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Abstract
Financial bubbles represent a severe problem for investors. In particular, the cryptocurrency market has witnessed the

bursting of different bubbles in the last decade, which in turn have had spillovers on all the markets and real economies of

countries. These kinds of markets and their unique characteristics are of great interest to researchers. Generally, investors

and financial operators study market trends to understand when bubbles might occur using technical analysis tools. Such

tools, which have been historically used, resulted in being precious allies at the basis of more advanced systems. In this

regard, different autonomous, adaptive and automated trading agents have been introduced in the literature to study several

kinds of markets. Among these, we can distinguish between agents with Zero/Minimal Intelligence (ZI/MI) and Compu-

tational Intelligence (CI)-based agents. The first ones typically trade on the market without resorting to complex learning

strategies; the second ones usually use (deep) reinforcement learning mechanisms. However, these trading agents have

never been tested on the cryptocurrencies market and related financial bubbles, which are still mostly overlooked in the

literature. It is unclear how these agents can make profits/losses before, during, and after a bubble to adjust their strategy

and avoid critical situations. This paper compares a broad set of trading agents (between ZI/MI and CI ones) and evaluates

them with well-known financial indicators (e.g., volatility, returns Sharpe ratio, drawdown, Sortino and Omega ratio).

Among the experiment’s outcomes, ZI/MI agents were more explainable than CI ones. Based on the results obtained above,

we introduce GGSMZ, a trading agent relying on a neuro-fuzzy mechanism. The neuro-fuzzy system is able to learn from

the trades performed by the agents adopted in the previous stage. GGSMZ’s performances overcome those of other tested

agents. We argue that GGSMZ could be used by investors as a decision support tool.

Keywords Zero-intelligence trader � Reinforcement learning trader � Cryptocurrency � Financial bubbles

1 Introduction

Price prediction in financial and real markets is a problem

that industry experts and scholars have always studied.

Forecasting has become an increasingly complex process,

especially today, where markets are fully connected, and

information circulates easier and faster. However, in par-

allel with the increase in forecasting complexity, different

tools have been developed to carry out machine-assisted

forecasting. For example, various studies successfully

forecast stock prices [8, 9, 11, 57, 78] (or more specifically

daily close price of stocks [49]), stock market index per-

formance [71], carbon emissions futures prices [6], the

price of gold [45], the price of oil [10] and the price of

various commodities [5] like coffee, cocoa, etc.

In recent years, Bitcoin has attracted considerable

attention from investors, policy makers, and the media.

This is not surprising since its price increased from a value

of nearly zero in 2009 to almost $20,000 in December

2017. This was accompanied by a tremendous increase

both in the number of Bitcoins in circulation and the Bit-

coin market capitalization, being around 16.8 million Bit-

coins and $300 billion, respectively. Policymakers around

the world have raised concerns because Bitcoin is anony-

mous, decentralized and unregulated, and it could be a

bubble, threatening the stability of the financial sys-

tem [16, 18, 50]. Nonetheless, investors appear to be

attracted by the potential to earn high returns, the intro-

duction of Bitcoin derivatives, and the potential
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diversification benefits. Thanks to these features, the focus

has shifted to this market, and it is possible to find a lot of

studies that develop and test prediction models for the

Bitcoin market. For example, Shah and Zhang [67] propose

a trading strategy based on a Bayesian regression model

that allows them to earn substantial returns when tested on

real data. In a similar context, Madan, Saluja, and

Zhao [58] propose the use of binomial regressions, support

vector machines and random forest algorithms to predict

the sign of the Bitcoin price change. Using machine

learning optimization, Greaves and Au [39] obtain an up-

down Bitcoin price movement classification accuracy of

roughly 55%. In more recent times, Atsalakis et al. [7]

developed a neuro-fuzzy system for Bitcoin price predic-

tion with root mean squared error (RMSE) of 0.0376.

Lastly, Mudassir et al. [61] proposed a machine learning

approach exploiting joint regressors forecasting for Bitcoin

price prediction, which has proven to be effective also in

medium-term predictions.

In step with the introduction of prediction methods and

systems, a set of tools to study the financial market has

been proposed. There is a long tradition of research to

automatically discover, implement, and fine-tune strategies

for autonomous adaptive automated trading in financial

markets, with a sequence of research papers on this topic

published at major artificial intelligence (AI) conferences

and in prestigious journals. Among these, we can distin-

guish between two broader sets of automatic traders: Zero/

Minimal Intelligence (ZI/MI) traders [19], and Computa-

tional Intelligence (CI) traders [55]. The first set concerns

agents that trade on the market without resorting to com-

plex learning strategies. The second set includes traders

that usually exploit (deep) reinforcement learning

mechanisms.

1.1 Overview

Objective In this paper, our goal is to study and evaluate

the behavior of different agents in the Bitcoin market

during financial bubbles (see a visual abstract in Fig. 1).

We use two different types of trading agents to analyze

their ability to identify the particular market phases

(before/during/after the bubble) and their behavior in the

investment phase. We want to analyze ZI/MI and CI agents

in different scenarios, such as various stages of a financial

bubble and compare these agents to understand which ones

make more profit in anomalous situations. (Over the years,

these bubbles in crypto seem to be more frequent.) Finally,

based on what we have observed experimenting with such

trading agents, we aim to develop our own automatic trader

that operates during the bursting of a bubble. The ultimate

goal is to define and introduce a trader outperforming state-

of-the-art ones.

Motivation Bitcoin has particular attributes that intro-

duce additional challenges when building a model to

forecast its price movements. For example, its volatility is

considerably higher than that of gold, the US dollar or

stock markets [13], and it is particularly susceptible to

regulatory and market events [31]. Additionally, prices

may be manipulated through suspicious trading activ-

ity [34]. Our interest is driven by the absence in the liter-

ature of a comparison between two types of agents, i.e., ZI/

MI and CI. Moreover, since the crypto market is subjected

to the effect of financial bubbles more and more frequently,

it is interesting to study how these agents behave in the

different market phases [18]. Furthermore, since the capi-

talization of these markets is always higher, studying which

agent has the best behavior could allow human traders to

benefit from its strategies (added value not to be underes-

timated, from an economic point of view). Finally, the

analyses made on this market could be transferred to

newbies that have the same characteristics (e.g., high

volatility, high frequency of bubbles, . . .).
The proposed approach In order to compare the ZI/MI

and CI traders, we considered the ones in [19]—a broad

collection of ZI/MI agents including ZIC, ZIP, GDX, AA,

and GVWY (see Sect. 2.1)—, and the ones in [55]—a

collection of CI traders including A2C, DDPG, TD3, PPO

and SAC (see Sect. 2.2). We compared such agents on the

Bitcoin market from 2015 to 2018, from 2019 to 2021, and

Ethereum market from 2019 to 2021 showing how ZI/MI

agents were more explainable than CI ones. Building upon

the achieved results, we introduce a neuro-fuzzy system,

which is trained on the basis of the experience made by the

best agents found in the previous phase and whose aim is to

suggest the best operation to perform on the market in a

specific period. Neuro-fuzzy systems are hybrid models

that combine the functionality of fuzzy systems with the

learning abilities of neural networks [59]. Consequently,

one of the main advantages of a neuro-fuzzy system is its

ability to learn and use linguistic variables to model the

input–output relationships of a given system. In addition,

using neural network learning algorithms, the fuzzy sub-

system can automatically adjust the parameters of the fuzzy

Fig. 1 Visual abstract of our proposal
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rules, thereby producing a data-driving-based rule for more

accurate forecasting.

The adaptive network-based fuzzy inference system

(ANFIS) used in the present study was proposed by [47]. It

consists of five layers of adaptive networks with several

inputs and one output. Such fuzzy system thus created is

placed at the core of a new trading agent, namely GGSMZ,

and was tested on the Bitcoin and Ethereum market also

during the bubbles of 2018 and 2021. The results show how

GGSMZ outperforms other agents under many indicators in

various market situations, and it can be a great trading

support tool.

Key points The main contributions of this paper are:

– The study of the efficacy of Zero/Minimal Intelligence

and Computational Intelligence based agents in terms

of economic return in trading cryptocurrencies. In

particular, we have analyzed the behavior of such

trading agents also during financial bubbles. To the best

of our knowledge, the current study is one of the first

that compares such a broad range of trading agents (ZI/

MI and CI) in similar scenarios.

– The analyzes show that some ZI agents can identify the

phase of a bubble based on volatility. While for CI

agents, their behavior is always excellent at any stage of

the market. However, despite the optimality of the

investment phase, CI agents lose explainability due to

their depth of training.

– In the light of the above, we have built a novel learning-

based trading agent, namely GGSMZ, that is based on

an adaptive neuro-fuzzy inference system (ANFIS)

approach. We have tested such an agent and compared

its performance against the most promising ones found

in the previous step of the project. The results indicate

that GGSMZ was able to learn from the best choices of

the CI agents and to use them to put himself in a

profitable position. Investors could use our neuro-fuzzy

model as a decision support tool. In the literature, few

agents perform actions based on RL trading agents,

placing us among the first to develop models of this

type (particularly with neuro-fuzzy rules).

Paper’s organization This article is structured as follows:

Sect. 2 presents the literature review, highlighting initiative

and studies that show contact points with the presented

paper; Sect. 3 elucidates the set of methods used and the

dataset adopted; Sect. 4 provides details and a step-by-step

description of the experiments carried out, ending with the

discussion on the obtained results; Sect. 5 presents GGSMZ

and the neuro-fuzzy system at its core. It also illustrates the

methodology adopted to build the neuro-fuzzy system and

the experiments made; Sect. 6 concludes the paper with

final remarks and an overview of the work done, and it

traces the path for future works. Finally, Appendix 1

repeats the experiments previously carried out with the

same agents on a different market, that of currencies

(FOREX).

2 Literature review

This section focuses on providing the key literature refer-

ring to ZI/MI trading agents (Sect. 2.1), CI agents

(Sect. 2.2), and dwells on the works that compared dif-

ferent agents (Sect. 2.3).

2.1 Zero-intelligence and minimal intelligence
trading agents

As many world’s major financial markets have lived a shift

from physical stock exchanges to electronic markets, many

software agents with various degrees of artificial intelli-

gence have started to replace human traders. One relevant

example of these software agents is represented by the

Zero/Minimal Intelligence trading agents, which we briefly

sketch in the following.

The birth of the ZI is due to Becker [14], who developed

a model thanks to which he was able to discover that the

taking of the supply and demand curves is associated with a

behavior of the agents (traders) without any individual

rationality. These behaviors are due to a market mecha-

nism. On this idea, the first to consider a market mecha-

nism in continuous double auctions were Gode and

Sunder [38]. In particular, they consider two types of

markets, each consisting of twelve agents, divided into two

groups: buyer and seller. Traders can submit shouts at any

time for one unit at a time. The key feature is that buyers

and sellers can modify the offer after submitting a price,

e.g., buyers may submit a higher price and sellers a lower

price than the bid. The subjects operating in this market are

human agents, who can shout prices at any time and whose

price choice is governed by strategy and ZI agents (that do

not learn strategies): In particular, the ZI are classifiable in

ZI Unconstrained that can shout prices at a loss compared

to their booking prices; and ZI Constrained (ZIC), for

which this mechanism is not allowed and the shouted price

cannot allow losses. As a result, Gode and Sunder found

that in markets populated by human traders and ZI Con-

strained there is a rapid convergence toward the equilib-

rium price, while in markets populated by ZI Uncontrained

this convergence did not occur (measuring a higher profits

dispersion). According to Gode, Spear and Sunder [37], the

result of this analysis highlights how the dominant factor in

auctions is not the strategy chosen by the trader, but the

market mechanism. The effect of this mechanism produces

a rational market behavior even in the presence of irra-

tional agents, going against the classic economic theories
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according to which the perfect rationality of the agents

allowed an optimal allocation in the markets.

There have been several extensions of this model.

Friedman [32] and Wilson [77] introduced two behavioral

models for ZI agents: (i) Bayesian Game Against Nature

(BGAN) with bounded rationality, to explain the bid-ask

spread; (ii) Waiting Game Double Auction (WGDA) with

completely rationality, to check what happens in markets

with an unequal number of traders. Jamal and Sunder [46]

used ZI traders whose price limits use heuristic and

Bayesian rules, demonstrating the achievement of Bayesian

equilibrium.

Gjerstad and Dickhaut [35] developed a trading strategy

called GD to achieve competitive equilibrium outcomes

(prices and allocations) in a market where individual

choices are made myopically using heuristic beliefs. Their

model aims to strike a balance between the approach taken

by Wilson and the one by Gode and Sunder, while it also

boasts the merit of avoiding the positive autocorrelation of

price changes found in Friedman’s model. In addition,

Gode and Sunder [36] examined the effect of uncon-

strained price controls, showing that traders do not adjust

the strategy in the case of price controls.

Among various criticisms that have been put forward to

the model of Gode and Sunder, most notably is that of Cliff

and Bruten [24], which have shown that the accuracy with

which the model captures the behavior of real markets is

dependent on the supply and demand functions. The con-

dition demonstrated by Gode and Sunder only occurs when

these functions are symmetrical (a situation that does not

occur in reality), making the ZI model weak in representing

the results.

Cliff and Bruten [24] have developed an agent called

Zero Intelligence Plus (ZIP) with a learning mechanism,

through which the agent maintains a profit margin that

reflects that individual’s belief of the profit that can be

obtained from a successful transaction, therefore function

of the trader’s reservation price. In this case, the authors

demonstrated how ZIP behavior allows for better perfor-

mance than ZI. One of the main features of the marketplace

they used is that, at any given time, only one agent can

announce a bid/offer. This agent is chosen at random by the

market institution.

Inspired by this ZIP agent work, while considering

unrealistic the marketplace bid/offer procedure, Priest and

van Tol [62] have developed a new agent called PS-agent.

The performance of ZIP agents and PS-agents has been

compared in a marketplace characterized by a persistent

shout double auction mechanism, where a trader’s current

bid or offer will persist until the trader makes another. As a

result, PS-agents turn out as more rapid in converging to

equilibrium than the ZIP agents. Then, ZIP and a modified

version of GD, renamed as MGD, have been tested by Das

et al. [25] in CDA markets, in order to study the interac-

tions between human and artificial traders. Another

extension of GD model, the GDX, has been developed by

Tesauro and Bredin [72]. The GDX not only involves a

belief function that an agent builds to indicate whether a

particular shout is likely to be accepted in the market, but it

also considers the time left before the auction closes.

