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Abstract A long time ago in the machine learning literature, the idea of
incorporating a mechanism inspired by the human visual system into neural
networks was introduced. This idea is named the attention mechanism, and it
has gone through a long development period. Today, many works have been
devoted to this idea in a variety of tasks. Remarkable performance has re-
cently been demonstrated. The goal of this paper is to provide an overview
from the early work on searching for ways to implement attention idea with
neural networks until the recent trends. This review emphasizes the impor-
tant milestones during this progress regarding different tasks. By this way,
this study aims to provide a road map for researchers to explore the current
development and get inspired for novel approaches beyond the attention.
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1 Introduction

Human eye sees the world in an interesting way. We suppose as if we see the
entire scene at once, but this is an illusion created by the subconscious part
of our brain [I]. According to the Scanpath theory [2l[3], when the human eye
looks at an image, it can see only a small patch in high resolution. This small
patch is called the fovea. It can see the rest of the image in low resolution which
is called the periphery. To recognize the entire scene, the eye performs feature
extraction based on the fovea. The eye is moved to different parts of the image
until the information obtained from the fovea is sufficient for recognition [4].
These eye movements are called saccades. The eye makes successive fixations
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until the recognition task is complete. This sequential process happens so
quickly that we feel as if it happens all at once.

Biologically, this is called wvisual attention system. Visual attention is de-
fined as the ability to dynamically restrict processing to a subset of the visual
field [5]. It seeks answers for two main questions: What and where to look?
Visual attention has been extensively studied in psychology and neuroscience;
for reviews see [0l[7LRIO,T0]. Besides, there is a large amount of literature on
modeling eye movements [ITL12|[13][14]. These studies have been a source of
inspiration for many artificial intelligence tasks. It has been discovered that
the attention idea is useful from image recognition to machine translation.
Therefore, different types of attention mechanisms inspired from the human
visual system have been developed for years. Since the success of deep neural
networks has been at the forefront for these artificial intelligence tasks, these
mechanisms have been integrated into neural networks for a long time.

This survey is about the journey of attention mechanisms used with neu-
ral networks. Researchers have been investigating ways to strengthen neural
network architectures with attention mechanisms for many years. The pri-
mary aim of these studies is to reduce computational burden and to improve
the model performance as well. Previous work reviewed the attention mecha-
nisms from different perspectives [15], or examined them in context of natural
language processing (NLP) [I6l[I7]. However, in this study, we examine the
development of attention mechanisms over the years, and recent trends. We
begin with the first attempts to integrate the visual attention idea to neural
networks, and continue until the most modern neural networks armed with at-
tention mechanisms. One of them is the Transformer, which is used for many
studies including the GPT-3 language model [I8], goes beyond convolutions
and recurrence by replacing them with only attention layers [19]. Finally, we
discuss how much more can we move forward, and what’s next?

2 From the Late 1980s to Early 2010s: The Attention Awakens

The first attempts at adapting attention mechanisms to neural networks go
back to the late 1980s. One of the early studies is the improved version of
the Neocognitron [20] with selective attention [21I]. This study is then mod-
ified to recognize and segment connected characters in cursive handwriting
[22]. Another study describes VISIT, a novel model that concentrates on its
relationship to a number of visual areas of the brain [5]. Also, a novel archi-
tecture named Signal Channelling Attentional Network (SCAN) is presented
for attentional scanning [23].

Early work on improving the attention idea for neural networks includes
a variety of tasks such as target detection [24]. In another study, a visual at-
tention system extracts regions of interest by combining the bottom-up and
top-down information from the image [25]. A recognition model based on se-
lective attention which analyses only a small part of the image at each step,
and combines results in time is described [4]. Besides, a model based on the
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concept of selective tuning is proposed [26]. As the years go by, several studies
that use the attention idea in different ways have been presented for visual
perception and recognition [27.28]291[30].

By the 2000s, the studies on making attention mechanisms more useful for
neural networks continued. In the early years, a model that integrates an at-
tentional orienting where pathway and an object recognition what pathway is
presented [3I]. A computational model of human eye movements is proposed
for an object class detection task [32]. A serial model is presented for visual pat-
tern recognition gathering Markov models and neural networks with selective
attention on the handwritten digit recognition and face recognition problems
[33]. In that study, a neural network analyses image parts and generates pos-
terior probabilities as observations to the Markov model. Also, attention idea
is used for object recognition [34], and the analysis of a scene [35]. An inter-
esting study proposes to learn sequential attention in real-world visual object
recognition using a Q-learner [36]. Besides, a computational model of visual
selective attention is described to automatically detect the most relevant parts
of a color picture displayed on a television screen [37]. The attention idea is
also used for identifying and tracking objects in multi-resolution digital video
of partially cluttered environments [38].

