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Abstract
This study investigates the capability of sequence-to-sequence machine learning (ML) architectures in an effort to develop

streamflow forecasting tools for Canadian watersheds. Such tools are useful to inform local and region-specific water

management and flood forecasting related activities. Two powerful deep-learning variants of the Recurrent Neural Network

were investigated, namely the standard and attention-based encoder-decoder long short-term memory (LSTM) models.

Both models were forced with past hydro-meteorological states and daily meteorological data with a look-back time

window of several days. These models were tested for 10 different watersheds from the Ottawa River watershed, located

within the Great Lakes Saint-Lawrence region of Canada, an economic powerhouse of the country. The results of training

and testing phases suggest that both models are able to simulate overall hydrograph patterns well when compared to

observational records. Between the two models, the attention model significantly outperforms the standard model in all

watersheds, suggesting the importance and usefulness of the attention mechanism in ML architectures, not well explored

for hydrological applications. The mean performance accuracy of the attention model on unseen data, when assessed in

terms of mean Nash–Sutcliffe Efficiency and Kling-Gupta Efficiency is, respectively, found to be 0.985 and 0.954 for these

watersheds. Streamflow forecasts with lead times of up to 5 days with the attention model demonstrate overall skillful

performance with well above the benchmark accuracy of 70%. The results of the study suggest that the encoder–decoder

LSTM, with attention mechanism, is a powerful modelling choice for developing streamflow forecasting systems for

Canadian watersheds.
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1 Introduction

Improved streamflow forecasting capability is important

for water management related activities, informing hydro-

power generation operations, flood risk management and

operational decision-making at local and regional scales.

Streamflow is the integrated result of highly nonlinear

physical processes that operate at multiple temporal and

spatial scales within a watershed. Traditionally, streamflow

forecasting is accomplished using process-based hydro-

logical models. These models can range from simple

conceptual lumped models to complex physically based

distributed models. Conceptual lumped type models are

based on mathematical formulations of the physical pro-

cesses involved in runoff generation at the watershed scale

(e.g., Streamflow Synthesis and Reservoir Regulation

model [1] and Soil and Water Assessment Tool [2]). These

models are considerably simplified based on reasonable

assumptions and they also do not capture the spatial vari-

ability of physical processes occurring within a watershed.

On the other hand, physically based distributed models can

capture to some extent the spatial variability of the non-

linear physical processes occurring within a watershed

(e.g., MIKE SHE model [3], WATFLOOD model [4–6],

Variable Infiltration Capacity model [7], and MESH model
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3 Hydro Météo, Notre-Dame-des-Prairies, QC, Canada

4 McGill University, Montreal, QC, Canada

5 University of Saskatchewan, Saskatoon, SK, Canada

123

Neural Computing and Applications (2022) 34:19995–20015
https://doi.org/10.1007/s00521-022-07523-8(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-0451-7480
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-022-07523-8&amp;domain=pdf
https://doi.org/10.1007/s00521-022-07523-8


[8]). The precise way the process variabilities are handled

in mathematical formulations can vary significantly from

one model to another. Although process-based models

produce deterministic and plausible results in many

instances, uncertainty in parametrization and process

scaling deficiencies are some of the issues that degrade

their performance [9]. Undoubtedly, these models have

shown great value in forecasting streamflow in many

watersheds in different parts of the world, including

Canada [10–14]. Though calibration and testing of a pro-

cess-based model for a given watershed can be achieved

with a greater detail and depth, transfer of the same model

for applications across other watersheds can compromise

the performance. This is due to the difficulty in the for-

mulation of scale-dependent parameterizations of water-

shed relevant physical processes [15, 16] and that in turn

impacts model’s generalization ability.

With the growing availability of large amounts of spatial

and temporal data from remote sensing and numerical

weather prediction models (e.g., remotely sensed land use

data, reanalyses products and real-time meteorological

forecasts) and recent advances in computational power,

Machine Learning (ML) methods can also offer powerful

modelling options for developing data-driven streamflow

forecasting systems, with generalization abilities. This is

due to their ability to extract complex dynamical nonlin-

earities without explicitly defining the scale-relevant

physical processes, as in the case of hydrological models

discussed above. Hence, explicit definitions of governing

equations are not needed for these models. Instead, these

models map multivariate input space to an output space.

Data-driven methods can be categorized as time series

(statistical) methods and ML approaches. The statistical

models simply derive the relationship between variables to

formalize understanding and evaluation of a hypothesis

about the system’s behaviour [17]. The common statistical

methods under this category include autoregressive moving

average models [18], autoregressive integrated moving

average models [19–21], and many other variants of these

time series models. In these deductive methods, the

streamflow observations are assumed to be stochastic

sequences and hence, future streamflow can be predicted

by learning from past observations [22]. Although avail-

ability of very long records of observations are crucial for

accurate prediction of future streamflow, the applicability

of these models to real-time forecasting situations, how-

ever, remains limited due to lack of generalization ability

and cascading uncertainty in parametrizations [22]. ML

models on the other hand, have proven to overcome some

of the drawbacks associated with process-based and sta-

tistical modelling approaches. These inductive models are

developed based on data and are able to extract nonlinear

structures from data and can readily learn from inter-

variable interactions. Some perspectives gathered from the

literature on applied ML techniques, with reference to

hydrologic applications, are discussed below.

