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Abstract
Nowadays, cryptographic systems’ designers are facing significant challenges in their designs. They have to constantly

search for new ideas of fast unbreakable algorithms with a very powerful key generator. In this paper, we propose a novel

hybrid neural-cryptography methodology. It depends on new rule of very fast Backpropagation (BP) instant machine

learning (ML). This proposed Hybrid Cryptography system is constructed from Encryptor and Decryptor based on the

asymmetric Autoencoder type. The Encryptor encrypts and compresses a set of data to be instant code (i-code) using public

key. While the Decryptor recovers this i-code (ciphered-data) based on two keys together. The first is the private key and

the other is called instant-key (i-key). This i-key is generated from 3 factors as well (the original data itself, the generated

i-code and the private key). The i-key is changing periodically with every transformation of plain data set, so it is powerful

unpredictable key against the brute force.

Keywords Hybrid encryption � Neural-cryptography � Machine learning � Learning ratio (D‘)

1 Introduction

Nowadays, information security has become a very

important issue for governments, companies and even

individuals. Therefore, cryptographic systems’ designers

must constantly search for up-to-date cryptography algo-

rithms with higher efficiency to counter these potential

threats.

Usually, any cryptographic security level depends on

two major complicating factors. The first factor depends on

the complexity of the selected Cryptographic Algorithm

(CA) that responsible to convert plaintext to ciphertext, or

vice versa. The second factor is the complexity of the

secret key(s) generation. Both factors must be difficult

enough that the information cannot be accessed or pre-

dicted easily.

There are two main types of CA. The first type is called

Asymmetric Key Algorithm (AKA) or Public-key

cryptography while the other is called Symmetric Key

Algorithm (SKA).

Essentially, any security system are built on the basis of

CA with its Cryptographic Keys (CK). These keys should

be known only to the main users and hidden from others.

Attackers often try to find, explore, extract, or even steal

CK to recover hidden and confidential information. Sig-

nificantly, as long as the CK is confidential, the information

is safe.

In practice, keeping CK secret is one of the most diffi-

cult problems. Therefore, CK must be very complex (very

long) to be retrieved. Thus, the CK are generated using

powerful algorithms to ensure that each CK is

unpredictable [1].

There is a direct proportion between the n-bits of CK

and its security level. Oftentimes, n-bit security means that

attackers have up to 2n times to break it [2].

Towards more powerful CA and CK, designers thought

to integrate and collect more than one CA (often AKA and

SKA) in single algorithm called Hybrid cryptography

technique. So, this combination of multiple encryption

rules simultaneously takes advantage of their strengths.

They collected as many strengths as possible. Besides, they

also get rid of many weaknesses as possible.
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Hybrid encryption is a unique technology that combines

a strong algorithm (such as AKA encryption) with a low

execution time (likes SKA encryption). It utilizes more

than one key to perform its task, each key has long width

(Larger number of bits) likes AKA. Moreover, it handles

large amount of data simultaneously with highly speed of

processing likes SKA.

The essential advantage of the hybrid encryption is that

it generates a new encrypted key with each new transfor-

mation from plain to cipher data [3]. Frequently, this key is

generated randomly by strong algorithms. According to

this power and the constant changes of the generated key,

hackers can’t anticipate it. Therefore, this key is the second

line of defense against hackers. Moreover, this generated

key ensures stronger security during data transmission over

the communication media, because this key is

unpredictable.

Toward strongest hybrid cryptography, designers uti-

lized neural network (NN) in the field of cryptography that

called Neuro-Cryptography (or neural cryptography). This

concept is now rapidly increasing. In the past two decades,

many researchers already have collected and combined

different NNs with various classical cryptographic para-

digms [4]. The designers invented many complex neuro-

cryptography rules [5–7]. They have created their CA by

using different learning algorithms to generate strong keys

[8–12].

As long as the NN architecture (within neural cryptog-

raphy) is deeper, the generated keys are too complex to

predict.

In recent years, machine learning (ML) techniques have

become increasingly powerful in cryptography while pro-

cessing more than 3 quintillion (3 followed by 18 zeros) of

data-bytes around the world every day [13]. ML techniques

can be used to obtain the relationship(s) between original

data and its encrypted data within cryptographic systems.