In 2010, the first implemented system inspired by the fovea of human retina
was presented for image classification [39]. This system jointly trains a re-
stricted Boltzmann machine (RBM) and an attentional component called the
fixation controller. Similarly, a novel attentional model is implemented for si-
multaneous object tracking and recognition that is driven by gaze data [40].
By taking advantage of reinforcement learning, a novel recurrent neural net-
work (RNN) is described for image classification [41]. Deep Attention Selective
Network (DasNet), a deep neural network with feedback connections that are
learned through reinforcement learning to direct selective attention to certain
features extracted from images, is presented [42]. Additionally, a deep learning
based framework using attention has been proposed for generative modeling
[43].

3 2015: The Rise of Attention

It can be said that 2015 is the golden year of attention mechanisms. Because
the number of attention studies has grown like an avalanche after three main
studies presented in that year. The first one proposed a novel approach for
neural machine translation (NMT) [44]. As it is known, most of the NMT
models belong to a family of encoder-decoders [45,46], with an encoder and a
decoder for each language. However, compressing all the necessary information
of a source sentence into a fixed-length vector is an important disadvantage of
this encoder-decoder approach. This usually makes it difficult for the neural
network to capture all the semantic details of a very long sentence [I].

The idea that [44] introduced is an extension to the conventional NMT
models. This extension is composed of an encoder and decoder as shown in
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Fig. 1 The extension to the conventional NMT models that is proposed by [44]. It generates
the t-th target word y; given a source sentence (z1,Z2, ..., ZT).

Fig[l] The first part, encoder, is a bidirectional RNN (BiRNN) [47] that takes
word vectors as input. The forward and backward states of BIRNN are com-
puted. Then, an annotation a; for each word x; is obtained by concatenating
these forward and backward hidden states. Thus, the encoder maps the input
sentence to a sequence of annotations (aq, ...,ar,). By using a BIRNN rather
than conventional RNN, the annotation of each word can summarize both
the preceding words and the following words. Besides, the annotation a; can
focus on the words around z; because of the inherent nature of RNNs that
representing recent inputs better.

In decoder, a weight «;; of each annotation a; is obtained by using its
associated energy e;; that is computed by a feedforward neural network f as
in Eq. . This neural network f is defined as an alignment model that can
be jointly trained with the proposed architecture. In order to reduce compu-
tational burden, a multilayer perceptron (MLP) with a single hidden layer is
proposed as f. This alignment model tells us about the relation between the
inputs around position j and the output at position 7. By this way, the decoder
applies an attention mechanism. As it is seen in Eq. , the «;; is the output
of softmax function:

eij = f(hi-1,a;) (1)

e exp(e;;) 5
Y exp(en) ?
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Here, the probability o;; determines the importance of annotation a; with
respect to the previous hidden state h;_;. Finally, the context vector ¢; is
computed as a weighted sum of these annotations as follows [44]:

Ty
C; = Z aijaj (3)
j=1

Based on the decoder state, the context and the last generated word, the
target word y; is predicted. In order to generate a word in a translation, the
model searches for the most relevant information in the source sentence to
concentrate. When it finds the appropriate source positions, it makes the pre-
diction. By this way, the input sentence is encoded into a sequence of vectors
and a subset of these vectors is selected adaptively by the decoder that is rel-
evant to predicting the target [44]. Thus, it is no longer necessary to compress
all the information of a source sentence into a fixed-length vector.

The second study is the first visual attention model in image captioning
[48]. Different from the previous study [44], it uses a deep convolutional neural
network (CNN) as an encoder. This architecture is an extension of the neural
network [49] that encodes an image into a compact representation, followed by
an RNN that generates a corresponding sentence. Here, the annotation vectors
a; € RP are extracted from a lower convolutional layer, each of which is a D-
dimensional representation corresponding to a part of the image. Thus, the
decoder selectively focuses on certain parts of an image by weighting a subset
of all the feature vectors [48]. This extended architecture uses attention for
salient features to dynamically come to the forefront instead of compressing
the entire image into a static representation.