In hydrology, application of Artificial Neural Networks

(ANNs) dates back to 1990s [23] and since then many

researchers have explored various ANN architectures for

rainfall-runoff modelling and streamflow forecasting

globally. A historical review of ANN applications is

available in [9]. Among Canadian studies, Tiwari and

Adamowski [24] studied the ANNs (traditional, wavelet,

and bootstrap) and hybrid versions of both wavelet and

bootstrap ANNs for forecasting daily urban water demand

for the City of Calgary. Their findings showed enhanced

performance of hybrid ANN models for lead times of up to

5 days. Another recent study [25] compared four different

methods of input parameter selection for predicting

streamflow for two distinctive watersheds in Canada (i.e.,

Don River watershed in Toronto and Bow River watershed

in Alberta) using ANNs. To predict water levels with a lead

time of 1-day in Lake Erie, [26] used five different ANN

architectures, including Gaussian process, multiple linear

regression, multilayer perceptron, M5P model tree, random

forest, and k-nearest neighbours. However, by design,

ANNs cannot keep the information in the sequential order,

which is crucial for many hydrological systems, including

streamflow forecasting, which is affected by past hydro-

logical and meteorological states in a given watershed.

To overcome the above mentioned issue, the Recurrent

Neural Network (RNN) architecture was developed

[27, 28]. RNN differs from ANNs due to the capability to

use variable lengths in inputs/outputs and ability to share

features across different positions in the sequence. How-

ever, one of the weaknesses associated with this type of

RNN is the inability of the network to capture long-term

dependencies in the sequences [29]. In simple terms, if

there is long memory in the sequences, the RNN has dif-

ficulty in retaining information from much earlier states to

later ones. Also, if the neural network is very deep, the

gradient from the output would have a hard time propa-

gating back to affect the weights of the earlier layers which

in turn will not affect the computations in these layers. This

is called the vanishing gradient problem in RNNs. In

practice, vanishing gradient problem of RNN makes it

difficult to get a neural network to realize that it needs to

memorize the information from prior sequences [29]. It

means that the basic RNN has many local influences,

meaning, output is influenced by the input values close to

it. Long- Short-Term Memory (LSTM) is a deep-learning

modification to the basic RNN hidden layer that captures

long range connections in the sequence [30, 31].

Applications of LSTMs in hydrology can be found in

some studies such as rainfall-runoff modelling [32–34],

streamflow predictions for ungauged basins [35],
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modelling flash flood events and flood forecasting [36–38],

and simulating reservoir outflows [39]. In all of these

examples, LSTM model proved to be a robust tool when

compared with process-based hydrological options or

ANNs. Nevertheless, it is evident from the literature that

there is insufficient information available regarding how

LSTMs can be considered as useful tools for forecasting

streamflow with multiple lead times, which is an important

requirement for operational applications of these models.

Based on the literature review, it was found that data-dri-

ven forecasting systems for real-time operational applica-

tions are not yet available for Canadian watersheds. This

study aims to address this gap and develop ML-based

streamflow modelling and forecasting tools, inspired by

LSTM model architectures, to inform operational decision-

making in real-world applications. Ten different water-

sheds, with near pristine conditions, located in the Ottawa

River watershed of Great Lakes Saint-Lawrence region of

Canada were considered for the development and evalua-

tion of ML-based streamflow forecasting tools. For devel-

oping these tools, standard encoder-decoder LSTM and the

attention-based encoder-decoder LSTM models were con-

sidered. To our knowledge, these architectures have never

been evaluated for hydrological applications in Canada.

Streamflow predictions/forecasts were assessed at multiple

lead times, ranging from 1 to 5 days. The performance of

the standard and attention-based models was assessed by

evaluating quantitative model performance metrics such as

root-mean square error, coefficient of determination, Nash–

Sutcliffe Efficiency [40], and Kling-Gupta Efficiency [41].

The latter two performance metrics are commonly used in

hydrologic modelling area. Thus, the entire set covers both

the ML and hydrologic modelling fields.

The paper is organized as follows. A description of the

study area and the watersheds selected for the study are

provided in Sect. 2. Section 3 is devoted to input and

output data and the pre-processing that was deemed nec-

essary to make these datasets suitable for a ML application.

Section 4 describes the methodological framework used for

developing ML-based streamflow forecasting systems. This

is followed by Sect. 5, which presents the results of the

study and discusses several aspects of model development,

training and testing phases, and evaluation of real-time

forecasting scenarios. Finally, Sect. 6 presents main con-

clusions of the study and Sect. 7 future research directions.

Throughout the paper, the phrases like model prediction,

model forecast and model simulation are used inter-

changeably. The latter two are more common in hydrologic

literature, compared to the former, which is common in ML

area.

2 Study area

For this study, 10 different watersheds, with drainage areas

ranging from 1,040 to 6,704 km2, from the Ottawa River

watershed were selected for developing and evaluating

ML-based daily streamflow modelling and forecasting

tools (see Fig. 1). Located in the Canadian Shield, the

Ottawa River watershed is one of the major tributaries of

the Saint-Lawrence drainage system with a total drainage

area of 146,000 km2, of which 65% is located in the pro-

vince of Quebec and the remaining 35% is located within

the province of Ontario. The length of the Ottawa River is

about 1,200 km. In addition, there are about 90,000 lakes

and 30 reservoirs in the Ottawa River watershed and hence,

it is considered as one of the heavily regulated watersheds

in Canada. Geographically, the Ottawa River watershed is

a low land that resulted from the past glacial activities. In

fact, it is the only Canadian River that crosses four major

geological subdivisions of the Canadian Shield: the Supe-

rior Province, Cobalt Plate, Grenville Province, and St.

Lawrence Lowlands [42]. The land cover within the

watershed is mainly forests. While 85% of the forest cover

is a combination of mixed and deciduous forests, the

remaining 15% accounts for boreal forests. While the cli-

mate in the northern part of the basin is cool and dry, the

southern part is warm and humid. The selected watersheds

represent near pristine conditions, with minimal human

interventions. Thus, the development of ML models will

not be impacted by artificial influences and hence these

watersheds will provide an opportunity to evaluate

streamflow forecasting capabilities of ML models in a

realistic and dispassionate manner.

3 Data

Three types of data were considered for this study:

streamflow data pertaining to the hydrology of the water-

sheds; meteorological data related to atmospheric input to

the watersheds and evaporative demand; and geophysical

data representing land cover types. These datasets were

obtained from different sources as discussed below.