Also, it can be used to generate CK. Furthermore, ML is

used to compress/decompress messages before they are

encrypted/decrypted.

The concept of utilizing different machine learning

(ML) in Neuro-Cryptography is growing rapidly. Various

researchers have proposed many Neuro-Cryptography rules

[14–16].

From literature survey, there is a lack of research on

hybrid-type Neuro-Cryptography (particularly for autoen-

coders) using backpropagation ML. Therefore, this

research proposes a novel hybrid neuro-cryptography rule

with instant-changing key based on the fast BP ML para-

digm called ‘‘Instant Learning-Ratio Machine-Learning

(ILRML)’’ [17].

Due to the great dependence of the ILRML algorithm

for our proposed Neuro-Cryptography design, we will

dedicate a large space to it in this introduction section.

As its name implies, the ILRML is very fast BP

supervised learning. It can update all the weights in the NN

during a single iteration. So, it can be used to encrypt/

decrypt the original/ciphered data during the online com-

munications. It relies on the learning ratio (Dl) rather than

the learning rate (g). In spite the ILRML runs its forward

propagation (FP) like any conventional ML rule, but it has

a fundamental difference during BP. The Fig. 1 shows the

concept of ILRML for one neuron.

For simple explanation of ILRML, we will firstly dis-

cuss the case of single neuron within a NN. The ILRML

checks (each learning iteration) the difference between any

instant output from neuron and its instant desired target (d).

If that difference is unacceptable (according to the required

accuracy), then the ILRML enables intersections between

the curve of this neuron’s activation function and the

constant function of d as shown in the Fig. 2.

The intersection may be one point (or two points due to

the curvature of activation function). In our case, the

constant function d ¼ 0:8 intersect with the functions

(Linear, Sigmoid, Tanh and ReLU) at the points (2.0,

1.3863, 1.0986 and 0.8) respectively. These intersection

points are called (post-intersection). It considered as instant

updated pre-activation factor and symbolled by xnew.

The ILRML divides the pre-activation factor xnew (of the

assigned function) over the old pre-activation factor (the

old sum of product) xold to generate the instant learning

ratio (D‘) of this neuron during that iteration.

The ILRML uses the factor D‘ to update the old values

of the neuron’s inputs and their weights by multipling them

according to the next algorithms 1 and 2.

In fact, the factor xnew can be determined (in the pro-

gramming of this algorithm) from the inverse of the acti-

vation function (at the point d).

xnew ¼ inverse activationfunctionð Þjd ð1Þ

As we mentioned before, the ILRML differs in their BP.

So, we will discuss two associated algorithms from BP

point-of-view. The algorithm 1 explains the feed-backward

during BP from a neuron (in any layer) to all neurons in the

previous layer as demonstrated in Fig. 3 [17]. While the

algorithm 2 illustrates the feed-backward from all neurons

(of any layer) to one neuron in the previous layer as

demonstrated in Fig. 4 [17].

The remaining relevant issues in this research will be

organized in this way. In Sect. 2, the description of the

basic architecture of the IHNC system and its general key
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Fig. 1 The concept of ML based

on the learning ratio within a

neuron

Fig. 2 Intersections between the

desired target (d = 0.8) and

many activation functions

Fig. 3 The BP from a neuron to the previous neurons Fig. 4 The BP from all neurons (within a layer) to a previous neuron
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formats besides its workflow. In Sect. 3, proposes an

architecture of a lite-IHNC. It includes 2 sub-sections. The

first for describing its Encryptor-unit and the second for its

Decryptor-unit. The Sect. 4, includes proposal of a Deep-

IHNC (to confirm our idea) as a case study with its results.

Eventually, the conclusion and future hope.

Algorithm 1 The BP of the ILRML from a neuron to the previous layer.
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Algorithm 2 The ILRML BP from all neurons of a layer

to one of previous neuron.

2 The basic architecture of the IHNC

In this section, we will introduce general architecture of

our proposed IHNC. Let’s first discuss three major

requirements for this design. The first requirement is to find

a suitable structure of an Artificial Neural Network (ANN)

that can be divided into 2 complementary sub-ANNs to

perform two tasks (encryption task and decryption task).

