10

Fig. 9 NCNN and CNN accuracies for NT5 training data

Fig. 10 NCNN and CNN accuracies for NT6 training data

Fig. 11 NCNN and CNN accuracies for NT7 training data
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the same, not only there is no significant decrement in the

accuracy, but also there is an improvement in some cases.

For example, in Fig. 10, since the noise level in training is

NT6, the accuracy is not decreased noticeably when the

noise level is increased from NT5 to NT6. In Fig. 11 which

represents training data with noise level NT7, when noise is

increased from NT6 to NT7, the accuracy is improved

significantly.

4.2.2 The second model (VGG-Net)

The second base model is VGG-Net [39] as illustrated in

Fig. 13. This model has 16 layers with ‘‘RELU’’ activation

functions. After convolution and fully connected layers,

batch normalization is used. For convolution layers which

are not followed by pooling layers, dropout is considered

with the coefficients of 0.4 and 0.3. Also, in all fully

connected layers, except the last one, dropout with the

coefficient of 0.5 is used. In convolution layers, since the

step size is 1x1, the dimensions of images before and after

passing these layers are the same, while in the dropout

layer, they are decreased by half because of step size 2x2.

Applying NS-based two parallel paths to VGG-Net creates

NVGG-Net.

VGG-Net and NVGG-Net have been evaluated on

CIFAR-10 and CIFAR-100 datasets. In CIFAR-10, 5 levels

of noise including ‘‘Clean,’’ ‘‘NT9: Mean =0.2, Std=0.1,’’

‘‘NT10: Mean = 0.1, Std = 0.2,’’ ‘‘NT11: Mean = 0.2,

Std = 0.3’’ and ‘‘NT12: Mean = 0.3, Std = 0.5’’ are

considered which can be applied to either training or test

data. Table 3 reports the results of VGG-Net and NVGG-

Net for CIFAR-10. NVGG-Net achieves better classifica-

tion accuracy rather than VGG-Net except for pairs (Clean,

NT10), (NT9, NT11), (NT11, NT10), (NT11, Clean) and

(NT11, NT11) out of all 25 pairs for (Training, Test). The

best average improvement of 3.09% was obtained by

NVGG-Net in cases with NT12 test set and noisy training

sets (with all levels of noise). In these cases, an improve-

ment of 4.9% was achieved by NVGG-Net in pair (Clean,

NT12).

Figures 14, 15, 16, 17 and 18 show how networks are

affected by changing training and test data and can be very

useful. It can be that NVGG-Net outperforms VGG-Net in

the majority of cases especially when the noise in the test

set is NT12. In both networks, if the network is trained with

more noisy data, it is more robust against increasing noise

in test data. Therefore, Fig. 14 for clean training data has

the most descent in the slope, while Fig. 18 for NT12

training data is near to a horizontal line (the least descent in

slope). Also, using the same noise in training and test data

makes the network more robust.

For CIFAR-100, different noises were applied in cases

‘‘clean,’’ ‘‘NT13: Mean = 0.1, Std = 0.1,’’ ‘‘NT14:

Mean = 0.2, Std = 0.1,’’ ‘‘NT15: Mean = 0.1,

Std = 0.2’’ and ‘‘NT16: Mean = 0.2, Std = 0.2.’’ Table 4

reports the results of VGG-Net and NVGG-Net for CIFAR-

100. The best improvement of 4.5% was obtained by

NVGG-Net in pair (NT14,NT15). Also, the best average

improvement of 2.57% was obtained by NVGG-Net in

cases with NT16 test set and noisy training sets (with all

levels of noise).

Finally, as it is shown in Fig. 19, networks training with

the highest level of noise (NT16) does not make a signif-

icant change in the robustness of the networks. The reason

is that the amount of noises added to CIFAR-100 is much

less than those in CIFAR-10.

4.3 Window size effect

Window size has an important effect on computing inde-

terminacy and true sets in image transformation to NS

domain. In this section, the effect of window size is eval-

uated on MNIST dataset for the first model and CIFAR-10

and CIFAR-100 dataset for the second model. Classifica-

tion accuracies with different window sizes are reported in

Fig. 12 NCNN and CNN accuracies for NT8 training data

Fig. 13 VGG-Net structure
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Table 5. It can be concluded that for clean data, smaller

window sizes have better performance, while for noisy

data, bigger window sizes are preferred. The reason is that

with a bigger window size, more general information

around each pixel is considered in NS domain and the

robustness against noisy pixels in local neighbors is

increased. On the other hand, for clean data, we need only

local information and we do not need general information

around each pixel. Window size 3 � 3 has the best per-

formance in all experiments in average.

