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Abstract
Gender classification of mobile devices’ users has drawn a great deal of attention for its applications in healthcare, smart

spaces, biometric-based access control systems and customization of user interface (UI). Previous works have shown that

authentication systems can be more effective when considering soft biometric traits such as the gender, while others

highlighted the significance of this trait for enhancing UIs. This paper presents a novel machine learning-based approach to

gender classification leveraging the only touch gestures information derived from smartphones’ APIs. To identify the most

useful gesture and combination thereof for gender classification, we have considered two strategies: single-view learning,

analyzing, one at a time, datasets relating to a single type of gesture, and multi-view learning, analyzing together datasets

describing different types of gestures. This is one of the first works to apply such a strategy for gender recognition via

gestures analysis on mobile devices. The methods have been evaluated on a large dataset of gestures collected through a

mobile application, which includes not only scrolls, swipes, and taps but also pinch-to-zooms and drag-and-drops which

are mostly overlooked in the literature. Conversely to the previous literature, we have also provided experiments of the

solution in different scenarios, thus proposing a more comprehensive evaluation. The experimental results show that scroll

down is the most useful gesture and random forest is the most convenient classifier for gender classification. Based on the

(combination of) gestures taken into account, we have obtained F1-score up to 0.89 in validation and 0.85 in testing phase.

Furthermore, the multi-view approach is recommended when dealing with unknown devices and combinations of gestures

can be effectively adopted, building on the requirements of the system our solution is built-into. Solutions proposed turn

out to be both an opportunity for gender-aware technologies and a potential risk deriving from unwanted gender

classification.
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1 Introduction

Nowadays, smartphones are nearly ubiquitous and com-

monly used to perform daily tasks such as banking, mes-

sages, photos, as well as browsing, connecting with others

through social media, and storing sensitive data. Therefore,

it is essential that these devices perform reliable user

authentication to prevent impostor accesses. The results

reported in the literature [9, 34, 38, 57, 60] indicate that the

authentication performance can be improved by augment-

ing traditional biometric traits with soft biometric traits.

Jain et al. [38] have shown improved performance when

soft biometric traits, such as gender, have been incorpo-

rated into user authentication that employs face and fin-

gerprint as primary features. Park et al. [57] achieved
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improved performance when soft biometric traits such as

gender and ethnicity are included in face recognition.

Similarly, Idrus et al. [34] have shown performance

enhancement when soft biometrics such as gender and age

have been combined with the behavioral biometric traits.

More recently, Ranjan et al. [60] have proved that a system

including face detection, landmark localization, pose esti-

mation, and gender recognition has superior performance,

compared to a load of previous and different models, in

recognizing users. Chai et al. [9] demonstrated the feasi-

bility of boosting palmprint identification with gender

information using convolutional neural networks.

Moreover, the gender information has seeped into the

human–computer interaction research field for a long time.

Several papers show the benefit derived from gender

recognition (e.g., [22, 50, 75]) as well as, in more general

terms, others highlight the significance of diversity-aware

user interfaces (UI) and systems (e.g., [42, 77]). Back in

2000, D. Passig et al. [58] found that there is a significant

difference in the level of satisfaction between boys and

girls depending on the UI’s design. Later on, B. Park et al.

[56] suggested that customized UIs should include gender

among other factors such as culture. In recent times, F.

Batarseh et al. [4] highlighted that UI’s colors could be

customized based on gender. T. Ling et al. [47] found that

gender plays a vital role in the perception of mobile

devices’ UIs within learning systems and consequently can

affect students performance. Very recently, S. Sohail et al.

[68] discovered that there is a significant difference

between males and females in how they perceive gaming

environments with different typographic factors. This was

also proved by A. Jamil et al. [40] when analyzing other

aspects of gaming UIs.

A software capable of adapting its UI according to the

gender of the user could be very useful in scenarios where

the actual device user cannot be known in advance: think

about, for instance, a set of mobile devices randomly

provided to employees (or students) of a company (in a

school / university laboratory) at the entrance.

In this paper, we focus on gender classification based on

machine learning and the analysis of different gestures

datasets (see Fig. 1 for a visual abstract). In particular, we

consider the usefulness of touch gestures on mobile devices

in soft biometrics. Such gestures are the primary way to

control these devices and the applications running on them.

1.1 The proposed approach

We collected the gestures datasets using mobile devices

with touchscreen through an Android app, forcing users to

perform specific touch gestures. The idea is that, the ges-

tures collected carry with them also behavioral data during

a user’s interaction with the smartphone. We are interested

in simpler gestures like swipe (left/right), scroll (up/down),

tap, and more complex ones like pinch-to-zoom and drag-

and-drop not considered in previous works. We do not

make use of the smartphone’s accelerometer and gyroscope

data. Once collected the datasets, larger in both users and

gestures compared to the literature, we derived features

capable of effectively describing the fine-grained nature of

gestures performed, such as length, curvature, finger’s

pressure and dimension, and velocity. Then, to identify the

most useful gesture for the classification task, we per-

formed classification measurements of single touch ges-

tures (single-view) using leave-one-user-out cross-

validation (LOUO-CV). We further perform experiments

heading to enhance the previously made classification by

combining touch gestures of different kind together,

adapting the approach of multi-view learning

[44, 46, 59, 69]. We have obtained that scroll down is the

most useful gesture for gender classification, random forest

is the most convenient classifier to address this problem.

Furthermore, the multi-view approach is recommended

when dealing with unknown devices and different combi-

nations of gestures can be effectively adopted—building on

the requirements of the authentication (or other kinds of)

system our solution is built-into.

Fig. 1 Visual abstract of our proposal. The solution presented here

(colored) classifies users’ gender leveraging on touch gestures. It can

be used to improve authentication performance, to enhance human–

computer interaction, or as part of healthcare and smart spaces (in

grey-scale). The developed app is just an instance of a variety of

applications ones might use to collect gestures data in order to

improve recognition tasks. At this stage of the project, we have not

fully formalized the implementation details of every use case (hence,

the use cases are in grey-scale)
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1.2 Literature’s deficiency filled

We highlight that our proposal fills the following gaps in

the literature:

• studying pinch-to-zoom and drag-and-drop gestures

(which are among the most commonly performed

gestures [3, 29, 55]);

• applying multi-view learning strategies to the gender

recognition problem via gestures analysis on mobile

devices. Such a strategy has proved to be effective in

different contexts (e.g., [8, 73]);

• proposing a more robust evaluation of the methods with

LOUO-CV;

• evaluate the proposal in different scenarios, i.e., with

different mobile devices and never seen users (that did

not participate in the data collection phase).

As we will see in Sect. 3, such aspects are mostly over-

looked in the literature and not thoroughly explored.

1.3 Our contributions

The primary contributions of our work can be summarized

as follows:

• Designing an approach for automatic gender classifica-

tion based on machine learning and analysis of only

gestures on touch devices; this, as highlighted in the

literature, has a low impact on energy consumption of

mobile devices with respect to approaches using

gyroscope and accelerometer data stream;

• In-depth analysis of a large set of handcrafted features

representing users’ touch gestures;

• Considering, conversely to previous literature, complex

gestures, i.e., pinch-to-zoom (turned out to be very

useful) and drag-and-drop.

• Experimenting different learning approaches to the

gender classification problem, that is single-view and

multi-view learning; compared to previous works, this

paper performs a more comprehensive evaluation of

such techniques; to the best of our knowledge, this is

one of the first works to apply multi-view learning

strategies for gender recognition via gestures analysis

on mobile devices.

• In-depth analysis of solution’s performance in different

scenarios, i.e., unknown users, unknown devices; to the

best of our knowledge, this is one of the first work

providing the assessment of the solution with the

already seen users with entirely new devices, and never

seen users.

• Discussion of the perspectives entailed by this kind of

solution, potentiality and risks of its application in real-

world.

1.4 Organization

The rest of the paper is structured as follows. Section 2

provides details about single-view and multi-view learning

approaches and about the leave-one-user-out cross-valida-

tion. Section 3 is devoted to illustrate most recent related

works and differences with the present one. Section 4

presents our solution for gender classification detailing the

different approaches evaluated. Section 5 summarizes and

compares results achieved, shows further experiments to

better assess the generalization capabilities of the proposal,

and highlights potentialities and risks of the gender clas-

sification approach here presented. Lastly, we provide

some concluding remarks in Sect. 6.