The context vector ¢; represents the relevant part of the input image at
time ¢. The weight «; of each annotation vector is computed similar to Eq. ,
whereas its associated energy is computed similar to Eq. by using an MLP
conditioned on the previous hidden state h;_1. The remarkable point of this
study is a new mechanism ¢ that computes ¢; from the annotation vectors a;
corresponding to the features extracted at different image locations:

e = o({ai}, {on}) (4)

The definition of the ¢ function causes two variants of attention mecha-
nisms: The hard (stochastic) attention mechanism is trainable by maximizing
an approximate variational lower bound, i.e., by REINFORCE [50]. On the
other side, the soft (deterministic) attention mechanism is trainable by stan-
dard backpropagation methods. The hard attention defines a location variable
s¢, and uses it to decide where to focus attention when generating the t¢-th
word. When the hard attention is applied, the attention locations are con-
sidered as intermediate latent variables. It assigns a multinoulli distribution
parametrized by o;, and ¢; becomes a random variable. Here, s;; is defined
as a one-hot variable which is set to 1 if the i-th location is used to extract
visual features [48]:
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p(sti = 1sj<t,a) = oy (5)

c= Y sia; (6)

Whereas learning hard attention requires sampling the attention location
s¢ each time, the soft attention mechanism computes a weighted annotation
vector similar to [44] and takes the expectation of the context vector ¢; directly:

L
Ep(st|oz) [Ct} = Zat,iai (7)
1=1

Furthermore, in training the deterministic version of the model, an alterna-
tive method namely doubly stochastic attention, is proposed with an additional
constraint added to the training objective to encourage the model to pay equal
attention to all parts of the image.

The third study should be emphasized presents two classes of attention
mechanisms for NMT: the global attention that always attends to all source
words, and the local attention that only looks at a subset of source words at
a time [51]. These mechanisms derive the context vector ¢; in different ways:
Whereas the global attention considers all the hidden states of the encoder, the
local one selectively focuses on a small window of context. In global attention, a
variable-length alignment vector is derived similar to Eq. . Here, the current
target hidden state h; is compared with each source hidden state h, by using a
score function instead of the associated energy e;;. Thus, the alignment vector
whose size equals the number of time steps on the source side is derived.
Given the alignment vector as weights, the context vector ¢; is computed as
the weighted average over all the source hidden states. Here, score is referred
as a content-based function, and three different alternatives are considered [51].

On the other side, the local attention is differentiable. Firstly, an aligned
position p; is generated for each target word at a time ¢. Then, a window
centered around the source position p; is used to compute the context vector
as a weighted average of the source hidden states within the window. The
local attention selectively focuses on a small window of context, and obtains
the alignment vector from the current target state h; and the source states hs
in the window [51].

The introduction of these novel mechanisms in 2015 triggered the rise of
attention for neural networks. Based on the proposed attention mechanisms,
significant research has been conducted in a variety of tasks. In order to imag-
ine the attention idea in neural networks better, two visual examples are shown
in Fig. 2l A neural image caption generation task is seen in the top row that
implements an attention mechanism [48]. Then, the second example shows
how the attention mechanisms can be used for visual question answering [52].
Both examples demonstrate how attention mechanisms focus on parts of input
images.
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Fig. 2 Examples of the attention mechanism in visual. (Top) Attending to the correct
object in neural image caption generation [48|. (Bottom) Visualization of original image
and question pairs, and co-attention maps namely word-level, phrase-level and question-
level, respectively [52].

4 2015-2016: Attack of the Attention

During two years from 2015, the attention mechanisms were used for different
tasks, and novel neural network architectures were presented applying these
mechanisms. After the memory networks [53] that require a supervision signal
instructing them how to use their memory cells, the introduction of the neural
Turing machine [54] allows end-to-end training without this supervision signal,
via the use of a content-based soft attention mechanism [I]. Then, end-to-end
memory network [55] that is a form of memory network based on a recurrent
attention mechanism is proposed.

In these years, an attention mechanism called self-attention, sometimes
called intra-attention, was successfully implemented within a neural network
architecture namely Long Short-Term Memory-Networks (LSTMN) [50]. Tt
modifies the standard LSTM structure by replacing the memory cell with a
memory network [53]. This is because memory networks have a set of key
vectors and a set of value vectors, whereas LSTMs maintain a hidden vector
and a memory vector [56]. In contrast to attention idea in [44], memory and
attention are added within a sequence encoder in LSTMN. In order to compute
a representation of a sequence, self-attention is described as relating different
positions of it [19]. One of the first approaches of self-attention is applied for
natural language inference [57].

Many attention-based models have been proposed for neural image cap-
tioning [58], abstractive sentence summarization [59], speech recognition [60,
[61], automatic video captioning [62], neural machine translation [63], and rec-
ognizing textual entailment [64]. Different attention-based models perform vi-
sual question answering [65.661/67]. An attention-based CNN is presented for
modeling sentence pairs [68]. A recurrent soft attention based model learns to
focus selectively on parts of the video frames and classifies videos [69].