The second requirement, the number of outputs (from

the first divided sub-ANN) must equal the same number of

inputs (to the second sub-ANN) to transfer the ciphered-

data between them.

Third requirement, the selected ANN should have sim-

ilar numbers of its inputs and outputs to recover the same

encrypted (original) data.

According to the previous requirements, neural autoen-

coders are the best choice for our construction.

The neural autoencoder has two conjugated sub-ANNs

(Encoder and Decoder) [18–20].

Therefore, we will utilize these two sub-ANNs (au-

toencoder stages) to carry out our idea as will be explained

later on.

The main structure of the IHNC system should contain

two units (Encryptor and Decryptor) as seen in the Fig. 5.

The Encryptor-unit includes a fully autoencoder (Encoder

and Decoder stages) while the Decryptor contains only its

Decoder-stage.
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All initial values of the Encoder-stage are considered as

the public-key (green key) of the IHNC. Moreover, all the

initial values of the decoder-stage (decoder1 or decoder2)

are considered as the private key (yellow key) of the IHNC.

The Encryptor-unit carries out 2 tasks. The first task is

relying on the FP by passing an instant sample of plain data

(original data) through the initial weights (Public key) of

encoder-stage only to generate an instant code (i-Code).

This i-Code represents the instant ciphered data. Moreover,

it can also call the compressed code according to the

autoencoder. The second task (of the Encryptor) depends

on the BP by passing the same sample of plain data through

the initial weights (Private-key) of the Decoder1. This

second task generates Learning ratios (as instant-key) from

all neurons in this decoder. Both the generated instant-key

(i-key) and instant-code (i-Code) are changing periodically

with each new sample of plain-data to the Encryptor-unit.

Both i-key and i-code are sent to the Decryptor-unit

(directly or through suitable communication media).

On the other hand, the Decryptor-unit includes only

decoder-stage (Decoder2). It exactly similar to the Deco-

der1 in the Encryptor-unit. The Decoder1 is loaded by the

private key (initial values of its weight) and it receives both

the i-Code and i-key to recover the instant original data.

As mentioned before, we have Public, Private and

Instant keys. The Public and Private keys consist of all

initial values of the weights within Encoder-stage and

Decoder-stage respectively. While the i-key consists of all

generated learning ratios (D‘) from Decoder1.

Like any computer system, all weights values are rep-

resented by the Double-precision floating-point (Flot64)

format to get high accuracy numbering during the FP and

BP calculations through the neural autoencoder.

During the IHNC design, the designers are free to

choose any number of neurons inside their autoencoders,

and then any number of their weights. Therefore, the size

of their keys can vary from one design to another (ac-

cording the security level requirement). This gives flexi-

bility in the designs because the size of their keys is not

fixed like many recent encryption systems. let us give

examples. If the public or private key contains only 10

weights, then the size of that key will be 640 bits while if it

contains 1000 weights, then it will be 64,000 bits and so on.

Also, the instant key depends on the number of neurons

(not the weights) inside the decoder1. For example, if it

contains 100 neurons, the i-key size will be 6400 bits.

Further, IHNC designers are free to arrange those

weights in concatenation form. For example, as shown in

Fig. 6. Here the designer has arranged all the weights of the

two keys (public and private) in a regular order. The

designer started with the first weight of the first neuron of

the Encoder-stage ‘‘ðWinit
encrÞj1;k1’’ and then the second

weight of the same neuron ‘‘ðWinit
encrÞj1;k2’’ until he finishes

all the weights of the first neuron. Then, he completes the

rest of the weights in the same way.

Fig. 5 The basic architecture of

the proposed IHNC (Encryptor

and Decryptor)
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Also, he arranged all learning ratios from the first neu-

ron ‘‘ðDdecrÞ1;1’’ to the last one ‘‘ðDdecrÞj;i’’ inside the i-key.

Moreover, Fig. 6 shows the width of the instant plain-

data (total number of either autoencoder inputs or output *

64 bits). Besides, it shows the width of the instant com-

pressed data or i-code that will be transferred from the

Encryptor to Decryptor (total number of either Decoder-

stage inputs or Encoder-stage outputs * 64 bits).

