
S. I . : DEEP LEARNING FOR TIME SERIES DATA

Differentially private multivariate time series forecasting
of aggregated human mobility with deep learning: Input or gradient
perturbation?
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Abstract
This paper investigates the problem of forecasting multivariate aggregated human mobility while preserving the privacy of

the individuals concerned. Differential privacy, a state-of-the-art formal notion, has been used as the privacy guarantee in

two different and independent steps when training deep learning models. On one hand, we considered gradient pertur-

bation, which uses the differentially private stochastic gradient descent algorithm to guarantee the privacy of each time

series sample in the learning stage. On the other hand, we considered input perturbation, which adds differential privacy

guarantees in each sample of the series before applying any learning. We compared four state-of-the-art recurrent neural

networks: Long Short-Term Memory, Gated Recurrent Unit, and their Bidirectional architectures, i.e., Bidirectional-LSTM

and Bidirectional-GRU. Extensive experiments were conducted with a real-world multivariate mobility dataset, which we

published openly along with this paper. As shown in the results, differentially private deep learning models trained under

gradient or input perturbation achieve nearly the same performance as non-private deep learning models, with loss in

performance varying between 0:57 and 2:8%. The contribution of this paper is significant for those involved in urban

planning and decision-making, providing a solution to the human mobility multivariate forecast problem through differ-

entially private deep learning models.

Keywords Mobility prediction � Differential privacy � Crowd flow � Differentially private machine learning

1 Introduction

Efficiently planning a road network, choosing the optimal

location for a hospital, for example, are all decisions based

on a precise understanding of human mobility. Mobile

phone data such as call detail records (CDRs) have proven

to be one of the most promising ways to analyze human

mobility on a large scale due to the high penetration rates

of cell phones [1–3]. CDR is a type of metadata that

describes users’ activities in a cellular network (e.g., phone

calls, SMS) with information such as the duration of

communication, the antennas that handled the service

(coarse level location), and so on. For this reason, CDRs

are commonly used by mobile network operators (MNOs)

to enhance their services and for billing and legal purposes

[3, 4].

Because both temporal and spatial information is

available in CDRs, these data have become one of the most

important data sources for research on human mobility

[1, 2, 5–7]. Indeed, human mobility analysis can benefit

individuals and society enabling local authorities to

improve urban planning, enhance the transportation sys-

tem, and assist in decision-making to respond to critical
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situations (e.g., natural disasters [7, 8]). Within a recent

context, due to the ongoing Coronavirus Disease 2019

(COVID-19) pandemic [9], on 8 April 2020, the European

Commission asked MNOs in the European region to share

anonymized and aggregated mobility data to help to fight

the outbreak [10, 11], which has also been done in other

parts of the world as described in [6]. This vision is also

shared by, e.g., Buckee et al. [2] and Oliver et al. [4], which

highlight the importance of aggregate mobility data and

mobile phone data like CDRs for fighting the COVID-19

outbreak.

For instance, on analyzing the dataset at our disposal

(further explained in Subsect. 2.1), Figure 1 illustrates

aggregated mobility analytics in Paris, France, for two

14-days periods: from the beginning of 2020-04-21 to the

end of 2020-05-03 and from the beginning of 2020-09-23

to the end of 2020-10-06. The plot on the left-side corre-

sponds to mobility analytics during the first national

lockdown period in France [12], and the plot on the right-

side corresponds to a period with no lockdown measures.

As one can notice, there is a clear difference between the

first period of analysis (low mobility activity) and the

second one (high mobility activity). This type of mobility

analysis provides important insights on mobility patterns

for public authorities and policymakers, for example

[6, 10].

However, on analyzing mobility data, some studies have

shown that humans follow particular patterns with a high

identifiability [13, 14] and, hence, users’ location privacy

is a major concern [1, 13–17]. Indeed, even though in

CDRs the location information is at a coarse level (anten-

nas that handled the service), collecting many imprecise

locations can still lead to privacy leaks, such as the home or

work addresses. Also, this is a scenario in which users

cannot sanitize their data locally since CDRs are

automatically generated on MNOs’ servers through the use

of a service (e.g., making/receiving phone calls). To tackle

these issues, the General Data Protection Regulation

(GDPR) [18] as well as some data protection authorities,

such as the Commission Nationale de l’Informatique et des

Libertés (CNIL) [19], in France, require that MNOs

anonymize ‘‘on-the-fly’’ CDRs used for purposes other

than billing. More precisely, if CDRs are used for mobility

analytics, these data must be processed within a required

time interval (e.g., 15 min) if and only if there is a suffi-

cient number of users present for reaching a specific level

of anonymity (i.e., ‘‘hide in the crowd’’).

This way, MNOs tend to publish aggregated mobility

data [6, 10, 20–22], e.g., the number of users by coarse

location at a given timestamp, which, in other words,

represents a multivariate time series dataset that can be

used for predictive mobility [5]. Nevertheless, as recent

studies have shown, even aggregated mobility data can be

subject to membership inference attacks [23, 24] and users’

trajectory recovery attack [20, 21], thus requiring proper

sanitization. To tackle privacy concerns in data releases,

research communities have proposed different methods to

preserve privacy, with differential privacy (DP) [25, 26]

standing out as a formal definition that allows quantifying

the privacy-utility trade-off. Differential privacy has also

been at the core of many privacy-preserving machine

learning (ML) and deep learning (DL) models [27–32]

since predictive models are also subject to privacy attacks

[33–37].