On the other side, several neural network architectures have been pre-
sented in a variety of tasks. For instance, Stacked Attention Network (SAN)
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is described for image question answering [(0]. Deep Attention Recurrent Q-
Network (DARQN) integrates soft and hard attention mechanisms into the
structure of Deep Q-Network (DQN) [71]. Wake-Sleep Recurrent Attention
Model (WS-RAM) speeds up the training time for image classification and
caption generation tasks [72]. align DRAW model, an extension of the Deep
Recurrent Attention Writer (DRAW) [73], is a generative model of images
from captions using a soft attention mechanism [74]. Generative Adversarial
What-Where Network (GAWWN) synthesizes images given instructions de-
scribing what content to draw in which location [75].

5 The Transformer: Return of the Attention

After the proposed attention mechanisms in 2015, researchers published stud-
ies that mostly modifying or implementing them to different tasks. However,
in 2017, a novel neural network architecture, namely the Transformer, based
entirely on self-attention was presented [19]. The Transformer achieved great
results on two machine translation tasks in addition to English constituency
parsing. The most impressive point about this architecture is that it contains
neither recurrence nor convolution. The Transformer performs well by replac-
ing the conventional recurrent layers in encoder-decoder architecture used for
NMT with self-attention.

The Transformer is composed of encoder-decoder stacks each of which has
six identical layers within itself. In Fig. |3} one encoder-decoder stack is shown
to illustrate the model [I9]. Each stack includes only attention mechanisms
and feedforward neural networks. As this architecture does not include any
recurrent or convolutional layer, information about the relative or absolute
positions in the input sequence is given at the beginning of both encoder and
decoder using positional encodings.

The calculations of self-attention are slightly different from the mechanisms
described so far in this paper. It uses three vectors namely query, key and
value for each word. These vectors are computed by multiplying the input with
weight matrices Wy, W}, and W,, which are learned during training. In general,
each value is weighted by a function of the query with the corresponding key.
The output is computed as a weighted sum of the values. Based on this idea,
two attention mechanisms are proposed: In the first one, called scaled dot-
product attention, the dot products of the query with all keys are computed
as given in the right side of Fig. 3] Each result is divided to the square root of
the dimension of the keys to have more stable gradients. They pass into the
softmax function, thus the weights for the values are obtained. Finally each
softmax score is multiplied with the value as given in Eq. . The authors
propose computing the attention on a set of queries simultaneously by taking
queries and keys of dimension dy, and values of dimension d, as inputs. The
keys, queries and values are packed together into matrices K, @) and V. Finally,
the output matrix is obtained as follows [19]:
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Fig. 3 The Transformer architecture and the attention mechanisms it uses in detail [19].
(Left) The Transformer with one encoder-decoder stack. (Center) Multi-head attention.
(Right) Scaled dot-product attention.

T

) QK
Attention(Q, K, V) = softmax( .

This calculation is performed by every word against the other words. This
leads to having wvalues of each word relative to each other. For instance, if
the word x5 is not relevant for the word x1, then the softmax score gives low
probability scores. As a result, the corresponding value is decreased. This leads
to an increase in the value of relevant words, and those of others decrease. In
the end, every word obtains a new value for itself.

As seen from Fig. |3] the Transformer model does not directly use scaled
dot-product attention. But the attention mechanism it uses is based on these
calculations. The second mechanism proposed, called the multi-head attention,
linearly projects the queries, keys and values h times with different, learned
linear projections to dg, di and d,, dimensions, respectively [19]. The attention
function is performed in parallel on each of these projected versions of queries,
keys and values, i.e., heads. By this way, d,-dimensional output values are
obtained. In order to get the final values, they are concatenated and projected
one last time as shown in the center of Fig. [3] By this way, the self-attention is
calculated multiple times using different sets of query, key and value vectors.
Thus, the model can jointly attend to information at different positions [19]:

WV (®)

MultiHead(Q, K, V) = Concat(heady, ..., head,)W© 9)
where head; = Attention(QWE, KWX, vwY)

In the decoder part of the Transformer, masked multi-head attention is
applied first to ensure that only previous word embeddings are used when
trying to predict the next word in the sentence. Therefore, the embeddings
that shouldn’t be seen by the decoder are masked by multiplying with zero.
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An interesting study examines the contribution made by individual atten-
tion heads in the encoder [76]. Also, there is an evaluation of the effects of
self-attention on gradient propagation in recurrent networks [77]. For a deeper
analysis of multi-head self-attention mechanism from a theoretical perspective
see [78].

Self-attention has been used successfully in a variety of tasks including
sentence embedding [79] and abstractive summarization [80]. It is shown that
self-attention can lead to improvements to discriminative constituency parser
[81], and speech recognition as well [82)83]. Also, the listen-attend-spell model
[84] has been improved with the self-attention for acoustic modeling [85].