Furthermore, the designers are more free if they rely on

the principle of Asymmetric Stacked Autoencoder (ASA)

characteristics [21], they are free to choose how many

layers will be inside the encoder-stage and the rest of the

asymmetric-autoencoder layers to the decoder unit.

This methodology gives more flexibility to their designs

because the same IHNC autoencoder can decrypt the same

plain-data in many i-codes and i-keys at the same time. In

addition, send them to several users (those have the com-

patible decoders) at once.

In this case, subscribers will receive the same informa-

tion, but with different encrypted codes and instant keys.

Therefore, they can retrieve the same original information

with different keys those agreed between the sender and all

the recipients.

For instance, assume IHNC application has an ASA with

seven layers as seen in the Fig. 7. It can send three i-codes

(i-code1, i-code2 and i-code3) for the same plain-data

simultaneously from three encoders (Encoder-a, Encoder-b

and Encoder-c) respectively.

Now let’s explain the whole operations of the IHNC

system through two flowcharts. The first one for carrying

out the encryption as demonstrated in the Fig. 8. In step-1,

the user uploads the public-key (as initial weights) to the

Encoder in the encryptor-unit. Step-2, the user loads the

private-key (initial weights) in the Decoder1 of the

encryptor too. From Step-3 to step-5, the user loads his/her

instant plain-data to the input of the encryptor-unit and run

the FP to all neurons in the encoder. So they get the instant

ciphered-data or instant-code (i-code) from the Encoder-

stage of the autoencoder. In step-6 and step-7, The user

feeds backward the same samples of the instant inputs to

the Decoder-stage (as desired target) and run the instant

learning ratios BP to Decoder1 only. So the user get the

instant-key (i-key) as the learning ratios (D‘) of all neurons

within Decoder1. In the last step-8, both the i-key and

i-code are sending to the decryptor-unit.

On the other side, another user receives both i-code and

i-key to the compatible Decryptor (Decoder2) as step-9 and

step-11 respectively in Fig. 9. Also the user loads the

common private-key as step 10. In step-12 the Encryptor-

unit updates the received i-code and initial weights of

Decoder using the received i-key. In the last 2 steps (13 and

14), the Decryptor run its FP to recover the instant original-

data as will be explained in the next section.

Fig. 6 Bit-format of IHNC

parameters (Public, Private,

Instant, i-code and Plain data)
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3 Architecture and methodology of a lite-
IHNC

In this section, we will discuss a simple structure of IHNC

system called lite-IHNC. It operates depending on the ML

algorithms of the instant D‘ that discussed in introduction-

section.

First, before we start diving into the details (formulas,

algorithms, applications), we have to provide the Symbol-

key for the next part of this research. Therefore, assume an

ANN includes two subsequent layers ‘‘j’’ and layer ‘‘k’’

(k ¼ jþ 1) as seen in Fig. 10. Each layer has ‘‘i’’-number

of neurons. The weights between them are labeled by two

parameters. The First is the number of the source neuron

and the other is the number of the destination neuron. For

instance, ‘‘WJ1;ki’’ indicates the weight between the first

neuron of layer ‘‘j’’ and the ‘‘i’’ neuron in the destination

layer ‘‘k’’. Moreover, the symbol Dk8 indicates the learning

ratio of eighth neuron in the layer ‘‘k’’ and so on.

Now, all details of the lite-IHNC will be discussed in the

next sub-sections.

Fig. 7 An ASA generates

several i-codes from multiple

encoders simultaneously

Fig. 8 The workflow of the encryption process of the basic IHNC

Fig. 9 The workflow of decryption process of the basic IHNC

Fig. 10 A simple ANN indicates the used symbols in the rest of this

research
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3.1 Encryptor-unit of the lite-IHNC

This subsection is assigned to present the main architecture

of the Encryptor within the proposed lite-IHNC. It consists

of 3 layers as illustrated in the Fig. 11. Its encoder-stage

includes two layers (input-layer ‘‘j’’ and layer ‘‘c’’). The

layer ‘‘j’’ has 8 inputs (p1 : p8) via 8 weights

(wp1;j1 : wp8;j8). The layer ‘‘j’’ is connected with layer ‘‘c’’

via 8 weights (wj1;c1 : wj4;c1 and wj5;c2 : wj8;c2).