With these elements in mind, this paper contributes with

a comparative analysis between adding DP guarantees into

two different steps of training DL models to forecasting

multivariate aggregated human mobility data. On the one

hand, we consider using gradient perturbation, which can

be achieved by training DL models over original time-

Fig. 1 Aggregated human mobility analytics in Paris during the COVID-19 pandemic: two weeks within the first lockdown period in France

(left-side plot) and during two weeks with no lockdown measures (right-side plot)
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series data with the differentially private version of the

stochastic gradient descent algorithm (DP-SGD) [28]. On

the other hand, we consider using input data perturbation,

i.e., training DL models with differentially private time

series data. Notice that, while aggregated time-series data

provides some anonymity-based protection, with the latter

input perturbation setting, DP also adds a layer of protec-

tion against, e.g., data breaches [38], membership inference

attacks [23, 24], and users’ trajectory recovery attacks

[20, 21].

It is worth mentioning that human mobility forecast

information is of great importance for public and/or private

organizations to identify strategies to propose better deci-

sion-making solutions for society [1, 2, 4, 6–8, 10, 39].

Therefore, in this paper, extensive experiments were car-

ried out with a real-world mobility dataset collected by

Orange [22] on analyzing CDRs in 6 coarse regions in

Paris, France, which we publish openly as an open mobility

dataset. More precisely, this paper benchmarks four state-

of-the-art DL models with this dataset, i.e., recurrent neural

networks (RNNs): Long Short-Term Memory (LSTM)

[40], which is capable of learning long-term dependencies

while overcoming the vanishing gradient problem of

standard RNNs; Gated Recurrent Unit (GRU) [41], which

is similar to LSTM but with a simpler architecture; and

their Bidirectional [42] architectures, i.e., BiLSTM and

BiGRU. Moreover, we also took into consideration users’

privacy, adding DP guarantees into the predictive models

and evaluating their utility loss in comparison with non-

private DL models.

To summarize, this paper makes the following

contributions:

– Publish the real-world, CDRs-based, and multivariate

(i.e., 6 coarse regions) aggregated mobility dataset

openly in a Github repository1.

– Benchmark four state-of-the-art RNNs (LSTM, GRU,

BiLSTM, and BiGRU) with this dataset for one-step-

ahead multivariate forecasting.

– Provide the first comparative evaluation on the impact

of differential privacy guarantees when training DL

models in both input and gradient perturbation settings,

for multivariate time series forecasting.

Therefore, we intend that from this study, other classical

time series forecasting, ML, and privacy-preserving ML

techniques can be tested and compared.

Outline The remainder of this paper is organized as

follows. In Sect. 2, we describe the material and methods

used in this work, i.e., the mobility data and the problem

statement; the DL methods, and the privacy guarantee,

namely, differential privacy for both input and gradient

perturbation settings. In Sect. 3, we present the experi-

mental setup, our results with non-private DL models, and

our results with differentially private DL models. In

Sect. 4, we discuss our work with its limitations and future

directions. Lastly, in Sect. 5, we present the concluding

remarks.

2 Material and methods

In this section, we first describe the mobility dataset and

the problem we intend to solve (Subsect. 2.1). Next, we

briefly describe the DL methods we consider in our

experiments (Subsect. 2.2). Lastly, we recall the privacy

notion that we are considering, i.e., differential privacy,

in both input and gradient perturbation settings

(Subsect. 2.3).

2.1 Mobility dataset and problem statement

The dataset at our disposal was provided by an MNO in

France [22], which contains anonymized and aggregated

human mobility data resulted from analyzing CDRs ‘‘on-

the-fly’’, following recommendations from both GDPR

and CNIL. This dataset comprises information for two

periods: from 2020-04-20 to 2020-05-03 and from

2020-08-24 to 2020-11-04, with time granularity of 30

minutes (min) and spatial granularity of 6 coarse regions

in Paris, France.

More formally, this is a multivariate time series dataset

Xðt1;tsÞ with aggregate number of people per region and

corresponding time period t 2 ½1; s�. That is,

Xðt1;tsÞ ¼ ½ht1; x1i; ht2; x2i; :::; hts; xsi�, in which xt is a vec-

tor with each position representing the number of users per

region at time t 2 ½1; s�. In this paper, we aim at forecasting

the future number of people at the next 30-min interval in

each of the 6 regions. Thus, given Xðt1;tsÞ, the goal is to

forecast Xðtsþ1Þ, i.e., one-step-ahead forecasting, which is

unknown at time s.
For the rest of this paper, we only utilize the second

period of this dataset (i.e., from 2020-08-24 to 2020-11-

04), which has aggregated mobility data for 72 days. For

each week, coarse region, and 30-min interval, we used the

interquartile range technique2 to detect outliers and missing

data. These values were completed with the average value

for that respective week, coarse region, and 30-min inter-

val. Table 1 presents descriptive statistics about this pro-

cessed dataset with the following measures per region

(labeled as R1 - R6): min, max, mean, standard deviation

(std), and median.