2 Background

In this section, we dwell on single-view and multi-view

learning approaches (Sect. 2.1) and on the cross-validation

technique used here, that is LOUO-CV (Sect. 2.2).

2.1 Single- and multi-view learning approaches

2.1.1 Single-view learning

refers to the traditional approach of machine learning

where a classifier is fit on a single dataset (Fig. 2a). In this

case, the classifier has just one view-point (hence, a single-

view) on the data. For example, a classifier that is fit on

face images for skin-cancer prediction, only ‘‘knows’’ the

patients’ face images (single-view). Perhaps, the prediction

performance can be enhanced by accounting/combining

multiple sources of information, e.g., data from blood

analysis, hence the multi-view learning [44, 46, 59, 69].

Therefore, in our case, we exploit both single-view and

multi-view learning, where in single-view we consider only

one type of gesture at a time, while in multi-view we

combine in different ways gestures of different kind. As we

will see more in detail in the following, combinations can

be performed in different ways, among which we find: (i)

concatenating samples of single-views, (ii) using classifiers

(or statistical methods) for feature selection in single-views

and then concatenating most important ones, and (iii) using

single classifiers for single-views and exploiting their

classification results for fitting another classifier for the

final prediction.

Concerning the single-view approach, we consider the

following classifiers:

– Random forest (RF): it is a supervised classification

model which consists of an ensemble of methods based

on bagging.
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– Support vector machine (SVM): it is a supervised

learning model with associated learning algorithms; an

SVM model is a representation of the examples as

points in space, mapped so that the examples of the

separate classes are divided by a clear gap.

– K-Nearest neighbors (KNN): it is a nonparametric

method relying only on the most basic assumption

underlying all prediction, i.e., that observations with

similar characteristics will tend to have similar out-

comes. Nearest neighbor methods assign a predicted

value to a new observation based on the plurality or

mean (sometimes weighted) of its k-nearest neighbors

in the training set.

– Multilayer Perceptron (MLP): it is a feedforward

artificial neural network which exploits a supervised

learning technique called backpropagation for training.

Concerning multi-view learning, there are several tech-

niques presented in the literature. Specifically, we adopt

early, intermediate and late integration methods. The

‘‘early integration’’ (Fig. 2b) consists of concatenating the

features associated with different gestures (single-views)

performed by the same participants; in this way, each

combination (concatenation of two or more single-view

features-vector sample) represents one sample in the

dataset; this method has the downside of considering large

space features-vectors. The ‘‘intermediate integration’’

(Fig. 2c) consists in performing a features selection for

each gesture [44, 45] (single-view), and then concatenating

the features selected for each single-view; the advantages

of such a technique are: (i) the heterogeneous nature of the

gestures’ features can be better exploited through the

single-views separation, (ii) the size of the output (and,

therefore, the sample to analyze in subsequent phases) is

reduced, and (iii) the separate extraction of significant

features for different gestures implements the divide-et-

impera principle, reducing the complexity of the tasks.

Lastly, with the ‘‘late integration’’ (Fig. 2d) we train a

classifier for each gesture (single-view) and then we use the

outputs obtained by these models as input for a new model

exploited for the final decision [23]. This method has the

advantage to be easily implemented in parallel because

each classifier is independently fit on a single-view, but, as

a downside, it does not account interactions that could exist

among single-views.

Multi-view learning has been exploited in a number of

papers, particularly in the health domain. In more detail,

just to mention some of the most recent ones, early inte-

gration has been used in radiomics [8] and for cancer

prediction [73]. Intermediate and late integration has been

used for predicting neurodegeneration [23]. Moreover, all

the techniques have been applied for users’ age-group

classification [76]. Even if not new, the approach has never

been applied before for gender classification based on the

analysis of touch gestures as we do here.

2.2 Leave-one-user-out cross-validation

k-fold cross-validation (k-fold CV) is a resampling proce-

dure used to evaluate machine learning models. The pro-

cedure has a single parameter called k that refers to the

number of groups that a given dataset is to be split into.

Cross-validation is primarily used to estimate the skill of a

(a) (b) (c) (d)

Fig. 2 a Single-view learning and (b, c, d) multi-view learning. b early integration, c intermediate integration, d late integration
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machine learning model on unseen data. As clearly

explained in [39] ‘‘this approach involves randomly

dividing the set of observations into k groups, or folds, of

approximately equal size. The first fold is treated as a

validation set, and the method is fit on the remaining k-1

folds’’. When k is equal to the size of the dataset (i.e., the

number of samples), the literature refers to the so-called

leave-one-out cross-validation (LOO-CV), which takes one

only sample of the dataset for the validation and all sam-

ples minus one for fitting the model. Although k-fold cross-

validation (as well as LOO-CV) is a well-established

method, its usage is not suitable for the task of gender

classification. For this purpose, an alternative cross-vali-

dation method is recommended: the leave-one-user-out

cross-validation (LOUO-CV), a variant of LOO-CV. In this

validation method, the classifier is trained with all but one

user data, and this is repeated for all users. This method

allows us to understand the generalization capability of a

model, which is recognizing samples from users that were

unseen during the training phase. The different validation

methods are depicted in Fig. 3. Here, it is possible to spot

the differences between the methods. In k-fold CV and

LOO-CV, the random split could put samples generated by

the user Ui in both the datasets used for fitting and the one

used for validation. In the case of LOUO-CV, this does not

happen, given the split is user-based. Therefore, in fitting

set there are all the samples generated by all the users

except a user Ui, while in the validation set there are all the

samples generated by Ui. In other words, suppose we put

samples of the same user in both training and testing

datasets. In that case, the classifier could exhibit untruthful

performance (a very high accuracy due to the uniqueness of

a user in performing a specific gesture), which, however,

do not reflect the actual capabilities when deployed and

facing new users instead of previously seen ones. LOUO-

CV has been used in several studies. Hemminki et al. [30]

studied the recognition of a user’s transportation based on

GPS and accelerometer data. Tao et al [70] investigated

surgical gesture classification using sparse hidden-Markov

models based on motion data. They compared LOO-CV

and LOUO-CV evaluation methods for several datasets and

reported a considerable decrease for the latter, more com-

pliant with a real-world usage of the system. The same

strategy has been applied for the same purposes by [1].

Antal et al. [2] propose the LOUO-CV for gender recog-

nition through the analysis of touch gestures. Cornelius

et al. [12] proposed a novel method for recognizing whe-

ther sensors are on the same body. Craley et al. [14]

employ the LOUO-CV to evaluate a finger tracking system

based on a tracker ring. More recently, Chen et al. [10]

adopted the evaluation method for estimating the gameplay

engagement.

As with other researches, evaluations here have been

performed by using LOUO-CV.

3 Related work

In this section, we discuss prior works showing contact

points with the one presented here, highlighting key dif-

ferences. Given our aim is to classify users’ gender by

using touchscreen gestures data, (i) we first describe papers

in the field of gender classification as a whole (Sect. 3.1),

(ii) then papers employing touch gestures as soft biometric

trait (Sect. 3.2), and (iii) lastly the closest project exploit-

ing gestures for gender classification (Sect. 3.3).

3.1 Gender classification in general

Gender classification is a research area that attracted many

scientists during the years. This task has been investigated

in relation to several types of biometric data such as speech

[78], face [60, 67], gait [35, 36], and even EEG [31]. More

specifically, the authors in [60] have developed an algo-

rithm that, given a photo, simultaneously performs face

detection, landmarks localization, pose estimation and

gender recognition using deep convolutional neural net-

works. Smith et al. [67] proposed a method based on

transfer learning for both gender classification and age

prediction leveraging on face images. Instead, Jain et al.

[36] presented an approach for gender classification using

users’ gait information tracked leveraging on accelerome-

ter and gyroscope sensors of a smartphone. They built a

bootstrap aggregating classifier such sensors features for

classification of the gender. The proposed approach’s per-

formance was evaluated on datasets collected using two

different smartphones containing a total of 654 samples.

The proposed approach achieved classification accuracy

from 88.46 to 91.78% based on the activity user performed

(walking, running, and so on).

