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Abstract
In this paper, we introduce our unique dataset of fluorescence lifetime imaging endo/microscopy (FLIM), containing over

100,000 different FLIM images collected from 18 pairs of cancer/non-cancer human lung tissues of 18 patients by our

custom fibre-based FLIM system. The aim of providing this dataset is that more researchers from relevant fields can push

forward this particular area of research. Afterwards, we describe the best practice of image post-processing suitable per the

dataset. In addition, we propose a novel hierarchically aggregated multi-scale architecture to improve the binary classi-

fication performance of classic CNNs. The proposed model integrates the advantages of multi-scale feature extraction at

different levels, where layer-wise global information is aggregated with branch-wise local information. We integrate the

proposal, namely ResNetZ, into ResNet, and appraise it on the FLIM dataset. Since ResNetZ can be configured with a

shortcut connection and the aggregations by Addition or Concatenation, we first evaluate the impact of different config-

urations on the performance. We thoroughly examine various ResNetZ variants to demonstrate the superiority. We also

compare our model with a feature-level multi-scale model to illustrate the advantages and disadvantages of multi-scale

architectures at different levels.

Keywords Convolutional neural networks � Fluorescence lifetime imaging endomicroscopy � Lung cancer classification �
Multi-scale feature extraction � Hierarchically aggregated architectures � ResNetZ

1 Introduction

Fluorescence lifetime is characterized by a decay from the

excited state to the ground state, which is independent of

fluorescence concentration but sensitive to the biological

environment [1]. Fluorescence lifetime imaging endo/mi-

croscopy (FLIM) utilizes lifetime contrast between heal-

thy/unhealthy biological tissue to distinguish them

effectively. Due to the independence, typically, lifetime

images are more homogeneous than intensity images which

show higher contrast. This introduces challenges for visual

recognition. For example, when imaging the same physical

point on tissue with different hardware configurations,

lifetime images are usually visually indistinguishable

compared to intensity images. Jo et al. [2] reported that oral

cancer has a shorter lifetime, whereas McGinty et al.

revealed that tumours have a longer lifetime [3]. In

addition, other hardware factors, such as excitation band-

width (wavelength) and exposure time, also affect lifetime

derivation [4]. We similarly observed that, as wavelength

increases, the contrast or difference in lifetime values

between a pair of normal/cancerous tissue becomes so

small that, although there is a classification boundary, it

cannot be a priori deduced which tissue state has the lower

lifetime.

Machine Learning (ML), particularly Deep Learning

(DL), has revolutionized biomedical image processing in

many aspects, such as in classification and segmentation

[5]. However, little attention has been paid to the appli-

cation of ML/DL to FLIM images in, for example, the

automatic discrimination of cancer. Existing approaches in

this area usually employ conventional ML algorithms with

handcrafted features, which inevitably requires profes-

sional knowledge on feature engineering. For instance,

Chen et al. [6] apply support vector machines (SVM) for

skin lesion detection with artificial features retrieved from
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lifetime decay fitting parameters. For DL, the situation is

even worse: there is very limited research concerning DL

in FLIM-based cancer differentiation, apart from a few

preliminary studies [7]. Unlike ML, which can perform

well on small-scale data, DL usually requires large-scale

datasets for effective learning without over-fitting. Unfor-

tunately, there is no such dataset publicly available in this

domain, which severely affects the development and

application of FLIM.

Contemporary architectures, such as ResNet [8] and

DenseNet [9], have advanced the state-of-the-art of clas-

sification performance significantly. A common practice in

those models is the modularization of convolution blocks,

particularly the usage of bottleneck blocks. Those rela-

tively fixed patterns enable them to be easily expanded

with more sophisticated blocks, and multi-scale architec-

tures are prevalent among the expansions. The primary

disadvantage of ResNet is that it produces many redundant

features but struggles to create new features [9, 10]. Dif-

ferent strategies could be applied to avoid this effect. For

example, DenseNet [9] employs very narrow networks to

reduce the redundancy and dense aggregation for new

feature creation, and Res2Net [11] splits redundant features

and applies a hierarchical multi-scale module to create new

features per the separated features. Due to the split, how-

ever, Res2Net is unable to retain the correlations among

input features as global information since the grouped

features are handled separately.

Here, we introduce our unique dataset of over 100, 000

FLIM images from 18 pairs of normal/cancerous tissues of

18 patients. The images were collected by a custom FLIM

system [12, 33] aiming for online in-vivo in-situ lung dis-

ease diagnostics, with various user-specified configura-

tions. The dataset consists of multi-dimensional images

rich in spatial and spectral information, which can reflect

the diversity of fluorescence lifetime to a large extent.

Afterwards, we describe the image post-processing proce-

dure, which applies intensity image as a soft weight to the

corresponding lifetime images. With this, lifetime inde-

pendence from its intensity can be addressed, increasing

the classification performance of classic CNNs. To further

improve the discrimination and address the broad spread of

correlating pixels with similar lifetime values in lifetime

images, we propose a hierarchically aggregated multi-scale

architecture at a layer-level, namely ResNetZ. We integrate

the model into ResNet, and evaluated the performance on

three aspects, including the impact of a shortcut connection

and different aggregations; the overall performance with

state-of-the-art CNNs and ResNet variations; and the

comparison between Res2Net and ResNetZ. Accuracy,

precision, recall, the area under the receiver operating

characteristic (ROC) curve (AUC), and Cohen’s Kappa

[13] were used as metrics.