1 https://github.com/hharcolezi/ldp-protocols-mobility-cdrs. 2 https://en.wikipedia.org/wiki/Interquartile_range.
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2.2 Deep learning methods

To predict the number of users in each coarse region in a

multivariate time series forecasting framework, we com-

pared the performance of four state-of-the-art RNNs:

LSTM [40], GRU [41], and their Bidirectional [42] archi-

tectures, i.e., BiLSTM and BiGRU. Indeed, RNNs is a

specialized class of neural networks used to process

sequential data (e.g., time-series data). RNNs have at least

one feedback connection that provides the ability to use

contextual information when mapping between input and

output sequences [43]. The LSTM, GRU, and Bidirectional

RNN methods are briefly described in the following

subsections.

2.2.1 Long short-term memory

Long Short-Term Memory [40] is a type of RNN that

overcomes the vanishing gradient problem of standard

RNNs. The memory cell of LSTM divides its states in

long-term state cðtÞ and short-term state hðtÞ. The learning

process is controlled by three gates: input iðtÞ, forget fðtÞ
and output oðtÞ gates, which give LSTM the ability to

learn which data in a sequence is important to keep or to

discard. More precisely, both input xðtÞ and the previous

short-term state hðt�1Þ are fed to four different and fully

connected layers. Then, the first layer computes the

internal hidden state gðtÞ, using xðtÞ and hðt�1Þ, and par-

tially store gðtÞ in the long-term state. The remaining tree

layers are the nonlinear gating units. The forget gate fðtÞ
controls the past information which must be vanished or

kept. The input gate iðtÞ controls the new information

which is to be added to the long-term state. Lastly, the

output gate oðtÞ controls which information could be

utilized for the output of the memory cell yðtÞ. The

mathematical formulation is as follows [40]:

iðtÞ ¼ r WxixðtÞ þWhihðt�1Þ þ bi
� �

;

fðtÞ ¼ r Wxf xðtÞ þWhf hðt�1Þ þ bf
� �

;

oðtÞ ¼ r WxoxðtÞ þWhohðt�1Þ þ bo
� �

;

gðtÞ ¼ tanh WxgxðtÞ þWhghðt�1Þ þ bg
� �

;

cðtÞ ¼ fðtÞ � cðt�1Þ þ iðtÞ � gðtÞ;

yðtÞ ¼ hðtÞ ¼ oðtÞ � tanhðcðtÞÞ;

in which � means an element-wise multiplication, r is the

sigmoid function, W� are weight matrices, and b� are the

vectors of bias term.

2.2.2 Gated recurrent unit

Gated Recurrent Unit [41] is also a type of RNN, which

works using the same principle as LSTM. GRU utilizes two

gates: update zðtÞ and reset rðtÞ, which decide what infor-

mation should be passed to the output. More specifically,

the reset gate rðtÞ controls how to combine the new input

with the previous memory. The update gate zðtÞ controls

how much of the last memory to keep. The mathematical

formulation is as follows [41]:

zðtÞ ¼ r WzxðtÞ þ Uzhðt�1Þ
� �

;

rðtÞ ¼ r WrxðtÞ þ Urhðt�1Þ
� �

;

cðtÞ ¼ tanh WxðtÞ þ UðrðtÞ � hðt�1ÞÞ
� �

;

hðtÞ ¼ 1� zðtÞÞhðt�1Þ þ ðzðtÞcðtÞ
� �

:

2.2.3 Bidirectional RNN

Bidirectional RNN (BiRNN) [42] is a combination of two

RNNs: one RNN moves forward while the other moves

backward. That is, BiRNN connects two hidden layers of

opposite directions to the same output. The RNN cells in a

BiRNN can either be standard RNNs, LSTMs, GRUs, and

so on. This Bidirectional architecture allows the networks

to have both backward and forward information about the

sequence at every time step.

2.3 Differential privacy

In recent years, differential privacy [25] has been

increasingly accepted as the current standard for data pri-

vacy with several large-scale implementations in the real-

world (e.g. [44, 45]). One key reason is that DP addresses

the paradox of learning about a population while learning

Table 1 Descriptive statistics for the multivariate time series dataset

on the number of users per coarse region

Statistic R1 R2 R3 R4 R5 R6

Min 56,937 1,996 1,429 255 252 347

Max 165,405 21,980 28,990 25,184 7,961 27,637

Mean 116,777 14,307 16,274 11,758 4,166 11,559

Std 17,947 2,803 3,915 3,682 1,450 5,136

Median 121,488 14,808 16,661 12,134 4,495 12,542
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nothing about single individuals [26]. More specifically,

the idea is that removing (or adding) a single row from the

database should not affect much the statistical results. A

formal definition of DP is given in the following [26]:

Definition 1 ((�; d)-Differential Privacy [26]) Given �[ 0

and 0� d\1, a randomized algorithm A : D ! R is said

to provide (�; d)-differential-privacy ((�; d)-DP) if, for all

neighbouring datasets D1;D2 2 D that differ on the data of

one user, and for all sets R of outputs:

Pr½AðD1Þ 2 R� � e� Pr½AðD2Þ 2 R� þ d: ð1Þ

The additive d is interpreted as a probability of failure.

Normally, a common choice for d is to set it significantly

smaller than 1/n where n is the number of users in the

database [26]. Throughout this paper, if d ¼ 0, we will just

say that A is �-DP.

2.3.1 Properties of differential privacy

Differential privacy possesses several important properties,

highlighting its strength in comparison with other privacy

models. For instance, with DP, there is no need to define

the background knowledge that attackers might have,

which is equivalent to assuming an attacker with unlimited

resources. In addition, DP is immune to post-processing,

which means it is not possible to make an �-DP mechanism

less differentially private by evaluating any function f of

the response of the mechanism, given that there is no

additional information about the database.