Continuous daily streamflow observations for the 10

watersheds (Fig. 1) selected for this study were obtained

from Environment and Climate Change Canada’s national

water data archive: HYDAT (https://wateroffice.ec.gc.ca/).

A summary of the acquired data is given in Appendix 1.

Watershed drainage areas were delineated using Canadian

Digital Elevation Model (1945–2011) data, acquired from

Natural Resources Canada, and QGIS (http://qgis.org) and

Green KenueTM software [43].
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Meteorological and geophysical data were sourced from

ERA5-Land, which is a reanalysis gridded dataset with a

spatial resolution of 9 km and consists of variables that

describe energy and water cycle over land [44]. This

dataset provides a uniform gridded data source for all

watersheds and avoids lack of data related issues and is

considered to be quite suitable for model development and

testing purposes [44]. While ERA5-Land hourly data

records which contain temporal variability of land vari-

ables were available from January 1950 to present, the

temporal range of data for each watershed was different

due to the limitations imposed by the availability of

streamflow data for the selected watersheds. For the pur-

pose of this study, gridded data were area averaged for all

watersheds. The variables used in this study are air tem-

perature measured at 2 m from the surface, east–west wind

velocity measured at 10 m from the surface, north–south

wind velocity measured at 10 m from the surface, total

precipitation (in the form of liquid and frozen water),

atmospheric surface pressure, leaf area index (the ratio of

one half of total leaf area per unit horizontal ground sur-

face) for high vegetation type, snow water equivalent

(cumulative depth), and volumetric soil water content for

the upper most (0–7 cm) soil layer (Fig. 2). Except for total

precipitation, daily averages were obtained for all vari-

ables. For precipitation, accumulated daily precipitation

was derived from the hourly data. Temporal plots of daily

climatological streamflow, meteorological variables, and

vegetation indices, shown in Fig. 2 for selected watersheds,

clearly exhibit a seasonal pattern, which is compatible with

the physical understanding of the integrated land-river-at-

mospheric systems. For instance, peak river flows occur

during spring as a result of snowmelt or combined snow-

melt and rain-on-snow events, which is typical to Canadian

conditions, and low flows occur during dry summer or

during winter freeze-ups. Temperature and evaporation

have maximum values in summer. Similar patterns were

noted for other watersheds, when plots similar to Fig. 2

were developed for the same variables. Such parallel plots

help uncover structural features of data which are impor-

tant for developing ML-based forecasting tools.

3.1 Data pre-processing

Pre-processing of input variables/features is key to ML

model development and in attaining high performance and

accuracy. The steps involved in data pre-processing

includes splitting available data into training, validation,

Fig. 1 Study domain, showing

locations of selected watersheds

and the corresponding

streamflow gauging stations,

extracted from the HYDAT

database of Environment and

Climate Change Canada. Digital

elevation data Source: Canadian
Digital Elevation Model,

1945–2011
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Fig. 2 Daily climatological plots of hydrological, meteorological and

land data [columns (a) to (i)] used in the study for six selected

watersheds (Gatineau, Madawaska, Rouge, Petawawa, Rideau, and

Nord). a Streamflow [m3/s] measured at the outlet, b accumulated

daily total precipitation [mm], c temperature [�C] measured at 2 m

from the surface, d east–west wind velocity component [m/s]

measured at 10 m above the surface, e north–south wind velocity

component [m/s] measured at 10 m from the surface, f surface

atmospheric pressure [Pa], g leaf area index-high vegetation [.],

h snow water equivalent [m], and i volumetric soil water content [.]

measured for the 0–7 cm top soil layer. DOY means day of the year
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and testing portions; feature selection; feature engineering

if deemed necessary; and scaling of data. Some of these

steps and various decisions taken to prepare the data for

model development and evaluation are elaborated below.

3.1.1 Data splitting

An important aspect of data pre-processing for ML model

development is splitting data into training, validation, and

test sets. This data partitioning is done to ensure a gener-

alized model. The training set is used as a sample dataset

for model fitting. The validation set is used for an unbiased

evaluation of the model, fitted on the training dataset, and

re-training/stopping purposes. Tuning of hyperparameters

of the trained model normally occurs during the validation

stage. The evaluation of the model becomes biased when

validation dataset is incorporated in the model. This can

cause data leakage. Hence, a third sample of unseen test set

is held out and is used only at the end of the model training

phase. Thus, the test data provides final sanity check before

putting the model in operational use. For this study, data

were split by consecutive dates to preserve the temporal

order of the sequences and to avoid look-ahead bias and

data leakage. Additional information on training, valida-

tion, and testing data splits used in this study is given in

Appendix 2.

3.1.2 Missing data

Only a small portion (\ 0.1%) of streamflow data were

missing in some of the watersheds mainly for low-to-

medium flows. Hence, imputation of those missing values

was obtained to preserve continuity in the data. To fill these

values, several imputation techniques were examined. The

tested imputers were mean, median, decision tree, k-nearest

neighbours (using k = 14 and 30, where k is the number of

nearby samples), and extra tree (with n = 7, 14, 20, 25, and

30; n is the number of trees in the model). Each imputer

was iterated for each watershed to select the best estimator

with a minimum error between the imputed vs. the actual.

3.1.3 Feature selection

The feature selection is one of the core processes in ML

because it significantly impacts the performance of the

desired model. In the context of streamflow forecasting,

this process is designed to determine the set of variables

that are physically most meaningful and are related to the

target variable (i.e., streamflow). The runoff generation

within a watershed is in fact a physical phenomenon and

therefore physical relevance is an important aspect. This

step is also useful in eliminating irrelevant features that do

not affect the target variable of interest. In a nutshell, this

step helps avoid overfitting, reduce training time, enhance

model credibility, and improve model accuracy. Among

many techniques, inter-variable correlations of input vari-

ables show how various variables are related to each other

and with the target variable as well. Apart from that, cor-

relations of various pairs of variables are also very

insightful. For instance, from a highly correlated pair, only

one variable can be retained in order to obtain a robust set

of variables and that helps to develop a credible model.