As soon as these self-attention mechanisms were proposed, they have been
incorporated with deep neural networks for a wide range of tasks. For instance,
a deep learning model learned a number of large-scale tasks from multiple do-
mains with the aid of self-attention mechanism [86]. Novel self-attention neural
models are proposed for cross-target stance classification [87] and NMT [8§].
Another study points out that a fully self-attentional model can reach com-
petitive predictive performance on ImageNet classification and COCO object
detection tasks [89]. Besides, developing novel attention mechanisms has been
carried out such as area attention, a novel mechanism that can be used along
multi-head attention [90]. It attends to areas in the memory by defining the
key of an area as the mean vector of the key of each item, and defining the
value as the sum of all value vectors in the area.

When a novel mechanism is proposed, it is inevitable to incorporate it
into the GAN framework [91]. Self-Attention Generative Adversarial Networks
(SAGANSs) [92] introduce a self-attention mechanism into convolutional GANs.
Different from the traditional convolutional GANs, SAGAN generates high-
resolution details using cues from all feature locations. Similarly, Attentional
Generative Adversarial Network (AtinGAN) is presented for text to image
generation [93]. On the other side, a machine reading and question answering
architecture called QA Net [94] is proposed without any recurrent networks. It
uses self-attention to learn the global interaction between each pair of words
whereas convolution captures the local structure of the text. In another study,
Gated Attention Network (GaAN) controls the importance of each attention
head’s output by introducing gates [95]. Another interesting study introduces
attentive group convolutions with a generalization of visual self-attention [96].
A deep transformer model is implemented for language modeling over long
sequences [97].

5.1 Self-attention variants

In recent years, self-attention has become an important research direction
within the deep learning community. Self-attention idea has been examined
in different aspects. For example, self-attention is handled in a multi-instance
learning framework [98]. The idea of Sparse Adaptive Connection (SAC) is
presented for accelerating and structuring self-attention [99]. The research on
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Table 1 Summary of Notation

Symbol Definition
annotation
context vector
weight
energy
feedforward neural network
hidden state
hard (stochastic) / soft (deterministic) attention
location variable
o) source position
K,Q,V keys, queries and values matrices, respectively
Wy, Wi, Wy weight matrices for queries, keys and values, respectively

nw ST w0 L o

improving self-attention continues as well [I00,T0T,102]. Besides, based on the
self-attention mechanisms proposed in the Transformer, important studies that
modify the self-attention have been presented. Some of the most recent and
prominent studies are summarized below.

Relation-aware self-attention It extends the self-attention mechanism by
regarding representations of the relative positions, or distances between se-
quence elements [103]. Thus, it can consider the pairwise relationships between
input elements. This type of attention mechanism defines vectors to represent
the edge between two inputs. It provides learning two distinct edge represen-
tations that can be shared across attention heads without requiring additional
linear transformations.

Directional self-attention (DiSA) A novel neural network architecture
for learning sentence embedding named Directional Self-Attention Network
(DiSAN) [104] uses directional self-attention followed by a multi-dimensional
attention mechanism. Instead of computing a single importance score for each
word based on the word embedding, multi-dimensional attention computes a
feature-wise score vector for each token. To extend this mechanism to the self-
attention, two variants are presented: The first one, called multi-dimensional
‘tokenZ2token’ self-attention generates context-aware coding for each element.
The second one, called multi-dimensional ‘source2token’ self-attention com-
presses the sequence into a vector [104]. On the other side, directional self-
attention produces context-aware representations with temporal information
encoded by using positional masks. By this way, directional information is en-
coded. First, the input sequence is transformed to a sequence of hidden states
by a fully connected layer. Then, multi-dimensional token2token self-attention
is applied to these hidden states. Hence, context-aware vector representations
are generated for all elements from the input sequence.

Reinforced self-attention (ReSA) A sentence-encoding model named Re-
inforced Self-Attention Network (ReSAN) uses reinforced self-attention (ReSA)
that integrates soft and hard attention mechanisms into a single model. ReSA
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selects a subset of head tokens, and relates each head token to a small sub-
set of dependent tokens to generate their context-aware representations [105].
For this purpose, a novel hard attention mechanism called reinforced sequence
sampling (RSS), which selects tokens from an input sequence in parallel and
trained via policy gradient, is proposed. Given an input sequence, RSS gener-
ates an equal-length sequence of binary random variables that indicates both
the selected and discarded ones. On the other side, the soft attention provides
reward signals back for training the hard attention. The proposed RSS pro-
vides a sparse mask to self-attention. ReSA uses two RSS modules to extract
the sparse dependencies between each pair of selected tokens.

Outer product attention (OPA) Self-Attentive Associative Memory (SAM)
is a novel operator based upon outer product attention (OPA) [106]. This at-
tention mechanism is an extension of dot-product attention [I9]. OPA differs
using element-wise multiplication, outer product, and tanh function instead of
softmazx.