Proposition 1 (Post-Processing of DP [26]) If A : D ! R

is �-DP, then f ðAÞ is also �-DP for any function f.

Furthermore, DP also composes well, which is one of

the most powerful features of this privacy model. For

instance, accounting for the overall privacy loss consumed

in a pipeline of several DP algorithms applied to the same

database is feasible due to composition. We recall the

sequential composition that will be used in this paper in the

following.

Proposition 2 (Sequential Composition [26]) Let A1 be an

�1-DP mechanism and A2 be an �2-DP mechanism. Then,

the mechanism A1;2ðDÞ ¼ A1ðDÞ;A2ðDÞð Þ is ð�1 þ �2Þ-
DP.

2.3.2 Differentially private Gaussian mechanism

Any mechanism that respects Definition 1 can be consid-

ered differentially private. Two widely used DP mecha-

nisms for numeric queries (i.e., functions f : D ! R) are

the Laplace mechanism [25] and the Gaussian mechanism

[26]. One important parameter that determines how accu-

rately we can answer the queries is their sensitivity. We

recall the definition of ‘2-sensitivity and the Gaussian

mechanism that will be used in this paper in the following.

Definition 2 (‘2-sensitivity [26]) The ‘2-sensitivity of a

function f : D ! R, for all neighbouring datasets D1;D2 2
D that differ on the data of one user, is:

D2ðf Þ ¼ max jjf ðD1Þ � f ðD2Þjj2.

Definition 3 (Gaussian mechanism [26]) For a query

function f : D ! R over a dataset D 2 D and for

r ¼ D2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln ð1:25=dÞ

p
, the Gaussian mechanism is defined

as:

AGðD; f ð:Þ; �; dÞ ¼ f ðDÞ þN 0; r2
� �

.

in which N 0; r2ð Þ is the normal distribution centered at

0 with variance r2. For � 2 ð0; 1Þ, the Gaussian mechanism

provides (�; d)-DP [26].

2.3.3 Differentially private deep learning

In this paper, on the one hand, we consider that noise is

added to each sample in the time series data (input per-

turbation). Once the data is differentially private, following

Proposition 1, any DL or pre-processing methods can be

applied to the data. On the other hand, we consider the case

where noise is added in the learning stage (gradient per-

turbation). In this case, the raw time-series data is used as

input to a DL method trained with the differentially private

stochastic gradient descent algorithm. These two settings

are briefly described in the following:

Input data perturbation Input perturbation (or data

perturbation) consists to the fact that DP is added to each

data sample xi 2 D. For example, let x be a real-valued

vector, then a differentially private version of it using the

Gaussian mechanism (cf. Subsect. 2.3.2) is:

x̂ ¼ xþN 0; r2ð Þ. On the one hand, input perturbation is

the easiest method to apply and it is independent of any ML

and post-processing techniques. On the other hand, the

perturbation of each sample in the dataset may have a

negative impact on the utility of the trained model. In this

paper, we will use the Gaussian mechanism [26] in Defi-

nition 3 to sanitize each release of multivariate mobility

data.

Gradient perturbation Another solution to guarantee

DP to the trained model is perturbing intermediate values

in iterative algorithms. In this case, the authors in [28]

proposed a differentially private version of the stochastic

gradient descent algorithm (i.e., DP-SGD). Indeed, DL

models trained with DP-SGD [28] provide provable DP

guarantees for their input data. Two new parameters are

added to the standard stochastic gradient descent algorithm,
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namely, clip and noise multiplier. The former is used to

bound how much each training point can impact the

model’s parameters and the latter is used to add controlled

Gaussian noise to the clipped gradients in order to ensure

DP guarantee to each data sample in the training dataset. In

this paper, we use the DP-SGD implementation from the

Tensorflow Privacy (TFP) library [32] to implement our

DL models.

3 Experimental results

We divide this section in the following way. First, we

describe general settings for our experiments (Sub-

sect. 3.1). Next, we present the development and evalua-

tion of non-private DL models (Subsect. 3.2). Lastly, we

present the development of differentially private DL

models, which include both gradient and input perturbation

settings (Subsect. 3.3).

3.1 General setup of experiments

Environment All algorithms were implemented in Python

3.8.8 with Keras and TFP [32] libraries.

Temporal features We added the time of the day and

the time of the week as cyclical features to help models

recognizing low and high peak values of human mobility

patterns.

Training and testing sets We split the dataset analyzed

in Table 1 from Subsect. 2.1 into exclusively divided

learning (first 65 days, i.e., nl ¼ 3120 intervals of 30-min)

and testing (last 7 days, i.e., nt ¼ 336 intervals of 30-min)

sets. Figure 2 exemplifies the data separation into train and

test sets for region R1.

Forecasting methodology We used 6 prior time steps

(i.e., lag values), which showed autocorrelation higher than

0.5 to predict a single step ahead in the future (i.e., short

forecasting horizon). More specifically, the forecasting

models will take into account the number of people in each

coarse region from 3 hours to make predictions one-step-

ahead for each coarse region in the next 30-min interval.

And in the end, we compute the performance metrics.