ML, after all, is a data-driven modelling framework and the

trained model will be as good as the data it is trained on.

Following recommendations from [45] and [46], Variance

Inflation Factor (VIF) analysis with a threshold of 5.0 was

used to investigate multi-collinearity issues and eliminating

redundant variables. We understand that there are several

other methods available for feature selection, inter-variable

correlation and VIF analyses used here might not be the

best methods in all cases.

3.1.4 Feature engineering

The distribution of daily streamflow sequences shows a

typical exponential tail behavior due to lower number of

high flow values compared to the rest. Scaling of such data

using minimum and maximum values of the sequence will

result in the majority of scaled streamflow values falling in

the lower end of the scaling range. This will lead to an

imbalanced distribution of the target variable. In such sit-

uations, transformation techniques are often used such as

log transformation [47, 48] or more generalized Box-Cox

transformation [49]. Transformation of streamflow values

helps the ML model obtain a balanced target variable, a

tenable feature that helps the ML model learn faster. After

some experimentation, log-transformation was deemed

appropriate for this study. Thus, log-transformed stream-

flow values were used for ML model development.

3.1.5 Scaling

As a rule of thumb, ML models usually perform better

when input variables are scaled [50]. Hence, it is important

to scale input features before training the ML model.

Usually it is achieved through standardization or Min–Max

scaling (some investigators refer to this process as nor-

malization). Standardization assumes that the data

sequence will have a Gaussian like distribution, with zero

mean and unit standard deviation. The Min–Max scaling on

the other hand, rescales the input sequences to values

ranging from 0 to 1. In this study, log-transformed flow,

2 m temperature, east–west wind, north–south wind, and

surface pressure were scaled using standardization and the

rest of the variables (i.e., daily accumulated precipitation,
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leaf area index-high vegetation, and volumetric soil water

content) were scaled using the Min–Max scaling.

3.1.6 Data windowing

The next step is to prepare input data to generate a set of

predictions/forecasts based on a given set of consecutive

data. The current hydrological state of any watershed

depends on the past system behavior. Therefore, the

sequential data are re-organized as fixed-length vectors

using a sliding window so that ML model finds a function

that maps the sequences of past observations in order to

predict/forecast future values of the sequence (Fig. 3). The

model prediction/forecast at any time step is assumed to be

driven by a specified number of past consecutive samples

in the sequence (termed here as look-back window). In this

study, we used a look-back window of 14 days to pre-

dict/forecast streamflow on any day (see the schematic

diagram in Fig. 3). The look-back window size was chosen

after some experimentation with both longer and shorter

windows and the choice, however, does involve some

expert judgement as well.

3.1.7 Hyperparameter optimization

ML models have hyperparameters which affect the model

performance. Hence, optimization of hyperparameters is

important for obtaining a model with higher accuracy (or

minimum error). In this study, the search space was set as

bounded domain of hyperparameters and random search

was performed within that domain to obtain optimal values.

For this purpose, Keras Tuner [51], a library that allows to

pick optimal hyperparameters for ML framework was

adapted.

3.2 Software

The computational code mainly was implemented in

Python 3.8 [52]. The ML models were implemented in

Keras [53] with TensorFlow [54] backend. The Python

libraries such as NumPy [55], Pandas [56], Seaborn [57],

Scikit-learn [58], and Matplotlib [59] were used for data

pre-processing and visualization purposes.

4 Modelling

In ML modelling, the sequence prediction involves pre-

dicting next value or multiple values of a real valued

variable. These predictions can either be one-to-one or

many-to-many predictions. The many-to-many predictions

can be two fold. In one instance, the lengths of the input

and output sequences can be the same and in the other,

variable lengths of the input and output sequences is pos-

sible (e.g., machine translation, streamflow forecasting for

multiple lead times, music generation, etc.). This is called

sequence-to-sequence (seq2seq) predictions.

The seq2seq predictions are usually achieved through

RNNs. The LSTM, a powerful variant of the RNN, has the

ability to retain long range connections of the data

sequence, where it is maintained by the cell state, cðtÞ
(Fig. 4a). The cell state runs straight through the entire

sequence with simple linear interactions (Fig. 4b). Thus, it

allows information to flow unchanged. LSTM has the

ability to add or remove information to or from the cell

state. This is achieved through the use of regulated struc-

tures called gates. There are three gates inside an LSTM

cell, known as forget gate, update gate, and output gate.

The forget gate is to decide which pieces of information in

the sequence should now be forgotten from the cell state

(Eq. 1). This is acquired through a sigmoid layer ðrÞ,
where values ðCf Þ vary from 0 to 1. When Cf ¼ 1; it

retains the current cell state and the opposite occurs when

Cf ¼ 0. The parameters a\t�1[ is the activation function

at time step ðt � 1Þ,W and b are weights to be updated, and

x\t[ is the input sequence at time step t:

Cf ¼ rðWf a\t�1[ ; x\t[� �
þ bf Þ ð1Þ

The update gate on the other hand has multiple opera-

tions. First, a sigmoid layer will decide which values need

to be updated (Cu in Eq. 2). Next, a tanh activation layer

will create a candidate for the cell state (~c\t[ in Eq. 3)

Fig. 3 Schematic representation of the sliding window approach used

in this study. The look-back window is a fixed-length vector which

contains information of past hydrological and meteorological states of

a watershed. The output is also a fixed-length vector, with the selected

number of lead times
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that considers overwriting the previous cell state. Then, the

old cell state ðc\t�1[ Þ will be updated to new cell state

ðc\t[ Þ through element-wise multiplication of corre-

sponding values from the update and forget gates and

previous and candidate cell states as given in Eq. 4.