Fig. 3 Different approaches for cross-validation: k-fold cross-valida-

tion (k-fold CV), leave-one-out cross-validation (LOO-CV), and the

one used in this work, i.e., leave-one-user-out cross-validation

(LOUO-CV). The dotted circles highlight the user who generated

the sample
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3.2 Touch gestures as (soft) biometric trait

Touch gestures performed on smartphones have been used

as (soft) biometric trait for several purposes (see [33] for a

comprehensive overview). For example, several research-

ers employed gestures for age-group classification. In more

details, in the work by [74], a method is proposed based on

the concatenation of seven or more consecutive taps to

recognize very young children (6 years old or less) from

adults. Nguyen et al. [72] highlight that there is a risk for

children under 12 years to be easily recognized (up to 0.99

ROC AUC) with respect to adults (more than 24 years old)

by analyzing scroll, swipes, taps and other sensors alto-

gether. Both works did not assure that the cross-validation

was performed by splitting by users instead of samples’

labels; therefore, the evaluation can be considered inade-

quate. Cheng et al. [11] proposed iCare, a system that can

identify child users automatically and seamlessly when

users operate smartphones. iCare records the touch

behaviors and extracts hand geometry, finger information,

and hand stability features (by means of accelerometer and

gyroscope) that capture the age information. They con-

ducted experiments on 100 people including 62 children

and 38 adults. Results have shown that iCare can achieve

96.6% accuracy for child identification using only a single

swipe on the screen, and the accuracy becomes 98.3% with

three consecutive swipes. Lastly, Zaccagnino et al. [76]

exploited touch gestures (scroll, swipe, tap, drag-and-drop,

pinch-to-zoom) to lay the foundation of a safeguarding

architecture for underages (age � 16 according to the EU

GDPR) on the phone (e.g., limiting harmful content dis-

played or preventing illegal contacts).

Other authors argued that touch gestures have the

potential to identify users correctly. Specifically, Masood

et al. [51] developed an algorithm based on entropy that

quantifies the uniqueness of touch gestures, finding that it is

possible to correctly re-identify participants in their trial.

The results showed that writing samples (using the finger to

write on a touchpad) could reveal 73.7% of information,

and left swipes can reveal up to 68.6% of information of an

individual. Instead, Rzecki et al [62] proposed a compu-

tational intelligence method which proved that long ges-

tures (a single connected movement of a finger over the

touchscreen) led to a very high person identification rate

(up to 99.29%). They found that support vector machine

and random forest were the most effective classifiers for

this task. A summary of these works is available in

Table 1.

3.3 Gender classification based on touch
gestures

There exists not that much research on the use of touch

gestures for gender classification. [26] were among the first

ones to perform gender classification using touch gestures

on smartphones. They report gender recognition accuracies

of 87.32 to 91.63% using keystroke dynamics on their

GREYC dataset. This evaluation can be considered inad-

equate since they used fivefold cross-validation; therefore,

data from the same person were present both in the training

and testing phases. Fairhurst et al. [21], besides user

identity classification, performed gender classification on

the same GREYC dataset. Again they report results based

on tenfold cross-validation. Antal et al. [2] exploited key-

stroke dynamics and touchscreen swipes for gender

recognition employing LOUO-CV and using random forest

classifier. The best results were 64.76% accuracy for the

keystroke dataset and 57.16% for the swipes dataset. More

recently, Jain et al. [37] included in the analysis the sensors

data (gyroscope and accelerometer) in addition to swipes.

Concerning the gestures, they adopted GIST descriptor-

based features extracted from two-dimensional maps of the

touch gesture attributes, focusing on the length and cur-

vature. Finally, a k-nearest neighbor classifier recognizes

the user’s gender. They evaluated their approach with

fivefold cross-validation (user-based) on a set of 2268

gestures, finding accuracy of 92.96% when combining all

the data sources (sensors and multiple gestures). None of

these works made available the collected data (raw or

preprocessed) allowing other researchers more relevant

comparisons. A summary of these works is available in

Table 1.

3.3.1 This work

Compared to the works mentioned above, we perform a

more comprehensive evaluation of different classifiers both

on single-view and multi-view approaches. We remark that

the different integration techniques we adopt here have

never been used for gender classification through touch

gestures. We perform a more in-depth analysis of the hand-

crafted features computed to represent touch gestures.

Furthermore, we do not consider any sensor data (gyro-

scope and accelerometer are widely used in other approa-

ches) which results into an energy gain, that for mobile

devices represents a key concern [20, 25, 52, 79].

The dataset used here is wider in both samples and users

(more than 9,500 samples and 147 users, respectively).

Besides, our dataset contains complex touch gestures such

as drag&drop and pinch-to-zoom that have never been used

before for gender classification. Differently from [37],
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Table 1 A summary and comparison of the existing methods for (soft) biometrics on smartphones using touch gestures

Study Trait Modality Methodology #

Users

in

dataset

Main remarks

[21] Gender Keystrokes Analysis of latency between a keystroke and

successive one

133 (i) mainly based on timing; (ii) evaluated on

a large dataset comparing different

classifiers; (iii) validation not user-based.

Best performance: 3% error rate

[26] Gender Keystrokes Analysis of latency between a keystroke and

successive one

133 (i) mainly based on timing; (ii) evaluated on

a large dataset with SVM only; (iii)

validation not user-based. Best
performance: 92% accuracy

[74] Age Taps Bayes rule classifier analyzes 7? consecutive

taps

119 (i) Young children can be effectively

recognized from adults; (ii) the user need to

provide many gestures; (iii) only one

classifier evaluated. Best performance:

99% accuracy

[72] Age Swipes, Scrolls,

Taps, and

accelerometer and

gyroscope

Random forest classifier analyzes 8?

consecutive gestures and 5 seconds sensors

50 (i) younger children (3-8 years) and also

older ones (9-12 years) are correctly

classified; (ii) does not include complex

gestures such as pinch-to-zoom; (iii)

validation not user-based, and performed

on a small dataset evaluating one classifier.

Best performance: 99% accuracy

[2] Gender Keystrokes, Swipes LOUO-CV with random forest considering

features like finger pressure and dimension,

length of swipes, and latency between

keystrokes

98 (i) showing features importance for each

gesture; (ii) evaluation done without

combining gestures and with the random

forest only; (iii) the method is more

effective with some users. Best
performance: 61% accuracy

[62] Identity Touch gesture-based

passwords

Analysis of long gestures with features

transformation based on PCA

50 (i) the method is very effective regardless the

classifier employed; (ii) using very long

gestures; (iii) evaluated on a small dataset.

Best performance: 99% accuracy

[51] Identity Swipes, Scrolls,

Taps, Hand-

writing

Using a measure of uniqueness of users’

gestures based on entropy and cosine

similarity metric

89 (i) combination of scroll, swipe and hand-

writing is the most useful for recognizing

users; (ii) users were free to perform any

number of gestures; (iii) hand-writing is a

not very common interaction. Best
performance: 98.5% of information about

users

[37] Gender Swipes, and

Accelerometer,

Gyroscope and

Orientation sensors

K-Nearest Neighbors classifies multiple

swipes’ and sensors’ data all together

126 (i) use of user-based cross-validation; (ii)

validated on a large dataset; (iii) does not

exhibit performance for each combination

of swipes’ and sensors’ data considered.

Best performance: 93% accuracy

[11] Age Swipes,

Accelerometer,

Gyroscope, and

Orientation sensor

Tree-based classifier recognize children on

the phone using sensors and touch

interactions

100 (i) dataset collected without any constrains;

(ii) experiments based on subgroups split

by gender and race; (iii) validation method

not clear. Best performance: 96%

accuracy with consecutive swipes

[76] Age Swipes, Scrolls,

Taps, Pinch-to-

zooms, Drag-and-

drops, Writing

Random forest analyzes a combination of

scroll, swipe and pinch-to-zoom for age-

group classification

147 (i) evaluated on different smartphones

model; (ii) evaluated on a large dataset;

(iii) not very effective with teenagers. Best
performance: 0.92 ROC AUC
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where results are presented based on the number of ges-

tures combined and not disclosing the exact combinations,

we exhibit the results of every single-view and multi-view

learning approach adopted. In addition, their work is based

on the integrated analysis of gestures and sensors (e.g.,

accelerometer and gyroscope) which are not available on

every mobile device on the market (some low-tier devices

are not equipped with gyroscope). Lastly, none (except

[76] for smartphones) of the works mentioned above have

performed an evaluation of the proposed method with

different mobile devices as we have done for smartphones

and tablets.