Table 3 Results of VGG-Net

and NVGG-Net for CIFAR-10
Clean NT9 NT10 NT11 NT12 Average

Clean VGG-Net 92.32 75.28 54.18 43.6 30.54 59.18

NVGG-Net 92.52 78.22 53.9 47.94 35.44 61.6

NT9 VGG-Net 88.31 84.67 72.32 59.64 42.54 69.5

NVGG-Net 88.53 86.15 73.62 59.13 44.04 70.29

NT10 VGG-Net 83.6 81.8 76.76 67.57 52.23 72.39

NVGG-Net 84.83 82.48 78.56 69.38 55.09 74.07

NT11 VGG-Net 79.14 77.93 75 68.83 56.18 71.42

NVGG-Net 78.12 79.44 74.18 68.18 59.59 71.9

NT12 VGG-Net 69.82 69.47 68.32 65.16 57.66 66.09

NVGG-Net 71.5 70.55 69.05 67.22 60.44 67.75

Average VGG-Net 82.638 75.28 69.316 60.96 47.83 –

NVGG-Net 83.1 78.22 69.86 62.37 50.92 –

Fig. 14 NVGG-Net and VGG-Net accuracies with Clean training data

Fig. 15 NVGG-Net and VGG-Net accuracies with NT9 training data

Fig. 16 NVGG-Net and VGG-Net accuracies with NT10 training data

Fig. 17 NVGG-Net and VGG-Net accuracies with NT11 training data

Fig. 18 NVGG-Net and VGG-Net accuracies with NT12 training data
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4.4 Combination method effect

The proposed model for indeterminacy consideration in

CNN is a two parallel paths network, one path with the

input of indeterminacy set I and another with true set T.

Combination method of two paths is very important. Here,

three combination methods including Maximum, Mean and

Product are assessed. Table 6 reports the classification

accuracies with different combination methods applied to

MNIST dataset for the first model and CIFAR-10 and

CIFAR-100 dataset for the second model. In these exper-

iments, window sizes are selected as 3 � 3. It is clear from

the reported results that Product method has the best

accuracy among other methods The effect of Mean and

Maximum combination methods will be mathematically

analyzed in the Discussion section.

4.5 Training methods

The last experiments are performed to evaluate training

methods. There are two options to train parallel paths in the

network. The first one is an ensemble method in which two

paths are trained separately and then their outputs are

combined. In the second method, two paths are trained

simultaneously. The first and second methods are called

Table 4 Accuracies of VGG-

Net and NVGG-Net for CIFAR-

100

Clean NT13 NT14 NT15 NT16 Average

Clean VGG-Net 69.39 56.8 56.05 46.06 46.03 54.87

NVGG-Net 69.51 57.82 55.53 49.72 50.64 56.64

NT13 VGG-Net 63.12 59.67 59.38 50.2 50.64 56.6

NVGG-Net 63.075 61.42 61.72 52.96 52.63 58.36

NT14 VGG-Net 63.93 59.2 59.19 49.75 50.98 56.61

NVGG-Net 64.14 61.69 61.78 54.25 53.82 59.13

NT15 VGG-Net 57.43 55.68 55.51 50.52 51.3 54.09

NVGG-Net 60.87 55.51 56.32 51.82 52.63 55.43

NT16 VGG-Net 57.1 55.54 55.92 50.85 50.94 54.07

NVGG-Net 58.75 57.33 56.28 50.49 53.01 55.17

Average VGG-Net 62.194 57.378 57.21 49.476 49.978 –

NVGG-Net 63.269 58.754 58.326 51.848 52.546 –

Fig. 19 NVGG-Net and VGG-Net accuracies with training data:

(a) Clean and (b) NT4

Table 5 Classification

accuracies with different

window sizes

Dataset MNIST CIFAR-10 CIFAR-100

Window size 2 9 2 3 9 3 4 9 4 2 � 2 3 � 3 4 � 4 2 � 2 3 � 3 4 � 4

Clean 50.89 50.43 50.4 62.03 61.6 61.62 56.69 56.64 56.11

NT1 80.88 80.75 80.79 70.05 70.29 69.77 58.58 58.36 57.9

NT2 82.4 82.56 82.5 73.88 74.07 73.92 58.73 59.13 59.1

NT3 80.1 81.65 81.99 70.93 71.9 71.99 54.11 55.43 55.61

NT4 79.99 81.34 82.01 66.01 67.75 68.01 53.89 55.17 55.23

Average 74.85 75.34 75.53 68.58 69.12 69.06 56.4 56.94 56.79
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‘‘Separate Training’’ and ‘‘Joint Training,’’ respectively. In

these experiments, window size 3 � 3 and Product com-

bination methods are considered. As reported in Table 7,

the second training method has better classification accu-

racy with the 2.13% of improvement on CIFAR-100

dataset. Therefore, we used the second training in this

research.

The source code of NCNN and other CNN models used

in this research as well as three datasets in clean and noisy

formats will publicly available online as supplementary

material in the journal website and Github after the pub-

lication of the paper.

4.6 Computational cost

In this section, the computational cost of CNN and NCNN

models is analyzed. For this task three datasets CIFAR-

Clean, CIFAR10-NT6 and CIFAR10-NT8 are selected for

cost evaluation. All models have been implemented in

python programming language with TensorFlow and Pan-

das libraries with NDIVIA 1080ti graphical processing unit

(GPU), 32G RAM DDR4, corei7 CPU and 500G hard drive

SSD. Time costs for running 1 patch from all 10000 data

points in test set for CNN and NCNN are 1.18 and 2.08

seconds, respectively. Since NCNN uses two paths T-path

and I-path, the number of parameters (weights) is as twice

as the number of parameters in CNN with one path, so

NCNN training time is more than CNN one.

The number of iterations as well as the accuracy of each

iteration in the training phase is shown in Figs. 20, 21 and

22 for CIFAR-Clean, CIFAR10-NT6 and CIFAR10-NT8

datasets, respectively. As it is clear from these figures,

CNN is overfitted in iteration 4000, while NCNN leads to

better results in the training phase which can be considered

as an advantage for NCNN.

Table 6 Classification

accuracies with different

combination methods

Dataset MNIST CIFAR-10 CIFAR-100

Max Mean Prod Max Mean Prod Max Mean Prod

Clean 49.32 50.12 50.43 60.22 61.01 61.60 55.87 56.83 56.64

NT1 76.33 79.41 80.75 69.76 69.18 70.29 57.68 57.19 58.36

NT2 81.00 81.92 82.56 73.10 73.55 74.07 58.19 58.37 59.13

NT3 80.40 81.77 81.65 69.94 69.22 71.90 54.78 55.10 55.43

NT4 79.33 81.10 81.34 66.10 67.45 67.75 54.24 53.72 55.17

Average 73.27 74.86 75.34 67.82 68.08 69.12 56.15 56.24 56.94

Table 7 Classification

accuracies with different

training methods

Dataset MNIST CIFAR-10 CIFAR-100

Training method Separate Joint Separate Joint Separate Joint

Clean 50.12 50.43 60.99 61.80 55.32 58.64

NT1 79.32 80.75 70.01 70.29 56.75 58.36

NT2 81.02 82.56 73.12 74.07 58.22 59.13

NT3 79.98 81.65 70.27 71.90 54.68 57.43

NT4 80.11 81.34 65.91 67.75 53.11 55.17

Average 74.11 75.34 68.06 69.16 55.61 57.74

Fig. 20 Accuracy versus number of iterations in CIFAR-Clean

dataset

Fig. 21 Number of iteration versus accuracy in CIFAR-10-NT6

dataset
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5 Discussion

To prove inequalities (29)–(30), it was supposed that the

output of networks in the first and second paths is highly

correlated. Note that the input of the first and second paths

is true and indeterminacy sets, respectively. It means that

the label of data can be learned either from its true set or

indeterminacy set. This behavior is very useful especially

for noisy data in which the label is also learned from noisy

pixels with higher indeterminacy. To support this consid-

eration experiments have been done as follows. First,

MNIST, CIFAR-10 and CIFAR-100 with the highest level

of noise NT4 in both training and test sets are considered.

Then, the I-path ad T-path in NCNN and NVGG-Net are

separated, and the outputs of each path are reported in

Table 8. As it is clear from Table 8, the output of two

networks is highly correlated.