The rest of the paper is organized as follows. Section 2

reviews the related work in FLIM for cancer classification

and multi-scale architectures. Section 3 introduces the

technical details of our method. Experimental results are

presented in Sect. 4 and discussed in Sect. 5, followed by

the conclusion and future work in Sect. 6.

2 Related work

2.1 FLIM in cancer classification

As shown in Fig. 1, a common practice is to derive the

averaged lifetime by histogramming and discriminate

cancer based on lifetime difference, with the assistance of

histological images. Here, cancer tissue has an average

lifetime of 1.48 ns, while a non-cancer sample has an

average lifetime of 1.9 ns. Little effort has been made on

automatic classification of cancer using ML algorithms on

FLIM images. Gu et al. [14] utilized a feed-forward neural

network-based extreme learning for the diagnostic of early

cervical cancer using FLIM on H &E stained samples, with

expert-engineered features. Cuenca et al. [15] and Jo et al.

[2] applied a quadratic discriminant analysis binary clas-

sifier for distinguishing oral cancer and dysplasia, with six

handcrafted features extracted from FLIM images. In [6],

Chen et al. deployed a SVM model to distinguish non-

melanoma skin lesions, where features were engineered

from lifetime reconstruction. Marsden et al. [16] applied

ML technologies for intraoperative cancer margin assess-

ment with FLIM, where a dual-path architecture retrieved

information at different scales for predicting the point-wise

probability of cancer. Nonetheless, all those works inves-

tigated conventional ML methods with engineered features,

and none of them concerns lung cancer classification using

DL.

Considerable effort has been made by the authors to

investigate the automatic classification of ex-vivo lung

cancer from FLIM images. In [17], we applied four popular

ML methods to FLIM images for ex-vivo lung cancer

classification, namely K-nearest neighbour, SVM, neural

network, and random forest. A significant difference

between our approach and the existing ones is that we

applied pixel values of lifetime images as features, instead

of artificial ones. Later, we investigated the feasibility of

traditional CNNs for the same classification problem [7].

With five classic CNNs, i.e. ResNet, ResNeXt, DenseNet,

Inception, and Xception, the results were dramatically

better than the ML-based solutions. We also showed that

integrating lifetime with intensity information can achieve

better results than using lifetime images only. We further

expanded the study by embedding dilated convolutions to

multi-scale technologies [18, 19]. Comparing with previous
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studies, this one does not use dilated convolutions as,

empirically, they do not contribute much to performance

improvement on the dataset. In addition, this study thor-

oughly compares the performance of different configura-

tions to understand the impacts of the configurations on the

results. Meanwhile, we also introduce the optimal image

post-processing to maximise the performance

improvement.

2.2 Multi-scale architectures

Multi-scale architectures have become very popular in

contemporary CNNs, which are usually epitomized by

employing a number of single/composite operations in

parallel at different levels. Typical examples include a

multi-path CNN for brain image segmentation [20],

Inception, using several parallel convolution branches at a

layer-level [21], and Res2Net with a hierarchical feature-

level multi-scale model. One reason for their success is

their capability to simultaneously extract features at dif-

ferent scales and, later, integrate the multi-scale features

together, so that more information passes through their

backbone networks.

Architecture-level multi-scale strategies are usually

developed to deal with multiple inputs or for special pur-

poses. Setio et al. [22] proposed a multi-view model to

decline false-positive cases in pulmonary nodule detection.

Moeskops et al. applied a multi-path architecture for

magnetic resonance brain image segmentation [20].

Despite their success, the major problem of architecture-

level multi-scale models is that the underlying ideas are

usually problem-specific and, hence, it is challenging to

migrate them to other architectures.

Layer-level models concern the features extracted after

each layer as a whole and utilize more sophisticated

operations to process the information. The operations could

be simple operators, such as multiple parallel convolutions

in Inception [21, 23], or a set of complicated ones, e.g.

multiple dilated convolutions in densely connected blocks

[24]. In addition, they can substitute a few or the entire

original operations. For example, DeepLab [25] used an

atrous spatial pyramid pooling with several parallel dilated

convolutions for better semantic segmentation. Due to the

modularization, layer-level styles are usually easy to be

integrated into other backbone networks with similar

architectures, such as the inception-like convolution blocks

in DRINET [26]. With the paralleling, more features dif-

ferent in space, scale, and context can be retrieved. How-

ever, an apparent disadvantage is the increase of

complexity due to parallel operations.

Feature-level multi-scale styles are normally character-

ized by splitting input features into groups, processing

grouped features individually, and fusing processed fea-

tures. The operations can be committed by group convo-

lutions [27], depthwise separable convolution and its

variations [28, 29], or pointwise group convolutions [30].