Cu ¼ rðWu a\t�1[ ; x\t[� �
þ buÞ ð2Þ

~c\t[ ¼ tanhðWc a\t�1[ ; x\t[� �
þ bcÞ ð3Þ

c\t[ ¼ Cu � ~c\t[ þ Cf � c\t�1[ ð4Þ

The ouput gate ðCoÞ finally decides which value is going

to be released from the LSTM cell (Eqs. 5–6). The oper-

ations within the ouput gate is two-fold. First, inputs go

through a sigmoid layer. Then the values from the output

gate and the cell state will go through a tanh layer to

generate activation for the next LSTM cell.

Co ¼ rðWo a\t�1[ ; x\t[� �
þ boÞ ð5Þ

a\t[ ¼ Co � tanhðc\t[ Þ ð6Þ

In this study, two types of LSTM structures were con-

sidered for modelling and forecasting streamflow

sequences, i.e., standard encoder-decoder LSTM network

and attention-based encoder-decoder LSTM network. Both

structures are presented below.

4.1 Standard encoder-decoder LSTM network

The standard encoder-decoder LSTM architecture [60] is

used to simulate and forecast daily streamflow with mul-

tiple lead times. The encoder-decoder LSTM network by

design is able to address the problem of seq2seq predic-

tions where it maps a fixed-length input vector to a fixed-

length output vector. The lengths of the input and output

vectors can vary. For instance, in streamflow forecasting,

input sequences from several previous days at time point t

can be used to forecast flow for next several days, including

the time point t. The architecture of the standard encoder-

decoder LSTM is shown in Fig. 5. This model contains

three parts, encoder, context vector, and the decoder.

Encoder and decoder consist of a layer of horizontally

stacked LSTM cells. The number of LSTM units in enco-

der and decoder is determined by the look-back window

size and the forecast time step. At the encoder, it receives

the past meteorological and hydrological states as input

Fig. 4 a A schematic representation of a single LSTM cell. b Stack

representation of LSTM cells for prediction of outputs of a sequence

one at a time. At any time step t, the input signal of the sequence

ðx\t[ Þ, the previous activation ða\t�1[ Þ at time step t � 1 are fed to

the LSTM cell to predict the output signal ðy\t[ Þ. The cell state

ðc\t[ Þ runs straight through the chain with some linear interactions.
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vectors ðx\t�i[ ; i ¼ 1; 2; ::tnÞ. At each time step, encoder

LSTM unit receives the corresponding meteorological and

hydrological state and the previous hidden state and then,

calculates the hidden state for the next LSTM unit as given

in Eqs. 1–6. The context vector is the final hidden state of

the encoder LSTM that is input to the decoder as the initial

hidden state. In streamflow forecast mode, in addition to

the context vector from the encoder, at each forecast time

step, the decoder receives corresponding predicted weather

variables (z\tþj[ ; j ¼ 0; 1; ::4; e.g., temperature, precipi-

tation, etc.). This is because the forecasted streamflow at

each forecasting time step is a direct function of the

meteorological data on that day. Finally, each decoder unit

outputs the forecasted streamflow at each time step

ðz\tþj[ Þ. Here, the loss was calculated by the mean

squared error. Previous hydrological applications of enco-

der-decoder LSTM include [38, 61, 62].

4.2 Attention based encoder-decoder LSTM
network

One of the issues with the standard encoder-decoder

architecture is that the context vector cannot encode all the

information from the input sequence (also known as the

bottleneck problem). This is due to the limitation on the

look-back window size. The attention mechanism [63] is an

improvement to the encoder-decoder architecture where it

accumulates memory from attending inputs at each time

step. Simply, the attention mechanism gives the relative

importance for the inputs at each time step. An application

of this mechanism was demonstrated by [37].

The architecture of the attention-based LSTM encoder-

decoder is shown in Fig. 6. There are several operations

which are carried out in the attention model. First, the bi-

directional (feed forward and backward) LSTMs’ cells in

the encoder generate activation functions for input

sequence at each time

step ðaf\t�i[
and ab

\t�i[ ; i ¼ 1; 2; . . .tnÞ. Then, these

hidden states are concatenated for each time step (Eq. 7) to

produce encoder hidden states.

a\t�i[ ¼ af
\t�i[ ; ab

\t�i[� �T ð7Þ

Once the encoder hidden state is obtained, the next step

is to calculate the alignment scores between the previous

hidden state of the decoder cell and the corresponding

encoder state as follows:

e\t[ ¼ gðs\t�i[ ; a\t[ Þ ð8Þ

where g is a nonlinear activation function (e.g., tanh).

Next, context vector for each output will be created by

weighted sum of hidden states from the encoder unit. The

context vector that feeds to the \t þ i[ ; i ¼ 0; 1; . . . is
given as,

c\t[ ¼
XTx

j¼1

a\t[ a\t�j[ ð9Þ

where the weights a\t[ are calculated applying the soft-

max function as follows.

a\t[ ¼ expðe\t[ Þ
PTx

j¼1 e
\j[

ð10Þ

All mathematical symbols used in this section are also

described in Appendix 3.

Fig. 5 A sample schematic representation of encoder-decoder LSTM

architecture, with reduced feature space. Here, x\t�i[ is the vector

containing input features (i.e., past meteorological and hydrological

states and geophysical features) at the ith lag time, by\tþj[
is the

predicted/forecasted flow at the jth time step, and z\tþj[ is the

weather at the jth time step
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5 Results and discussion

In this section, the usefulness of standard encoder-decoder

LSTM and the attention-based encoder-decoder LSTM ML

architectures is demonstrated to develop streamflow fore-

casting systems for Canadian watersheds, especially for the

watersheds selected from the Ottawa River watershed. The

comparison between both architectures also provided an

opportunity to assess the value of attention mechanism in

modelling streamflow sequences, which, to our knowledge,

is the very first application in Canadian hydrology. The

performance of both architectures was evaluated using root

mean square error (RMSE), coefficient of determination

(R2), Nash–Sutcliffe Efficiency (NSE), and Kling-Gupta

Efficiency (KGE). While RMSE, R2 are considered as

typical evaluation metrics in ML, the NSE and KGE are

widely used in hydrology to evaluate model performance.