Performance metrics All models were evaluated with

standard time-series metrics, namely, root mean square

error (RMSE) calculated as RMSE ¼ 1
nt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnt
t¼1 yt � ŷtð Þ2

q

and mean absolute error (MAE) calculated as

MAE ¼ 1
nt

Pnt
t¼1 jyt � ŷtj; in which yt is the real output, ŷt is

the predicted output, and nt is the total number of samples

in the test set, for t 2 ½1; nt�. RMSE was the primary metric

to select the final DL models. As a multi-output scenario

(i.e., 6 coarse regions), we present the metrics per coarse

region as well as its averaged values. In all experiments,

due to randomness, we report the results of the best model

over 10 runs.

3.2 Non-private DL forecasting models

Baseline model We compared the performance of the four

DL methods (i.e., LSTM, GRU, BiLSTM, and BiGRU)

with a naive forecasting technique a.k.a. ‘‘persistence

model’’, which for each region, it returns the current

number of people at time t as the forecasted value, i.e.,

xtþ1 ¼ xt. Notice that this is a quite accurate baseline since,

in general, the number of people per coarse region varies

slowly by 30-min (i.e., walking people may take more time

to move from one coarse region to another).

Model selection To select the best hyperparameters per

DL method, we used Bayesian optimization [46] with 100

iterations to minimize loss ¼ RMSEavg þ RMSEstd; the

subscripts avg and std indicates the averaged and standard

deviation values of the RMSE metric considering the 6

coarse regions. For each method, we only used a single

hidden layer followed by a dense layer (output), since

RNNs generally perform well with a low number of hidden

layers [43]. So, we searched the following

Fig. 2 Example of data separation into training and testing sets for region R1
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hyperparameters: number of neurons (h1), batch size (bs),

and learning rate (g). All models used ‘‘relu’’ (rectified

linear unit) as an activation function, which resulted in

better performance than the default ‘‘tanh’’ activation in

prior tests. Lastly, models were trained using the adam

(adaptive moment estimation) optimizer during 100 epochs

by minimizing the MAE loss function. Table 2 exhibits the

hyperparameters’ search space and the final value used per

DL method.

Results and analysis Table 3 presents the performance

of the developed DL models in comparison with the

Baseline model based on RMSE and MAE metrics per

region and the resulting mean. Notice that the metrics are

in the real scale according to the number of users per region

(cf. Table 1). That said, although R1 presents higher metric

values, it does not necessarily mean worse results. One

solution could be normalizing the data. Besides, Fig. 3

illustrates for each region forecasting results for the last

day of our testing set, which includes the real number of

people and the predicted ones by each RNN: LSTM, GRU,

BiLSTM, and BiGRU.

As one can notice, all DL models consistently outper-

form the Baseline model. On average, the BiGRU model

outperformed all other forecasting methods, with results

highlighted in bold in Table 3. Indeed, for each region, the

BiGRU consistently and considerably outperformed the

Baseline model, showing the worthiness of developing DL

models for this multivariate forecasting task. Similar scores

were achieved by the GRU and BiLSTM models with an

average RMSE around 1241. The least performing DL

method in our dataset was the LSTM model. Extending the

architectures, hyperparameters range, lag values (i.e., test

with less or more input time steps), dropout layers, for

example, could probably improve our models and change

the resulting best technique. However, we will focus our

attention on a comparative analysis of differentially private

DL methods in the next subsection and, thus, these possible

extensions are left as future work.

3.3 Differentially private DL forecasting models

Methods evaluated We consider two privacy-preserving

ML settings presented in Subsect. 2.3, namely, input per-

turbation (IP) and gradient perturbation (GP). Thus, we

selected only the DL method that performed the best with

original data, i.e., BiGRU (cf. Table 3). We will use

BiGRU[IP] and BiGRU[GP] to indicate a BiGRU trained

under input and gradient perturbation, respectively.

For the model selection stage, we first start with

BiGRU[GP] since it allows defining a range of �, which is

dependent on several hyperparameters of DP-SGD. For a

fair comparison between both settings, we utilize the given

range of � to develop BiGRU[IP] models too. Notice,

however, that in both scenarios, (�; d)-DP can be ensured to

each time series data sample. On the other hand, this also

means that the same user may have contributed to all nl ¼
3120 training samples and, thus, in the worst case, the

sequential composition in Proposition 2 applies. With these

elements in mind, we considered high privacy regimes

(� � 1) such that the maximum �� ¼
Pnl

i¼1 �i is compatible

with real-world DP deployed systems [44, Table 2]. This

Table 2 Search space for

hyperparameters and the best

configuration obtained by each

DL method

Hyperparameter’s range Step LSTM BiLSTM GRU BiGRU

h1: [25–500] 25 225 500 75 175

bs: [5–40] 5 10 10 5 5

g: [1e-5–3e-3] – 0.002233 0.002303 0.001725 0.000289

Table 3 Performance of the

Baseline model and non-private

DL models based on RMSE and

MAE metrics per region and the

resulting mean values

Model Metric R1 R2 R3 R4 R5 R6 Mean

Baseline RMSE 3461.6 1131.8 1517.9 986.5 561.3 1362.3 1503.6

MAE 2597.5 839.4 1105.8 744.1 434.3 921.5 1107.1

LSTM RMSE 2667.2 1007.3 1291.6 887.2 536.3 1135.6 1254.2

MAE 2053.8 758.1 969.8 662.6 432.3 786.0 943.8

BiLSTM RMSE 2572.7 1033.3 1276.4 872.7 528.1 1166.7 1241.6

MAE 1954.7 781.5 965.5 660.8 419.4 808.2 931.7

GRU RMSE 2539.1 973.0 1296.0 953.5 499.9 1185.1 1241.1

MAE 1949.7 722.8 939.6 740.2 396.4 829.1 929.6

BiGRU RMSE 2560.3 968.3 1282.6 832.1 478.9 1163.7 1214.3

MAE 1957.2 717.0 955.3 623.0 382.7 807.5 907.1
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way, � corresponds to the lower bound (the user appears

in a single data point), and �� represents the upper bound

(the user appears in all data points).