Inspired by Das et al. [25], Grossklags and Sch-

midt [40, 41] have studied the effect of knowledge/igno-

rance of the presence of trader-agents on the behavior of

human traders, highlighting a ‘‘knowledge effect’’ capable

of altering market dynamics. The ZIP trader has been

modified by Cliff [19] through genetic algorithms to study

the evolution of strategies or by extending the parameters

from 8 to 60—introducing the ZIP60 [20]. In this paper, it

has been observed that, thanks to a simple search/opti-

mization process, is possible to found ZIP60 parameter-

vectors that outperform ZIP8.

The introduction of ZI and ZIP agents marked an

important step in trading strategies [51].

A further step forward has been made by Vytelingum

et al. [74] with the presentation of a dominating strategy

called Adaptive Aggressive (AA), which has been widely

considered to be the best performing strategy in the public

domain. The crucial peculiarity of AA is having both a

short and a long-term learning mechanism to adapt its

behavior to changing market conditions. Later on, AA’s

supposed dominance has been tested against two novel

algorithms known as GVWY and SHVR [21], which

involve no AI or machine learning at all. The result is

surprising: GVWY and SHVR can outperform AA and

many of the other AI/ML-based trader-agent strategies.

2.2 Computational Intelligence traders

The increasingly strong use of neural networks, also in the

financial field, has made it possible to combine the high

ability to represent features with reinforcement learning.

For example, Deng et al. [29], starting from the idea that

computers can beat experienced traders, proposed a

recurrent neural network (RNN) for sensing the dynamic

market condition for feature learning and combined it with

a RL framework that makes trading decisions. Almahdi and

Yang [2] proposed a recurrent reinforcement learning

(RRL) method for portfolio allocation, with a risk-adjusted

performance objective function (Calmar ratio) to obtain

signals and asset weights, showing how this method out-

performs hedge fund benchmarks. Jiang, Xu and

Liang [48] proposed a RL framework for asset allocation,

consisting of a convolutional neural network (CNN), an

RNN and a long short-term memory (LSTM) in a particular

scheme with deep deterministic policy gradient, showing

how, on a crypto market, this framework monopolize top
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positions in various experiments. Liu et al. [56] proposed

an adaptive trading model, namely iRDPG, to develop

trading strategies useful to balance exploration and

exploitation combining RL techniques with GRU-based

networks. Or again, on financial signal’ study, Ye

et al. [79] built a new RL framework, the State-Augmented

RL framework (SARL), that augments asset information

with their price movement prediction as additional states,

to incorporate data heterogeneity and environment uncer-

tainty of the market, testing it on the Bitcoin and stock

markets, and demonstrating the importance of state aug-

mentation. Wang et al. [75] proposed AlphaStock, a new

type of strategy based on the Attention Mechanism to

model the price relations for buying and selling strategy,

testing it on the USA and Chinese markets and highlighting

the robustness of their model. Wang et al. [76], considering

the market conditions, proposed a Deep RL method to

optimize the investment policy (DeepTrader); a model that

considers macro-market conditions as an indicator and is

able to capture the spatial and temporal dependencies

between assets.

Recently, Yang, Gao and Wang [55] due to the diffi-

culty of developing RL models under the programming

aspect, created a new open-source framework (FinRL) to

help quantitative traders. Several works have been devel-

oped on this framework, such as Guan and Liu [42] who

used it to explain the trading strategies of a DRL agent for

portfolio management in three steps; or Bau and Liu [12]

who proposed a DRL multi-agent-based on FinRL, which

capture high-level complexity, to optimize the process of

selling a large number of stocks (called liquidation).

Thanks to the ease of implementation and the number of

agents included, in line with the previous authors, we also

used FinRL for the subsequent analyzes.

2.3 Comparison and evaluation of different
trading agents

Since Gode and Sunder developed the ZIC agent, several

papers have addressed the topic of comparing bidding

strategies and agents’ behaviors. First, Cason and Fried-

man [17] evaluated the performances of Wilson’s waiting

game/Dutch auction (WGDA) model, Friedman Bayesian

game against nature (BGAN) and Gode and Sunder ZIC

agent in price formation in Double Action Markets. The

results suggested that models which rely most heavily on

trader rationality, as WGDA and BGAN, have less ability

to describe markets behavior than ZIC agents, which

requires very little trader rationality. Nevertheless, the

authors suggest new experiments since the conditions of

their experiment did not give a fair chance to WGDA

model. In 2001, in their already mentioned work, Das

et al. [25] applied the laboratory methods of experimental

economics to compare Extended-GD agent and ZIP agent

against human traders in a continuous double auction

(CDA) mechanism. Ten years later, De Luca and Cliff [26]

recreated the same experiment in a trading system called

OpEx, obtaining the same results as Das et al. [25] in terms

of comparison between robot traders and human traders, as

ZIP and GDX agents had consistently outperformed human

traders, and observing that GDX had outperformed ZIP. At

the same time, in 2002 Tesauro and Bredin [72] pointed

out that ZIP slightly outperformed EGD. In addition,

another work by De Luca and Cliff [27] confirmed that

‘‘Adaptive Aggressive’’ (AA) algorithmic traders of

Vytelingum [74] outperformed ZIP, GD, and GDX in

agent vs agent experiments in CDA markets, as Vyte-

lingum himself claimed. A few years later, Vach [73]

questioned the dominance of AA over ZIP and GDX agents

by designing symmetric agent–agent experiments with a

variable composition of agent population. Surprisingly,

GDX is a dominant strategy over AA in many experiments

in this work in contrast to the previous literature. In 2019

Cliff [23] reaches a similar result: in markets with

dynamically varying supply and demand, so market envi-

ronments that are in various ways more realistic and closer

to real-world financial markets, AA can be routinely out-

performed by more straightforward trading strategies. On

the other hand, AA remains dominant only in highly sim-

plified market scenarios and maybe because AA was

designed with exactly those simplified experimental mar-

kets in mind. In the same year, Snashall and Cliff [69]

made another step forward by exhaustively testing AA

across a sufficiently wide range of market scenarios against

GDX. The outcome was that not only AA is outperformed

by GDX in more realistic market environments, but also in

the simple experiment conditions that were used in the

original AA papers. So, the various results achieved in the

previous years and well known in the literature could no

longer be fully trusted. On this path, one year later, Rollins

and Cliff [64], employing a new version of BSE called

Threaded-BSE (TBSE) by Rollins [64], questioned the

original benchmark dominance-hierarchy AA [ GDX [
ZIP[ZIC, obtained in the BSE, and got a different result:

The dominance-hierarchy is instead ZIP [ AA [ ZIC [
GDX. The authors also guess that this new achievement is

probably due to the previous use of simplistic simulation

methodologies.

Thus, several experiments have been conducted with

autonomous, adaptive, automated traders, but to the best of

our knowledge the following aspects have been

overlooked:

– There is lack of throughout comparisons in the

cryptocurrencies market, and, in particular, in the

Bitcoin and Ethereum market;
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– There is lack of experiments on how the trading agents

behave during financial bubbles—except the study by

Duffy and Unver [30] that successfully verified whether

ZIC traders can generate asset price bubbles and

crashes of the type observed in a series of laboratory

asset market experiments1.

– There is lack of comparison between ZI/MI traders and

other traders adopting higher degree of AI techniques,

such as CI ones.

We remark that this work aims to fill the gaps mentioned

above offering a comparison between ZI/MI and CI trading

agents on the crypto market over different phases, includ-

ing during the bursting of a financial bubble. Furthermore,

building upon the experiments carried out, we propose

GGSMZ, a trading agent relying on a neuro-fuzzy system

which outperforms other analyzed traders.

3 Methods and materials

In this section, we first present and provide details about

the traders adopted, from ZI/MI ones (Sect. 3.1) to the CI

ones (Sect. 3.2). Then, we sketch technical details on

adaptive neuro-fuzzy systems at the basis of the proposed

GGSMZ trader (Sect. 3.3). Lastly, we show the dataset

employed for running the experiments (Sect. 3.4).

3.1 Zero/Minimal Intelligence traders

We used the following ZI/MI traders:

– Zero Intelligence Constrained (ZIC), the ZIC trader

generates random bids or offers (depending on whether

it is a buyer or a seller) distributed independently,

identically and uniformly over the entire feasible range

of trading prices from 1 to 200. The trader has no

memory of past market activity, and each trader has an

equal probability of being the next trader to make a bid

or an ask. The assumption by Gode and Sunder [38]: (i)

each ask, bid, and transaction is valid for a single unit;

(ii) a transaction cancels any unaccepted bids and

offers; (iii) when a bid and ask crosses, the transaction

price is equal to the earlier of the two. Buyer’s profit

from buying the ith unit is given by the difference

between the redemption value of the unit i, vi, and its

price pi: pB
i ¼ vi � pi Seller’s profit from selling the ith

is given by the difference between the price of the unit

i, pi, and its cost to the seller ci: pS
i ¼ pi � ci. Every

trader has to sell the unit i before selling the unit i þ 1.

The agents are subject to budget constraints: If they

generate a bid (to buy) above their redemption value or

an offer (to sell) below their cost, such actions are

considered invalid and are ignored by the market. So,

the market forbids traders to buy or sell at a loss.

Therefore, the support of the distribution that generated

the uniform random bids was restricted between 1 and

the redemption value of the bidder, while the uniform

distribution of random ask was restricted to the range

between the seller’s cost and 200.

– Zero Intelligence Plus (ZIP), it is an evolution of ZIC.

Individual traders adjust their profit margins using

market price information thanks to simple adaptive

mechanisms. More specifically, they adjust the profit

margins up or down based on the prices of bids and

offers made by other traders and whether these shouts

are accepted, leading to deals or ignored. As a result,

the performances of these agents sensibly increase. The

adjustments depend on four factors. The first is whether

the trader is active or inactive – in other words, if it is

still able to make transactions or not. The other three

factors are connected to the most recent shout: its price

q, whether it was a bid or an offer and whether it was

accepted or rejected. At a given time t, an individual

ZIP trader i calculates the shout price siðtÞ for a unit j

by multiplying the trader’s real-valued profit margin

liðtÞ by the limit price ki;j of the unit:

siðtÞ ¼ ki;j½1þ liðtÞ�. Sellers: liðtÞ 2 ½0;1Þ8t, so that

si is raised by increasing li or lowered by decreasing li;

Buyers: liðtÞ 2 ½�1; 0�8t, so that si is raised by

decreasing li or lowered by increasing li. In principle,

a ZIP buyer will buy from any seller that makes an offer

less than the buyer’s current bid shout price; similarly, a

ZIP seller sells to any buyer making a bid greater than

the seller’s current offer shout price. The aim is that the

value of li for each trader should alter dynamically, in

response to the actions of other traders in the market,

increasing or decreasing to maintain a competitive

match between that trader’s shout-price and the shouts

of the other traders.

– Gjerstad-Dickhaut (GDX), the GDX agent is the result

of an improvement process that begins from Gjerstad

and Dickhaut [35] with their GD trader and ends up

with Tesauro and Bredin [72]. As ZIP trader, GD agent

can trade profitably by adapting its behavior over time,

in response to market events. In contrast to the ZIP

work, Gjerstad’s trading algorithm uses frequentist

statistics, gradually constructing and refining a belief

function that estimates the likelihood for a bid or offer

to be accepted in the market at any particular time,

mapping from price of the order to its probability of

success. The original GD agent was developed for a

market where there was no queue, so old bids or asks1 Their work employed populations of ZIC placed in the various

laboratory market environments that have given rise to price bubbles.
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were erased as soon as there was a more favorable bid/

ask or a trade. In Das et al. [25] version of the CDA

market, unmatched orders can be retained in a queue,

and therefore the notion of an unaccepted bid or ask

becomes ill-defined. In their version of GD agent,

called Modified-GD (MGD), they overcome this prob-

lem by introducing into the GD algorithm a ‘‘grace

period’’ tg. Another modification to GD addressed the

need to handle a vector of limit prices since the original

algorithm assumed a single tradeable unit. Finally, an

extension of MGD was reported by IBM researchers

Tesauro and Bredin in 2002 and took the name of

GDX [72]. In their work, Tesauro and Bredin combine

the belief function with a forecast of how it changes

over time. The result is an optimization of cumulative

long-term discounted profitability, whereas GD traders

merely optimize immediate profits.

– Adaptive Aggressiveness (AA), the AA agent has both

a short- and long-term learning mechanism to adapt its

behavior to changing market. In particular, in the static

case, the agent can be effective by assuming that the

competitive equilibrium does not change significantly,

whereas in the dynamic case, it can make no such

assumption and must learn, assuming that this compet-

itive equilibrium may change. The focus is on the

bidding aggressiveness shown by the agent because it

describes how the agent manages the trade-off between

profit and probability of transaction. Whenever the

agent submits a bid or an ask, a short-term learning

mechanism is employed to adjust agent’s level of

aggressiveness r 2 ½�1; 1�. For r\0, the agent adopts

an aggressive strategy, which trades-off profit to

improve its probability of transacting in the market.

For r [ 0, the agent adopts a passive strategy, waiting

for more profitable transactions than at and willing to

trade-off its chance of transacting for a higher expected

profit. If r ¼ 0, the agent is neutral and submits offers at

what it believes is the competitive equilibrium price,

which is the expected transaction price. How the level

of aggressiveness influences an agent’s choice of which

bids or asks to submit in the market depends on a long-

term learning strategy, based on market information

observed after every transaction. In a few words, an AA

agent has two principal decision-making components:

(i) a bidding layer that specifies what bid or ask should

be submitted based on its current degree of aggressive-

ness; (ii) an adaptive layer to update its behavior

according to the prevailing market conditions. Given a

target price s and a set of bidding rules, the first layer

determines which bids or asks to submit. The aggres-

siveness model gives a mapping function to s

employing the agent’s current degree of aggressiveness,

its limit price p̂� and an intrinsic parameter h.
– Giveaway (GVWY), the GVWY agent simply sets its

quote price equal to its limit price, giving away any

chance of surplus. GVWY seller: PsqðGVWYÞðtÞ ¼ kS

GVWY buyer: PbqðGVWYÞðtÞ ¼ kB where S and B are,

respectively, the seller’s limit price and buyer’s limit

price. Anyway, the GVWY trader can enter in a

surplus-generating transaction: If a GVWY buyer

quotes its limit price kB and the current best ask

p�
ask\kB, the GVWY buyer is matched with whichever

seller issued that best ask and the transaction goes

through at price p�
ask yielding a kB � p�

ask surplus for the

GVWY buyer.