More sophisticated operations can be integrated into fea-

ture-level architectures. For example, Res2Net proposed a

Fig. 1 Lifetime contrast of non-cancerous (row 1) and cancerous (row 2) lung tissue using histograms (column 3) of lifetime images (column 2)

obtained from intensity images (column 1), along with histological images (column 4) as the ground truth [7]
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hierarchical aggregation into the processing, and ResNeSt

[31] introduced split-attention into group convolutions.

Besides the advantages of multi-scale models, feature-level

architectures significantly decrease the complexity, com-

pared with the conventional convolutions. However, due to

the separation of the input features, the correlations among

the features are partially ignored. Our inspiration comes

from the hierarchical style reported in [11] and [32], except

that we incorporate our model at a layer-level instead of at

a feature-level, to retain the correlations among features,

which can be further reused and aggregated. In addition,

our ResNetZ architecture also introduces other possible

configurations, such as Concatenation aggregation rather

than Addition applied in [11] and [32]. This is explored

further in Sect. 4.1.

3 Methodology

The FLIM dataset was gathered by a continuous col-

lection of ex-vivo human lung tissue using our custom-built

FLIM system. Raw FLIM images contain a certain level of

noise for visual recognition, and thus post-processing is

required before being fed into the CNNs for classification.

It is worth noting that our intention is to introduce the best

practice we have learned so far on the FLIM dataset for

reproducible research. The overall procedure is depicted in

Fig. 2, and technical details will be addressed in depth in

the following sections.

3.1 Data collection

A custom fibre-based FLIM system was deployed to

acquire data with various user-specified configurations,

including different exposure time and two spectral bands

[33]. For online imaging and diagnostic purposes, our

custom FLIM imaging system recorded sequences of life-

time images with a resolution of 128� 128 pixels, at a

frame rate of 9 frames per second, which were aggregated

across a line sensor of single-photon detectors [12]. Each

frame contains four images, yielding an intensity and the

corresponding lifetime image for each of the two cus-

tomizable spectral bands. Lifetime values can be recon-

structed by different algorithms, such as the Rapid Lifetime

Determination method (RLD) [34]. Data Collection in

Fig. 2 depicts an example of the experiment workflow,

where a lung tissue was fixed on a corkboard and the 128�
128 images of autofluorescence intensity and lifetime were

reconstructed with an exposure time 6 ls, a spectral band

of 498–570 nm, and the RLD decay fitting approach. These

settings were chosen to represent intended characteristic

conditions for future clinical trials.

For each ex-vivo experiment, a pair of cancerous/non-

cancer tissue from each patient was scanned using direct

contact between the fibre and tissue, and multiple mea-

surements were extracted at different physical points on

each tissue to enrich the variety of the images on the same

tissue. Over 100,000 raw FLIM images were collected

from 18 pairs of lung normal/cancerous tissues. For this

study, we removed some images which may introduce

extra variance. For example, we excluded images whose

lifetime was not reconstructed by RLD, since their lifetime

is significantly different. After cleaning there were, in total,

61,816 FLIM images remaining, including 25,372 from

cancerous tissue and 36,444 from normal tissue. The

detailed information regarding the remaining images is

listed in Table 1. Note that each frame contains an intensity

and its corresponding lifetime image.

3.2 Image post-processing

The raw images collected were very noisy (see the grays-

cale images at the right of Data Collection in Fig. 2). In

order for the images to be suitable for human and machine

perception, post-processing is therefore needed. The over-

all post-processing is depicted in Fig. 2, image post-pro-

cessing. One of the criteria for achieving reasonable post-

processing results is to ensure that the histograms derived

from the averaged lifetime remain unchanged, while the

images become visually plausible, as shown in Fig. 1.

Given a relatively short exposure time, e.g. 20 ls, the
total number of recorded photons per pixel is usually in the

order of 100� 1000, or even lower, where the pixel record

is easily affected by photon quantum noise [35]. In order

for the signals to be recorded and processed efficiently,

optimal signal–noise ratio (SNR) of fluorescence intensity

measurement is required. In this study, we utilize a

threshold value of
ffiffiffiffi

N̂
p

to approximate SNR [35], where N̂

is the mean of the measured fluorescence concentration. It

is, therefore, assumed that pixel intensity larger than
ffiffiffiffi

N̂
p

is

essential for a lifetime derivation with acceptable accuracy.

Let II ¼ fiIx;y jiIx;y � 0 and x; y 2 ½0;M�g denote an

intensity image II with size of M �M, and IL ¼
fiLx;y jiLx;y � 0 and x; y 2 ½0;M�g denote the corresponding

lifetime image IL with size of M �M. The denoising

approach can be defined as [7]:

îIx;y ¼
0 iIx;y �

ffiffiffiffi

N̂
p

iIx;y otherwise

(

ð1aÞ
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îLx;y ¼
0 iIx;y �

ffiffiffiffi

N̂
p

iLx;y otherwise

(

ð1bÞ

Next, the intensity images are normalized with dark

background D and lightfield images L, adapted from [36]:

�II ¼ G � ðÎI � DÞ
G � ðL� DÞ

ð2Þ

where � denotes the 2D convolution operator, ÎI is the

intensity image, and G is a convolutional Gaussian

smoothing filter with a 3�3 kernel defined in [37] as:

½G�i;j ¼
1

2pl2
e
�i2þj2

2l2 ð3Þ

where i and j are the distance from the origin in the hori-

zontal and vertical axis, respectively, and l is the standard

deviation of the distribution. Notice that since the corre-

sponding dark background D and lightfield L images are

not always available, we simply apply the 2D Gaussian

smoothing filter G to the intensity images. The post-pro-

cessed intensity �II image is therefore derived.