BiGRU[GP] model selection In addition to standard

hyperparameters h1, bs, and g (cf. Subsect.3.2), we also

included the TFP hyperparameters in the Bayesian opti-

mization with 100 iterations to minimize

loss ¼ ðRMSEavg þ RMSEstdÞ 	 e�; the multiplicative fac-

tor e� is a penalization on high values of �, which varies

depending on the hyperparameters used per iteration. More

specifically, given the number of training samples

nl ¼ 3120, we fix the following hyperparameters: the

number of epochs equal 100, num microbatches ¼ 5,

noise multiplier equal f35; 70; 140; 500g, respectively,

and d ¼ 10�7, which respects
Pnl

i¼1 di\1=nl [26]. This

way, we varied h1, bs, g, and l2 norm clip according to

Table 4, which exhibits the hyperparameters’ search space,

the final value used per BiGRU[GP] model, and the

resulting privacy guarantee � calculated with the com-

pute_dp_sgd_privacy function [32], and the overall

�� ¼
Pnl

i¼1 �i. Lastly, all BiGRU[GP] models also used

‘‘relu’’ as an activation function and were trained using the

differentially private adam optimizer by minimizing the

MAE loss function.

BiGRU[IP] model selection We fix d ¼ 10�7 and we

apply the Gaussian mechanism [26], by varying � accord-

ing to Table 4, to the whole time series data, as it would

be done if such system had been deployed in real life.

The metrics, however, are computed in comparison

with original raw time series data. Because input per-

turbation allows using any post-processing techniques, we

used the same model selection methodology as for non-

private BiGRU models to select the best hyperparameters

for BiGRU[IP] models. The resulting values per

� ¼ ½0:0650; 0:0399; 0:0357; 0:0317�, respectively, are:

BiGRU[IP]1 : fh1 ¼ 200; bs ¼ 5; g ¼ 0:001993g,

BiGRU[IP]2 : fh1 ¼ 275; bs ¼ 5; g ¼ 0:001182g,
BiGRU[IP]3 : fh1 ¼ 200; bs ¼ 10; g ¼ 0:001333g, and

BiGRU[IP]4 : fh1 ¼ 200; bs ¼ 10; g ¼ 0:000842g.
Privacy-preserving results and analysis Table 5 pre-

sents the performance of differentially private BiGRU

models trained under input and gradient perturbation

regarding the RMSE and MAE metrics per region and the

resulting mean values. We also included in Table 5 the

utility loss of differentially private BiGRU models in

comparison with non-private ones, for both RMSE and

MAE averaged metrics E, calculated as:

U ¼ EDP � ENP

ENP
, ð2Þ

in which ENP is the result of Non-Private BiGRU (cf.

averaged metric values in bold from Table 3) and EDP

refers to the results of either BiGRU[GP] or BiGRU[IP]

models. Indeed, Eq. (2) will be positive unless the differ-

entially private model outperforms the non-private one

(which is not the case in our results).

We remarked in our experiments that since there is a

sufficient number of users per time series sample (cf.

Table 1), it was still possible to make accurate forecasts in

both privacy-preserving ML settings with the experimented

range of (�; d)-DP. Indeed, one can notice that all differ-

entially private BiGRU models achieved averaged RMSE

lower than 1250, in which the worst result achieved by

BiGRU[IP]4 is just 2:8% less precise than the non-private

BiGRU model. What is more, in both gradient and input

perturbation settings, differentially private BiGRU models

achieved smaller error metrics than non-private LSTM,

BiLSTM, and GRU models (cf. Table 3). For instance,

both BiGRU[GP]2 and BiGRU[IP]2 reached similar scores

in comparison with the non-private BiGRU model, with a

loss of performance of about 0:57% and 0:62%, respec-

tively. These results are highlighted in underlined font,

which represents our best results in terms of utility, with

differentially private BiGRU models.

Interestingly, the accuracy (measured with the RMSE

metric) of differentially private BiGRU models did not

necessarily decrease according to more strict �, i.e., lower

bFig. 3 Multivariate time series forecast for the last day of the test set

for the number of users per coarse region (R1–R6) by the following

models: Baseline, LSTM, GRU, BiLSTM, and BiGRU

Table 4 Search space for

standard and TFP

hyperparameters, the best

configuration per BiGRU[GP]

model, the final privacy

guarantee � per time-series

sample, and the maximum ��
following the sequential

composition in Proposition 2

Hyperarameter’s range Step BiGRU[GP]1 BiGRU[GP]2 BiGRU[GP]3 BiGRU[GP]4

h1: [25–500] 25 500 425 275 475

bs: [5–40] 5 5 5 10 5

g: [1e-5–3e-3] – 0.002229 0.000455 0.000291 0.001235

l2 norm clip : {1, 1.5, 2, 2.5} – 2.5 2 1 2.5

noise multiplier : fixed – 35 70 140 500

Privacy guarantee �1 ¼ 0:0650 �2 ¼ 0:0399 �3 ¼ 0:0357 �4 ¼ 0:0317

��1 ¼ 202:8 ��2 ¼ 124:488 ��3 ¼ 111:384 ��4 ¼ 98:904
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values. One can note that results with �2 and �3 were more

accurate than with �1. This way, in terms of a good privacy-

utility trade-off, both BiGRU[GP]3 (0:92% less accurate)

and BiGRU[IP]3 (1:53% less accurate) presented good

metrics scores while satisfying a low value of �, with

results highlighted in bold. Indeed, in the worst-case sce-

nario, a user that was present in each data point would have

leaked ��3 ¼ 111:384 at the end of 65 days (i.e., �
 1:7 per

day), which follows real-world DP systems deployed by

industry nowadays [44, Sect. 8.4].