All weights in that encoder-stage represents the public-

key (with size 1024 bits) as shown in the upper segment of

the Fig. 12 and step (1) of algorithm 3.

While, the decoder-stage (in this Encryptor) contains

only one layer called ‘‘op’’. It connected with layer ‘‘c’’ via

16 weights (wc1;op1 : wc1;op8 and wc2;op1 : wc2;op2). These

weights represent the private-key (width 1024 bits) as the

lower segment in the Fig. 12 and step (2) of algorithm 3.

An instant data sample is delivered to the encoder inputs

(p1 : p8) as step (3) of algorithm (3).

The FP runs inside the Encryptor-unit to generate the i-

codes (C1old and C2old) as step (4) of algorithm 3 and as

illustrated in the formulas (2: 6). Moreover, it generates the

sum-of-products that called ‘‘Pre activationold’’ (from

decoder stage) as demonstrated in formula (7).

C1old ¼ f WJ1;C1 � f j1ð Þ þWJ2;C1 � f j2ð Þ
�

þWJ3;C1 � f j3ð Þ þWJ4;C1 � f j4ð Þ
� ð2Þ

C1old ¼ f WJ1;C1 � f ðWp1;j1�P1Þ þWJ2;C1 � f
�

Wp2;j2�P2

� �
þWJ3;C1 � f Wp3;j3�P3

� �
þWJ4;C1

�f ðWp4;j4�P4Þ
�

ð3Þ

C2old ¼ f WJ5;C2 � f j5ð Þ þWJ6;C2 � f
�

j6ð Þ þWJ7;C2 � f j7ð Þ þWJ8;C2 � f j8ð Þ
� ð4Þ

C2old ¼ f WJ5;C2 � f ðWp5;j5�P5Þ þWJ6;C2 � f Wp6;j6�P6

� ��

þWJ7;C2 � f Wp7;j7�P7

� �
þWJ8;C2 � f ðWp8;j8�P8Þ

�

ð5Þ

i code ¼ C1old

C2old

� �
ð6Þ

Fig. 11 The architecture of the

Encryptor of the lite-IHNC
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Pre activationold ¼

OP1

OP2

OP3

OP4

OP5

OP6

OP7

OP8

2

666666666666664

3

777777777777775

¼

Winit
C1;op1

Winit
C1;op2

Winit
C1;op3

Winit
C1;op4

Winit
C1;op5

Winit
C1;op6

Winit
C1;op7

Winit
C1;op8

Winit
C2;op1

Winit
C2;op2

Winit
C2;op3

Winit
C2;op4

Winit
C2;op5

Winit
C2;op6

Winit
C2;op7

Winit
C2;op8

2

66666666666666664

3

77777777777777775

�
C1old

C2old

" #

¼

Winit
C1;op1

Winit
C1;op2

Winit
C1;op3

Winit
C1;op4

Winit
C1;op5

Winit
C1;op6

Winit
C1;op7

Winit
C1;op8

�C1old

�C1old

�C1old

�C1old

�C1old

�C1old

�C1old

�C1old

Winit
C2;op1

Winit
C2;op2

Winit
C2;op3

Winit
C2;op4

Winit
C2;op5

Winit
C2;op6

Winit
C2;op7

Winit
C2;op8

�C2old

�C2old

�C2old

�C2old

�C2old

�C2old

�C2old

�C2old

2

66666666666666664

3

77777777777777775

ð7Þ

During the BP (for the decoder-stage only), the same

data sample is delivered also to the decoder as desired

target ‘‘pi’’ as step (5) of same algorithm 3. According to

the instant-ML of the learning ratios (that introduced in

introduction part), each desired target intersects with its

corresponding neuron function-curve to produce new

‘‘Pre activationnew’’ for each neuron ‘‘i’’ of the output-

layer ‘‘op’’ as formula (8 and 9).

These intersections are similar as carrying out the neu-

ron inverse-function (as mentioned earlier in the formula

(1) above in the introduction part).