Afterwards, the normalized intensity image is binarized

to yield a binary mask applied to the denoised lifetime

image. Finally, a histogram-based contrast-enhancing

algorithm from [37] is utilized to further improve the visual

effect of the lifetime image, and the post-processed lifetime

image is obtained.

In [7], we showed that combining both intensity and

lifetime information together achieves better performance

than using false-colour lifetime images alone for CNN-

based cancer classification. In this study, we use intensity-

weighted lifetime images as the output of the post-pro-

cessing to be the input to the proposed model. With the

evolution of the technologies, we observed that by feeding

intensity-weighted lifetime images, the CNNs were able to

obtain even better scores than the stacked images. The

comparison of these two different formats on the classic

CNNs can be found in ‘‘Appendix’’.

3.3 Layer-level multi-scale architecture

As discussed in Sect. 2, multi-scale architectures can be

implemented at layer and feature levels. The primary

concern of the feature-level is that the correlations among

Fig. 2 Schematic diagram of the

proposed method adapted from

[7]. Raw FLIM images were

collected on an ex-vivo lung

tissue fixed on a corkboard

(Step 1). Raw images were then

post-processed to obtain FLIM

images suitable for the

classification (Step 2). Finally,

all processed images were input

into CNN models for binary

classification purposes (Step 3)
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the input features are partially ignored. Since both layer-

and feature-level multi-scale models can be easily and, in

most cases, seamlessly integrated into the networks with

residual or similar blocks, we apply the replacement at

layer-level so that the correlations among them are

retained. To benefit from the advantages of layer-level

multi-scale architecture and hierarchical aggregation, we

propose a new layer-level multi-scale convolution archi-

tecture, called ResNetZ.

ResNetZ (Fig. 3b) and Res2Net (Fig. 3c) are visually

similar since our ResNetZ is inspired by the Res2Net

hierarchical aggregation. However, they are conceptually

distinct: one major difference is that our ResNetZ performs

multi-scale feature extraction on the input features as a

whole to retain the correlations among the input features

(Fig. 3b), whereas Res2Net splits input features into groups

and performs multi-scale feature extraction per grouped

features (Fig. 3c).

3.3.1 Block-wise shortcut connections

Comparing [11] and [32], an apparent difference, besides

the utilization of dilated convolutions, is a shortcut con-

nection used in [11]. Unlike the identity mapping in

ResNet, which is used for a better flow of information

through residual blocks, the shortcut connections in

Res2Net (Fig. 3c) are located within the computational

block. The advantage of this is that it helps the information

and gradient flow. However, it also introduces extra com-

plexity. For ResNetZ, the increased complexity is due to

more feature maps being concatenated as input to the

output 1�1 convolution. Moreover, Res2Net also needs

more feature maps extracted from the input 1�1 convo-

lution because of the splitting performed before the hier-

archical aggregation.

3.3.2 Hierarchical aggregation

Another configurable hyperparameter is the aggregation of

the global and local features before the 3�3 convolution.

Both [11] and [32] employed the ResNet-like Addition

operation, which is able to spatially integrate features

without sacrificing complexity. In DenseNet, a major dif-

ference from ResNet is that it replaces the Addition by

Concatenation, which increases variation in the input of

successive layers and improves efficiency. While Addition

requires input features that have identical dimensions,

Fig. 3 a original residual block

in ResNet, b proposed ResNetZ

module, where A is an

aggregation operator, and

c Res2Net module as a feature-

level multi-scale example. Both

ResNetZ and Res2Net blocks

contain a shortcut connection

(the leftmost blue dash line)

Table 1 The effective number of images collected from 18 patients,

including measured points on cancerous / non-cancerous tissue, and

collected frames from each patient

Patient Measured points Frames

Cancer Non-cancer Cancer Non-cancer

1 8 9 904 1712

2 10 14 880 1300

3 11 15 1080 1320

4 0 30 0 2400

5 4 8 792 1186

6 2 2 396 396

7 8 13 1196 1994

8 8 9 1196 1202

9 5 20 598 2790

10 9 8 1200 1200

11 13 2 1698 200

12 6 6 992 894

13 7 9 140 180

14 14 6 280 120

15 12 9 240 180

16 7 6 126 120

17 7 7 128 140

18 10 30 840 888

Total 141 203 12686 18222
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Concatenation is flexible in dimensional terms. The main

disadvantage of Concatenation, however, is the extra

parameters introduced. Inspired by DenseNet, Concatena-

tion can also be used as a viable alternative to Addition. As

a result, there are potentially four different configurations

by combining the shortcut connection with the aggregation.