Lastly, Fig. 4 illustrates for each region forecasting

results for the last day of our testing set, which includes the

real number of people and the predicted ones by the fol-

lowing models: Baseline, non-private BiGRU,

BiGRU[GP]3, and BiGRU[IP]3. As one can notice, similar

forecasting results were achieved by both non-private and

DP-based BiGRU models, which clearly outperforms the

Baseline model.

4 Discussion and related work

Mobile phone CDRs have been largely used to analyze

human mobility in several contexts, e.g., the spread of

infectious diseases [6, 39], natural disasters [7, 8], tourism

[22], and so on. However, on analyzing mobility data, de

Montjoye et al. [13] show that humans follow particular

patterns, which allows predicting human mobility with

high accuracy. For instance, in a CDRs dataset of 1.5

million users, the authors showed that 95% of this popu-

lation can be re-identified using four approximate locations

and their timestamps. Indeed, the uniqueness of mobility

data has also been studied in [14], for example, in which

the authors concluded that location trace has higher iden-

tifiability than a face matcher in a partial-knowledge

model.

For this reason, MNOs tend to publish aggregated

mobility data [6, 10, 20–22], which provides some form of

anonymity-based protection. However, as recent studies

have shown, even aggregated mobility data (e.g., heat-

maps) can be subject to membership inference attacks

[23, 24] and users’ trajectory recovery attack [20, 21].

More precisely, the authors in [20, 21] showed that their

attack reaches accuracies as high as 73� 91%. Therefore,

it is vital to design privacy-preserving techniques that

allow analyzing human mobility [1].

Moreover, along with collecting time-series data,

extracting meaningful forecasts is also of great interest.

Time series forecasting has been a key area of ML research

and application across many domains, e.g., medicine [47],

finance [48], electrical power [49, 50], mobility [5], and so

on. However, even ML models trained with raw data can

also indirectly reveal sensitive information [33, 35–37], in

particular, RNNs [34]. To protect ML models against such

threats, under the state-of-the-art DP guarantee [25, 26],

there exist some privacy-preserving ML alternatives

Table 5 Performance of differentially private BiGRU models based

on RMSE and MAE metrics per region and the resulting mean values.

The last column U exhibits the utility loss of differentially private

BiGRU models in comparison with non-private ones, for both RMSE

and MAE averaged metrics expressed in %

�; �� values Model Metric R1 R2 R3 R4 R5 R6 Mean U

�1 ¼ 0:0650 BiGRU[GP]1 RMSE 2561.4 1027.3 1254.7 866.7 498.5 1145.7 1225.7 0.9378

MAE 1973.4 773.8 925. 644.1 397.9 781.5 916.0 0.9776

��1 ¼ 202:8 BiGRU[IP]1 RMSE 2600.9 997.1 1304.0 852.7 483.8 1175.2 1235.6 1.7531

MAE 1966.0 737.5 957.1 645.4 385.1 821.1 918.7 1.2753

�2 ¼ 0:0399 BiGRU[GP]2 RMSE 2600.2 956.0 1268.5 841.5 515.0 1146.3 1221.2 0.5672

MAE 1978.9 709.2 944.4 643.3 417.4 769.9 910.5 0.3713

��2 ¼ 124:488 BiGRU[IP]2 RMSE 2592.2 978.4 1251.5 854.2 495.6 1158.6 1221.8 0.6166

MAE 1986.1 737.1 910.9 653.9 393.2 813.9 915.9 0.9666

�3 ¼ 0:0357 BiGRU[GP]3 RMSE 2580.5 990.0 1268.5 854.5 504.9 1154.3 1225.5 0.9213

MAE 1938.8 753.0 942.8 659.7 406.3 773.6 912.4 0.5808

��3 ¼ 111:384 BiGRU[IP]3 RMSE 2587.8 1004.7 1262.3 843.2 512.8 1186.2 1232.9 1.5307

MAE 1963.1 755.8 957.5 636.9 414.6 811.8 923.3 1.7824

�4 ¼ 0:0317 BiGRU[GP]4 RMSE 2560.8 978.3 1322.5 836.1 494.4 1195.4 1231.3 1.3990

MAE 1956.2 715.1 989.2 633.6 392.0 821.6 917.9 1.1871

��4 ¼ 98:904 BiGRU[IP]4 RMSE 2562.2 1012.2 1351.2 862.9 533.5 1168.8 1248.4 2.8072

MAE 1955.6 756.8 1027.6 650.1 423.9 826.8 940.2 3.6454
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adopted in the literature, e.g., input [31, 51–55], gradient

[27–29, 32, 56], and objective perturbation [30].