The mathematical formulations of these metrics are given

in the following equations:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1 yobsi � ypredi

� �2

N

vuut
ð11Þ

R2 ¼
PN

i¼1 yobsi � yobs
� �

ypredi � ypred
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 yobsi � yobs

� �2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1 ypredi � ypred

� �2
r

0

BB@

1

CCA

2

ð12Þ

NSE ¼ 1�
PN

i¼1 yobsi � ypredi

� �2

PN
i¼1 yobsi � yobs

� �2 ð13Þ

Fig. 6 Typical architecture of attention-based encoder-decoder LSTM. The subscripts ‘‘f’’ and ‘‘b’’ respectively depict the forward and backward

propagation of the activation function in the bi-directional LSTM
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KGE ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r � 1ð Þ2 þ a� 1ð Þ2 þ b� 1ð Þ2

q
ð14Þ

a ¼ �ypred

�yobs
ð15Þ

b ¼
rstdpred=�y

pred

rstdobs=�y
obs

ð16Þ

In the above equations, y is the streamflow, r is the

correlation coefficient between the predicted (pred) by the

model and the observed (obs) values, y is the mean value,

and rstd is the standard deviation. The closest the values of

R2, NSE and KGE are to 1, the better the association

between observed and predicted values. An NSE value

lower than zero indicates that the mean value of the

observed time series would be a better estimator than the

model simulation. Regarding RMSE, values closer to zero

are indications of good model performance.

5.1 Model performance for training
and validation periods

The performance of both standard and attention models

was evaluated for training and validation periods, however,

detailed results are presented only for the attention model

to conserve space. It is important to note that a similar

behavior as discussed here for the attention model was also

observed for the standard model. To cover the entire range

of selected watersheds, results are presented with respect to

three categories of watersheds: (i) large watersheds, with

drainage areas[ 5,000 km2, (ii) medium watersheds, with

drainage areas ranging from 4,000 km2 to 5,000 km2, and

(iii) small watersheds, with drainage areas smaller than

4,000 km2. These categories are defined arbitrarily based

on the range of drainage areas of the 10 selected water-

sheds. The Gatineau and Madawaska River watersheds fall

in the first category, the Rouge and Petawawa River

watersheds fall in the second category and the Rideau ad

Nord River watersheds fall in the third category. Although

the specific results are presented for these watersheds,

discussion is applicable for all studied watersheds.

Model predicted daily flows (i.e., flows on the day of

forecast or zero day ahead forecasts) for the training and

validation periods for the above selected watersheds show

good agreement with the observed flows (Fig. 7); this

comparison was performed to mimic the evaluation strat-

egy of process-based models commonly practiced in

hydrology. In this figure, both observed and predicted flows

are summarized over the annual cycle for the combined

training and validation periods. The graphics for all

watersheds show that the model simulated flows preserve

the seasonality (i.e., high flows in spring and low flows in

summer and winter months), median values, and the

variability of observed flows. All lines and shaded areas

corresponding to both observed and predicted flows nearly

overlap each other for all watersheds, suggesting that the

attention model is able to simulate observed flows in a

satisfactory manner. Similar figures for the remaining

watersheds are presented in Fig. S1 (online resource).

In addition to daily flow comparisons, an assessment of

simulated annual flow volumes, derived purely from daily

simulated flows, for the training and validation periods was

also carried out to provide a different perspective on the

model performance. A visual comparison of observed and

predicted/simulated annual flow volumes is shown in

Fig. 8. The correspondence between the two flow volumes

was assessed based on the coefficient of correlation, which

was found to be higher than 0.99 for all watersheds, sug-

gesting that the attention model was able to simulate

observed annual flow volumes with a higher level of

accuracy.

5.2 Model performance on unseen test data

Nearly in all ML model development projects, the ultimate

test of the model happens when the model performance is

evaluated on unseen data, i.e., the data that the model has

never seen during the training and validation phases. This

evaluation becomes even more important in seq2seq

streamflow modelling because the testing data are from a

completely non-overlapping period. Here, for the testing

period, comparisons of observed and simulated flows for

the standard encoder-decoder LSTM model are presented

in Figs. 9a, 10a and 11a and that for the attention-based

encoder-decoder LSTM model in Figs. 9b, 10b and 11b for

the Madawaska River, Rouge River and Nord River

watersheds. See also Figs. S3a–S8a and S3b–S8b in the

online resource for other watersheds. The testing period

roughly contains about 4 years of daily streamflow data.

From these comparisons, three key points can be derived.

(i) From the temporal plots, it is evident that both models

are able to simulate overall hydrograph patterns fairly well,

however, the scatter plots verify that the attention model

considerably outperforms the standard model. (ii) The

results of the standard model are more variable (i.e., they

exhibit a noisy behaviour) compared to the results of the

attention model. (iii) While the standard model slightly

overestimates the streamflow during the snowmelt season

(spring to early-summer), the attention model slightly

underestimates the streamflow, especially high flows, for

the same season. A considerable portion of streamflow

during this season is driven from snowmelt, which depends

on snow accumulation on the ground. The underestimation

by the attention model could partly be due to the short

length of the look-back window [64]. It is also likely that

merely the attention mechanism based on the set of
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variables considered is not sufficient to discern the com-

plex relationships between snow accumulation and ablation

and runoff generation. Hence, still more complex data-

driven architectures and learning mechanisms, with addi-

tional variables than those considered here, may be

required to simulate streamflow for this season with a

higher degree of accuracy than achieved here.