3.3.3 ResNetZ block definition

Let xg denote the global features from the first 1�1 con-

volution as the input of the ResNetZ block, yi denote the

output features extracted from the branch 3�3 convolution

for i 2 f1; 2; :::; ng, A be the aggregation, and C be a

composite operation consisting of a 3�3 convolution,

batch normalization [23], and a rectified linear unit [38].

Let yg be the output of the ResNetZ block. Accordingly, yi
and yg without the shortcut are governed by:

yi ¼
CðxgÞ i ¼ 1

CðAðxg; yi�1ÞÞ 1\i 6 n

�

ð4Þ

yg ¼ Cð½y1; y2; :::; yn�Þ ð5Þ

where C is a concatenation operator. Let y0i and y0g be the

model with the shortcut, which can be defined as:

y0i ¼
xg i ¼ 1

CðxgÞ i ¼ 2

CðAðxg; y0i�1ÞÞ 2\i 6 n

8

>

<

>

:

ð6Þ

y0g ¼ Cð½y01; y02; :::; y0n�Þ ð7Þ

Since Res2Net splits the features xg (Fig. 3c), the shortcut

only passes partial information to the output. In contrast,

with the shortcut, the ResNetZ block is able to pass the

whole set of features xg to the output and, thus, enhances

the information flowing in forward and backward propa-

gation within the block. Aggregation A can be further split

into Aa and Ac for Addition and Concatenation operators,

respectively. Since Addition is pixel-wise, Aa implicitly

conveys local (yi or y0i) information to the subsequent

branches, whereas with Ac, local (yi or y
0
i) information is

explicitly carried to the remaining branches. In addition, by

concatenating xg and yi�1/y
0
i�1 from different receptive

fields, more information is expected to be integrated and

retrieved as the output of the ResNetZ block. In conse-

quence, the sequentially integrated output yg and y0g con-

tains features rich in spatial and contextual information.

3.3.4 ResNetZ complexity

When the number of parallel 3�3 convolutions is fixed,

given the same backbone network, the aggregation style (A

symbol in Fig. 3b) and the shortcut connection (blue dash

line in Fig. 3b) will also affect the complexity and per-

formance of the model. The shortcut connection introduces

more features to be concatenated as the output of the

ResNetZ block. When paralleling several 3�3 convolu-

tions with aggregation, the receptive field of each branch

will also increase exponentially, due to the features from

the previous branch. In addition, compared with Addition,

Concatenation doubles the features to be fed into the 3�3

convolution. Taking into account the shortcut and aggre-

gation styles, when the width and the scale are small, the

complexity of the model is Cadd\Cconcat\
Caddþshortcut\Cconcatþshortcut. When they become larger, the

complexity of the model changes to Cadd\Caddþshortcut\
Cconcat\Cconcatþshortcut.

3.4 Implementation details

All models were implemented in PyTorch.1 For the exist-

ing CNNs, we used their official implementation included

in PyTorch or published by their authors. For ResNetZ, we

integrated the layer-level multi-scale architecture into the

PyTorch-implemented ResNet. As per Fig. 3b, we substi-

tuted the original residual block (Fig. 3a) with the ResNetZ

model (Fig. 3b). Unlike ResNeXt and Res2Net, which keep

the width of the ResNet backbone, we used a narrower

version of ResNet, so the width of the input 1�1 convo-

lution is retained as for the branch 3�3 convolution,

thereby reducing the overall complexity of our ResNetZ

model.

To ensure a fair comparison, we adapted the authors’

official implementation of Res2Net to a similar version of

our proposal, adjusting the width of the backbone ResNet,

so that the scale and width of ResNetZ and Res2Net are

equal. In addition, ResNetZ followed the same configura-

tion of Res2Net by using Addition as the aggregation with a

shortcut connection.

All models were examined on 61, 816 FLIM images

from 18 patients, as described in Sect. 3.1. Images from 17

patients (patients 1� 17 in Table 1) were used as the

training set, where 10% training images were split as the

validation set. The images from the remaining patient

(patient 18) served as the independent testing set, which

contains 840 cancerous images and 888 normal images. For

all evaluated CNNs, we applied a stochastic gradient des-

cent for optimization with momentum 0.9. The learning

rate was initially set to 0.1, and divided by 10 at epochs 50,

100, 150, and 175 for in total 200 epochs, with batch size

128. We used binary cross-entropy as the loss function.

Weights were initialized using He’s method [39]. In

addition, we also employed weight decay 1e� 4. For data

augmentation, we utilized a simple strategy of vertical and

1 http://pytorch.org.
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horizontal flipping, as well as random crop with zero-value

padding of 16 pixels. All training and testing were per-

formed using NVidia V100 GPU provided by JADE.2

4 Results

In order to fully quantify the performance of the proposed

layer-level multi-scale architecture, we first evaluate the

influence of the aggregation style and the shortcut con-

nections. We then fix these two parameters and evaluate

the impact of integrating the model in different ResNets.