4 Our method for gender classification

Figure 4 shows the block diagram of our proposal for

users’ gender classification through the analysis of gestures

performed on touchscreen devices. We have developed an

Android application to collect biometric data of users

(Sect. 4.1). Such data are split into different datasets, one

for each touch gestures considered (Sect. 4.2), that is scroll

down (ScD), scroll up (ScU), swipe left (SwL), swipe right

(SwR), tap (T), drag&drop (DD), pinch-to-zoom (P2Z).

We then extract features from these gestures, such as x-y

coordinates, pressure and dimension of the finger, velocity,

and so on (Sect. 4.3). Next, we adopt single-view and

multi-view learning approaches for twofold objectives: (a)

with single-views we consider only one kind of gesture

dataset at a time aiming at understanding the most useful

touch gesture among the considered ones (Sect. 4.4.1); (b)

with multi-views we consider different ways of combining

different gestures aiming at understanding both whether

combination of gestures improves the classification per-

formance compared to the single-view approach and if so

the best combination of gestures (Sect. 4.4.2). For both

approaches, we envision a LOUO-CV (made with 80% of

the datasets) and testing phase (made with the remaining

20% of datasets).

All the experiments have been run on a machine

equipped with 2.8 GHz Intel i7 quad-core (Turbo Boost up

to 3.8GHz) with 6MB shared cache L3 (model 7700HQ

‘‘Kaby Lake’’), and 16GB 2133 MHz LPDDR3 RAM.

4.1 Android application

In order to collect data, we implemented an Android

application that allows to capture and analyze user inter-

actions with the smartphone. The app includes several

games; each of them is thought to force the user in per-

forming a specific touch gesture. We are interested in the

following gestures: scroll (up/down), swipe (left/right), tap,

drag&drop, pinch-to-zoom. Thus, we define the set of

gestures G ¼ fScD; ScU, SwL, SwR, DD, P2Z g. We

have employed the Android APIs onScroll, onFling,

onTouchEvent, onDrag, onTouch. Thus we have

developed five games:

– Game 1 (Fig. 5a) collecting data about ScD, and ScU;

– Game 2 (Fig. 5b) collecting data about SwL, and SwR;

– Game 3 (Fig. 5c) collecting data about T;

– Game 4 (Fig. 5d) collecting data about DD;

– Game 5 (Fig. 5e) collecting data about P2Z.

We remark that, in general terms, we needed a method to

collect users data; it should have been the most attractive

possible in order to include a large number of participants.

Therefore, we have opted for a game-based app to make it

more pleasant and joyful for users. In this way, we have

gathered more users in our study. Our interest is not toward

gaming ability, the app does not put users in any compe-

tition. The games do not show any score to the user, hence

they do not aim to trigger any gaming performance. Lastly,

observe that every user has just played once.

4.2 Collecting data

In this phase, we have gathered data from 147 participants.

Before starting the collection phase, we explained to par-

ticipants what they were expected to do in the study. For

children, their parents completed written parental permis-

sion forms. All participants had to sign consent forms. We

explained that we did not collect personal information

during the experiments except for username, device ID,

age, and gender. Raw data associated with gestures per-

formed by users are tracked and saved for the subsequent

analysis. We also explained that these data were kept

confidential and used only for the period of the

experimentation.

Fig. 4 Block diagram of the proposed approach for gender classification based on the analysis of touch gestures performed on mobile devices
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(a) (b) (c) (d)

(e)

Fig. 5 Games developed to collect the biometric datasets. The games require users to perform specific touch gestures

Table 2 Description of the raw data captured through the Android app for the different touch gestures and corresponding dataset size. m = male, f

= female

Game Gesture (m/f) Information

1 ScD (1569/

1025)

start time, start point, end point, duration, touch dimension, touch pressure, velocity along x and y axis

ScU (407/

266)

2 SwL (605/

400)

start time, start point, end point, duration, touch dimension, touch pressure, velocity along axis

SwR (588/

384)

3 T (1780/

1162)

start time, start point, end point, touch dimension, touch pressure

4 DD (445/260) start time, start point, end point, duration, touch dimension, touch pressure, velocity along x and y axis

5 P2Z (659/

431)

start time, finger1 start point, finger1 start dimension, finger1 start pressure, finger2 start point, finger2 start dimension,
finger2 start pressure, length, fingers motion points, fingers motion velocity along x and y axis

Total 9981 (6053/3928)
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The models of smartphones used for the experiments

were a HTC Desire 820, LG Nexus 5X, and ASUS Zen-

Fone 2.

We collected 9,981 touch gestures from 89 male and 52

female participants. The age varies in the range from 7 to

59 years. 34% of participants were under 16 years old. 49%

of them were in the range 17-26. The data captured for

each gesture (relying on the Android Touch API) and the

sizes of the different datasets are available in Table 2. See

https://bit.ly/3pyNpno for an excerpt of the data collected

and https://bit.ly/3IZ6Lvz for all the data.

4.3 Extracting features

In this section, we highlight the features extracted for each

gestures dataset. On the one hand, these features are taken

from the Android Touch API; examples include: the

number of fragments the gesture is composed of (frag

number), the duration of the gesture (duration), the coor-

dinates of the initial point of the gesture (xs,ys), and so on.

On the other hand, additional features are engineered

considering ‘‘geometric’’ properties of the gesture. For

instance, based on x-y coordinates’ analysis, we are inter-

ested in the gesture’s length. Let (xs,ys) the coordinates of

the start point, (xe,ye) the coordinates of the end point, then

length ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxe � xsÞ2 þ ðye � ysÞ2
q

. Accounting the time (ts

start time, and te end time) together with the coordinates,

we can compute the velocity: vel ¼ length
te�ts

. Other features we

are interested in are duration, pressure and dimension of

the finger. For ScD/ScU we also compute features

regarding the turning points. Given a ScD/ScU gesture, the

turning point ðxtp; ytpÞ is the point where the gesture

changes direction respect the x-axis. We consider the

acceleration concerning the turning point (see Fig. 6). It is

captured by two features, i.e., the acceleration of the ScD/

ScU gesture from ðxs; ysÞ to ðytp; ytpÞ and the acceleration

of the ScD/ScU gesture from ðxtp; ytpÞ to ðxe; yeÞ.
Likewise, we included information about the finger

dimension and pressure in correspondence of ðxtp; ytpÞ
(indicated as mid dimension and mid pressure in Table 3).

As anticipated, specific Touch APIs allow developers to

catch the fragments composing the gesture. For such ges-

tures, we considered pressure, dimension and velocity in

the following way: (i) the value concerning the whole

gesture running, (ii) the maximum, minimum, mean value,

and (iii) the values in correspondence of the quartiles of the

gesture (the value at the start, 25%, 50%, 75% and at the

end of the gesture running).

Lastly, concerning the P2Z we consider both fingers

(finger1, finger2) coordinates, pressure, dimension.

All the features extracted for each gesture are summa-

rized in Table 3. Every feature has real values (2 R), with

the exception of frag number in ScD/ScU, T, and P2Z

which has natural values (2 N).

4.4 Evaluation

We evaluated the performance of random forest (RF),

support vector machine (SVM), multilayer perceptron

(MLP), and K-nearest neighbors (KNN) for the gender

classification task. Features’ values of samples in the var-

ious datasets have been scaled in the range [0, 1] prior to

be analyzed in the subsequent phases. For the validation

phase (LOUO-CV) we reserved roughly 80% of the

available users (we used the samples of 117 users), while

the remaining 20% was left for the testing phase (we used

the samples of 30 users). The split was stratified. For every

approach (single-view and multi-view) evaluated, during

the LOUO-CV we found the best setting of main param-

eters for each classifier, with respect to the optimization of

F1-score. We searched the parameters with a grid strategy,

i.e., looking for the best ones among specific boundaries.

For example, we bounded the search of n estimators for

RF from 20 to 500 (ten by ten step). The list of tuned

parameters is shown in Table 4.

For the evaluation phase, we employed the scikit-learn

library for Python.