Bidirectional block self-attention (Bi-BloSA) Another mechanism, bidi-
rectional block self-attention (Bi-BloSA) which is simply a masked block self-
attention (mBloSA) with forward and backward masks to encode the tempo-
ral order information is presented [107]. Here, mBloSA is composed of three
parts from its bottom to top namely intra-block self-attention, inter-block
self-attention and the context fusion. It splits a sequence into several length-
equal blocks, and applies an intra-block self-attention to each block indepen-
dently. Then, inter-block self-attention processes the outputs for all blocks.
This stacked self-attention model results a reduction in the amount of mem-
ory compared to a single one applied to the whole sequence. Finally, a feature
fusion gate combines the outputs of intra-block and inter-block self-attention
with the original input, to produce the final context-aware representations of
all tokens.

Fixed multi-head attention The fized multi-head attention proposes fixing
the head size of the Transformer in the aim of improving the representation
power [108]. This study emphasizes its importance by setting the head size of
attention units to input sequence length.

Sparse sinkhorn attention It is based on the idea of differentiable sorting
of internal representations within the self-attention module [I09]. Instead of
allowing tokens to only attend to tokens within the same block, it operates
on block sorted sequences. Each token attends to tokens in the sorted block.
Thus, tokens that may be far apart in the unsorted sequence can be considered.
Additionally, a variant of this mechanism named SortCut sinkhorn attention
applies a post-sorting truncation of the input sequence.
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Adaptive attention span Adaptive attention span is proposed as an alter-
native to self-attention [II0]. It learns the attention span of each head inde-
pendently. To this end, a masking function inspired by [I11] is used to control
the attention span for each head. The purpose of this novel mechanism is to
reduce the computational burden of the Transformer. Additionally, dynamic
attention span approach is presented to dynamically change the attention span
based on the current input as an extension [5I[IT2].

5.2 Transformer variants

Different from developing novel self-attention mechanisms, several studies have
been published in the aim of improving the performance of the Transformer.
These studies mostly modify the model architecture. For instance, an addi-
tional recurrence encoder is preferred to model recurrence for Transformer di-
rectly [I13]. In another study, a new weight initialization scheme is applied to
improve Transformer optimization [I14]. A novel positional encoding scheme
is used to extend the Transformer to tree-structured data [I15]. Investigating
model size by handling Transformer width and depth for efficient training is
also an active research area [116]. Transformer is used in reinforcement learn-
ing settings [IT7,II8ITT9] and for time series forecasting in adversarial training
setting [120].

Besides, many Transformer variants have been presented in the recent past.
COMmonsEnse Transformer (COMET) is introduced for automatic construc-
tion of commonsense knowledge bases [121]. Fvolved Transformer applies neu-
ral architecture search for a better Transformer model [122]. Transformer Au-
toencoder is a sequential autoencoder for conditional music generation [123].
CrossTransformer takes a small number of labeled images and an unlabeled
query, and computes distances between spatially-corresponding features to in-
fer class membership [124]. DEtection TRansformer (DETR) is a new design
for object detection systems [125], and Deformable DETR is an improved ver-
sion that achieves better performance in less time [126]. FLOw-bAsed Trans-
formER (FLOATER) emphasizes the importance of position encoding in the
Transformer, and models the position information via a continuous dynamical
model [I127]. Disentangled Context (DisCo) Transformer simultaneously gener-
ates all tokens given different contexts by predicting every word in a sentence
conditioned on an arbitrary subset of the rest of the words [128]. Genera-
tive Adversarial Transformer (GANsformer) is presented for visual generative
modeling [129].

Recent work has demonstrated significant performance on NLP tasks. In
OpenAI GPT, there is a left-to-right architecture, where every token can only
attend to previous tokens in the self-attention layers of the Transformer [130].
GPT-2 [131] and GPT-3 [18] models have improved the progress. In addition
to these variants, some prominent Transformer-based models are summarized
below.
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Universal Transformer A generalization of the Transformer model named
the Universal Transformer [132] iteratively computes representations H' at
step t for all positions in the sequence in parallel. To this end, it uses the
scaled dot-product attention in Eq. where d is the number of columns
of Q, K and V. In the Universal Transformer, the multi-head self-attention
with k heads is used. The representations H! is mapped to queries, keys and
values with affine projections using learned parameter matrices W% € Rdxd/k
WHE ¢ Rixd/k WV ¢ Rixd/k and WO € Rix4 [132]:

MultiHead(H") = Concat(heady, ..., head),)W© (10)
where head; = Attention(H'WS, H'WK H'WY)

Image Transformer Image Transformer [133] demonstrates that self-attention
based models can also be well-suited for images instead of text. This Trans-
former type restricts the self-attention mechanism to attend to local neigh-
borhoods. Thus, the size of images that the model can process is increased.
Its larger receptive fields allow the Image Transformer to significantly improve
the model performance on image generation as well as image super-resolution.