3.2 Computational Intelligence-based traders

On the other side, as previously said we used FinRL [55] as

a reinforcement learning (RL) framework. This framework,

consisting of 3 layers, encapsulates historical trading data

in training environments and provides useful demonstrative

trading tasks to users for develop their strategies. The first

layer, Application, is used to transform the trading strategy

into deep reinforcement learning (DRL) by defining: the

state space S (that describes how the agent perceives the

environment), the action space A (that describes the

allowed actions for an agent) and the reward function (as

an incentive for the agent to learn better policy, Sharpe

ratio in this case). The second layer, Agent, allows the user

to play with the standard DRL algorithms like

Stable Baseline 3 [63], RLlib [52] and ElegantRL [54].

Finally, the third layer, Environment, simulates real world

markets to learn a new strategy. Here the agent updates

iteratively and obtains a trading strategy to maximize the

expected return. The methods used in FinRL framework for

representing the training agents are:

– Asynchronous Advantage Actor Critic (A2C) [60], a

policy optimization method that performs gradient

ascent to maximize performance. Defining a state st

in which an actor selects an action at according to the

policy p, rt the scalar rewards such that Rt ¼
Pþ1

k¼0 c
krtþk is the total accumulated return from t with

discount factor c, Qpðs; aÞÞ ¼ E½Rtjst ¼ s; a� the action

value following the policy p, Q�ðs; aÞ ¼ maxp Qpðs; aÞ
the maximum action value for the state s, VpðsÞ ¼
E½Rtjst ¼ s� the value of state s under the policy p and

Qðs; a; hÞ an approximate action-value function, Mnih

et al. [60] starting from the one step Q-Learning loss
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JðhiÞ ¼ E½r þ cmax
a
0

Qðs0 ; a0
; hi�1 � Qðs; a; hiÞ�2

have designed new methods to find a RL method that is

trainable through neural networks without excessive

use of resources. In this vein, the authors have intro-

duced a property modification of Asynchronous one-

step Q-Learning (in which each thread interacts with its

own copy of the environment and computes a gradient

of the loss), Asynchronous n-step Q-Learning and

Asynchronous advantage actor-critic (called A3C) that

maintains a policy pðatjst; hÞ and an estimate of the

value function Vðst; hvÞ.
– Deep Deterministic Policy Gradient (DDPG) [53], a

first type of mixed method between Q-Learning and

Policy Optimization that use each to improve the other.

In this situation, since it is not possible to apply Q-

Learning to continuous action spaces, Lillicrap et al.

[53] use an approach based on the deterministic policy

gradient (DPG). Considering st the state in which an

agent takes an action at and obtain the reward rt, qp the
discounted state visitation distribution for a policy p, Q

the off-policy, lðsÞ ¼ argmaxaQðs; aÞ a greedy policy,

c the discount factor and b a stochastic behavior policy,

it is possible to start from Q-Learning loss

JðhQÞ ¼ Est �qb;at �b;rt �E½ðQðst; atjhQÞ � ytÞ2�;

where yt ¼ rðst; atÞ þ cQðstþ1; lðstþ1ÞjhQÞ. The author,
to make the DPG deeper and implement it through

neural networks, has made several changes, e.g., to the

replay buffer making it larger, improving the learning

algorithm to avoid divergence, using the batch nor-

malization technique and adopting a new policy

l
0 ðstÞ ¼ lðstjhlt Þ þN built by introducing a noisy

process N .

– Twin-Delayed DDPG (TD3) [33], an evolution of

DDPG method that solve the problem of reducing

overestimation bias by introducing a novel clipped

variant of Double Q-Learning and reduce high variance

estimates minimizing error at each update. In this case,

Fujimoto et al. [33] maintain the loss of the DDPG

model but introduce a novelty in updating the pair of

critics of the actions selected by the target policy,

defining

y ¼ rðst; atÞ þ cmin
i¼1;2

Qh
0
i
ðs0 ; p/0 ðs0 Þ þ �Þ

with �� clipðN ð0; rÞ;�c; cÞ, where c is a constant and

clipðN ð0; rÞ;�c; cÞ clip the probability. These changes

made it possible to increase the stability and perfor-

mance with consideration of function approximation

error.

– Proximal Policy Optimization (PPO) [66], another

policy optimization method that maximize a surrogate

objective function which indicates the variations of the

JðphÞ function at each update. In particular, Schulman

et al. [66] develop a loss function that combines policy

surrogate and value function error term. Starting from

the clipped loss

JCLIPðhÞ ¼ E½minðrtðhÞÂt; clipðrtðhÞ; 1� �; 1þ �ÞÂt�

where ph is the stochastic policy, Ât is an estimator of

the advantage function at time t, rtðhÞ ¼ phðat jstÞ
pholdðat jstÞ, � is an

hyperparameter and clipðrtðhÞ; 1� �; 1þ �ÞÂt modifies

the surrogate objective by clipping the probability ratio;

the authors combined it with entropy bonus obtaining

the following objective

JCLIPþVFþS
t ðhÞ ¼ Êt½JCLIP

t ðhÞ � c1LVF
t ðhÞ þ c2S½ph�ðstÞ�

where c1 and c2 are coefficients, S is the entropy bonus

and LVF
t is a squared-error loss ðVhðstÞ � Vtarg

t Þ2
between state-value functions.

– Soft Actor-Critic (SAC) [44], another mixed method

between Q-Learning and Policy Optimization that uses

stochastic policies and entropy regularization to stabi-

lize learning than DDPG. In this case, the Soft Actor-

Critic algorithm start from a maximum entropy variant

of the policy iteration method. According to [44], we

know that st 2 S is the current state, at 2 A is an

action, VwðstÞ is the parameterized state value function,

Qhðst; atÞ is the soft Q-function and p/ðst; atÞ is the

tractable policy. The parameters are: w learned by

minimizing the square residual error

JVðwÞ ¼ Est �D

�
1

2
ðV/ðstÞ � Eat �ppsi

½Qhðst; atÞ

� log pwðatjstÞ�Þ2
�

;

where D is the distribution of previously sampled

states and actions; h learned by minimizing the soft

Bellman residual

JQðhÞ ¼ Eðst ;atÞ�D

�
1

2
ðQhðst; atÞ � Q̂ðst; atÞÞ2

�

;

with Q̂ðst; atÞ ¼ rðst; atÞ þ cEstþ1 � p½V �wðstþ1Þ� and �w

the exponentially moving average of the value network

weights; and finally / learned by minimizing the

expected KL-divergence
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Jpð/Þ ¼ Est �D

�

DKL

�

pwð�jstÞ
�
�
�
�

�
�
�
�
expðQhðst; �ÞÞ

ZhðstÞ

��

:

3.3 Neuro-fuzzy systems: ANFIS technical details

In this section, we provide basic technical details on

adaptive neural fuzzy inference system (ANFIS) which is

at the basis of our GGSMZ trader (see Sect. 5).

ANFIS was first proposed by Jang [47]. ANFIS con-

structs a fuzzy inference system (FIS) whose membership

function parameters are derived from training examples. As

a matter of example, we assume a FIS with two inputs

x and y with two associated membership functions (MFs),

and one output (z). For a typical first-order Takagi–Sugeno

fuzzy model [70], a common rule set, with two fuzzy if-

then rules, is presented as follows:

– Rule 1: if x is A1 and y is B1, then f1 = a1x þ b1y þ c1,

– Rule 2: if x is A2 and y is B2, then f2 = a2x þ b2y þ c2,

where A1, A2, B1 and B2 are the linguistic labels of the

inputs x and y, respectively, and ai; bi; ci ði ¼ 1; 2Þ are the

parameters [47]. Figure 2a, b illustrate the reasoning

mechanism and the corresponding ANFIS architecture,

respectively [47].

As shown in Fig. 2b, ANFIS is a multilayer network.

The operation of ANFIS model from layer 1 to layer 5 is

briefly presented below [47].

– Layer 1: all the nodes in this layer are adaptive nodes,

which indicate that the shape of membership function

can be modified through training. Taking Gaussian MFs

as an example, the generalized MFs are defined as

follows:

O1
i ¼ lAiðxÞ ¼ e

�ðx�ciÞ2

2r2
i

where x is crisp input to node i and Ai is the linguistic

label, such as low, medium and high. O1
i is the mem-

bership grade of fuzzy-set Ai, which can be trapezoidal,

Gaussian, bell-shaped and sigmoid functions or others.

The variables ðri; ciÞ are the parameters of the MF

governing the Gaussian function.

– Layer 2: The nodes in this layer are gray circle nodes

labeled P, indicating that they perform as a simple

multiplier. Each node output represents the firing

strength of each rule.

O2
i ¼ wi ¼ lAiðxÞ � lBiðxÞ; i ¼ 1; 2

– Layer 3: the nodes in this layer are also gray circle

nodes labeled N. The ith node is the ratio of the ith

rule’s firing strength to the sum of all rules’ firing

strengths. The outputs of this layer can be given by

O3
i ¼ �wi ¼

wi

w1 þ w2

; i ¼ 1; 2

– Layer 4: each node i in this layer is adaptive.

Parameters in this layer are considered as consequent

parameters. The outputs of this layer can be represented

as

O4
i ¼ �wifi ¼ �wiðpix þ qiy þ riÞ; i ¼ 1; 2

– Layer 5: the node in the last layer computes the overall

output as the summation of all incoming signals. The

overall output is given as

O5
i ¼ z

¼
X

i

i ¼ 12 �wifi ¼
w1ðp1x þ q1y þ r1Þ þ w2ðp2x þ q2y þ r2Þ

w1 þ w2

In the ANFIS architecture, the major task of the training

process is to make the ANFIS output fit with the training

data by optimizing the fuzzy rules and parameters of

membership functions. The hybrid-learning algorithm

incorporating gradient method and the least-squares are

used in ANFIS to estimate the initial parameters and

quantify the mathematical relationship between input and

output. Further details are in [47, 70].

3.4 Crypto datasets

This work uses datasets that describe the evolution of the

price of some of the most famous cryptocurrencies, Bitcoin

and Ethereum, in different time frames.
Fig. 2 ANFIS details
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BTC-USD 2018 dataset Regarding the Bitcoin price and its

time-division, we have chosen as a ticker the BTC-USD

price recorded by CoinMarketCap through Yahoo!Fi-

nance2, and we have split it into 3 time frames. The entire

dataset contains the prices from 01/01/2015 to 12/31/2018

(the first big bubble on this crypto) for a total of 1,460 days

and consists of the classic OHLCV features used in

financial sector: Open, High, Low, Close, and Volume. In

Table 1, we show an extract of how the dataset is

composed.

We know that the bubble in this crypto market, started

on December 17, 2017, with the price of 1 BTC reaching

around $20,000 and reaching its peak toward the end of

January, marking the explosion point and causing the

Bitcoin’s price settlement in the following months. Based

on these events, we created the first time frame3, called

Before, with training from 1/1/2015 to 2/28/2017 (543

days) and tests from 3/1/2017 to 12/15/2017 (221 days);

the second time frame, called During, with training from

1/1/2015 to 12/15/2017 (745 days) and tests from 12/16/

2017 to 5/31/2018 (112 days); and the third time frame,

called After, with training from 01/01/2015 to 5/31/2018

(858 days) and tests from 6/1/2018 to 12/31/2018 (146

days). In Fig. 3, we plot the close prices of BTC during the

period of interest.

BTC-USD 2021 dataset We consider again the BTC-USD

price recorded by CoinMarketCap through Yahoo!Finance,

but in the famous bubble of 2021. This situation became

famous thanks to the incredible advancement of the Bitcoin

price up to $60,000, which has brought many other cryptos

to the fore. We consider the OHLCV dataset and perform

the temporal division in the three intervals. However, here,

a particular situation arises of two consecutive bubbles. We

can create the first time frame, Before, with training from

3/1/2019 to 4/30/2020 (294 days) and tests from 5/1/2020

to 1/31/2021 (189 days); the second time frame, During,

with training from 3/1/2019 to 1/31/2021 (484 days) and

tests from 2/1/2021 to 7/31/2021 (126 days); and the third

time frame, After (characterized by a new bubble), with

training from 3/1/2019 to 7/31/2021 (610 days) and tests

from 8/1/2021 to 12/31/2021 (106 days). In particular, in

this situation, we have decided to use a much smaller

dataset than the previous one (with much fewer days) to

verify the capabilities of the different agents. In Fig. 4, we

plot the close prices of BTC during the period of interest.

ETH-USD 2021 dataset We also consider the trend of the

Ether cryptocurrency (differentiated from the previous one

because it is based on the Ethereum Blockchain). In par-

ticular, it is known how the trend of Bitcoin also affects the

other cryptocurrencies (including Ethereum), so we deci-

ded to consider the same situation as the previous dataset

and analyze the two bubbles that occurred in 2021. Ether

peaked at a price and broke the $4000 per ETH barrier. The

ticker is ETH-USD, again from CoinMarketCap by

Yahoo!Finance, and is the classic OHLCV dataset (as in

the previous cases) for 1037 days. The time frames are

constructed in this way by dividing the days as for the

previous crypto: Before with training from 3/1/2019 to

4/30/2020 and tests from 5/1/2020 to 1/31/2021; During

with training from 3/1/2019 to 1/31/2021 and tests from

2/1/2021 to 7/31/2021; and After with training from 3/1/

2019 to 7/31/2021 and tests from 8/1/2021 to 12/31/2021.

In Fig. 5, we plot the close prices of ETH during the period

of interest.

4 Experiment

In this section, we analyze the behavior of agents with our

setup (Sect. 4.1) in the different time phases, showing

which are the best (Sect. 4.2) and proposing some recom-

mendations to investors.