In the following, we report the results obtained on the

whole dataset collected (involving all the users). However,

we remark that in intermediate phases during the data

collection, we experimented our approaches on different

ages range: 0–10, 11–20, 21–30, 31–40, 41–50, 51–60. The

aim was having preliminary feedback from our solutions.

We found that classifiers generally exhibited good

(b)(a)

Fig. 6 Scroll (ScD, ScU) turning point (tp)

18482 Neural Computing and Applications (2022) 34:18473–18495

123

https://bit.ly/3pyNpno
https://bit.ly/3IZ6Lvz


performance with every gesture when testing with samples

generated by users of similar age. In particular, the best

results were in the ranges 21-30, and 31-40 with F1-score

up to 0.94. The worst results were obtained in the range

0-10 and 51-60. We highlight our goal was a solution

coping with the wider age range possible. Therefore, we

argued it was more correct to report only the results

obtained on the whole dataset.

4.4.1 Single-view approach

The objective of this approach is to understand which

gesture is the most useful for gender classification. In

Table 5, we report the results obtained when considering

one gesture at a time. For every g 2 G we show the F1-

score both in validation and testing phases; the italic font is

used for emphasizing best results on a gesture-basis, and

the bold font is adopted for highlighting the best result obtained, that is the most useful gesture when analyzed

with the most promising classifier.

Table 3 Sketch of the features extracted for each touch gesture. Vel = velocity, dim = dimension. For further details please refer to https://bit.ly/

3pyNpno

Gesture Features

ScD/ScU 50 features. frag number, duration, start point ðxs; ysÞ, end point ðxe; yeÞ, length, total vel, area, turning point ðxtp; ytpÞ, turning point
angle, acceleration s;tp, acceleration tp;e, start dim, mid dim, end dim, min dim, max dim, mean dim, 25% dim, 50% dim, 75% dim,
start pressure, mid pressure, end pressure, min pressure, max pressure, mean pressure, 25% pressure, 50% pressure, 75%
pressure, start vel x, mid vel x, end vel x, min vel x, max vel x, mean vel x, 25% vel x, 50% vel x, 75% vel x, start vel y, mid vel y, end
vel y, min vel y, max vel y, mean vel y, 25% vel y, 50% vel y, 75% vel y

SwL/

SwR

13 features. duration, start point ðxs; ysÞ, end point ðxe; yeÞ, dim, pressure, length, vel, acceleration, area, X vel, Y vel

T 29 features. frag number, start point ðxs; ysÞ, end point ðxe; yeÞ, x shift, y shift, xmin, xmax, ymin, ymax,start dim, mid dim, end dim, min
dim, max dim, mean dim, 25% dim, 50% dim, 75% dim, start pressure, mid pressure, end pressure, min pressure, max pressure,
mean pressure, 25% pressure, 50% pressure, 75% pressure

DD 13 features. duration, start point ðxs; ysÞ, end point ðxe; yeÞ, dim, pressure, length, vel, acceleration, area, x vel, y vel

P2Z 48 features. finger1 start point ðx1; y1Þ, finger1 dim, finger1 pressure, finger1 start point ðx2; y2Þ, finger2 dim, finger2 pressure, frag
number, length, area, pinch grade, start dim, mid dim, end dim, min dim, max dim, mean dim, 25% dim, 50% dim, 75% dim, start
pressure, mid pressure, end pressure, min pressure, max pressure, mean pressure, 25% pressure, 50% pressure, 75% pressure,
start vel x, mid vel x, end vel x, min vel x, max vel x, mean vel x, 25% vel x, 50% vel x, 75% vel x, start vel y, mid vel y, end vel y,
min vel y, max vel y, mean vel y, 25% vel y, 50% vel y, 75% vel y

Table 4 Parameters tuned for

each classifier evaluated (both

in single-view and multi-view).

in = input layer size. MLP

solver was set to lbfgs

Classifier Parameters Range Step

RF n estimators [20, 500] 10

SVM C ½10�3; 103� 10

kernel flinear; rbf, sigmoid, polyg –

MLP hidden layer size ½ 1
10
; 9

10
� � in 1

20
� in

activation fidentity; logistic, tanh, relug –

KNN n neighbors [3, 10] 1

weights funiform; distanceg –

Table 5 Performance comparison of different classifiers over the

considered touch gestures in the single-view approach. For each

classifier, the table shows F1-score for both validation and testing

phases (validation/testing). Time (ms) shows the time elapsed on

average for a single fit() in milliseconds

Gesture RF SVM MLP KNN

ScD 0.89/0.85 0.88/0.84 0.85/0.81 0.84/0.80

ScU 0.85/0.82 0.87/0.83 0.87/0.83 0.85/0.80

SwL 0.77/0.72 0.75/0.71 0.70/0.63 0.68/0.63

SwR 0.80/0.82 0.76/0.79 0.72/0.68 0.70/0.67

T 0.72/0.65 0.70/0.64 0.67/0.63 0.66/0.63

DD 0.73/0.67 0.72/0.66 0.69/0.65 0.69/0.65

P2Z 0.80/0.77 0.81/77 0.77/0.70 0.75/0.70

Time (ms) 60 106 90 37
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We observe that RF and SVM are the most effective

classifiers in the gender recognition task. Concerning the

different gesture datasets, the results show ScD is the most

useful gesture for classifying users’ gender (from 0.82 to

0.89 F1-score in validation), followed by ScU, SwR, P2Z

and SwL, respectively. RF when analyzing ScD exhibits

F1-score of 0.89 in validation and 0.85 in testing. Lastly, to

understand what is the best classifier between SVM and RF

we perform a statistical test. We first assess the normality

distribution of data with Shapiro–Wilk test [64] with a

significance level of a ¼ 0:05, obtaining p � value ¼ 0:43.

Since p � value[ a, we accept the null hypothesis, that is

we assume the data is normally distributed. Therefore, we

can exploit the t-student test [41, 62]. We assume this

difference between RF and SVM is zero (this is the null

hypothesis) with the significance level .05 and check if we

can reject this hypothesis. There are seven results of clas-

sifications, so the degree of freedom is six. RF’s M ¼ 0:75,

SD ¼ 0:03, and it is the same for SVM. We can calculate

that t-Student test result is t ¼ 0, and obtained p ¼ :5. The

hypothesis cannot be rejected, so from statistical point of

view, none of these classifiers has significantly better

accuracy than the other. The only time of training (RF is

about 1.7 times faster than SVM on average in training)

gives the advantage of RF method (grey background in

Table 5) for the subsequent steps.

4.4.2 Multi-view approach

The objective of this approach is to understand which

combination of gestures is the most useful for gender

classification. Combinations we consider are without rep-

etitions. Here, we experiment early, intermediate and late

integration techniques (see Sect. 2.1):

– Early: we simply concatenate gestures. Let g1; g2 2 G

be two touch gestures, with g1 6¼ g2 we concatenate the

features of g1 and g2. For example, if g1=ScU and

g2=SwL, the technique generates samples of 50?13

features. These are input for the final classifier.

– Intermediate: we use a feature ranking technique to

only keep the most discriminating features for each

g 2 G, then we concatenate such features’ sub-spaces

for the final classification. RF has been chosen for the

final decision due to the very good results obtained with

the single-view approach and to its reduced training

time.

– Late: we fit the best classifier (obtained in the single-

view approach) for each gesture g 2 G, then we

concatenate these classifiers’ results in a RF for the

final decision. We select RF due to its reduced training

time.

Concatenations we refer to are user-based, i.e., we con-

catenate gestures performed by the same user. We have

performed this evaluation on pairs and triples of gestures.

Pairs (PA) and triples (TR) analyzed are the following ones:

PA ¼ fSwL; SwR; ScD; ScU; T;DD;P2Zg
2

� �� �

TR ¼ fSwL; SwR; ScD; ScU; T;DD;P2Zg
3

� �� �

Results of these multi-view learning strategies are reported

in Table 6. We highlight the best results using bold font,

and the most convenient strategy with the grey background.

Early integration. The best results are obtained when

combining ScD?SwL (50?13 features) and ScD?P2Z

(50?48 features) with F1-score of 0.86 in validation, and

from 0.80 to 0.84 in testing. The triple ScD?SwL?P2Z is

on par with these results but considers more features

(50?13?48).