Finally, we compare our layer-level multi-scale model with

a feature-level model (Res2Net) to understand how levels

impact the results.

4.1 ResNetZ configurations

According to Fig. 3, multi-scale architectures potentially

have different configurations. We tested the proposed

model on ResNet50 as the backbone with width 8, in

parallel with scales 2, 4, and 6. Following the naming

convention in [11], we also use S for scale andW for width.

For ResNetZ50-W8-S2, the complexity is consistent with

the former situation, whereas the other two (ResNetZ50-

W8-S4 and ResNetZ50-W8-S6) are with the latter. To

simplify the presentation, we append A, AS, C, and CS to

the model names to represent the model with Addition,

Addition with Shortcut, Concatenation, and Concatenation

with Shortcut, respectively.

The scores, depicted in Fig. 4, are grouped by accuracy,

precision, recall, AUC, and Kappa. All variations except

recall show a very similar tendency, with different con-

figurations and scales. For ResNetZ50-W8-S2, the shortcut

is very helpful for Addition aggregation, with 4% gain, but

has little effect on Concatenation. The Concatenation

achieves higher scores than Addition, except on recall,

regardless of having the shortcut or not. When the scale

increases from 2 to 4, i.e. ResNetZ50-W8-S4, the shortcut

still leads to performance improvement, especially for

Addition. In contrast, Concatenation is not always better

than Addition. In ResNetZ50-W8-S4-AS and ResNetZ50-

W8-S4-C, the Addition with shortcut achieves very similar

results than Concatenation with or without shortcut on

accuracy, AUC, and Kappa. Further increasing scale to 6,

the shortcut still improves the performance of Addition, but

considerably deteriorates on Concatenation, which is even

lower than Addition alone. ResNetZ50-W8-S6-AS and

ResNetZ50-W8-S6-C produce comparable results on

accuracy, AUC, and Kappa, where the discrepancy is less

than 1%.

In general, the shortcut connection always introduces

performance gain in terms of accuracy, precision, AUC,

and Kappa. The gain is usually more remarkable on

Addition than on Concatenation, mainly when the scale is

small. An exception occurs when the model is relatively

complex since an extra shortcut connection does not

improve the performance for Concatenation. That is,

ResNetZ50-W8-S6-CS is inferior to ResNetZ50-W8-S6-C

for all metrics except recall. For the aggregation styles,

Concatenation is usually superior to Addition, with or

without the shortcut, except for ResNetZ50-W8-S6 with

the shortcut. This is not unexpected since the features

introduced by Concatenation are twice than in Addition for

the convolution branch. In summary, Concatenation with-

out shortcut is overall superior almost for all the metrics

than the other three configurations with three different

scales.

4.2 Overall performance

Based on the results of Sect. 4.1, we evaluate the perfor-

mance of the proposed model with Concatenation as the

aggregation without the shortcut connection. We first

evaluate six state-of-the-art CNNs, namely ResNet50,

DenseNet121, Inception, Xception, SENet, and Res2Net. It

is worth noting that the classification of FLIM images may

not benefit from very complex CNNs as prior experience.

Therefore, we appraise three shallow ResNet variations,

including ResNet38 and ResNet50, with two different

widths. Further, we use these three variations as the

backbone networks and integrate the ResNetZ block into

the backbone, but with a smaller width. The results are

listed in Table 2 and ResNetZ ROC curves, along with two

backbone ResNet in Fig. 5.

Amongst the contemporary CNNs, Res2Net50 achieves

the overall best scores. Meanwhile, DenseNet121 is infe-

rior to ResNet and its variations. Its performance may

improve with deeper configurations. In the backbone

ResNet, with depth growing from 38 to 50 and width from

32 to 64, the outcomes increase consistently, except for

ResNet50-w64. Considering these are relatively shallow

networks and the relatively small FLIM dataset, these

outcomes are anticipated. However, note that as ResNet50-

w32 yields better scores than ResNet50-w64, other state-

of-the-art CNNs with less width may perform better.

In general, ResNetZ surpasses the backbone ResNet

with three different depths, but with significantly fewer

parameters since ResNetZ employs parallel 3 X 3 convo-

lutions with narrow width. Specifically, ResNetZ38-W16-

S2 achieves the overall best scores, but with fewer than

3.5M parameters. For ResNetZ38, all ResNetZ models are

superior to ResNet38 but require considerably fewer

parameters. A further deepening of ResNet to 50 layers,2 http://www.jade.ac.uk.
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ResNet50-W32 yields the best scores in accuracy, AUC,

and Kappa. However, ResNetZ50-W12-S4 also produces

very comparable results.

Considering Fig. 4 and Sect. 4.1, with a relatively simple

ResNet, the performance of ResNetZ improves by

increasing depth, width, and scale. Due to the parallel 3�3

convolutions, which concatenate more features, the model

produces better scores than the backbone with considerably

fewer parameters. Although there are exceptions in

ResNet50, the decline is understandable since the model

already achieved the best outcomes with ResNet38 and,

hence, the scores of more complex ResNetZ variations may

also drop.