Prenew
activation ið Þ ¼ Pre activationDesired ið Þ ¼ f�1 pið Þ ð8Þ

Pre activationnew ¼

Pre activationDesired 1ð Þ
Pre activationDesired 2ð Þ
Pre activationDesired 3ð Þ
Pre activationDesired 4ð Þ
Pre activationDesired 5ð Þ
Pre activationDesired 6ð Þ
Pre activationDesired 7ð Þ
Pre activationDesired 8ð Þ

2

6666666666666664

3

7777777777777775

¼

f�1 p1ð Þ
f�1 p2ð Þ
f�1 p3ð Þ
f�1 p4ð Þ
f�1 p5ð Þ
f�1 p6ð Þ
f�1 p7ð Þ
f�1 p8ð Þ

2

6666666666666664

3

7777777777777775

ð9Þ

Each new pre-activation }Preactivation
DesiredðiÞ’’ value

will be divided over its corresponding old-activation value

to produce its learning ratios(i) as formula (10) and step (6)

of the same algorithm. In this case, all generated learning

ratios (D1 : D8) will be considered as the generated i-key.

Thus here, the i-key size is 8Ds � 64 bit ¼ 512 bits as

illustrated in the Fig. 13.

These generated i-key and i-code will be transferred to

the Decryptor-unit as step (7 and 8) of the same algorithm.

D‘i ¼
Pre activationDesired ið Þ

Pre activationold ið Þ

¼ f�1 pið Þ
Sum of products of neuron opið Þ ð10Þ

Algorithm 3 the encryption process of the lite-IHNC.

Fig. 12 The bit format of the

private and public keys of the

lite-IHNC
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3.2 Decryptor-unit of the lite-IHNC

This subsection presents the main architecture of the

Decryptor within the lite-IHNC. It includes only decoder-

stage (Decoder2) which is exactly the same as decoder1 in

the Encryptor-unit as demonstrated in the Fig. 14. It loads

by the initial values (private key) as step (1) of algorithm 4.

Also, it receives the previously generated i-key (D1 : D8) as

step (2) of algorithm 4. Besides, it receives the i-code as

step (3) of algorithm 4. It will carry out the following two

points.

Firstly, it updates the received i-codes (C1old and C2old)

according to the formula of the step (9) in the algorithm 2

to be (C1new and C2new) as illustrated in the formulas (11

and 12) and step (5) of algorithm 4.

C1new ¼ C1old �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y8

i¼1

D‘ij j

vuut ð11Þ

C2new ¼ C2old �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y8

i¼1

D‘ij j

vuut ð12Þ

Secondly, all Decoder’s weights are updated according

to the formula in the step (8) in the algorithm 2. Here, only

2 formulas are written (Wnew
C1;op1 and Wnew

C2;op1) for the neu-

ron-1as illustrated in the formulas (13 and 14) and step (4)

of algorithm 4.

Wnew
C1;op1 ¼ ðWold

C1;op1 � D‘1Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y8

i¼1

D‘ij j

vuut ð13Þ

Fig. 13 The i-key bit-format of

the lite-IHNC
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Wnew
C2;op1 ¼ ðWold

C2;op1 � D‘1Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y8

i¼1

D‘ij j

vuut ð14Þ

after that, the Decryptor unit needs only the FP to recover

the original data from the Decoder2. One sample of this

recovered data from the 1st neuron is demonstrated in

formula (15).

OP1new ¼ f ðC1new �Wnew
C1;op1 þ C2new �Wnew

C2;op1Þ ð15Þ

By substituting the formulas (11, 12, 13, 14) in formula

(15) will get formula (16) thus (17).

OP1new ¼ f C1old �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y8

i¼1

D‘ij j

vuut �Wold
C1;op1 �

D‘1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ8
i¼1 D‘ij j

q

0

B@

þC2old

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y8

i¼1

D‘ij j

vuut �Wold
C2;op1 �

D‘1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ8
i¼1 D‘ij j

q

1

CA

ð16Þ

OP1new ¼ f ½D‘1 � C1old �Wold
C1;op1 þ C2old �Wold

C2;op1

	 

�

ð17Þ

From formula (10), will get the learning ratio (D1) of the

1st neuron as seen in the formula (18). And so on, for all

rest neurons’ outputs (OPinew) as step (6) of algorithm 4.