Intermediate integration. Since features used are in the

range [0, 1] and classes 2 fmale; femaleg, we adopt fea-

tures selection method for each g 2 G by analyzing vari-

ations, i.e., computing the ANOVA F-measure [24] with

f_classif method1. Figures 7 and 13 show F-measure

computed for all features of each gesture. The most sig-

nificant ones (score[ 0:2) are colored in blue. We observe

that for ScD and ScU the most significant features are those

related to the velocity and length. Concerning the SwL and

SwR, the duration and the length are among the most

important characteristics. For T the most important features

are those accounting pressure, while for DD duration and

velocity are among the most useful. Lastly, for P2Z length

and area are the most distinctive features. The best results

have been obtained when combining ScD?ScU (17?23

features), ScD?SwL?P2Z (17?7?19 features),

ScD?SwR?P2Z (17?10?19 features), ScD?ScU?SwL

(17?23?7 features), ScD?ScU?P2Z (17?23?19 fea-

tures) with F1-score of 0.86 in validation and from 0.84 to

0.85 in testing.

4.4.3 Late integration

For this strategy, we employ the StackingClassifier

method. The best results have been achieved when

1 An F-statistic, or F-test, is a class of statistical tests that calculate

the ratio between variances values, such as the variance from two

different samples or the explained and unexplained variance by a

statistical test, like ANOVA. The ANOVA method is a type of

F-statistic referred as an ANOVA f-test. Importantly, ANOVA is used

when one variable is numeric and one is categorical, such as

numerical input variables (features of the gestures) and a classifica-

tion target variable in a classification task (male or female?). The

results of this test can be used for feature selection [5, 32, 65] where

those features that are independent of the target variable can be

removed from the dataset.
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combining ScD?ScU and ScD?ScU?P2Z with F1-score

of 0.85 in validation and from 0.84 to 0.85 in testing.

4.4.4 Overall

As one can imagine, the combinations including ScD were

the most effective, with F1-score almost always higher than

other combinations whatever the integration strategy

adopted. However, we aim to understand what is the most

effective strategy of multi-view learning. Since the Sha-

piro–Wilk test (a ¼ :05) was violated

(p � value ¼ 0:0005\a), we perform the nonparametric

Kruskal–Wallis H test [53] to check if there is a significant

difference among the strategies. We obtained H ¼ 11:918

and p � value ¼ :00258. The result is significant at p\:05;

therefore, we select the intermediate integration strategy.

This strategy has also a reduced training time (on average

1.74 times faster than the early integration and 1.15 times

faster than the late integration).

5 Discussion

This section presents an in-depth analysis of the results

obtained in the evaluation (Sect. 5.1) and potentiality and

risks arising for users when this kind of solution is adopted

in real-world applications/frameworks (Sect. 5.2).

5.1 Results

Best approach. From Table 5, we observed that, with the

single-view approach, ScD is the most useful gesture for

gender classification with F1-score of 0.89 in validation

Table 6 Performance comparison of different multi-view learning

strategies over the considered combination of touch gestures. For each

combination, the table shows F1-score for both validation and testing

phases (validation/testing). Time (ms) shows the time elapsed on

average for a single fit() in milliseconds

Combination Early Intermediate Late

SwL?SwR 0.83/0.81 0.82/0.82 0.83/0.82

SwL?ScU 0.83/0.80 0.82/0.80 0.82/0.81

SwL?P2Z 0.84/0.82 0.82/0.82 0.83/0.82

SwL?T 0.81/0.79 0.81/0.82 0.80/0.80

SwL?DD 0.82/0.80 0.82/0.82 0.80/0.80

SwR?ScU 0.83/0.80 0.82/0.80 0.82/0.81

SwR?P2Z 0.83/0.80 0.83/0.81 0.83/0.82

SwR?T 0.80/0.80 0.82/0.82 0.81/0.80

SwR?DD 0.81/0.80 0.81/0.81 0.81/0.82

ScU?P2Z 0.83/0.81 0.82/0.80 0.82/0.82

ScU?T 0.81/0.79 0.81/0.82 0.80/0.80

ScU?DD 0.80/0.80 0.81/0.82 0.81/0.80

ScD?SwL 0.86/0.80 0.82/0.81 0.84/0.82

ScD?SwR 0.84/0.80 0.83/0.81 0.85/0.81

ScD?P2Z 0.86/0.84 0.84/0.84 0.82/0.82

ScD?ScU 0.85/0.83 0.86/0.85 0.85/0.84

ScD?T 0.83/0.81 0.83/0.82 0.82/0.79

ScD?DD 0.83/0.81 0.83/0.82 0.82/0.80

T?DD 0.78/0.79 0.80/0.80 0.78/0.77

P2Z?DD 0.81/0.81 0.82/0.80 0.80/0.80

P2Z?T 0.81/0.81 0.82/0.81 0.80/0.81

ScD?SwL?P2Z 0.86/0.85 0.86/0.84 0.83/0.83

ScD?SwL?DD 0.82/0.82 0.83/0.83 0.81/0.81

ScD?SwL?T 0.83/0.82 0.83/0.83 0.81/0.81

ScD?SwR?P2Z 0.84/0.84 0.86/0.85 0.83/0.82

ScD?P2Z?T 0.83/0.82 0.84/0.83 0.82/0.81

ScD?P2Z?DD 0.83/0.82 0.84/0.83 0.82/0.81

ScD?SwR?T 0.83/0.84 0.85/0.83 0.82/0.82

ScD?SwR?DD 0.83/0.83 0.83/0.83 0.81/0.81

ScD?ScU?SwL 0.85/0.82 0.86/0.84 0.84/0.83

ScD?ScU?SwR 0.85/0.83 0.85/0.85 0.84/0.83

ScD?ScU?P2Z 0.85/0.83 0.86/0.84 0.85/0.85

ScD?ScU?T 0.85/0.83 0.85/0.85 0.84/0.83

ScD?ScU?DD 0.84/0.82 0.84/0.83 0.83/0.82

ScD?T?DD 0.82/0.81 0.83/0.81 0.81/0.80

ScD?SwR?SwL 0.84/0.82 0.85/0.83 0.84/0.83

ScU?SwR?SwL 0.83/0.82 0.83/0.82 0.82/0.82

ScU?SwR?P2Z 0.84/0.82 0.83/0.83 0.84/0.82

ScU?SwL?P2Z 0.84/0.82 0.83/0.83 0.84/0.82

ScU?SwL?T 0.82/0.81 0.83/0.80 0.83/0.81

ScU?SwL?DD 0.82/0.80 0.83/0.80 0.81/0.80

ScU?SwR?T 0.84/0.81 0.84/0.81 0.81/0.80

ScU?SwR?DD 0.83/0.80 0.84/0.81 0.81/0.80

ScU?P2Z?T 0.84/0.82 0.84/0.83 0.82/0.81

ScU?P2Z?DD 0.84/0.82 0.85/0.83 0.83/0.81

Table 6 (continued)

Combination Early Intermediate Late

ScU?T?DD 0.82/0.80 0.83/0.80 0.81/0.80

SwL?SwR?P2Z 0.82/0.81 0.83/0.80 0.83/0.81

SwL?SwR?T 0.82/0.80 0.82/0.81 0.81/0.80

SwL?SwR?DD 0.82/0.80 0.82/0.81 0.81/0.80

SwL?T?DD 0.82/0.80 0.82/0.81 0.81/0.80

SwR?T?DD 0.83/0.81 0.83/0.81 0.81/0.80

P2Z?T?DD 0.84/0.82 0.84/0.83 0.82/0.81

SwL?P2Z?T 0.83/0.82 0.84/0.83 0.82/0.81

SwL?P2Z?DD 0.84/0.81 0.84/0.82 0.83/0.81

SwR?P2Z?T 0.84/0.81 0.84/0.84 0.81/0.82

SwR?P2Z?DD 0.83/0.82 0.84/0.83 0.82/0.81

Time (ms) 3228 1860 2147

Neural Computing and Applications (2022) 34:18473–18495 18485

123



(LOUO-CV). When combining different gestures with the

multi-view approach, overall, we do not find performance

improvement against such score (see Fig. 14). This is due

to the large size of the ScD dataset (the biggest among the

gestures considered) which allows RF a broader learning.