4.1 Experiment setup

From the ZI/MI agents side, referring to what Cliff intro-

duced, we used 5 buyer agents and 5 sellers for each type

(to have 10 agents every day). The simulation tool used to

test the predictive power of the various agents is the Bristol

Stock Exchange (BSE) [22]. In this limit-order-book

financial exchange written in Python, agents are free to

make their own trading strategies based on their intrinsic

functioning. To make the operation more realistic has been

developed a Python’s multi-threading version, which

allows traders to operate asynchronously of each other: the

Threaded Bristol Stock Exchange (TBSE)4. In this TBSE

that we have used, some parameters are extracted from the

time series of the Bitcoin/Ethereum price (OHLCV

Table 1 Extract of the BTC-USD price dataset

Date Open High Low Close Volume

1/1/2015 320.43 320.43 314.00 314.24 8036550

1/2/2015 314.07 315.83 313.56 315.03 7860650

1/3/2015 314.84 315.14 281.08 281.08 33054400

1/4/2015 281.14 287.23 257.61 264.19 55629100

1/5/2015 265.08 278.34 265.08 274.47 43962800

..

. ..
. ..

. ..
. ..

. ..
.

2 https://finance.yahoo.com/quote/BTC-USD/.
3 All dates are in US format. 4 https://github.com/MichaelRol/Threaded-Bristol-Stock-Exchange.
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features in BTC-USD/ETH-USD datasets) that will serve

to direct the exchanges between different 5 chosen agents:

ZIC, ZIP, GDX, AA and GVWY. The key feature is that

the returns obtained by the agents do not follow the actual

price of cryptos but undergo variations according to the

different situations in which the market finds itself (e.g.,

being inside a bubble or outside). Furthermore, these

agents (by definition of the TBSE) can trade only one type

of instrument (e.g., for each execution, they can trade only

Bitcoin, or only Ethereum, and so on) and can only trade

contracts of size 1.

On the CI side, on the other hand, some features rep-

resentative of the traditional indicators use by financial

analysts have been added to the dataset, e.g., moving

average, convergence/divergence (MACD), relative

strength index (RSI), smoothed moving average on the

closing price at 30 and 60 days, commodity channel index,

directional movement index and the Bollinger Band. Such

indicators are reported in Table 2.

The CI agents were endowed with an initial capital

equal to 20,000 price units for the BTC-USD 2018 dataset,

30,000 price units for the BTC-USD 2021 dataset (50,000

in the last two time frames given the exponential growth of

the price) and 10,000 price units for the ETH-USD 2021

dataset; and based on this sum, they were able to manage it

in the best possible way according to their rewards func-

tion. We have set the parameters of the different agents as

shown in Table 3. These configurations are given by the

authors in [55] and are those achieving the best results.

The comparison between the behaviors of the ZI/MI and

CI agents takes place based on: (i) the cumulative returns

on a daily basis, (ii)the volatility of these, (iii) the Sharpe

ratio, (iv) the max drawdown, (v) the Sortino ratio and (vi)

the Omega ratio. For cumulative returns, we can first

consider the simple return rt for one period as:

rt ¼
Pt � Pt�1

Pt�1

;

where Pt and Pt�1 represent the price value (of cryptos in

these cases), respectively, at time t and t � 1. Then, the

cumulative return (or multiperiod) for n days is calculated

as:

RtðnÞ ¼ Pn
i¼1ðri þ 1Þ ¼

ðrt þ 1Þ � ðrt�1 þ 1Þ � . . .� ðrt�nþ1 þ 1Þ � 1:

The Sharpe ratio, is defined as:

SR ¼ r � rf

r
;

where r and r indicate asset return and volatility respec-

tively while rf indicate the risk-free interest rate (set in

pyfolio5 rf = 0). The Maximum Drawdown (MDD) rep-

resents the maximum loss of a trading capital for a certain

5 pyfolio is a Python library for performance and risk analysis of

financial portfolios developed by Quantopian Inc. At the core of

pyfolio is a so-called tear sheet that consists of various individual

plots that provide a comprehensive image of the performance of a

trading algorithm. See more at https://github.com/quantopian/pyfolio.

Fig. 3 BTC close prices over the period of interest (bubble 2018).

Before: from start to the red dashed line. During: from the red dashed

line to the green dot-and-dash line. After: from the green dot-and-

dash line to the end

Fig. 4 BTC close prices over the period of interest (bubble 2021).

Before: from start to the red dashed line. During: from the red dashed

line to the green dot-and-dash line. After: from the green dot-and-

dash line to the end

Fig. 5 ETH close prices over the period of interest (bubble 2021).

Before: from start to the red dashed line. During: from the red dashed

line to the green dot-and-dash line. After: from the green dot-and-

dash line to the end
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period, from a peak to a trough of a portfolio value. It is

calculated as: MDD ¼ Maximum value�Minimum value

Maximum value
:

The Sortino ratio is a financial risk indicator. It uses the

Downside Risk (DSR) to highlight how investors feel under

pressure when they perform inadequately compared to the

Table 2 Features employed

Feature Description Formula

Open Opening price recorded on the current day n/a

High Highest price recorded on the current day, up to the closing time n/a

Low Lowest price recorded on the current day, up to the time of closing n/a

Close Closing price recorded on the previous day n/a

Volume Volume of trades made on the current day n/a

Macd Moving average convergence/divergence: indicator based on the convergence and divergence of

two exponential moving averages of closing prices, computed at 12 days (EMA 12) and at 26 days

(EMA 26).

EMA 12-EMA 26

boll up Superior bollinger band: indicator to represent the price and volatility of an instrument, using a

20-day moving average (MA) and the standard deviation (r)
MA 20 ? K r

boll dn Inferior bollinger band: indicator that completes the previous one, using a 20-day (MA) and the

standard deviation (r).
MA 20 - K r

rsi 30 Relative strength index: indicator used to identify the oversold and overbought areas, highlighting

the ideal timing to enter and exit the market; based on the EMA of the upward closing differences

U over 30 days and the EMA of the closing downward differences D over 30 days.

100- 100

1þEMA30 ðUÞ
EMA30 ðDÞ

cci 30 Crypto currencies index: indicator that measure the growth and movement of the blockchain

sector, tracking the 30 largest cryptocurrencies (called ‘‘stable coin’’); based on the weight of the

jth crypto Wj and the price of that jth crypto Pj as function of time.

P30
j¼1 Wj

PjðtÞ
Pjð0Þ

dx 30 Directional movement index: indicator that identifies in which direction the price of an asset is

moving, in a period range of 30 days; based on the highest price Ht recorded in the tth day, the

lowest price Lt, and two directional indicators, DIþ ¼ MAðHt�Ht�1Þ�ðHt�Ht�1Þ
Avg price

� 100 and

DI� ¼ MAðLt�Lt�1Þ�ðLt�Lt�1Þ
Avg price � 100.

jDIþ�DI�j
jDIþþDI�j � 100

sma 30 30-day simple moving average: indicator calculated as a moving average over the period

considered (in this case 30 days)

P30

j¼1
ðBTCpricejÞ
30

sma 60 60-day simple moving average: indicator calculated as a moving average over the period

considered (in this case 60 days)

P60

j¼1
ðBTCpricejÞ
60

vix Chicago board options exchange’s volatility index: it represents the stock’s market expectation of

30-day volatility, based on the prices for puts P(K) and calls C(K) with strike K and s ¼ 30 days

to maturity, and the 30-day forward price on the S &P500

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ers
s ð

R F
0

PðKÞ
K2 dK þ

R1
F

CðKÞ
K2 dKÞ

q

turb Turbulence: indicator that uses 28 samples of sma prices from sma12 to sma120 to reveal unseen

structure1
n/a

1https://www.tradingview.com/script/ZEYUY4gy-Turbulence/

Table 3 Parameters set for each CI agent. Parameters are set as in [55]

Agent Parameters

A2C n_steps ¼ 5, ent_coef ¼ 1� 10�2, learning_rate ¼ 7� 10�5, total_timesteps ¼ 5� 104

DDPG batch_size ¼ 128, buffer_size ¼ 5� 104, learning_rate ¼ 1� 10�4, total_timesteps ¼ 3� 104

PPO batch_size ¼ 128, n_steps ¼ 2048, ent_coef ¼ 1� 10�2, learning_rate ¼ 2:5� 10�4, total_timesteps ¼ 5� 104

TD3 batch_size ¼ 102, buffer_size ¼ 106, learning_rate ¼ 1� 10�3, total_timesteps ¼ 3� 104

SAC batch_size ¼ 128, buffer_size ¼ 106, learning_rate ¼ 1� 10�4, learning_starts ¼ 102, ent_coef = auto_0.1, total_timesteps ¼ 6� 104
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minimum acceptable. First, we can define the DSR as a

measure of the downward deviation (similar to the standard

deviation) of the yield from the minimum acceptable yield.

In this way, the Sortino ratio is calculated as:

Sortino ¼ Rp � rf

DSR
;

where also, in this case, rf ¼ 0 represents the risk-free rate,

while Rp is the expected return. Finally, the Omega ratio is

a risk-return performance measure, is an alternative to the

Sharpe ratio, and is calculated by creating a partition in the

cumulative return distribution in order to create an area of

losses and an area for gains, so that:

XðhÞ ¼
R1
h ½1� FðxÞ�dx
R h
�1 FðxÞdx

;

where F(x) is the cumulative probability distribution

function of returns and h the target return. FinRL auto-

matically returns all these indicators, and to choose the best

agent we select the one with the highest Sharpe and the

lowest Drawdown, Sortino, and Omega.

4.2 Experiment results

Based on the indicators defined above, we can compare the

agents in the different situations and concerning various

instruments. Our goal is to understand how they behave in

particular market situations, i.e., just before, during and

after a bubble. As a benchmark (also indicated in graphics

as daily_return), we consider the same indicators calcu-

lated on the price series extracted from the dataset in the

same reference period. In the following, we report the

result of the experiments conducted on BTC2018 bubble

(Sect. 4.2.1), BTC2021 bubble (Sect. 4.2.2), and ETH2021

bubble (Sect. 4.2.3). For each report, we first sketch the

reference values for the benchmark during the test period

(in a box fashion), then we show the results obtained by the

ZI/MI and CI agents and analyze them. All the fig-

ures mentioned are available in 2. For further graphics, we

refer the reader to https://bit.ly/3wrkwi7.

4.2.1 Bitcoin bubble 2018

In this section, we offer details on the results achieved by

ZI/MI and CI agents on the Bitcoin bubble of 2018 in three

market situations, i.e., before, during and after the bubble.

Before

In this phase, it is clear how volatility was so high

because the Bitcoin price underwent a sharp price jump in

the test period (caused by the bubble’s bursting).

Reference values BTC2018 Before

In the first time period, the reference values of benchmark during the

test period were:

- Annual returns: 1574.78%;

- Volatility: 76.12%;

- Sharpe ratio: 3.33;

- Max Drawdown: �35:50%;

- Sortino ratio: 5.89;

- Omega ratio: 1.82.

In Table 4, we show how the different agents behaved in

the same period, reporting the assumed values of the

parameters used as a comparison.

We start the analysis of the results from the ZI/MI

agents. We know these agents do not follow the actual

price trend of Bitcoin but absorb some parameters from the

reference market; for this reason, the returns are entirely

distant from the benchmark. In particular, a value that we

can use to understand the market phase is volatility: the

ZIC, for example, which does not pursue a specific trading

strategy but only trades, has an high volatility value, but

comparing it with the same value assumed in the different

periods can be used as a tool to identify whether the market

is in an expansion phase (e.g., before/during a bubble) or

recessive (after a bubble). Furthermore, by comparing the

different indicators, we can see that, in these circum-

stances, the best agent was the AA, which achieved the

highest Sharpe ratio and the lowest Sortino ratio and

Omega ratio. CI agents, on the other hand, are comparable

to the benchmark since they follow the same price level. In

particular, the agent carrying out the best trading strategy

in this time frame was the A2C that managed to attain a

return equal to 1557%, the highest Sharpe ratio from which

follows the lowest Omega ratio, and Sortino ratio. At the

same time, the Drawdown remained reasonably constant

for the various agents. Furthermore, the A2C was the only

agent to achieve a close return to the benchmark. In terms

of volatility, the strategies of the different agents were

quite similar, with average volatility �r ¼ 84%. Also here,

to test a market situation, we can compare the average

volatility of this time frame with the following ones. In

Fig. 11, the volatilities of the most representative agents

for both categories are represented. The green line (indi-

cated in the legend as Backtest) represents the trend of the

agent’s volatility while the gray line represents the

volatility followed by the BTC-USD ticker. The explo-

sion’s point of volatility for ZIC in Fig. 12a occurs when

the bubble on the Bitcoin market explodes, near October,

so in subsequent periods prices will remain stable on

average. We could assume that these explosion points
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indicate the end of a specific market phase, while the

volatility value what this phase is: whether in or out of a

bubble. Making an intra-category comparison, we can say

that on the side of the ZI/MI agents the most significant are

the ZIC, in terms of the explainability of the volatility

(necessary to understand if the market is on the bubble

phase or not) and AA; on the CI side, on the other hand, the

agent with the best behavior was the A2C that outperforms

the benchmark, followed by PPO and DDPG. Figure 12

shows the cumulative returns of the leading agents for this

time phase.

During Here, we analyze the second time period. The

reference values of benchmark during the test period are

available in the following box.

Reference values BTC2018 During

- Annual returns: �61:25%;

- Volatility: 87.40%;

- Sharpe ratio: �1:23;

- Max Drawdown: �65:28%;

- Sortino ratio: �1:64;

- Omega ratio: 0.82.

As in the previous case, Table 5 shows the behavior of

different agents in this time period.

Here, likewise the previous time period, we can study

volatility to understand what the market phase is. In par-

ticular, it is again the ZIC (for ZI/MI) that is the most

explanatory of volatility; this time, however, the volatility

value is halved compared to the previous situation

(Before), suggesting that something has happened on the

markets. During this time frame, the different agents were

trained taking into account the strong price increases that

occurred during the first phase of the bubble. Unlike the

previous case (in which the agents were not aware of the

large price increases that would have occurred due to the

triggering of the bubble), in this situation, the behavior of

all agents is influenced by having already registered strong

increases and declines, so that the bubble bursting phase

has a lighter impact, especially since prices remain

stable on average in the subsequent phase. On the CI side,

the volatilities of the first four agents are even more sim-

ilar, with an average volatility �r ¼ 75%, while PPO has the

lowest volatility (similar to the benchmark). We can also

consider the behavior of the second best agent, who

achieved excellent results in terms of all performance

indicators: the DDPG. For what concerns the intra-category

comparison, in this case, for the ZI agents the best behavior

is that held by the AA agent, also in terms of Sortino and

Omega ratio. On the CI side, however, despite the very

similar behavior of the different agents, the winner is the

DDPG, which obtains better results in terms of Drawdown,

Sharpe ratio, Sortino ratio and return. Figure 13 shows the

cumulative returns for these main agents.