Fig. 4 Impact of different ResNetZ configurations on the results

Table 2 Performance

comparison of the backbone

ResNet, ResNetZ, and three

variations of ResNet family

Acc (%) Prec (%) Recall (%) AUC (%) Kappa (%) Params (106)

ResNet50 83.56 89.43 77.14 83.75 67.23 23.51

DenseNet121 82.99 89.08 76.24 83.18 66.09 6.95

Inception 82.45 88.36 74.24 85.03 64.39 6.95

Xception 81.08 78.19 87.61 80.89 61.99 20.81

SENet50 83.96 90.59 81.08 84.06 68.26 26.0

Res2Net50 84.61 88.68 80.29 84.73 69.27 23.65

ResNet38-w32 84.20 89.47 78.49 84.36 68.49 7.4

ResNet38-w64 85.36 85.16 86.60 85.32 70.68 16.8

y ResNetZ38-W12-S2 86.28 88.34 84.46 86.34 72.58 2.3

y ResNetZ38-W16-S2 88.14 92.42 83.78 88.26 76.32 3.5

y ResNetZ38-W12-S4 86.46 88.93 84.12 86.53 72.94 3.3

y ResNetZ38-W16-S4 87.44 89.52 85.59 87.50 74.90 5.1

ResNet50-w32 86.98 90.38 83.56 87.08 73.99 8.3

ResNet50-w64 83.56 89.43 77.14 83.75 67.23 23.5

y ResNetZ50-W12-S2 82.81 87.45 77.70 82.96 65.71 2.9

y ResNetZ50-W16-S2 85.76 87.24 84.68 85.79 71.53 4.5

y ResNetZ50-W12-S4 86.05 91.63 80.18 86.22 72.18 8.5

y ResNetZ50-W16-S4 83.28 86.39 80.07 83.37 66.59 12.6

The best scores of each group are in bold, and the overall best scores are highlighted in italic. Our proposed

architecture is indicated by a y
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4.3 Multi-scale at layer and feature levels

ResNetZ extracts and fuses features at layer-level, whereas

Res2Net performs similar operations at feature-level. We

conduct further experiments to compare both models. To

make the comparison fair, we follow the architecture of

Res2Net, i.e. using addition for the aggregation with the

shortcut, and applying the same width and scale to both

models. The results are shown in Fig. 6. In general,

ResNetZ yields promising scores, slightly better than

Res2Net but with significantly fewer parameters. As shown

in Fig. 3, given the same width and scale, Res2Net requires

a much wider 1 X 1 convolution as input to maintain the

width of the branch, in contrast to ResNetZ. When the

width and scale are relatively large, the difference in

complexity becomes significant. Additionally, given the

same configurations and backbone networks, the highest

score achieved by Res2Net is larger than for ResNetZ.

Regarding accuracy, both architectures improve almost

consistently when growing the number of parameters, fol-

lowed by a decline after reaching the peak (Fig. 6, plot 1).

For four of the seven variations, ResNetZ produces higher

scores than Res2Net and the highest, 88.83% compared to

88.19%. The same tendency is found on AUC and Kappa.

For precision (Fig. 6, plot 2), Res2Net is marginally better

than ResNetZ, but their best scores are very close, 90.83%

and 91% for Res2Net and ResNetZ, respectively. As for

recall (Fig. 6, plot 3), both models obtain comparable

results. In this case, all scores of our model are over 80%,

whereas Res2Net produces both the best 87.05% and the

worst 77.25% scores.

Fig. 5 ROC curves of ResNetZ

with the backbone ResNets,

where dotted lines are the

backbone ResNet, and solid

lines are ResNetZ

Fig. 6 ResNetZ vs Res2Net over accuracy (first plot), precision (second plot), recall (third plot), AUC (fourth plot), and Kappa (fifth plot)
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5 Discussion

5.1 FLIM images

Unlike other biomedical images, FLIM provides an extra

dimension and introduces several visual recognition chal-

lenges. With the capability of user-specified configurations,

the custom fibre-based FLIM system is able to deliver

multi-dimensional images rich in spatial and spectral

information. Although the dataset is relatively small in

terms of the number of patients, it will gradually increase

over time as the sample collection is still ongoing. Since

the FLIM system was designed for in-vivo in-situ diag-

nostics with endoscopically delivered fibres, reliable clas-

sification is, therefore, of great clinical importance in real-

time human lung cancer diagnostic pathways.

To attract more engineers, researchers, and enthusiasts

to overcome the challenges and together push forward this

particular area, the FLIM dataset is available on https://

github.com/qiangwang57/flim_cancer_ml.

5.2 Model configurations

Multi-scale strategies are flexible in configurations. An

identity shortcut has proved to be helpful for information

and gradient flowing, achieving better outcomes [8, 9, 11].

In this study, when the model is simple in scale, the per-

formance gain by the shortcut is significant, especially for

Addition aggregation. However, for Concatenation, the

shortcut improvement is not significant and, in an extreme

case, harms the performance. Consequently, the shortcut

should be used with Addition. As far as the aggregation is

concerned, Concatenation is overall better than Addition in

most cases, which is expected since it doubles the input

features. As a result, Concatenation can be used, in gen-

eral, if the priority is model performance. When com-

plexity is a major concern, particularly when ResNetZ has

relatively more branch convolutions, Addition with

shortcut can substitute Concatenation for comparable per-

formance with relatively less complexity.