Transformer-XL This study aims to improve the fixed-length context of the
Transformer [19] for language modeling. Transformer-XL [134] makes model-
ing very long-term dependency possible by reusing the hidden states obtained
in previous segments. Hence, information can be propagated through the recur-
rent connections. In order to reuse the hidden states without causing temporal
confusion, Transformer-XL uses relative positional encodings. Based on this
architecture, a modified version named the Gated Transformer-XL (GTrXL)
is presented in the reinforcement learning setting [135].

Tensorized Transformer Tensorized Transformer [136] compresses the multi-
head attention in Transformer. To this end, it uses a novel self-attention model
multi-linear attention with Block-Term Tensor Decomposition (BTD) [137]. It
builds a single-block attention based on the Tucker decomposition [I38]. Then,

it uses a multi-linear attention constructed by a BTD to compress the multi-
head attention mechanism. In Tensorized Transformer, the factor matrices are
shared across multiple blocks.

BERT The Bidirectional Encoder Representations from Transformers (BERT)
aims to pre-train deep bidirectional representations from unlabeled text [139].
BERT uses a multilayer bidirectional Transformer as the encoder. Besides,
inspired by the Cloze task [140], it has a masked language model pre-training
objective. BERT randomly masks some of the tokens from the input, and pre-
dicts the original vocabulary id of the masked word based only on its context.
This model can pre-train a deep bidirectional Transformer. In all layers, the
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pre-training is carried out by jointly conditioning on both left and right con-
text. BERT differs from the left-to-right language model pre-training from this
aspect.

Recently, BERT model has been examined in detail. For instance, the be-
haviour of attention heads are analysed [I41I]. Various methods have been
investigated for compressing [1421[143], pruning [144], and quantization [145].
Also, BERT model has been considered for different tasks such as coreference
resolution [I46]. A novel method is proposed in order to accelerate BERT
training [147].

Furthermore, various BERT variants have been presented. ALBERT aims
to increase the training speed of BERT, and presents two parameter reduction
techniques [148]. Similarly, PoWER-BERT [149] is developed to improve the
inference time of BERT. This scheme is also used to accelerate ALBERT. Also,
TinyBERT is proposed to accelerate inference and reduce model size while
maintaining accuracy [I50]. In order to obtain better representations, Span-
BERT is proposed as a pre-training method [I5I]. As a robustly optimized
BERT approach, RoBERTa shows that BERT was significantly undertrained
[152]. Also, DeBERTa improves RoBERTa using the disentangled attention
mechanism [I53]. On the other side, DistilBERT shows that it is possible to
reach similar performances using much smaller language models pre-trained
with knowledge distillation [154]. StructBERT proposes two novel lineariza-
tion strategies [I55]. @Q-BERT is introduced for quantizing BERT models [156],
BioBERT is for biomedical text mining [157], and RareBERT is for rare dis-
ease diagnosis [I5§].

Since 2017 when the Transformer was presented, research directions have
generally focused on novel self-attention mechanisms, adapting the Trans-
former for various tasks, or making them more understandable. In one of the
most recent studies, NLP becomes possible in the mobile setting with Lite
Transformer. It applies long-short range attention where some heads specialize
in the local context modeling while the others specialize in the long-distance
relationship modeling [159]. A deep and light-weight Transformer DeLighT
[160] and a hypernetwork-based model namely HyperGrid Transformers [161]
perform with fewer parameters. Graph Transformer Network is introduced
for learning node representations on heterogeneous graphs [162] and different
applications are performed for molecular data [163] or textual graph represen-
tation [164]. Also, Transformer-XH applies eXtra Hop attention for structured
text data [165]. AttentionXML is a tree-based model for extreme multi-label
text classification [166]. Besides, attention mechanism is handled in a Bayesian
framework [167]. For a better understanding of Transformers, an identifiabil-
ity analysis of self-attention weights is conducted in addition to presenting
effective attention to improve explanatory interpretations [I68]. Lastly, Vision
Transformer (ViT) processes an image using a standard Transformer encoder
as used in NLP by interpreting it as a sequence of patches, and performs well
on image classification tasks [169].
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5.3 What about complexity?