After Finally, we can analyze the last time period. The

reference values of benchmark during the last test period

are available in the following box.

Table 4 Comparison between

the different agents in the

Before period for Bitcoin

bubble of 2018

ZI/MI agent Return (%) Volatility (%) Sharpe Drawdown (%) Sortino Omega

ZIC �64:635 27697.151 2.40 �99:631 102.82 11.20

ZIP 104.434 3357.188 2.27 �98:981 17.26 2.77

GDX �46:210 1609.329 3.97 �92:765 13.35 2.39

AA 28.481 1478.105 4.26 �92:475 13.32 2.37

GVWY �23:152 1762.643 3.88 �94:913 14.85 2.58

(a) ZI/MI agents

CI agent Return Volatility Sharpe Drawdown Sortino Omega

A2C 1557.399 88.146 4.09 �34:436 7.28 2.04

DDPG 1278.55 85.746 3.72 �35:888 7.90 2.12

PPO 1047.734 83.104 3.78 �35:054 7.98 2.13

TD3 1334.90 84.761 3.51 �35:675 7.92 2.12

SAC 1195.451 89.574 3.12 �36:386 8.01 2.15

(b) CI agents
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Reference values BTC2018 After

- Annual returns: �47:96%;

- Volatility: 54:23%;

- Sharpe ratio: �1:17;

- Max Drawdown: �61:57%;

- Sortino ratio: �1:50;

- Omega ratio: 0.80.

Table 6 shows the behavior of different agents in this

last time period.

This time period is characterized by the fact that agents

have observed the entire bubble from birth to burst and

must trade at a later stage. Here, the volatility of the

benchmark is the lowest compared to the previous ones

since prices have remained constant on average (or at least

have not undergone abrupt changes over a day as in prior

periods). Let us consider what happens to the different

agents at this stage. The ZI/MI agents, in this phase, are

characterized by having a different behavior from the

previous periods as regards the cumulative returns. For

example, the GDX, which has always found negative

returns, obtains a positive return. On the other hand, the

volatility of the ZIC decreased compared to the previous

Table 5 Comparison between

the different agents in the

During period for Bitcoin

bubble of 2018

ZI/MI agent Return (%) Volatility (%) Sharpe Drawdown (%) Sortino Omega

ZIC 110.010 11086.490 4.90 �98:930 73.18 8.02

ZIP �18:914 1410.580 3.95 �93:882 12.19 2.30

GDX �11:281 1474.995 3.59 �87:864 12.44 2.30

AA �47:629 1062.85 3.58 �86:752 9.19 1.93

GVWY �30:962 1571.142 3.55 �93:498 12.32 2.30

(a) ZI/MI agents

CI agent Return Volatility Sharpe Drawdown Sortino Omega

A2C �58:634 88.280 �1:81 �67:485 �2:29 0.85

DDPG �52:558 62.219 �0:90 �62:219 �1:18 0.77

PPO �60:128 54.948 �1:41 �70:527 �1:79 0.77

TD3 �59:213 86.375 �1:76 �68:564 �2:01 0.83

SAC �57:989 89.750 �1:83 �69:696 �2:30 0.88

(b) CI agents

Table 6 Comparison between

the different agents in the After
period for Bitcoin bubble of

2018

ZI/MI agent Return (%) Volatility (%) Sharpe Drawdown (%) Sortino Omega

ZIC �64:385 7584.882 3.50 �98:969 97.28 11.00

ZIP �64:285 2896.424 3.39 �99:425 11.77 3.57

GDX 148.506 4265.015 2.28 �94:172 21.84 3.35

AA �17:092 1580.808 4.24 �94:520 13.88 2.45

GVWY �24:490 1559.506 3.91 �98:674 15.37 2.38

(a) ZI/MI agents

CI agent Return Volatility Sharpe Drawdown Sortino Omega

A2C �41:013 55.776 �1:36 �49:159 �1:78 0.74

DDPG �36:251 44.901 �1:51 �49:647 �1:84 0.76

PPO �46:970 49.301 �1:48 �52:079 �1:86 0.77

TD3 �39:443 46.855 �1:45 �49:821 �1:88 0.78

SAC �43:492 52.249 �1:63 �53:889 �2:08 0.77

(b) CI agents
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phases in line with the benchmark’s. This leads us to think

that the random agent can inform us about the market phase

we are experiencing. CI agents also underwent a change in

their behavior. In terms of volatility, we can observe how

the DDPG agent got the lowest value, but the best behavior

is the one followed by the A2C agent (despite not having

obtained the highest return), as evidenced by Sharpe,

Sortino, and Omega ratio (the closer they are to 0, the

better their behavior). Furthermore, the average volatility

in this frame is �r � 50%, so also CI agents follow the trend

of volatility reduction in the phase following a bubble,

further confirming the fact that this volatility movement

indicator is handy. In terms of performance, following the

best strategy of A2C agent, Fig. 14 shows the behaviors of

the various agents mentioned.

4.2.2 Bitcoin bubble 2021

In this section, we offer details on the results obtained by

ZI/MI and CI agents on the Bitcoin bubble of 2021 in three

market situations, i.e., before, during and after the bubble.

Before

In this first time period, the reference values of bench-

mark during the test period are available in the following

box.

Reference values BTC2021 Before

- Annual returns: 287.10%;

- Volatility: 51.56%;

- Sharpe ratio: 2.68;

- Max Drawdown: �25:40%;

- Sortino ratio: 4.37;

- Omega ratio: 1.63.

In the BTC2021 bubble, we can continue to use, for ZI

agents, the volatility of the ZIC as an indicator of the

pre/post-bubble phase. In this time frame, the recorded

price of Bitcoin has undergone strong trends due to the

ever-increasing use of cryptocurrencies and has begun its

race to the top. On the side of the ZI/MI agents, as shown in

Table 7, only the ZIC and the GVWY managed to get a

positive return (from the extrapolation of various parame-

ters), while the other agents obtained a negative return, as

shown in Fig. 15. In particular, although chaotic, the

behavior of the GVWY was proved more effective than

that of the ZIC (considering only agents with positive

returns given the expansionary phase of the market),

achieving excellent results under all indicators. In the

previous bubble of 2018 (same time frame), the best agent

was AA. On the other hand, on the side of the CI agents,

the A2C achieves a very different behavior from that of the

opponents, starting the trading strategy late (compared to

them) and obtaining a lower return, but which other indi-

cators being equal as the best result. However, among the

remaining four agents, the best strategy is the one followed

by the SAC (as evidenced by the Sharpe, Sortino, and

Omega ratio values).

During Observe that the second time period of 2021

deserves more attention. In such a period, the price of

Bitcoin has reached a price never seen before and has

continued its exponential run that began in the previous

time frame. The reference values of benchmark during this

test period are available in the following box.

Table 7 Comparison between

the different agents in the

Before period for Bitcoin

bubble of 2021

ZI/MI agent Return (%) Volatility (%) Sharpe Drawdown (%) Sortino Omega

ZIC 116.667 4558.301 3.97 �97:723 30.04 3.96

ZIP �28:232 978.955 3.39 �85:451 8.56 1.88

GDX �27:341 1163.953 3.66 �92:556 10.06 2.07

AA �29:898 949.402 3.42 �96:743 8.39 1.87

GVWY 60.539 2685.954 2.59 �84:774 16.74 2.79

(a) ZI/MI agents

CI agent Return Volatility Sharpe Drawdown Sortino Omega

A2C 63.229 32.487 2.19 �21:693 3.67 2.00

DDPG 190.430 57.423 3.14 �23:198 5.28 2.07

PPO 161.165 44.592 3.11 �22:703 5.54 2.26

TD3 201.753 54.812 3.32 �26:534 5.45 1.99

SAC 254.428 61.592 3.07 �20:723 5.16 1.78

(b)CI agents
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Reference values BTC2021 During

- Annual returns: 25.93%;

- Volatility: 72.48%;

- Sharpe ratio: 0.80;

- Max Drawdown: �53:06%;

- Sortino ratio: 1.21;

- Omega ratio: 1.14.

Table 8 shows the behavior of different agents in this

During time period.

As in the previous bubble, let us look at the volatility of

the ZIC across the different time frames to understand the

situation. The reduction of the last frame is evident, from

which we can deduce that we are in a subsequent phase to

the initial one (in fact in the During). Compared to the

2018 bubble, this situation in 2021 demonstrates as the

volatility of the ZI agents (except for ZIC) is on average

lower (�r2021 � 2000	 �r2018 � 1300). Regarding the

behavior of such agents, four-fifths got a negative return

(also opposite to that recorded in the benchmark). At the

same time, only the GVWY achieved a positive return. For

this reason, despite not having obtained better results in

terms of the Sortino, Omega, and Sharpe ratio, based on

the ratio between the return and the recorded variance, we

can classify it as the best agent. For what concerns the CI

agents, on the other hand, the PPO was the only one to get a

negative return and very high volatility (even compared to

the average of the different time frames), which allowed it

to obtain a meager Sharpe ratio for example. However,

having a return opposite to that showed in the benchmark,

we cannot consider it among the best agents. Moreover, a

very particular behavior is followed by the TD3 agent: it

did not do any trading until a few days before the last date

(7/31). Hence, various indicators such as the Sortino and

the Omega ratio were not calculable. Therefore, we can

state that the best CI agent was the SAC, having the lowest

Sharpe and Sortino ratios. Figure 16 shows the returns of

SAC and GVWY.

After Finally, we consider the last time frame of the

Bitcoin 2021 bubble. The reference values of benchmark

during this test period are available in the following box.

Reference values BTC2021 After

- Annual returns: 20.34%;

- Volatility: 54.77%;

- Sharpe ratio: 0.84;

- Max Drawdown: �31:62%;

- Sortino ratio: 1.22;

- Omega ratio: 1.14.

This period, however, is characterized by being at the

same time the final phase of a bubble and the period of the

bursting of a new one, which explains fairly high bench-

mark volatility. In addition, various news spreads on the

markets and the ever-growing attention to crypto led to the

follow-up of two (critical) bubbles in the same year.

Table 9 shows the behavior of the different agents in this

particular time frame.

Table 8 Comparison between

the different agents in the

During period for Bitcoin

bubble of 2021

ZI/MI agent Return (%) Volatility (%) Sharpe Drawdown (%) Sortino Omega

ZIC �47:978 3171.108 3.07 �98:634 19.22 2.99

ZIP �54:837 1147.853 3.70 �93:500 9.87 2.05

GDX �22:487 1681.030 4.36 �94:598 14.73 2.55

AA �63:790 2418.458 3.63 �96:254 18.12 2.88

GVWY 26.208 1892.337 3.81 �92:536 15.43 2.63

(a) ZI/MI agents

CI agent Return Volatility Sharpe Drawdown Sortino Omega

A2C 17.330 60.579 0.83 �42:156 1.22 1.15

DDPG 14.441 51.941 0.78 �40:468 1.19 1.14

PPO �14:891 71.996 �0:09 �52:797 �0:12 0.98

TD3 41.328 22.545 3.20 0 NaN NaN

SAC 12.871 49.756 0.81 �37:236 1.14 1.15

(b) CI agents
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The first aspect we can observe is how the volatility of

the ZIC has slightly decreased compared to the time frame

during (always 2021) but has remained almost constant.

This means that the exit from a bubble has not been

completed (as in the present case due to the entry into a

new bubble). The GVWY has the best behavior among the

ZI agents since the others obtained a negative return,

opposite to the benchmark. From reading the additional

indicators, it may seem like ZIP or AA are the best, but

these values are due to the ratios between yield and

volatility, which is not in line with what they should have

achieved. However, among the CI agents, the two best

behaviors were those of the SAC and PPO, which achieved

the best values of Sharpe and Sortino (Omega ratio is, on

average, stable among all). In Fig. 17 it is possible to see

the returns’ behavior of GVWY and PPO.

4.2.3 Ethereum bubble 2021

In this section, we offer details on the results obtained by

ZI/MI and CI agents on the Ethereum bubble of 2021 in

three market situations, i.e., before, during and after the

bubble.

Before Here, we analyze the performance of the

Ethereum in the Before period. The reference values of

benchmark during this test period are available in the fol-

lowing box.

Reference values ETH2021 Before

- Annual returns: 54.53%;

- Volatility: 72.98%;

- Sharpe ratio: 2.72;

- Max Drawdown: �32:68%;

- Sortino ratio: 4.44;

- Omega ratio: 1.62.

Already graphically (the price plot 5), it is possible to

see how the ETH bubble is very similar to the BTC one,

but on a different price level. Table 10 shows the results

obtained by the different agents. We continue the volatility

analysis based on the ZIC. Compared to the same time

frame of previous crypto (i.e., Before BTC2021), in this

instance, ZIC agent experienced higher volatility that is in

line with the benchmark average value. We can consider

the GDX as the agent with the best behavior among the ZI

agents. Therefore, we can exclude the agents with negative

returns (opposite the benchmark). Among the remaining

ones, even if the GDX does not have the highest Sharpe

ratio, it is the agent with the lowest Sortino and Omega

ratio. On the other hand, the CI agents all achieved a much

higher return than the benchmark and recorded a very high

level of volatility. Therefore, the best performing agent is

the PPO (the highest Sharpe and the lowest Sortino and

Omega ratio). Figure 18 shows the returns of GDX and

PPO.

During We now consider the next time frame. The

reference values of benchmark during this test period are

available in the following box.

Table 9 Comparison between

the different agents in the After
period for Bitcoin bubble of

2021

ZI/MI agent Return (%) Volatility (%) Sharpe Drawdown (%) Sortino Omega

ZIC 20.967 3076.271 4.19 �96:704 19.47 2.96

ZIP �55:497 1176.584 3.50 �91:867 9.87 2.08

GDX �15:214 1587.444 4.11 �90:415 13.79 2.42

AA �34:059 1647.026 2.76 �95:668 11.81 2.18

GVWY 68.982 1615.411 3.89 �90:356 13.86 2.47

(a) ZI/MI agents

CI agent Return Volatility Sharpe Drawdown Sortino Omega

A2C 15.874 51.682 0.94 �27:277 1.49 1.16

DDPG 19.842 61.821 1.01 �31:269 1.61 1.17

PPO 10.740 37.455 0.84 �24:189 1.39 1.18

TD3 16.756 56.886 0.99 �26:982 1.50 1.17

SAC 13.228 44.441 0.89 �24:606 1.41 1.15

(b) CI agents
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Reference values ETH2021 During

- Annual returns: 80.19%;

- Volatility: 96.37%;

- Sharpe ratio: 1.34;

- Max Drawdown: �57:12%;

- Sortino ratio: 2.00;

- Omega ratio: 1.25.