5.3 Layer-level multi-scale architecture

A remarkable advantage of ResNetZ is the complexity

compared with the backbone ResNet. The primary reason

is the parallel 3�3 convolutions, along with the aggrega-

tion. This enables the fusion and extraction of features at

different scales, which are further concatenated as the

output. A direct consequence is that each 3�3 convolution

is much narrower than the original ResNet. With con-

catenation as the aggregation, our ResNetZ has similarities

with DenseNet. Within the block, every branch convolu-

tion is supervised directly by the input, enforcing the

convolution to learn different features, except that the

supervision is performed at block scope. Although the

results in Sect. 4 show that the performance gain is not

always consistent with the number of parameters, we

believe this is not because of the model itself but due to the

relatively small patient diversity in the dataset.

Figure 7 illustrates the CAM areas generated by ResNet,

Res2Net, and ResNetZ on images of normal and cancer

tissues, based on Grad-CAM [40]. For normal and

cancerous images, the CAM areas produced by ResNet

generally cover almost entire image, but with partial con-

centration on a particular portion. Res2Net tends to have

larger focusing areas than ResNet, with more concentration

on the part with moderate brightness. The CAM results by

ResNetZ are further enhanced, comparing with Res2Net. In

particular, ResNetZ tends to have multiple concentrating

areas in the images with mild brightness. This indicates the

superiority of ResNetZ over ResNet and Res2Net.

Both layer- and feature-level multi-scale architectures

perform comparably on the FLIM dataset given the same

width, depth, scale, and configuration. Since feature-level

multi-scale needs to split the input features, unlike layer-

level, it contains more parameters due to wider input fea-

tures. The difference in the number of parameters becomes

Fig. 7 Visualization of class

activation map (CAM) using

Grad-CAM on normal and

cancerous images with ResNet,

Res2Net, and ResNetZ
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significant when the backbone network is complex. Over-

all, they are comparable in terms of metrics.

6 Conclusion

This paper formally introduced a unique FLIM image

dataset, described the best practices to improve raw input

images, and proposed a novel multi-scale CNN, called

ResNetZ, to further improve lung cancer classification.

Through 61, 816 FLIM images on 18 pairs of nor-

mal/cancerous tissue collected from 18 patients, we show

the superiority of the proposed method over the backbone

ResNet with significantly fewer parameters. In particular,

ResNetZ38-W16-S2 presented the overall best perfor-

mance but with only 3.5 M parameters. We also compared

our layer-level multi-scale model with feature-level one

(Res2Net) to demonstrate the advantages and disadvan-

tages of the ResNetZ model. Given the same model con-

figurations, ResNetZ is superior to Res2Net in most cases.

It is notable that with the same configurations, Res2Net is

up to 20% more complex than ResNetZ. Since the FLIM

system is designed for online in-vivo in-situ imaging, fewer

parameters are more convenient for real-time clinical

diagnostics provided by clinicians at bedside. As ResNetZ

is designed to be independent of the backbone network, it

could be easily migrated to other networks with similar

convolutional blocks, such as segmentation-oriented net-

works. Future research will be conducted on the migration

of our approach to other backbone networks and different

research scenarios.

Appendix: Image formats input to CNNs

Integrating lifetime with intensity information (third image

in Fig. 8) has proved to be more effective for CNN-based

lung cancer classification using FLIM images [7]. To fur-

ther improve the performance, we evaluated intensity-

weighted lifetime images (fourth image in Fig. 8), adapted

from [3]. To make the comparison unbiased, we strictly

follow the methodology shown in [7]. The results are listed

in Table 3. Generally, the outcomes using the weighted

lifetime images are better than those using the stacked

images, except for recall. Particularly, ResNet50 and

ResNeXt50 yield significantly better scores on the inten-

sity-weighted lifetime images than on the stacked images.

As a result, the combination of intensity and lifetime by

weighting is chosen for this and for future studies.
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Fig. 8 Three-channel stacked image (third) and intensity-weighted

lifetime image (fourth) by intensity (first) and lifetime (second) image

Table 3 Channel-stacked images versus intensity-weighted images

Accuracy Precision Recall AUC

CNNs on intensity?lifetime 3-channel input [7]

ResNet50 0.816 0.804 0.943 0.767

ResNeXt50 0.839 0.839 0.902 0.824

DenseNet121 0.865 0.88 0.895 0.858

Inception 0.852 0.876 0.874 0.846

Xception 0.817 0.895 0.785 0.825

CNNs on intensity-weighted lifetime

ResNet50 0.854 0.876 0.88 0.848

ResNeXt50 0.859 0.908 0.851 0.861

DenseNet121 0.837 0.888 0.832 0.838

Inception 0.79 0.839 0.803 0.787

Xception 0.879 0.961 0.832 0.891
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