All these aforementioned studies undoubtedly demonstrate significant success.
But success not make one great. The Transformer also brings a very high
computational complexity and memory cost. The necessity of storing atten-
tion matrix to compute the gradients with respect to queries, keys and val-
ues causes a non-negligible quadratic computation and memory requirements.
Training the Transformer is a slow process for very long sequences because
of its quadratic complexity. There is also time complexity which is quadratic
with respect to the sequence length. In order to improve the Transformer in
this respect, recent studies have been conducted to improve this issue. One
of them is Linear Transformer which expresses the self-attention as a linear
dot-product of kernel feature maps [I70]. Linear Transformer reduces both
memory and time complexity by changing the self-attention from the softmax
function in Eq. to a feature map based dot-product attention. Its per-
formance is competitive with the vanilla Transformer architecture on image
generation and automatic speech recognition tasks while being faster during
inference. On the other side, FMMformers which use the idea of the fast multi-
pole method (FMM) [I71] outperform the linear Transformer by decomposing
the attention matrix into near-field and far-field attention with linear time and
memory complexity [I72].

Another suggestion made in response to the Transformer’s quadratic na-
ture is The Reformer that replaces dot-product attention by one that uses
locality-sensitive hashing [I73]. It reduces the complexity but one limitation
of the Reformer is its requirement for the queries and keys to be identical. Set
Transformer aims to reduce computation time of self-attention from quadratic
to linear by using an attention mechanism based on sparse Gaussian process
literature [I74]. Routing Transformer aims to reduce the overall complexity
of attention by learning dynamic sparse attention patterns by using routing
attention with clustering [I75). It applies k-means clustering to model sparse
attention matrices. At first, queries and keys are assigned to clusters. The at-
tention scheme is determined by considering only queries and keys from the
same cluster. Thus, queries are routed to keys belonging to the same cluster
[175).

Sparse Transformer introduces sparse factorizations of the attention ma-
trix by using factorized self-attention, and avoids the quadratic growth of com-
putational burden [I76]. It also shows the possibility of modeling sequences
of length one million or more by using self-attention in theory. In the Trans-
former, all the attention heads with the softmax attention assign a non-zero
weight to all context words. Adaptively Sparse Transformer replaces softmax
with a-entmax which is a differentiable generalization of softmax allowing
low-scoring words to receive precisely zero weight [177]. By means of context-
dependent sparsity patterns, the attention heads become flexible in the Adap-
tively Sparse Transformer. Random feature attention approximates softmax
attention with random feature methods [I78]. Skyformer replaces softmax
with a Gaussian kernel and adapts Nystrom method [I79]. A sparse atten-
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tion mechanism named BIGBIRD aims to reduce the quadratic dependency
of Transformer-based models to linear [I80]. Different from the similar stud-
ies, BIGBIRD performs well for genomics data alongside NLP tasks such as
question answering.

Music Transformer [I81] shows that self-attention can also be useful for
modeling music. This study emphasizes the infeasibility of the relative po-
sition representations introduced by [103] for long sequences because of the
quadratic intermediate relative information in the sequence length. Therefore,
this study presents an extended version of relative attention named relative
local attention that improves the relative attention for longer musical com-
positions by reducing its intermediate memory requirement to linear in the
sequence length. A softmax-free Transformer (SOFT) is presented to improve
the computational efficiency of ViT. It uses Gaussian kernel function instead
of the dot-product similarity [182].

Additionally, various approaches have been presented in Hierarchical Vi-
sual Transformer [183], Long-Short Transformer (Transformer-LS) [184], Per-
cewer [185], and Performer [186]. Image Transformer based on the cross-
covariance matrix between keys and queries is applied [I87], and a new vi-
sion Transformer is proposed [I88]. Furthermore, a Bernoulli sampling atten-
tion mechanism decreases the quadratic complexity to linear [I89]. A novel
linearized attention mechanism performs well on object detection, instance
segmentation, and stereo depth estimation [I90]. A study shows that kernel-
ized attention with relative positional encoding can be calculated using Fast
Fourier Transform and it leads to get rid of the quadratic complexity for long
sequences [I91]. A linear unified nested attention mechanism namely Luna
uses two nested attention functions to approximate the softmax attention in
Transformer to achieve linear time and space complexity [192].

6 Concluding Remarks: A New Hope

Inspired by the human visual system, the attention mechanisms in neural net-
works have been developing for a long time. In this study, we examine this
duration beginning with its roots up to the present time. Some mechanisms
have been modified, or novel mechanisms have emerged in this period. Today,
this journey has reached a very important stage. The idea of incorporating
attention mechanisms into deep neural networks has led to state-of-the-art re-
sults for a large variety of tasks. Self-attention mechanisms and GPT-n family
models have become a new hope for more advanced models. These promising
progress bring the questions whether the attention could help further devel-
opment, replace the popular neural network layers, or could be a better idea
than the existing attention mechanisms? It is still an active research area and
much to learn we still have, but it is obvious that more powerful systems are
awaiting when neural networks and attention mechanisms join forces.
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