D‘1 ¼ f�1 p1ð Þ
Sum of products of neuron op1ð Þ

¼ f�1 P1ð Þ
C1old �Wold

C1;op1 þ C2old �Wold
C2;op1

ð18Þ

By compensating D1 of formula (18) into (17) will get

formula (19)

OP1new ¼ f f�1 P1ð Þ
� �

¼ P1 )leads to
the 1st Original input data ð19Þ

Fig. 14 The architecture of the

Decryptor of the lite-IHNC
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Algorithm (4) the Decryption process of the lite-IHNC.

4 Case study and results of a deep-IHNC

In last section, we introduced a lite IHNC to simplify our

idea. But in this section will propose deeper one. As long as

this proposed Deep-IHNC architecture is deeper, the

i-codes and i-keys are too complex to crack. Further, its

original data is too safe to be predictable.

In this section, we will not mathematically analyze this

application. Because it includes similar equations men-

tioned above albeit in a deeper way. But we will see its

behaviors during encrypting a text as well as decryption

process with 100% accuracy.

Therefore, we prepared more complex IHNC system

depending on asymmetric autoencoder. All parameters in

this application are declared with double precision data

type (64 bits) to get high accuracy during its computation

process.

The proposed Deep-IHNC supports task parallelism by

handling 8 characters (via 8 inputs) simultaneously.

Its Encryptor-unit contains seven layers

(La; Lb; Lc; Ld; Le; Lf and Lg) as shown in the Fig. 15. For

more complexity in our design, the encoder-stage of the

Encoder-unit is completely differing than its decoder-stage.

The encoder-stage contains five layers (La; Lb; Lc; Ld; Le),

while its decoder contains 2 layers (Lf ; Lg). Moreover, the

encoder-stage has 8 inputs (p1 : p8) that divided into 2

groups (p1 : p4) and (p5 : p8). Each group is fully connected

with 2 neuron (La1; La2) and (La3; La4) respectively through

8 weights for each group.

A different interface for the decoder-stage output is

designed to give more asymmetry to the autoencoder. The

8 neurons ðop1 : op8Þ of the output layer ‘‘Lf ’’ are fully

connected with the 3 neurons in the layer ‘‘Lg’’ via 24

weights.

The input-layer ‘‘La’’ can accept 8 characters concur-

rently via its 8 inputs (p1 : p8). This total number of inputs

can be exceeded or reduced depending on the designed

system requirements. Each input accepts complete char-

acter in ASCII-code format.

We select the ReLU-type as activation function for all

neurons in that system, because all inputs have ASCII-

codes with positive values greater than one.

According to the architecture of the proposed Deep-

IHNC, the encoder-stage has

(4 ? 4 ? 12 ? 6 ? 2 ? 2 = 30 weights), so it has public-

key with long (30 * 64 = 1920 bit). Moreover, its decoder-

stage includes (6 ? 24 = 30) weights. Thus, it has private

key with long 1920 bits and i-key with long (3 ? 8) D‘s *

64 = 704 bits. Its ciphered characters i-code has com-

pressed data (2 * 64 = 128 bits). Therefore, the total

number of bits that represent 8 characters simultaneously

are (128 ? 704 = 832 bits).

Our scenario here, is encrypting a text of 80 characters

as seen in the Fig. 16. The Decryptor is fed forward with

sequential sets of characters (eight characters per encryp-

tion cycle). Therefore, the FP runs to generate the relevant

i-codes as shown in the Fig. 17. The figure shows the

changes of 10 i-codes during encryption operations for 10

sets of characters.
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Further, the decoder-stage of the Encryptor is fed

backward with the same characters sets (to be their desired

targets) to the output layer ‘‘Lg’’. Thus, its BP ML is run to

generate ten i-keys based on the previous formulas. Each i-

key is represented by eleven learning ratios (Da: DgÞ
andðDf1 : Df3) as demonstrated in Fig. 18. This

figure displays sequence changes of 10 samples of i-keys

during the BP.

Furthermore, after each encryption cycle, the Encryptor-

unit sends its generated i-key (designated for 8 characters)

with its associated i-code to the Decryptor-unit.