The contribution of our research is significant for those

involved in urban planning and decision-making [1], pro-

viding a solution to the human mobility multivariate

forecast problem through RNNs and differentially private

BiGRUs. In addition, we point out the research community

to the Github page mentioned in the introduction section, in

which we release the mobility dataset used in this paper for

further experimentation with time series, machine learning,

and privacy-preserving methods. The related literature to

our work includes the generation of synthetic mobility data

[57–59], the development of Markov models to infer

travelers’ activity pattern [60], and the development of

privacy-preserving methods to analyze CDRs-based data

[15–17, 51]. Besides, the work in [5] surveys non-private

deep learning applications to mobility datasets in general.

Concerning differentially private deep learning, one can

find the application of gradient perturbation-based DL

models for load forecasting [56], an evaluation of differ-

entially private DL models in federated learning for health

stream forecasting [53], the proposal of locally differen-

tially private DL architectures [31], practical libraries for

differentially private DL [29, 32], and theoretical research

works [27, 28].

In this work, accurate multivariate forecasts were

achieved with four non-private RNNs (i.e., LSTM, GRU,

BiLSTM, and BiGRU), with BiGRU standing out among

the four methods. Thus, this paper further evaluated both

input and gradient perturbation settings to forecast multi-

variate aggregated mobility time series data using the

BiGRU neural network. Between both input and gradient

perturbation settings, although not measured, BiGRU[GP]

models took more time to execute than BiGRU[IP] models

due to DP-SGD. In terms of accuracy, BiGRU[GP] models

consistently outperformed BiGRU[IP] models for the same

(�; d)-DP privacy level in our experiments. One reason for

such result is because the input data perturbation setting

adds DP guarantees to each time series point in the data,

trading privacy with utility. This is indeed one fundamental

problem in DP theory [26] in which local DP algorithms

has low utility in comparison with centralized DP algo-

rithms. On the other hand, as BiGRU[GP] is trained over

non-DP time-series data, the mobility dataset is still subject

to data leakage [38], and consequently, membership

inference attacks [23, 24], and users’ trajectory recovery

attacks [20, 21], which requires strong security measures.

Therefore, training ML models over differentially private

multivariate time series mobility data provides the best

privacy-utility trade-off. In practice, the input-perturbation

setting allows applying centralized DP mechanisms in the

final aggregate data (e.g., Laplace mechanism [25], Gaus-

sian mechanism [26]), essentially refreshing the privacy

budget � on a regular basis, and using the published data for

any purpose (cf. Proposition 1).

Finally, some limitations and prospective directions of

this paper are described in the following. For differentially

private BiGRU models, we only provided lower � and

upper �� bounds for the privacy guarantee of each sample in

the time-series data. Using, however, advanced composi-

tion theorems [26] to account for the final privacy budget

for each user was out of the scope of this paper. Indeed,

CDRs are event-based [4, 7], which means that data are

only available when users actively make phone calls (or

connect to the internet, or send SMS). This way, there may

have users who make several calls (e.g., business people)

and, thus, have higher values of ��, while some groups do

not, e.g., poor people. Besides, although the developed DL

models outperform the Baseline model (xtþ1 ¼ xt), there is

plenty of room for improvements to be carried out on

hyperparameters optimization, data scaling, the number of

lag values, etc. For instance, some high-peak values were

missed by both non-private and DP-based DL models (see

Figs. 3 and 4). In addition, we fixed the number of lagged

values to 6 to predict a single step-ahead in the future (i.e.,

the forecasting horizon), in which the former can be tuned

for performance improvement and the latter can be

increased for multi-step forecasting tasks. Thus, besides the

aforementioned directions, for future work, we suggest and

intend to investigate a more complex DL architecture to

improve the results of DL models proposed in this paper

for this multivariate time series forecasting task. Lastly,

investigating the data leakage through membership infer-

ence attacks [34, 37] of both privacy-preserving ML set-

tings is also a prospective and intended direction.

5 Conclusion

This paper provides the first comparative evaluation of

differentially private DL models in both input and gradient

perturbation settings to forecast multivariate aggregated

mobility time series data. Experiments were first carried

out with four non-private DL models (i.e., LSTM, GRU,

BiLSTM, and BiGRU). The BiGRU model best fitted our

data and, thus, it was selected for building differentially

private DL models. Under gradient and input perturbation

settings, i.e., BiGRU[GP] and BiGRU[IP], respectively,

four values of � � 1 were evaluated. As shown in the

results, differentially private BiGRU models achieve nearly

bFig. 4 Multivariate time series forecast for the last day of the test set

for the number of users per coarse region (R1–R6) by the following

models: Baseline, non-private BiGRU, BiGRU[GP]3, and

BiGRU[IP]3
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the same performance as non-private BiGRU models, with

loss in performance varying between 0:57 and 2:8% (for

the RMSE metric). Thus, we conclude that it is still pos-

sible to have accurate multivariate forecasts in both pri-

vacy-preserving ML settings. More specifically, although

the gradient perturbation setting preserved more accuracy

than the input perturbation setting, input perturbation

guarantees stronger privacy protection (i.e., both for the

ML model and for the data itself), thus providing the best

privacy-utility trade-off.
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33. Carlini N, Tramèr F, Wallace E, Jagielski M, Herbert-Voss A,

Lee K, Roberts A, Brown T, Song D, Erlingsson Ú, Oprea A,
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