Yet, we observe that when considering SwL?SwR, the

multi-view approach exhibits an improvement in perfor-

mance—up to 0.83 F1-score—with respect to the single-

view approach on SwL and SwR—with 0.77 and 0.80 F1-

score, respectively—(see Fig. 15). This holds true for

combinations including P2Z and SwL or SwR, e.g.,

SwL?P2Z.

In addition, we emphasize we have tried with combi-

nations including four/five gestures without any perfor-

mance improvement against the triples or pairs.

Fig. 7 Scroll down (ScD)—

Features selection performed

computing ANOVA F-measure.

In blue color the selected

features

Fig. 8 Scroll up (ScU)—

Features selection performed

computing ANOVA F-measure.

In blue color the selected

features

Fig. 9 Swipe left (SwL)—

Features selection performed

computing ANOVA F-measure.

In blue color the selected

features
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We conclude that based on the environment / framework

where gender classification is needed to improve authen-

tication (as well as enhancing other interactions), the

framework can make use of the solutions here proposed

trying to smooth as much as possible the user experience. If

the framework already prompts users with swipe activities,

the authentication can be improved by multi-view swipes

without developing an ad-hoc interface for catching scrolls.

This holds true for all the most useful touch gestures (and

combinations of such) considered.

Generalization capability of our solution. Previous

works in the literature pointed out that the pressure is not

obtainable with every smartphone model available on the

market. Some of them always return 0 as pressure value.

Fig. 10 Swipe right (SwR)—

Features selection performed

computing ANOVA F-measure.

In blue color the selected

features

Fig. 11 Tap (T)—Features

selection performed computing

ANOVA F-measure. In blue

color the selected features

Fig. 12 Drag&Drop (DD)—

Features selection performed

computing ANOVA F-measure.

In blue color the selected

features
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For this reason, we have performed an ablation test by

dropping every pressure-related feature. In Fig. 16, we

show the results obtained with the single-view approach

(RF in particular) when the pressure is eliminated against

considering all features. As partially confirmed by the

feature importance evaluation in Sect. 4.4.2, dropping the

pressure-related features does not have a big impact on the

classifier’ performance2. Now, to study the difference

between the performance with and without pressure-related

features, we perform a statistical test. Once checked that

the data were normally distributed with the Shapiro–Wilk

test, we evaluated the significance of the difference lever-

aging on the t-Student test, obtaining that with significance

\:05 there is t ¼ 0:80, while the p-value¼ :22. Therefore,

the result is not significant at p\:05.

Likewise, with the multi-view approach the results

without the pressure-related features do not show a statis-

tically significant difference, ranging from 0.82 to 0.83 F1-

score in LOUO-CV. We further inspected the generaliza-

tion capability of our solution. We evaluated our best

approaches on other smartphones, i.e., Samsung Galaxy S7

Edge and Samsung Galaxy S8. They have been used by 5

new participants (3 females, 2 males, age between 12 and

64 years), and 3 returning participants (2 males, 1 females).

The returning participants (ASp) used only the Samsung

Galaxy S8 which does not return the pressure value; new

participants (NSp) used both devices. For this evaluation

we only asked participants to play games for obtaining

ScD, ScU, SwL, SwR, P2Z (see Fig. 5 in Sect. 4.1), the

most useful gestures. A summary of the data collected is

available in Table 7. The objective of this evaluation is to

answer the following questions: (a) ‘‘Does our solution for

gender classification correctly classify never seen users on

new devices?’’, (b) ‘‘Does our solution for gender classi-

fication correctly classify previously seen users on a dif-

ferent device?’’. We evaluate the best solutions found in

Sects. 4.4.1–4.4.2, that is RF for single-view and inter-

mediate integration for multi-view. Results of this evalu-

ation are in Table 8.

We notice that there are differences in performance

between the results achieved in Sect. 4.4 with single-view

and multi-view approaches (testing) and those got in the

current experiment (see Fig. 17). Such differences are

higher concerning new users on new devices, with whom

our solutions exhibit lower F1-score. As we could expect,

instead, when analyzing already seen participants we

obtain high F1-score. If ASp have used the same devices,

we would have obtained results comparable to those by [2]

with the tenfold cross-validation non-user-based, that is

more than 0.90 F1-score. In our case, such participants

used new devices, hence the not perfect scores (but still

very high). However, the differences with never seen par-

ticipants get razor-thinner with the multi-view learning

Fig. 13 Pinch-to-zoom (P2Z)—

Features selection performed

computing ANOVA F-measure.

In blue color the selected

features

Fig. 14 Comparison between best results obtained in single-view

learning (ScD), represented as a dashed threshold, against those

achieved with the different strategies of multi-view learning (bars)

2 In Sect. A, we provide the results of an experiment involving only

pressure-related features
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approach. Vice versa, we obtain much higher scores with

already seen users. This means that the smartphones’

hardware contributes to the performance and values

returned by Touch APIs (apart the aforementioned pres-

sure), but such contribution gets negligible as more ges-

tures we consider for the classification.

Lastly, in order to fully answer to ‘‘question (b)’’ we

have performed an experiment involving a different kind of

mobile device: a tablet, model Samsung Tab A7, instead of

smartphone. We have asked the same participants above

mentioned to play again our Android app and provide

further gestures (collected gestures are summarized in

Table 9). Next, we evaluated the effectiveness of our

proposal on the tablet.

Results of the application of single-view and multi-view

learning (intermediate integration) on the best combina-

tions are reported in Table 10. We notice that there is a

drop in the performance of our solution when applied on a

tablet (see Fig. 18 for a better assessment). The main rea-

son is the screen size that, on tablets, enables longer scrolls

(also using the forefinger instead of the thumb) and broader

pinch-to-zooms. Consequently, they are composed of more

fragments, and often they are performed faster. With regard

to length, just to make an example, we have

meanphoneðScDÞ ¼ 304:31, SDphoneðScDÞ ¼ 132:11 against

Fig. 15 Comparison between single-view approach on SwL, SwR, and P2Z against multi-view approach combining in pairs and triples such

gestures. The dashed line represents the maximum score achieved in single-view (i.e., a threshold to better grasp multi-view’s results)

Fig. 16 The features ablation test: results in LOUO-CV with RF over

the gesture datasets with and without the pressure-related features

Table 7 Collected gestures for the evaluation of generalization

capability on different smartphone models. NSp = never seen par-

ticipants, ASp = already seen participants. m = male, f = female

#Samples

Gesture NSp (m/f) ASp (m/f)

ScD 63/81 34/16

ScU 20/28 10/5

SwL 28/42 14/7

SwR 28/42 14/7

P2Z 32/42 16/8

Total (406) 171/235 (131) 88/43
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meantabletðScDÞ ¼ 441:18, SDtabletðScDÞ ¼ 158:84, and

meanphoneðP2ZÞ ¼ 680:98, SDphoneðP2ZÞ ¼ 239:81 against

meantabletðP2ZÞ ¼ 867:58, SDtabletðP2ZÞ ¼ 282:77. Thus,

if we want to deploy our method on tablets, we need proper

data—captured through tablets—to fit machine learning

models on. Conversely, the performance drop is minor

when accounting SwL and SwR: interestingly, the swipe

gesture is performed similarly on both smartphones and

tablets. This has spillovers on multi-view approaches that

exhibit better results when considering a swipe in the

gesture combination.

Overall, we recommend for environments/frameworks,

interested in the non-intrusive gender classification, the use

of multi-view approach when dealing with unknown users

and unknown devices. Vice versa, they can rely on the

single-view approach which is clearly faster.

5.2 Limitations and future research.

Even if the dataset used here is broader than those used in

previous works, evaluating the real effectiveness of the

proposal would require a larger number of participants with

very diverse smartphones (as well as tablets). Also, the

dataset does not include elder people—to whom large part

of the research in smart spaces and healthcare is reserved

[18, 19]—for whom the effectiveness of the proposal will

be evaluated in the next future.