It may be worth mentioning that in backpropagation, if

the product combination method is used, gradient switcher

is generated. It means that in two parallel paths, back-

propagated error of each path is switched to another one.

For Mean combination method, gradient distributor is

constructed in backpropagation in which backpropagated

error is distributed equally in two paths. Here, the weights

update rule is investigated for Mean combination method:

f ¼ T þ I

2
and T ¼

X
wT :yT ð31Þ

Therefore,

of

oT
¼ 1

2
and

oT

owT
¼ yT ð32Þ

By substituting (32) in (12):

oE

owT
¼ 1

2

oE

of
:yT ð33Þ

To compute oE
of , chain rule is used again which reaches to:

oE

of
¼ oE

oe

oe

op

op

of
ð34Þ

In Eq. (34), p is the final output of the network, e represents

the difference between data label L and predicted label p. E

is the sum square error. These parameters are defined as

follows:

e ¼ p� L ; EðnÞ ¼ 1

2

X
e2ðnÞ and p ¼ uðf Þ ð35Þ

Applying derivation rule:

oE

oe
¼ e ;

oe

op
¼ 1 and

op

of
¼ u0ðf Þ ð36Þ

Therefore, oE
of is computed as follow:

oE

of
¼ e:u0ðf Þ ð37Þ

By substituting (37) in (33), the update rule is performed

by:

oE

owT
¼e:

1

2
u0ðf Þ:y ð38Þ

DwT ¼� 1

2
:g:e:u0ðf Þ:y ð39Þ

The main difference in the weight update equation of

NCNN with Mean combination method and CNN is that is

error term e. In this case, e ¼ p� l and p ¼ uðT þ IÞ.
Therefore, error e is affected by both T and I sets. This

weights update rule can be interpreted as: The bigger dif-

ference between predicted labels by two parallel paths (T-

path and I-path) and output (real) label leads to bigger

amounts of updates for weights. If the predicted label by

either T-path or I-path is almost the same with the real

output label, low amount of error is back propagated in

comparison with CNN. Finally, if both T-path and I-path

predict the label close to the real output label, the error is

decreased significantly and weights are updated slightly. It

means that NCNN considers the predicted output of both

T-path and I-path for updating weights. Finally, if the Max

combination method is selected, a gradient router is con-

structed which means that the error is back propagated in a

path in which its output is maximum. The weights of

another path are not updated. If a path wins repeatedly in

Fig. 22 Number of iteration versus accuracy in CIFAR-10-NT8

dataset

Table 8 Correlation between the outputs of two paths

Dataset MNIST CIFAR-10 CIFAR-100

Clean Noisy Clean Noisy Clean Noisy

T-path output 98.97 61 92.32 57.66 69.39 50.94

I-path output 98.52 60.55 90.01 57.72 68.91 50.36
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the first interactions, this path will be updated in the next

iterations and weights of another path are not updated. This

behavior leads the network to work similar to one-path

CNN with the input of T or I. This is the main issue of the

Max method. As it can be seen from the reported results in

Table 6, this combination method has lower accuracy

compared with the Mean and Product combination

methods.

6 Conclusion

In this work, a two parallel paths NCNN model with data

indeterminacy handling was proposed in NS domain for

image classification task. In the proposed scheme, images

were transformed to NS domain, and then, T and I sets

were placed as inputs of T-path and I-path in NCNN. The

output of two paths was combined to make the final output.

In the proposed structure, two paths are trained simulta-

neously, and each path helps another for updating weights

in backpropagation steps. Therefore, path combination is

not a combination of previously fine-tuned structures. Also,

computational cost analysis showed that NCNN is not

overfitted in the training phase as quick as conventional

CNN. Although the cost of NCNN is more than CNN in

each training epoch. The effectiveness of NCNN to handle

noisy data with higher indeterminacy was analyzed math-

ematically to show how weights are updated in each path.

NCNN was further evaluated contaminated on three dif-

ferent datasets contaminated with 20 levels of Gaussian

noise. Results showed that NCNN outperforms CNN

models significantly in noisy test data. Future efforts will

be directed toward using the proposed model in other

applications such as noisy speech recognition by proposing

indeterminacy for noisy speech spectrogram in NS domain.

Finally, using the proposed model in other deep neural

networks such as LSTM can be considered as other future

works.
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