The performance metrics for the day of forecast (by\t[
)

for the entire testing period obtained from the standard and

attention models are shown in Table 1. For the standard

Fig. 7 Observed and attention model predicted/simulated daily flows for the training and validation periods for selected large (a, b), medium (c,
d), and small watersheds (e, f). Similar graphics for the remaining watersheds are available in Fig. S1 of the online resource
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model, the average RMSE, R2, NSE, and KGE for all

watersheds are 40.39 m3/s, 0.668, 0.668, and 0.827,

respectively. Similarly, the averages of RMSE, R2, NSE,

and KGE for all watersheds in the case of attention model

are 8.2 m3/s, 0.985, 0.985, and 0.957, respectively. Thus, it

is evident that the attention model performance is signifi-

cantly superior to that of the standard model and it also

surpasses many performance benchmarks established in

hydrology [65].

5.2.1 Flow accumulation with time—attention model

A comparison of cumulative flows overtime, obtained from

observed and model simulated daily flows, is provided in

Fig. 12 for the testing period. This type of comparison

Fig. 8 Observed and attention model simulated/predicted annual flow volumes for the selected large (a, b), medium (c, d) and small (e,
f) watersheds for the training and validation periods. Similar graphics for the remaining watersheds are shown in Fig. S2 of the online resource
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serves as a surrogate for ensuring mass conservation, which

is an important aspect if the target model is adopted as a

simulation tool for reservoir design and operations. The

results of these comparisons show that the attention model

is also able to preserve the overall mass balance in a sat-

isfactory manner for most of the watersheds, suggesting

higher level of confidence in modelling results. However,

small discrepancies in these comparisons were noted for

the Rideau River, Bonnechere River and South Nation

River watersheds. These small discrepancies perhaps could

be attributed to slight underestimation of annual peak flows

by the attention model.

5.2.2 Multiple lead time future forecasts—attention model

To investigate suitability of ML models as potential fore-

casting tools for real-time operational applications, the

performance of both models was also assessed for multiple

lead times using the testing period as the testbed and

assuming future meteorological inputs as real-time fore-

casts coming from a numerical weather prediction model

(i.e., by emulating a real-time forecast scenario). The

assessment results based on the NSE and KGE metrics are

provided in Fig. 13 for the attention model. For all

watersheds, the majority of the NSE and KGE values are

well above 0.7, which is generally considered as a good

model performance level [65]. In a real-time forecast sce-

nario, the accuracy of future predictions/forecasts generally

decreases as the lead time increases. This character is also

visible in the results shown in Fig. 13. Although slightly

inferior to the attention model, similar results were also

noticed for the standard model. Nevertheless, forecasting

flows/floods with lead times of up to 5 days will enable the

responsible authorities to issue warnings and to take nec-

essary actions to safeguard the public and infrastructure.

6 Conclusions

From the results presented and discussed in this paper, the

following main conclusions can be drawn:

Fig. 9 Direct comparisons of observed and model simulated streamflow for the same day on unseen data (test set) for the a standard encoder-

decoder LSTM and b attention-based encoder-decoder LSTM for the Madawaska River watershed
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• The evaluation of standard and attention-based encoder-

decoder LSTM models for the training and validation

periods suggest that both models can simulate overall

hydrograph shapes, annual flow accumulations, sea-

sonal patterns, and streamflow variability across the

entire year fairly well. However, in relative terms, the

attention model was found to perform much better than

the standard model for all studied watersheds.

• The evaluation of both models on unseen non-overlap-

ping data suggests that the attention-based model

significantly outperforms the standard model in terms

of values of the performance metrics (i.e., RMSE, NSE

and KGE), which were found to be considerably better

than the commonly accepted benchmark values. Given

such a superior level of performance, the attention

model can be used with a higher level of confidence for

developing real-time streamflow forecasting systems

for Canadian watersheds.

• The standard and attention models were also tested for

simulating streamflow in an emulated real-time fore-

casting mode considering multiple lead times, ranging

from one to five days, on 10 different watersheds. In

this regard, it can be stated that the ML tools driven by

LSTM networks, compared to hydrological modelling

options, can be used as reliable alternatives for

developing real-time streamflow forecasting systems,

including flood forecasting, in Canada and other parts

of the world.

• To our knowledge, this study is the very first applica-

tion of the attention mechanism in Canadian hydrology

and therefore can be considered as a neat contribution

to the broad literature on hydrologic forecasting and

earth system science.

7 Future research and recommendations

It is hoped that through large scale applications and tar-

geted evaluations, ML models would continue to evolve

and mature as efficient data-driven solutions for real-time

streamflow modelling and forecasting system develop-

ments. We intend to continue our research along the lines

initiated in this paper for developing ML-based forecasting

tools to be readily integrated with regional hydrological

and water resources management systems. This can be

Fig. 10 Same as Fig. 9 but for Rouge River watershed
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achieved by embedding ML tools in existing ensemble

frameworks or by developing an ensemble framework

based totally on ML architectures. Of course, in real-world

circumstances and applications, such decisions are gener-

ally associated with many management related decisions

and regional/national priorities.

We also intend to investigate the suitability of LSTM

architecture-driven modelling tools for forecasting spring

floods alone, due to their huge societal impacts, in gauged

and ungauged locations across larger regions in future

studies. Also, it will be worth investigating the uncertainty

associated with various lead-time streamflow forecasts by

integrating real-time meteorological forecasts from

Fig. 11 Same as Fig. 9 but for Nord River watershed

Table 1 Performance metrics

for the day of forecast obtained

from the standard and attention

models

Watershed RMSE (m3/s) R2 NSE KGE

Standard Attention Standard Attention Standard Attention Standard Attention

South Nation 79.4 19.5 0.543 0.968 0.455 0.967 0.733 0.941

Gatineau 74.0 13.3 0.735 0.991 0.712 0.991 0.856 0.991

Rouge 58.5 8.1 0.667 0.992 0.537 0.991 0.743 0.965

Nord 18.8 4.2 0.590 0.980 0.520 0.976 0.766 0.946

Rideau 42.5 9.3 0.688 0.984 0.611 0.981 0.796 0.937

Madawaska 33.4 8.1 0.866 0.994 0.860 0.992 0.930 0.954

Petawawa 34.7 4.6 0.783 0.996 0.720 0.995 0.821 0.963

Bonnechere 10.7 4.7 0.876 0.976 0.874 0.976 0.932 0.969

Lievre 33.3 5.9 0.656 0.989 0.580 0.987 0.792 0.944

DuMoine 18.6 4.3 0.828 0.991 0.811 0.990 0.900 0.962
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numerical weather prediction models and satellite-based

remotely sensed data with the attention-based LSTM

model, which was not explored in this study.