Table 11 shows the behavior of the different agents in

the considered situation. Observing the volatility of the

ZIC, we can see that this is down by about 20% compared

to the previous time frame, so we can believe that we have

entered a new bubble phase. Furthermore, compared to the

time frame During of Bitcoin 2021, the average volatility

of these agents is higher, as also highlighted by the

benchmark. As for the best ZI agent, we can say that the

best was the AA, followed by the ZIP; since GDX and

GVWY got an inverse return compared to the benchmark,

the ZIC has extremely high Sortino and Omega ratios.

Instead, for CI agents, the first noticeable thing is the weird

behavior of the PPO agent. It performs few transactions

and attains a reasonably satisfactory result, but this is not

enough to be ranked as the best agent due to the very high

Table 10 Comparison between

the different agents in the

Before period for Ethereum

bubble of 2021

ZI/MI agent Return (%) Volatility (%) Sharpe Drawdown (%) Sortino Omega

ZIC 512.010 6833.848 5.59 �98:848 54.05 6.30

ZIP �14:733 1185.273 3.86 �90:911 10.35 2.11

GDX 23.080 1514.032 3.68 �88:579 12.52 2.32

AA 161.346 1942.896 3.73 �98:111 15.83 2.64

GVWY �59:004 1983.383 3.91 �90:906 15.67 2.65

(a) ZI/MI agents

CI agent Return Volatility Sharpe Drawdown Sortino Omega

A2C 537.320 99.371 2.97 �34:486 5.70 1.78

DDPG 487.230 98.564 2.96 �33:232 5.67 1.77

PPO 510.023 98.592 2.97 �32:218 5.61 1.77

TD3 540.241 99.610 2.93 �32:566 5.70 1.78

SAC 218.380 89.776 2.15 �33:874 4.13 1.69

(b) CI agents

Table 11 Comparison between

the different agents in the

During period for Ethereum

bubble of 2021

ZI/MI agent Return (%) Volatility (%) Sharpe Drawdown (%) Sortino Omega

ZIC 500.767 5589.721 5.63 �99:281 40.58 5.35

ZIP 169.291 2030.170 4.02 �94:027 16.84 2.73

GDX �1:244 1620.966 3.50 �93:365 13.05 2.30

AA 62.575 1607.796 4.47 �92:308 14.50 2.53

GVWY �31:037 1404.838 3.97 �93:523 12.23 2.28

(a) ZI/MI agents

CI agent Return Volatility Sharpe Drawdown Sortino Omega

A2C 76.759 109.762 1.63 �56:335 2.33 1.31

DDPG 71.333 107.435 1.59 �56:657 2.37 1.33

PPO 61.240 61.591 1.86 �24:576 3.36 1.66

TD3 68.251 102.22 1.57 �57:434 2.38 1.33

SAC 79.749 112.282 1.61 �57:058 2.37 1.32

(b) CI agents
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Sortino ratio. In view of this, it is evident how intelligent

agents have been affected by the high volatility recorded

(benchmark) since (except for the PPO) they have volatility

higher than 100%, much higher than that recorded in the

same time frame of Bitcoin 2021. Among these, the best

agent was A2C, with good results on all the various indi-

cators. Figure 19 shows the returns of AA and A2C.

After Finally, we can consider the last time frame for

Ethereum. The reference values of benchmark during this

test period are in the following box.

Reference values ETH2021 After

- Annual returns: 42.28%;

- Volatility: 67.77%;

- Sharpe ratio: 1.21;

- Max Drawdown: �30:05%;

- Sortino ratio: 1.84;

- Omega ratio: 1.21.

Table 12 shows the results of the different agents. Also,

as for the Bitcoin 2021 bubble, the time frame After rep-

resents a second bubble, as evidenced by the volatility of

the ZIC very close to the previous time frame. Among the

ZI agents, the best result is attained by the ZIP; while for

the CI agents, again, the PPO made few transactions (as in

the During), but its behavior did not lead to good results.

The best agent was the A2C again. Figure 19 shows the

returns of ZIP and A2C.

4.2.4 Summarization and some recommendations
for investors

From the results shown above, it is natural to ask ourselves

which are the best agents to use to understand what market

phase we are in and, consequently, which strategy to fol-

low. A first answer could be that the best trading strategies

are those of CI agents: Even if true as an answer, it must be

said that these agents arise from a learning process com-

plex and deep. Although these agents can follow the real

price trend in the strategy and very often perform better

than a human trader can do only with his own considera-

tions, they lose in terms of explainability. Conversely,

however, the ZI/MI agents are not able to follow the actual

price trend of the asset considered but are entirely

explainable in economic terms, and the previous results

allow us to state that they can guess in which market phase

we are (as before, thanks to volatility). The result of the

high explainability is not to be underestimated.

For example, in Table 13 we report the volatility values

recorded by the ZIC in the different time frames and for the

different cryptocurrencies. The use of the ZIC agent lies in

the fact that strategies do not influence its buying/selling

activities, as is the case for other ZI/MI agents (albeit

minimal). In this way, it is possible to notice the decrease

in volatility in the passage from one frame to the next and

the particular situation of 2021 in which the two frames of

during and after having similar volatility (a symptom of the

succession of two bubbles). Instead, with regards to the

behavior of the different agents, in Table 14, we can

summarize, for each time frame, the agents that have

achieved the best results for the ZI/MI and the CI.

Table 12 Comparison between

the different agents in the After
period for Ethereum bubble of

2021

ZI/MI agent Return (%) Volatility (%) Sharpe Drawdown (%) Sortino Omega

ZIC �27:455 5020.559 5.21 �97:940 45.02 5.02

ZIP 48.871 1031.884 3.91 �86:371 9.56 2.06

GDX �7:636 1512.437 3.30 �93:910 11.87 2.23

AA �17:878 1104.778 3.84 �87:161 10.03 2.04

GVWY 90.656 1190.669 3.82 �91:943 10.88 2.11

(a) ZI/MI agents

CI agent Return Volatility Sharpe Drawdown Sortino Omega

A2C 33.033 65.566 1.37 �22:234 2.12 1.24

DDPG 34.504 73.202 1.32 �27:995 2.23 1.20

PPO �2:057 52.134 0.16 �25:955 0.23 1.03

TD3 40.040 75.986 1.44 �28:843 2.25 1.25

SAC 36.703 71.128 1.41 �27:177 2.19 1.25

(b) CI agents
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It is evident that some agents are present more often

than others (e.g., the TD3, which has never been the best

agent). However, the CI agents generally have a more

realistic and benchmark-compliant behavior than the ZI/

MI.

What we can recommend to investors is the following

‘‘rule’’: If he/she intends to follow a ‘‘machine-based’’

strategy that is highly performing but which he is not aware

of and which he may not fully understand, then the best

choice is to opt for a CI agent; however, if the investor

already has his own strategy that he/she intends to follow

and wants to understand what market phase is (to adjust it

accordingly), then the best choice is to use a ZI/MI agent. It

often happens that investors do not have a real strategy, but

are based on some simple economic principles which (in

several cases) are the same ones that govern ZI/MI agents.

In these cases, the ideal choice is to use the intuition in the

market phase of this type of agent and try to imitate (within

the possible price limits) their strategy.

5 GGSMZ: a neuro-fuzzy trading agent

In this section, we present and detail GGSMZ, a neuro-

fuzzy trading agents that we developed in the light of the

results obtained above. First, we show the methodology

adopted to build the neuro-fuzzy systems at the basis of our

GGSMZ trading agent (Sect. 5.1). Lastly, we present the

implementation of GGSMZ and its pseudo-code (Sect. 5.3),

and the results obtained when GGSMZ operates during the

different time frames (Sect. 5.4).

5.1 Methodology: building a neuro-fuzzy system

To build our neuro-fuzzy system, we defined a methodol-

ogy consisting of the two following steps (see Fig. 6):

1. dataset building (Sect. 5.1.1): it involves the use of

various datasets previously presented (Sect. 3.4) with

the integration of new features computed for the

samples, and a (automatic) labeling process based on a

criterion defined through the CI agents output, as well

as other preprocessing steps;

2. tuning and testing of ANFIS (Sect. 5.2): it includes

evaluating different ANFIS configurations to find the

most suitable one for our problem and testing it on real-

world financial bubble data.

5.1.1 Dataset building

The dataset building phase was made for each dataset

defined in Sect. 3.4, i.e., BTC-USD2018, BTC-USD2021

and ETH-USD2021. For simplicity, we will only refer to

BTC-USD, but the process has been repeated since they

have the same features.

To create the dataset used to train and test the proposed

neuro-fuzzy system, hereinafter fuzzyds, we have relied

on the BTC-USD dataset presented in Sect. 3.4, which

describes the Bitcoin price in USD over three years period.

Each sample of fuzzyds is represented with the set of

features taken from the BTC-USD dataset (i.e., OHLCV

features) augmented with a set of handcrafted features

(economic indicators) that are summarized in Table 2.

Formally, let s i= hopen i,high i,low i,close

i,volume ii be the ith sample in the BTC-USD dataset,

with i[ 0. We define a sample s’ i to be inserted in

fuzzyds as follows: s’ i ¼ h open i, high i, low i,

close i�1, volume i, macd, boll up, boll dn, rsi 30,

cci 30, dx 30, sma 30, sma 60, vix, turb i.
Table 2 provides details about the features engineered to

build s’i. We remark that, if i ¼ 0 the feature close i�1

has been taken from the BTC-USD dataset regarding the

year 2014 (on 12/31/2014).

Table 13 Summary of volatilities recorded by ZIC agent

Dataset Volatilities (%)

Before During After

BTC-USD2018 27697.151 11086.49 7584.882

BTC-USD2021 4558.301 3171.108 3076.271

ETH-USD2021 6833.848 5589.721 5020.559

Table 14 Best agents (ZI/MI, CI) in different time frames

Dataset Before During After

BTC-USD2018 AA, A2C AA, DDPG GDX, A2C

BTC-USD2021 GVWY, SAC GVWY, SAC GVWY, PPO

ETH-USD2021 GDX, PPO AA, A2C ZIP, A2C

Fig. 6 The methodology adopted for building the neuro-fuzzy system

at the basis of GGSMZ trading agent
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Given neuro-fuzzy systems learn in a supervised fash-

ion, we needed to label the samples of fuzzyds. Infor-

mally, the labeling has been conducted by exploiting the

outputs of the CI agents (i.e., their operations on the

market) and assigning to each sample the most common

operation performed by such agents among selling, buying

and waiting. Formally, let o i= hA2C i, DDPG i,PPO i,TD3

i,SAC ii be the ith output obtained by collecting each CI

agent’s output when processing s i. We remark that the CI

agents’ outputs are in Z. Therefore, we translate such

outputs into classes, i.e., 0, 1, 2 to express the operations

waiting, selling and buying, respectively, through the fol-

lowing formula:

CIagent0i ¼
0 if CIagenti ¼ 0

1 if CIagenti\0

2 if CIagenti [ 0

8
><

>:
ð1Þ

where CIagent 2 fA2C, DDPG, PPO, TD3, SAC g.
We obtain o’ i= hA2C’ i, DDPG’ i,PPO’ i,TD3’ i,SAC’

ii. Lastly, the label for s’ i, that is li, is computed as the

most common operation performed by CI agents, denoted

with li ¼ majorityðo0iÞ.
For example, let A2C i ¼ �63, DDPG i ¼ þ2, PPO

i ¼ þ25, TD3 i ¼ þ33, and SAC i ¼ 0, then o i ¼
h�63;þ2; þ25;þ33; 0i. By applying 1 we obtain o’

i ¼ h1; 2; 2; 2; 0i, and jo0ij2 ¼ 3, jo0ij1 ¼ 1, and jo0ij0 ¼ 1.

Then, since jo0ij2 [ jo0ij1 and jo0ij2 [ jo0ij0, we set

majorityðo0iÞ ¼ 2, i.e., buying. Let us consider another

example. Let A2C i ¼ �13, DDPG i ¼ þ22, PPO i ¼ þ25,

TD3 i ¼ 0, and SAC i ¼ �41, then o i ¼ h�13;þ22;

þ25; 0; �41i. By applying 1 we obtain o’

i ¼ h1; 2; 2; 2; 0i, and jo0ij2 ¼ 2, jo0ij1 ¼ 2, and jo0ij0 ¼ 1.

Then, in this case it is not possible to find x 2 f0; 1; 2g such
that jo0ijx [ jo0ijy, for each y 2 f0; 1; 2g and y 6¼ x. So, we

set majorityðo0iÞ ¼ 0, i.e., waiting.

We are aware that the number of rules of ANFIS

exponentially grows with the number of inputs (via grid

partitioning, i.e., the widely adopted method for FIS gen-

eration). Indeed, when we tried to develop our neuro-fuzzy

model using fuzzyds as it is, i.e., with 15 features, it

would have exceed the available RAM on our system6

(16GB RAM). To avoid this problem, and reduce the

feature space, we performed a preprocessing step via

principal component analysis [1] (PCA) on fuzzyds.

PCA reduces the number of variables while maintaining

the majority of the important information. It transforms a

number of variables that may be correlated into a smaller

number of uncorrelated variables, known as principal

components. The principal components are linear

combinations of the original variables weighted by their

variances in a particular orthogonal dimension. The main

objective of PCA is to simplify the model features into

fewer components to help the model run faster. Using PCA

also reduces the chance of overfitting by eliminating fea-

tures with high correlation.

We use explained variance ratio as a metric to evaluate

the usefulness of our principal components and to choose

how many components to use in the neuro-fuzzy system.

The explained variance ratio is the percentage of variance

that is attributed by each of the selected components. We

chose the components to include in our model by adding

the explained variance ratio of each of them until we

reached a total of 0.90. By applying PCA on fuzzyds, we

obtained that 4 components (PCA(s’ iÞ ¼ hinput1 i,

input2 i,input3 i,input4 ii) were enough to explain

90% of the information.