On other hand, the Decryptor-unit is similar in its

architecture to the decoder-stage in the Encryptor. It has 2

layers, input layer ‘‘Lp’’ and output layer ‘‘Lq’’ with fully

connected weights as illustrated in the Fig. 19.

During each decryption cycle, the Decryptor is loaded

with the same accepted private-key. It received ‘‘i-code’’

and ‘‘i-key’’, it performs four main tasks. In the first task, it

uses the received i-key to update the received i-code as

seen in the Fig. 20. It displays the received 10 samples of

old i-codes and their updating (new) i-codes (within the

Decryptor-unit) during 10 samples.

In the second task, the received i-key is also used to

update all the initial weights (that loaded with private-key)

inside the Decryptor as illustrated in the Fig. 21. It shows

the old values of all weights (private keys) for all neurons

(q1 : q8) in the layer ‘‘Lq’’ along with their updating values

during 10 sequential samples of decryptions.

In the third task, the Decryptor runs its FP to restore the

original sets of characters. the Fig. 22 shows the recovered

original characters across all outputs ‘‘Out1 : Out8’’ from

the eight neurons (q1 : q8) of layer ‘‘Lq’’.

Fig. 15 The architecture of the

proposed Encryptor of the

Deep-IHNC

Fig. 16 Input-text (sets of instant plain data) contains characters
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Eventually, in the fourth task, the Decryptor-unit col-

lects all the character sets retrieved from all the outputs of

the layer ‘‘Lq’’ in the same sequence (as it encrypted) as

shown in the Fig. 23. When we compare the input text to

the output text, we find that they are exactly the same.

Eventually, there is a trade-off between building a more

in-depth ANN versus its cost and speed of processing.

many researchers recommend to implement their systems

by using hardware description-language (like VHDL) over

the FPGA [22–27].

The mentioned structures of the IHNC systems can be

realized using software programs. However, to get more

high speed of processing, hardware systems are

recommended. In this case, the designers will face some

challenges while writing the IHNC system by VHDL code.

We can summarize these challenges in the following

points:

(1) A new datatype (according to Mantissa and Expo-

nent rule) must be added (in VHDL code) to

represent all parameters in Float64.

(2) All IHNC parameters (plain data, weights, learning

ratios, outputs…etc.) must be declared by this added

Float64 datatype.

Fig. 17 The generated i-codes

(in our scenario) from the Deep-

IHNC

Fig. 18 The Changes of the i-key (10 data samples) in the Deep-IHNC

Neural Computing and Applications (2022) 34:19953–19972 19967

123



(3) Three VHDL-functions based on Mantissa and

Exponent rule must be written to carry out the

following.

• Function1 to make multiplication of Float64 (to

perform the products during FP).

• Function2 to make summation of Float64 (to perform

the sum of products during FP).

• Function3 to make division of Float64 (to get the

learning ratios D‘ during BP).

4.1 Conclusion and hope

In this research, we proposed a new methodology of

Hybrid cryptography. It has been realized using the

asymmetric autoencoder based on the new concept of

machine learning called the instant learning ratio ‘‘D‘’’.
This Hybrid cryptography ‘‘IHNC’’ serves the task

parallelism.

It encrypts multiple data concurrently using Public-key

and convert them to compressed instant-code (i-code).

Further, it generates instant-key (every encryption process).

Moreover, it uses the instant-code as well as the private-

key to recover the original data simultaneously.

The proposed hybrid neuro-cryptography does not

belong to a specific architecture of neural autoencoder, so

each cryptography designer can get creative with her/his

design to get their complexity required.

Fig. 19 The Decryptor

architecture of the Deep-IHNC

Fig. 20 The updating of the

received i-code in of the Deep-

IHNC
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Fig. 21 The Updating of all weights of the layer ‘‘Lq’’ of the Deep-IHNC
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Fig. 22 All recovered characters from layer ‘‘Lq’’ in the Deep-IHNC
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In the future, I hope to design and implement this

Hybrid cryptographic system based on the VHDL and

FPGA to make the encryption/decryption time within a few

clocks for each data block.

Eventually, I hope to use this proposed Hybrid crypto-

graphic rule in an application contains several end-to-end

Encryptor/Decryptor units.
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