This paper significantly advanced knowledge on real

world applications of ML tools in earth system science than

making theoretical innovations in deep learning area,

which we believe is absolutely necessary to solve applied

problems with new and emerging technologies. To further

bridge the gap between theoretical innovations and their

practical applications, it would be prudent to investigate

additional deep learning architectures (e.g., the use of

Gated Recurrent Units (GRUs) in place of LSTMs, the use

of additional hidden layers, or the use of Transformer

models) and revealing their practical strengths.

Fig. 12 Comparison of cumulative observed and attention model simulated flows for representative large (a, b), medium (c, d), and small (e,
f) watersheds. The results for the remaining watersheds are available in Fig. S9 in the online resource
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Appendix 1

See Table 2.

Appendix 2

See Table 3.

Fig. 13 The a NSE and b KGE values derived from the observed and attention model simulated streamflow for multiple lead times for the entire

testing period for all studied watersheds. Lead time flows were obtained by moving day of forecast by one-day at every time step

Table 2 A summary of HYDAT

stations used in the study. See

Fig. 1 for geographical

locations of gauging stations

Watershed name Station Drainage area (km2) Province Latitude Longitude Date range

From To

Gatineau 02LG005 6704 QC 47.08 -75.75 1974 2013

Bonnechere 02KC009 5800 ON 45.50 -76.56 1921 2018

Madawaska 02KD004 5459 ON 45.33 -77.52 1930 2019

Rouge 02LC029 4744 QC 45.74 -74.69 1964 2013

Lievre 02LE024 4482 QC 46.08 -76.07 1979 2013

Petawawa 02KB001 4163 ON 45.89 -77.32 1915 2018

Rideau 02LA004 3881 ON 45.38 -75.70 1933 2019

DuMoine 02KJ004 3720 QC 46.35 -77.82 1965 2013

South Nation 02LB005 3569 ON 45.52 -74.98 1915 2019

Nord 02LC008 1040 QC 45.79 -74.01 1930 2013

Table 3 Data split by date for

training, validation, and test sets
Watershed Name Training Validation Test

From To From To From To

Madawaska 1950-01-01 2000-01-01 2000-01-01 2015-12-31 2015-12-31 2019-12-31

Gatineau 1976-01-01 1998-10-31 1998-10.31 2009-10-31 2009-10-31 2013-10-21

Rouge 1966-01-01 1993-10-22 1993-10-22 2009-10-21 2009-10-21 2013-10-21

Petawawa 1950-01-01 1999-01-01 2000-01-01 2014-12-31 2014-12-31 2018-12-31

Rideau 1950-01-01 2000-01-01 2000-01-01 2015-12-31 2015-12-31 2019-12-31

Nord 1950-01-01 1993-10-22 1993-10-22 2009-10-21 2009-10-21 2013-10-21

Bonnechere 1962-10-01 1999-01-01 1999-01-01 2014-12-31 2014-12-31 2018-12-31

South Nation 1950-01-01 2000-01-01 2000-01-01 2015-12-31 2015-12-31 2019-12-31

Lievre 1979-05-09 1993-10-22 1993-10-22 2009-10-21 2009-10-21 2013-10-21

DuMoine 1965-06-01 1993-11-01 1993-11-01 2009-10-31 2009-10-31 2013-10-31
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Appendix 3

See Table 4.
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Table 4 Mathematical symbols and their descriptions

a Bias ratio derived from the predicted and observed mean streamflow values

a\t[ Weights obtained for each element in the input sequence at time step t

b Variability ratio derived from the mean values and the standard deviation of the observed vs. the predicted streamflow

C Gates in the LSTM cell. The subscripts ‘f’, ‘u’, and ‘o’ on this symbol respectively denote the forget gate, update gate, and output gate

r Sigmoid function

rstd Standard deviation

a\t[ Activation function at time step t. The subscripts 0b0 and ’f’ on this symbol respectively refer to forward and backward passes

b Weights to be updated. The subscripts ‘f’, ‘u’, ‘o’, and ‘c’ on this symbol respectively denote the weights related to LSTM’s forget gate,

update gate, output gate, and candidate cell state

cðtÞ Cell state at time step t

c\t[ Cell state of the LSTM unit at time step t

~c\t[ Candidate cell state at the update gate at time step t

e\t[ Alignment scores between the previous hidden state of the decoder cell and the corresponding encoder state

g Nonlinear activation function (e.g., tanh)

i Time index for the encoder and sequence index for the number of samples

j Time index for the decoder

k Number of nearest-neighbours

n Number of trees

N Number of samples

r Pearson correlation coefficient between the observed and the predicted flows

s\t[ Decoder hidden state at time step t obtained after attention mechanism

t Time point

tanh Mathematical function ‘tanh’

Tx Length of the input sequence

W Weights to be updated. The subscripts ‘f’, ‘u’, and ‘o’ on this symbol respectively denote the weights related to LSTMS’s forget gate,

update gate, and output gate

x\t[ Input sequence at time step t (e.g., the vector containing input features)

y Streamflow value. The superscripts 0obs
0
and 0pred0 on this symbol respectively denote the observed and the predicted flows

y Mean streamflow value. The superscripts 0obs
0
and 0pred0 respectively denote the observed and the predicted flows

by\t[ Predicted/forecasted flow at time step t

z\t[ Inputs for decoder (i.e., weather predictions)
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