5.2 Tuning and testing ANFIS

In the present paper, to identify the Sugeno-type fuzzy

inference systems parameters [70], we use a hybrid learn-

ing algorithm. Additionally, the proposed system produces

fuzzy logic rules. ANFIS combines the least-squares and

back-propagation gradient descent method to train FIS

membership function parameters to emulate the given input

on output. Thus, it is a very powerful, computationally

efficient tool to handle imprecision and nonlinearity.

The fuzzy system component of ANFIS is mathemati-

cally expressed in the form of membership functions that

are continuous and differentiable piecewise. These func-

tions transform the input value x into a membership degree

(i.e., a value between 0 and 1).

To define the optimal fuzzy rules’ number, trial-and-

error method was used considering various rule numbers,

i.e., r ¼ f2; 3; 4; 5g. They have been trained for each input

and then evaluated based on system error and more pre-

cisely based on mean squared error (MSE), computed as

MSE ¼ 1
N

PN
i¼1ðyi � ŷiÞ2 and root mean squared error

(RMSE), computed as RMSE ¼
ffiffiffiffiffiffiffiffiffiffi
MSE

p
. (The objective

was to minimize RMSE.) It should be noted that the lowest

number of rules is always of interest in designing neuro-

fuzzy models. Therefore, according to the obtained results,

each input (in each ANFIS model) with 2 rules receives

better performance prediction as compared to others, i.e., 3,

4 and 5. Hence, each ANFIS model with total fuzzy rules

of (2� 2� 2� 2) or 16 was designed and developed for

prediction of trading actions (selling, buying, waiting) on

the Bitcoin market. We applied the Gaussian fuzzy mem-

bership function, which has been commonly adopted in the

6 Our system is equipped with 16 GB RAM and 2,8 GHz Intel Core

i7 quad-core.
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literature [3, 4, 65], in the modeling process. Additionally,

the type of output membership function was considered as

linear one. In Table 15, we summarize main information of

our ANFIS. These settings hold true for all the experiments

with ANFIS.

For example, for BTC2018 (and in particular for the

experiment concerning the Before phase) we trained the

ANFIS on 543 samples (that is 543 days), while the testing

was performed on 221 samples (that is 221 days) con-

cerning a time frame just prior the bursting of the financial

bubble (as reported in Sect. 3.4). This period is suggested

as a benchmark period for evaluating a trading strategy,

and it is similar to the one used in other stud-

ies [5, 7, 9, 67]. This constitutes a strong test for the

Table 15 Main information

about the ANFIS tuned and

developed

ANFIS

# nodes 55

# linear parameters 80

# nonlinear parameters 24

# fuzzy rules 16
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Fig. 7 Post-training membership functions shape
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forecasting ability of the model; however, at the same time,

it provides a true assessment of its ability to work as if it

were being applied in practice by an investor7.

The optimal setting for ANFIS, in this case, was reached

after 48 epochs. We obtained training MSE ¼ 0:119 and

RMSE ¼ 0:3468, while for testing we got MSE ¼ 4:888

and RMSE ¼ 2:210. For all other ANFIS results, we refer

the reader to Appendix 3.

Figures 7 and 8 illustrates the shapes of the post-training

membership functions. The graphics are for each of the

four inputs. In addition, we depict in Fig. 9 an overview on

the developed ANFIS and its structure.

5.3 Inside GGSMZ trader

The ANFIS model built in the previous section has been

put at the basis of a trading agent, namely GGSMZ. This

trader’s pseudo-code is available in Algorithm 1. Every

day i the GGSMZ agent takes one action on the market

based on different parameters; it takes as input the balance

(i.e., money available), the total (i.e., the profit generated

by BTC/ETH in possession plus the balance), cfolio (i.e.,

number of BTC/ETH it has got), and daydata (that is the

BTC/ETH data for the day i, hence s i). It computes the

features shown in Table 2 (lines 1:2), creating the sample

s’ i. It then applies PCA on the sample, loads the ANFIS

model and predicts the suitable action to perform (li-

nes 3:5): If the suggested action is buying, GGSMZ buys as

much BTC/ETH as possible with its current balance

(line 7); if the suggested action is selling, GGSMZ sells all

the BTC/ETH available in its cfolio (line 12); otherwise the

agent waits without performing transactions. Lastly, total is

computed and returned together with the current balance,

and cfolio (lines 16:17).

5.4 Discussion

We can evaluate the behavior of GGSMZ in the different

time frames, as done previously for all agents, and compare

the results with them. As for other experiments, we gave

GGSMZ 20,000 USD as starting balance for BTC-USD

2018, 30,000 USD for BTC-USD 2021 and 10,000 USD

for ETH-USD 2021. Using the indicators described above

(Returns, Volatility, Sharpe, Drawdown, Sortino and

Omega ratio), our neuro-fuzzy agent achieved the follow-

ing results, shown in Table 16 and then comparing them

with the benchmark and agents with best behavior in

Table 17 (i.e., the best ones described in Table 14).

The first evident result is that GGSMZ has attained a

positive return in any time frame, regardless of the

benchmark result. This result is certainly justified by the

fact that GGSMZ bases its market entry/exit decisions on

those made by CI agents. In this way, following what in

financial markets is often defined as herd behavior, our

agent was able to exploit the decisions of the other agents

and choose the most widespread on the market (in this

case, represented by the five CI agents). Therefore, its

training enables it to make the best operational choices.

Furthermore, a second interesting result is how the

volatility changes in the different time frames: In all the

datasets, GGSMZ follows the rule we have used so far,

demonstrating how the progressive reduction of volatility

marks the phase change (of the bubble) from Before to

After. As for the agent’s behavior with the different crypto,

the highest avg. Sharpe ratio (Sharpeavg ¼ 2:9) and the

lowest avg. Drawdown (Drawdownavg ¼ �36:22%) are the

7 We may also consider the use of a cross-validation approach. This

approach has certain advantages over a simple split of the sample in

training and validation datasets when the sample is rather small. In the

present study, we have not followed this approach: using a cross-

validation approach would not allow us to take time into account.

Using a cross-validation approach would not allow us to split the

sample while taking the whole time dimension into account. To better

elucidate, suppose we split into 5-folds—f1, f2, f3, f4, f5—which take

time into consideration so that fi contains observations which are

taken in a previous period than fj 8i\j. During cross-validation

iterations, we will find f2, f3, f4, f5 as training set and f1 as validation
set, thus a situation where we train the model on future observations

compared to f1 ones.
8 We have further split the training set, reserving 20% of observa-

tions as validation set and computed MSE and RMSE on it.
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one on Ethereum, while the lowest Sortino

(Sortinoavg ¼ 2:7) and Omega ratio (Omegaavg ¼ 1:4)

were on Bitcoin 2018, probably due to the After phase in

Bitcoin 2018 in which the agent had a more ‘‘protective’’

behavior by carrying out fewer transactions (which corre-

spond to a lower return).

Comparing GGSMZ with other agents (Table 17), in the

case of BTC2018, our agent achieved the best results in

terms of Sharpe, Sortino, and Omega ratio and outper-

formed the benchmark in terms of returns. For example, in

the case of the After frame, it did not obtain the highest

Sharpe ratio (lower than the GDX), but it can be consid-

ered the best agent is given the results of the remaining

indicators. In the case of BTC2021, on the other hand, in

the Before frame, GGSMZ obtains the best results (under

all indicators, also outperforming the benchmark). At the

same time, in the During and After, its behavior is over-

come by the intelligent agents (SAC and PPO, respectively,

for the time frame), which, although not having the highest

returns and Sharpe ratio, get the best results under the other

indicators. Finally, for the ETH2021 dataset, GGSMZ again

attained the best results for the Before and After frames.

At the same time, in the case of the During, a particular

situation is configured: The A2C agent achieves better

(a) ANFIS structure proposed in this study.

System fis: 4 inputs, 1 outputs, 16 rules

input1 (2)

input2 (2)

input3 (2)

input4 (2)

output (16)

f(u)

fis

(
sugeno

)

16 rules

(b) ANFIS overview.

Fig. 8 Overview on the developed ANFIS

Fig. 9 FOREX USD-EUR close prices over the period of interest

(bubble 2021). Before: from start to the red dashed line. During: from

the red dashed line to the green dot-and-dash line. After: from the

green dot-and-dash line to the end

Table 16 Results achieved by

GGSMZ in the different phases

(before, during, and after) of the

Bitcoin bubble of 2018, Bitcoin

bubble of 2021, and Ethereum

bubble of 2021

Bubble Market phase Return (%) Volatility (%) Sharpe Drawdown (%) Sortino Omega

BTC 2018 Before 1810.080 128.430 2.74 �52:631 3.90 1.76

During 218.510 90.410 2.40 �34:357 3.80 1.60

After 6.755 50.693 0.48 �30:615 0.65 1.10

BTC 2021 Before 421.810 115.120 1.82 �46:577 3.52 1.65

During 124.320 63.430 2.10 �38:980 3.35 1.45

After 71.839 57.971 1.84 �34:485 2.67 1.40

ETH 2021 Before 1142.420 124.329 2.68 �52:371 4.07 1.71

During 63.432 113.286 2.10 �28:980 3.34 1.45

After 415.030 81.277 3.97 �27:317 1.63 1.84
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results in terms of Sortino and Omega. In contrast, our

agent outperforms the remaining indicators. In a Cliff [64]

manner, we can introduce a dominance-hierarchy on all the

different agents tested, which takes into account the results

obtained and the ability to identify the particular market

situation where, despite everything, our agent can be

classified as the most optimal for investor support: GGSMZ

’ A2C[PPO ’ SAC[DDPG[TD3[ZIC[GVWY ’
AA ’ GDX[ZIP.

6 Conclusion

In the last decade, investors have witnessed the bursting of

different financial bubbles which represent a serious

problem for world economy. This is even truer for the

cryptocurrencies market.

In this work, we faced the problem of financial bubbles

in the cryptocurrencies market, with particular interest

toward Bitcoin and Ethereum with their peculiar features

Table 17 Values of the different economic indicators for GGSMZ
agent compared with those obtained in previous steps of the project

by other trading agents experimented with particular focus on best ZI/

MI and best CI agent for each bubble and each phase of it. In bold
font the best results

Bubble Phase Agent Return (%) Volatility (%) Sharpe Drawdown (%) Sortino Omega

BTC2018 Before Benchmark 1574.780 76.120 3.33 �35:500 5.89 1.82

A2C 1557.399 88.146 4.09 2 34.436 7.28 2.04

AA 28.481 1478.105 4.26 �92:475 13.32 2.37

GGSMZ 1810.080 128.430 2.74 �52:631 3.90 1.76

During Benchmark - 61.250 87.400 �1:23 �65:280 �1:64 0.82

DDPG - 52.558 62.219 �0:90 �62:219 �1:18 0.77

AA - 47.629 1062.85 3.58 �86:752 9.19 1.93

GGSMZ 218.510 90.410 2.40 2 34.357 3.80 1.60

After Benchmark - 47.960 54.230 �1:17 �61:570 �1:50 0.80

A2C - 41.013 55.576 �1:36 �49:159 �1:78 0.74

GDX 148.506 4265.015 2.28 �94:172 21.84 3.35

GGSMZ 6.755 50.693 0.48 2 30.615 0.65 1.10

BTC2021 Before Benchmark 287.100 51.560 2.68 �25:400 4.37 1.63

SAC 254.428 61.592 3.07 2 20.723 5.16 1.78

GVWY 60.539 2685.954 2.59 �84:774 16.74 2.79

GGSMZ 421.810 115.120 1.82 �46:577 3.52 1.65

During Benchmark 25.930 72.480 0.80 �53:060 1.21 1.14

SAC 12.871 9.756 0.81 2 37.236 1.14 1.15

GVWY 26.208 1892.337 3.81 �92:536 15.43 2.63

GGSMZ 124.320 63.430 2.10 �38:980 3.35 1.45

After Benchmark 20.340 54.770 0.84 �31:620 1.22 1.14

PPO 10.740 37.455 0.84 2 24.109 1.39 1.18

GVWY 68.982 1615.411 3.89 �90:356 13.86 2.47

GGSMZ 71.839 57.971 1.84 �34:485 2.67 1.40

ETH2021 Before Benchmark 54.530 72.980 2.72 �32:680 4.44 1.62

PPO 510.023 98.592 2.97 2 32.218 5.61 1.77

GDX 23.080 1514.032 3.68 �88:579 12.52 2.32

GGSMZ 1142.420 124.329 2.68 �52:371 4.07 1.71

During Benchmark 80.190 96.370 1.34 �57:120 2.00 1.25

A2C 76.759 109.762 1.63 �56:335 2.33 1.31

AA 62.575 1607.796 4.47 �92:308 14.50 2.53

GGSMZ 63.432 113.286 2.10 2 28.980 3.34 1.45

After Benchmark 42.280 67.770 1.21 �30:050 1.84 1.21

A2C 33.033 65.566 1.37 2 22.234 2.12 1.24

ZIP 48.871 1031.884 3.91 �86:371 9.56 2.06

GGSMZ 415.030 81.277 3.97 �27:317 1.63 1.18
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such as high volatility, high sensitivity to news and the

growing interest by governments in its use as a decentral-

ized currency. We have presented a comparison and

throughout evaluation of autonomous, adaptive, automated

traders in the Bitcoin market and Ethereum market in 2018

and 2021. In more details, our aim was to study how the

different traders perform in such market in several phases

(before, during and after a bubble). To the best of our

knowledge, this was one of the first works analyzing such

aspects and involving a broad set of traders in the

experiments.

We have included in this study two set of traders: ZI/MI

traders such as ZIC, ZIP, GDX, GVWY, AA and CI traders

such as A2C, PPO, DDPG, TD3 and SAC. The traders have

been evaluated in terms of cumulative returns, volatility,

Sharpe ratio, Max Drawdown, Sortino ratio and Omega

ratio based on their behavior in the trading test period.

The results show that the ZI/MI agents, although not

able to trade at the realistic price of the market, have

absorbed the intrinsic characteristics of the market, proving

themselves (some of them in particular) as excellent agents

to identify the possible market phase. On the contrary, the

CI agents have found excellent results in all the indicators

taken as reference. However, the complexity of the latter

type of agents makes one lose the explainability of the

strategies followed, compared to the ZI/MI, whose imple-

mentation is easily explained even to non-experts.