The energy efficiency of the proposed solution is intu-

itively higher with respect to proposals available in the

literature. Yet, we have not measured it. For such analysis,

we would need ad-hoc instruments and evaluation phases

as did in [13, 15]. This will be the goal of future steps of

this project. Furthermore, we have only considered here

combination of heterogeneous gestures. Next, we aim to

study combination of gestures of the same kind and/or

consecutive ones to account for the order. In order to

enable such a study, we need to develop a new game that

Table 8 Most useful gestures (and combinations of such) for gender

classification applied for understanding generalization capability of

our solution on different smartphone models. NSp = never seen

participants, ASp = already seen participants. S-V = single-view, M-V

= multi-view

F1-score

Approach Gesture NSp/ASp

S-V RF ScD 0.82/0.88

ScU 0.78/0.85

SwL 0.67/0.81

SwR 0.72/0.82

P2Z 0.74/0.79

M-V Interm. ScD?SwL 0.79/0.85

ScD?P2Z 0.82/0.86

ScD?ScU 0.83/0.87

ScD?SwL?P2Z 0.84/0.89

ScD?SwR?P2Z 0.83/0.89

ScD?ScU?SwL 0.81/0.88

ScD?ScU?P2Z 0.82/0.87

Fig. 17 Comparison of performance achieved when dealing with never seen participants on different smartphones, and already seen participants

on different smartphones against those obtained in Sect. 4.4 by best approaches (baseline)
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forces the user to perform diverse kinds of gestures in a

row. In this work, we have manually engineered the fea-

tures suitable to describe the considered touch gestures; on

the one hand, this allowed us to identify the significant

features (being more explicable) and comply with the latest

directive of EU Commission on biometric systems3 but, on

the other hand, we have overlooked other approaches to

gender classification based on touch gestures. In this vein,

we will evaluate (and then compare) methods based on

representation learning, using the stream of data directly

provided by Touch APIs or visual representation of

gestures.

Lastly, part of our effort will be put toward the devel-

opment of a ‘‘mature’’ application improving our current

prototype. However, datasets employed for the experiments

are available at https://bit.ly/3IZ6Lvz.

5.3 Automatic gender classification: key
for heaven, key for hell

Back in the days, the Nobel prized Richard P. Feynman

explored the capacity of science to be a catalyst for both

good and evil, stating that ‘‘To every man is given the key

to the gates of heaven; the same key opens the gates of

hell.’’ These potentialities and risks apply particularly well

today for automatic classification, like the one proposed

here for gender. Indeed, in all the contexts in which auto-

matic decisions/classifications occur, designers, engineers

and all the persons behind the project must ensure that the

solution has been designed and implemented in a way that

certifies both its effectiveness and legitimacy, so that the

results are beneficial and/or benign [16]. That is to say, we

should ensure that it is an effective means for achieving

some policy goal while remaining procedurally fair. In this

regard, the perspective in enhancing authentication systems

with soft biometric traits such as gender are quite

promising. It is not by chance the growing literature about

gender-aware systems [6, 7, 66, 71] fostering inclusion,

enhancing user experience and human–computer interac-

tions. For example, intelligent systems in a smart space can

be customized based on gender information to provide an

enhanced user experience. Nevertheless, these kinds of

automatic classification of personal traits, as highlighted by

Danaher et al. [16] can be problematic. If not required for

beneficial or benign goals, obtaining the gender informa-

tion should be unfeasible. If exploited by malware apps,

unwanted software, or attackers of every type, automatic

gender classification could clearly undermine the users’

fundamental rights. The very possibility of stealthy exploit

users’ gender for shaping individuals’ conception of the

world, opinions, and values demand a deeper reflection.

Moreover, the issue becomes even more important when

we consider teenagers or kids on the phone4.

For what concerns malware, there are several examples

of malware detection systems based on the smartphones’

permissions analysis [43, 49]. If such malware exploit an

approach like the one proposed here to obtain the gender

information, they will not request any particular permission

becoming a severe threat for users’ privacy and security.

Conversely to [37] where the malware must declare the

ACTIVITY_RECOGNITION permission to use gyroscope

Table 9 Collected gestures for the evaluation of generalization

capability on different kind of mobile device, i.e., tablet Samsung Tab

A7. NSp = never seen participants, ASp = already seen participants. m

= male, f = female

#Samples

Gesture NSp (m/f) ASp (m/f)

ScD 73/94 40/21

ScU 32/40 14/8

SwL 27/43 13/8

SwR 29/40 15/7

P2Z 41/49 21/12

Total (468) 202/266 (159) 103/56

Table 10 Most useful gestures (and combinations of such) for gender

classification applied for understanding generalization capability of

our solution on tablets. NSp = never seen participants, ASp = already

seen participants. S-V = single-view, M-V = multi-view

F1-score

Approach Gesture NSp/ASp

S-V RF ScD 0.79/0.82

ScU 0.74/0.80

SwL 0.66/0.80

SwR 0.71/0.81

P2Z 0.72/0.77

M-V Interm. ScD?SwL 0.77/0.80

ScD?P2Z 0.79/0.80

ScD?ScU 0.80/0.81

ScD?SwL?P2Z 0.82/0.84

ScD?SwR?P2Z 0.82/0.85

ScD?ScU?SwL 0.78/0.83

ScD?ScU?P2Z 0.80/0.81

3 2021/0106 (COD). The EU Commission defines biometric systems

as High-risk AI and foster the development of solution enabling

human oversight. 4 https://bit.ly/3aQ4DZ4.
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and accelerometer, our solution does not demand permis-

sions because touch gestures are implicitly enabled to

control the device and every app. In fact, antivirus or

antimalware software on VirusTotal5 do not flag our app as

malware.

Furthermore, there are a series of significant social and

ethical concerns about automatic gender classification that

are not yet fully explored. Among these, there are those

connected to gender as an identity descriptor [61, 63] more

than sex, as we use here. People with diverse gender

identities, including those identifying as transgender or

gender nonbinary, are particularly concerned that these

systems could miscategorize them [28]. People who

express their gender differently from stereotypical male

and female norms already experience discrimination and

harm resulting from being miscategorized or misunder-

stood [54]. One of the participants in the recent study by

Hamidi et al. [28] described how they would feel hurt if a

‘‘million-dollar piece of software developed by however

many people’’ decided that they are not who they them-

selves believe they are. It emerges that the future of our

project should involve (a) collaboration with vulnerable

communities potentially harmed by this kind of automatic

gender classification, (b) evaluating how miscategorization

of individuals impacts the systems that make use of it, i.e.,

the emerging observable behavior, and (c) taking into

account mechanisms to support minorities in systems;

performance is improved by automatic gender

classification.

6 Conclusion

This paper has proposed a novel machine learning-based

solution for users’ gender classification relying on touch

gestures information gathered with smartphones. Extensive

experiments with two approaches, i.e., single-view and

Fig. 18 Comparison of performance achieved when dealing with never seen participants on tablets, and already seen participants on tablets

against those obtained in Sect. 4.4 by best approaches (Baseline)

Fig. 19 Results obtained with each gestures on varying the features

set used. In slate blue, we have the whole set of features engineered,

in green we have the whole set without pressure-related features, and

in red we have the set with only pressure-related features

5 https://www.virustotal.com/
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multi-view learning (early, intermediate, and late integra-

tion) and with different scenarios (unknown users,

unknown devices), demonstrate the feasibility of our

solution (from F1-score of 0.65 up to 0.89 based on the

experiment and scenario). The gender information captured

in this non-intrusive way can be used to improve authen-

tication system’s performance as well as for healthcare,

smart spaces, and UIs’ customization. Moreover, we shed

light on the potentiality and risks connected with the use of

this kind of automatic gender classification. We plan to

develop a framework that utilizes the gender information

for improving the performance of a biometric-based user

authentication system in smart spaces, and to evaluate our

solution (in terms of acceptance, affordance, experience,

and so on) with final users (e.g., as done in [17, 27, 48]).

Therefore, the approach here presented is part of a broader

project that will also confront with problems arising in the

minorities, in communities of people that do not categorize

themselves between male and female, and will take into

account whether transgender or gender nonbinary persons

feel harmed and how by our system. Data used here will be

made available through the project’s official page to help

researchers develop and compare their solutions against

ours.

A Are pressure-related features accurate?

In this section, we report the results obtained by using the

solely pressure-related features of gestures for gender

recognition. Figure 19 depicts the results obtained. Overall,

this experiment confirms that pressure-related features are

not very significant for the gender recognition. In more

detail, ScD and ScU with SwR, SwL and DD showed the

worse results, from 0.35 to 0.52 F1-score in LOUO-CV.

Instead, T and P2Z exhibit higher F1-score in this experi-

ment, with 0.55 and 0.68, respectively (in LOUO-CV).
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