In the light of the obtained results, we have proposed a

new trading agent, namely GGSMZ, whose core is a neuro-

fuzzy system trained following indications of CI traders

previously analyzed. We have evaluated GGSMZ in the

same frames as the other agents for each cryptos and we

found that it outperforms other traders. Specifically,

GGSMZ showed a cumulative return beyond that obtained

by other traders and a volatility value very close to that

recorded by benchmark in the same period. Although in a

couple of time frames this agent’s behavior was surpassed

by that of the best CI agent, we argue our neuro-fuzzy

model could be used by investors as a decision support

tool.

Limitations One of the aspects we have overlooked in

our study is related to the optimization of hyperparameters

of CI agents. Due to our computational limits, we could not

perform such tuning in this phase of the project, but we aim

to propose, as future works, ad-hoc configurations of CI

agents and evaluate the performance of such agents with

parameters tuned against the settings provided by [55].

Another aspect is that of including more cryptocurrencies

in the experiments. We are aware that there are different

cryptocurrencies (less famous than Bitcoin and Ethereum)

we have not considered in the present work, such as Car-

dano, Solana and Dogecoin. This will be part of future

efforts of the project, where we aim to study agents’

behavior on all the cryptocurrencies.

Future works We are currently planning a broader

evaluation of trading agents in different markets (e.g., stock

market, futures market) and with different constraints/

scenarios (e.g., maximum or minimum number of daily

operations on the markets, choose other indicators to

compare agents, select time points other than bubbles).

Meanwhile, we are working on surveying potential inves-

tors about the usage of GGSMZ in the cryptocurrencies

market [28, 43]. Our aim is also to enhance the developed

neuro-fuzzy system in order to enable it to sense and

process further information such as the sentiment of news

around the world (which it is known to have impacts on

financial markets [15, 68, 80]). Another future direction

could be that of improving the underlying mechanism of

GGSMZ evaluating other learning and trading strategies.

Appendix A: FOREX 2021

We are interested in testing phase detection capabilities

even outside crypto markets. Let us consider the Foreign

Exchange Market (so-called FOREX), a market in which

currencies (not cryptocurrencies) are traded. It is a different

market from the crypto one because is a closing market

(therefore with fewer trading days if we consider the same

time interval). It is characterized by a very high volume of

trades (which are not recorded, therefore an unusable fea-

ture) and is strongly influenced by events related to the real

economies of different countries. Among the various cur-

rencies traded, we have selected the EUR-USD, which is

fundamental in the European economic system. In partic-

ular, the reference period considered is 6/1/2019 to 12/31/

2021, similar to the previous periods of 2021 considered

but composed of about 700 observations, of which an

extract is represented in Table 18.

We remark that, for this market, various exchanges do

not register the feature volume, so the classic dataset

becomes OHLC. Then, as before, we divide the time

interval into three-time frames (which, however, especially

for Before and During, correspond to those of Bitcoin and

Ethereum 2021)—depicted in Fig. 10—and let various

agents CI and ZI/MI operate in this market with the dif-

ferent conditions. In particular, the agents will have a

portfolio of 100 price units at their disposal.

Before Time frame characterized by training from 6/1/

2019 to 4/30/2020 (230 days), test from 5/1/2020 to 11/30/

2020 (147 days) and the following benchmark values.
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Reference values FOREX2021 Before

- Annual returns: 10.73%;

- Volatility: 6.48%;

- Sharpe ratio: 2.06;

- Max Drawdown: �2:61%;

- Sortino ratio: 3.26;

- Omega ratio: 1.37.

Table 18 Extract of the EUR-USD price dataset

Date Open High Low Close

6/3/2019 1.1173 1.1211 1.1162 1.1174

6/4/2019 1.1245 1.1277 1.1227 1.1246

6/5/2019 1.1255 1.1304 1.1239 1.1254

6/6/2019 1.1227 1.1307 1.1223 1.1229

6/7/2019 1.1275 1.1348 1.1253 1.1276

..

. ..
. ..

. ..
. ..

.

Fig. 10 Volatility of most relevant trading strategies (Before), Bitcoin bubble of 2018
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During Time frame characterized by training from 6/1/

2019 to 11/30/2020 (378 days), test from 12/1/2020 to

7/31/2021 (167 days) and the following benchmark values.

Reference values FOREX2021 During

- Annual returns: �0:37%;

- Volatility: 5.88%;

- Sharpe ratio: �0:06;

- Max Drawdown: �5:01%;

- Sortino ratio: �0:08;

- Omega ratio: 0.98.

After Time frame characterized by training from 6/1/

2019 to 31/7/2021 (546 days), test from 8/1/2021 to 12/31/

2021 (106 days) and the following benchmark values.

Reference values FOREX2021 After

- Annual returns: �4:27%;

- Volatility: 5.23%;

- Sharpe ratio: �1:91;

- Max Drawdown: �5:74%;

- Sortino ratio: �2:38;

- Omega ratio: 0.71.

Results Tables 19, 20 and 21 summarize the behaviors of

the different agents in the three time frames. The first

noticeable thing is the low volatility of the benchmark (also

recorded by ZI agents), typical of this type of market. This

happens because the price changes occur on the eight

decimal places recorded on the FOREX. While we cannot

talk about a direct bubble on FOREX (as happened for

cryptocurrencies, instead), we considered significant dates

in dividing the 3 time frames to take into account the

economic situation occurring in those periods. Further-

more, as shown graphically in Fig. 10, it can be seen that

the time frames thus created show a situation similar to the

previous bubble. Let us analyze the behavior of the dif-

ferent agents in these situations and compare it with that of

the GGSMZ (shown in Table 22). The first essential

behavior to note is the reduction of the ZIC volatility in the

passage from one-time frame to the next, also highlighting

the usefulness of the rule, previously defined, through

which this agent can be an excellent indicator of the phase

market (it is evident the similarity in the volatility of the

frames During and After). In the first time frame (Before),

the best agent for the ZI/MI was the AA (which got the best

values of Sharpe and Drawdown, Sortino and Omega, and

a very high return). In contrast, for the CI agents, the best

behavior is contended by DDPG and TD3 (which have

identical results). On the other hand, the behavior of the

A2C stands out (opposite to its competitors), which carried

out very few transactions that led to a negative return.

Regarding, instead, our ANFIS agent, its behavior per-

mitted it to obtain a very high return. However, the other

indicators show that it was not the best agent (particularly

for the very high Sortino ratio, drastically higher than the

CI agents).

In the second time frame (During), the volatility of the

ZIC was halved, and the best ZI/MI agent was the GDX

(since it was the agent with the highest Sharpe and the

lowest Drawdown, Sortino, and Omega at the same time,

while the ZIC got only the highest Sharpe). In contrast, the

CI agents followed a particular behavior. The first evidence

Table 19 Comparison between

the different agents in the

Before period for EUR-USD

situation of 2021

ZI/MI Return (%) Volatility (%) Sharpe Drawdown (%) Sortino Omega

(a) ZI/MI agents

ZIC 354.57 12597.52 2.62 �99:156 52.74 6.61

ZIP �2:692 1879.38 3.39 �92:739 14.26 2.56

GDX 41.398 2558.59 2.88 �96:488 16.27 2.73

AA 132.02 1195.364 3.95 �89:99 10.94 2.18

GVWY �10:247 1573.708 3.90 �90:315 13.35 2.44

CI Return Volatility Sharpe Drawdown Sortino Omega

(b) CI agents

A2C �4:626 4.149 �1:51 �5:175 �2:13 0.74

DDPG 10.437 6.396 2.12 �2:582 3.41 1.39

PPO 1.833 2.512 0.98 �0:769 1.92 1.39

TD3 10.589 6.463 2.12 �2:609 3.41 1.39

SAC 7.561 5.685 1.75 �3:377 2.83 1.36
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is the PPO that obtained a positive return, the highest

Sharpe, and the lowest Sortino (but not the lowest Omega)

and performed a limited number of transactions at certain

strategic moments, which enabled it to get a positive result.

On the other hand, the lowest Omega ratio was achieved by

DDPG, which maintained a behavior very similar to TD3.

Therefore, we could say that the best agents in this phase

were PPO and DDPG. As for GGSMZ, however, as in the

previous time frame, its return was very high (considering

that it is diametrically opposite to that recorded by the

benchmark), but its Sortino and Omega ratio indicators are

not the best.

Finally, in the last time frame (After), the volatility of

the ZIC decreased compared to the During, but remained

in any case on a constant level (highlighting the transition

to a subsequent phase). Furthermore, in this situation, even

the benchmark values highlight that we are in a decreasing

market phase (probably the continuation of a market peak,

as it happened). The best ZI/MI agent was the ZIP, which

despite its casual behavior, managed to obtain the best

Table 20 Comparison between

the different agents in the

During period for EUR-USD

situation of 2021

ZI/MI Return (%) Volatility (%) Sharpe Drawdown (%) Sortino Omega

(a) ZI/MI agents

ZIC �28:516 4843.731 4.72 �95:4 36.28 4.56

ZIP 52.692 1789.634 3.85 �92:656 15.02 2.67

GDX 19.611 1290.658 4.10 �89:658 11.70 2.26

AA �14:877 1279.428 3.91 �92:192 11.31 2.19

GVWY �5:194 2328.485 3.39 �92:234 17.07 2.80

CI Return Volatility Sharpe Drawdown Sortino Omega

(b) CI agents

A2C �4:07 4.189 �1:48 �5:191 �1:87 0.73

DDPG �0:468 5.687 �0:10 �4:906 �0:13 0.93

PPO 0.031 4.275 0.03 �3:663 0.05 1.01

TD3 �0:473 5.746 �0:10 �4:956 �0:13 0.98

SAC �1:077 3.58 �1:03 �1:583 �1:38 0.94

Table 21 Comparison between

the different agents in the After
period for EUR-USD situation

of 2021

ZI/MI Return (%) Volatility (%) Sharpe Drawdown (%) Sortino Omega

(a) ZI/MI agents

ZIC 30.976 4208.564 3.31 �97:322 35.06 4.45

ZIP 85.325 1113.194 4.31 �84:908 10.9 2.14

GDX �18:097 1538.056 4.27 �91:835 13.92 2.43

AA �73:026 2927.738 3.01 �96:564 19.43 3.10

GVWY 25.211 1217.477 3.65 �89:274 11.19 2.20

CI Return Volatility Sharpe Drawdown Sortino Omega

(b) CI agents

A2C �3:961 4.872 �1:97 �4:987 �2:44 0.69

DDPG �4:358 5.285 �2:00 �5:622 �2:48 0.71

PPO �4:043 4.737 �2:07 �5:662 �2:53 0.70

TD3 �4:298 5.211 �2:00 �5:545 �2:48 0.71

SAC �1:018 1.069 �2:29 �1:083 �2:84 0.60

Table 22 Results obtained by

GGSMZ in the different phases

(before, during, and after) of

FOREX 2021

Market Time frame Return (%) Volatility (%) Sharpe Drawdown (%) Sortino Omega

FOREX 2021 Before 18.986 6.309 4.63 �1:783 8.53 2.12

During 10.936 5.676 3.60 �2:171 6.26 1.80

After �2:451 4.329 �1:30 �4:902 �1:68 0.68
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performance indicators. On the side of the CI agents, the

best agent was A2C. Despite having maintained a some-

what similar behavior to its competitors, it stood out for

having recorded the best values of the various indicators.

However, for our agent ANFIS, this time frame was one of

the best as GGSMZ recorded the best behavior (even

compared to the previous frames), which is in line with the

benchmark and outperformed the CI competitors.

From these results, we can conclude how the use of ZI/

MI agents is also functional in this market to understand the

market phase (in particular of the ZIC). The CI agents, on

the other hand, compared to the crypto markets, despite

having achieved good results, have not fully shown their

trading skills, in some cases carrying out a minimal number

of transactions. This is probably why the GGSMZ agent

did not have an ideal behavior in the Before and During

frames, as it was trained on the transactions of the previous

5 CI agents. Therefore, intelligent agents are recommended

with great caution in the FOREX market.

Appendix B: Depicting volatility
and cumulative returns of traders

In this section, we provide the graphics illustrating the

volatility and the cumulative returns of the best experi-

mented traders during the different bubbles faced. In par-

ticular, Bitcoin 2018 (Sect. 1), Bitcoin 2021 (Sect. 2),

Ethereum 2021 (Sect. 3) and FOREX 2021 (Sect. 4). For

all the other graphics, we refer the reader to https://bit.ly/

3wrkwi7.

Fig. 11 Cumulative returns of most relevant trading agents (Before), Bitcoin bubble of 2018
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Fig. 12 Cumulative returns of most relevant trading agents (During), Bitcoin bubble of 2018
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Fig. 13 Cumulative returns of most relevant trading agents (After), Bitcoin bubble of 2018
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Fig. 14 Cumulative returns of most relevant trading agents (Before), Bitcoin bubble of 2021
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Fig. 15 Cumulative returns of most relevant trading agents (During), Bitcoin bubble of 2021
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Fig. 16 Cumulative returns of most relevant trading agents (After), Bitcoin bubble of 2021
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Fig. 17 Cumulative returns of most relevant trading agents (Before), Ethereum bubble of 2021
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Fig. 18 Cumulative returns of most relevant trading agents (During), Ethereum bubble of 2021
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BTC2018 bubble

In this section, we provide the graphics illustrating the

volatility and the cumulative returns of the best experi-

mented traders during the Bitcoin 2018 bubble. See Figs

11, 12, 13, 14, 15, 16, 17, 18, 19.

BTC2021 bubble

In this section, we provide the graphics illustrating the

volatility and the cumulative returns of the best experi-

mented traders during the Bitcoin 2021 bubble.

ETH2021 bubble

In this section, we provide the graphics illustrating the

volatility and the cumulative returns of the best experi-

mented traders during the Ethereum 2021 bubble.

FOREX2021

In this section, we provide the graphics illustrating the

volatility and the cumulative returns of the best experi-

mented traders concerning the Forex 2021 market.

Fig. 19 Cumulative returns of most relevant trading agents (After), Ethereum bubble of 2021
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Appendix C: Further ANFIS training
and testing results

In this section, we report the results obtained by ANFIS

during the different experiments in terms of MSE and

RMSE reached in training and testing. Table 23 shows

such results.
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