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Abstract
Several cybersecurity domains, such as ransomware detection, forensics and data analysis, require methods to reliably

identify encrypted data fragments. Typically, current approaches employ statistics derived from byte-level distribution,

such as entropy estimation, to identify encrypted fragments. However, modern content types use compression techniques

which alter data distribution pushing it closer to the uniform distribution. The result is that current approaches exhibit

unreliable encryption detection performance when compressed data appear in the dataset. Furthermore, proposed

approaches are typically evaluated over few data types and fragment sizes, making it hard to assess their practical

applicability. This paper compares existing statistical tests on a large, standardized dataset and shows that current

approaches consistently fail to distinguish encrypted and compressed data on both small and large fragment sizes. We

address these shortcomings and design ENCOD, a learning-based classifier which can reliably distinguish compressed and

encrypted data. We evaluate ENCOD on a dataset of 16 different file types and fragment sizes ranging from 512B to 8KB.

Our results highlight that ENCOD outperforms current approaches by a wide margin, with accuracy ranging from � 82%

for 512B fragments up to � 92% for 8KB data fragments. Moreover, ENCOD can pinpoint the exact format of a given data

fragment, rather than performing only binary classification like previous approaches.

Keywords Machine learning � Cybersecurity � Forensics � Encryption detection

1 Introduction

Reliable detection of encrypted data fragments is an

important primitive with many applications to security and

digital forensics. For instance, ransomware detection

algorithms use estimates of write-operations’ data

randomness to quickly identify evidence of malicious

encryption processes [1–4]. When performing digital

forensic analysis of hard drives and phones, it is oftentimes

important to identify encrypted archives [5]. Finally,

encryption detection is widely used in network protocol

analysis [6, 7].

A popular approach to address this problem is to esti-

mate the Shannon entropy of the sequence of interest using

the Maximum Likelihood Estimator (MLE): ĤMLE. This

approach leverages the observation that the distribution of

byte values in an encrypted stream closely follows a uni-

form distribution; therefore, high entropy is used as a proxy

for randomness. This estimator has the advantage of being

simple and computationally efficient. As non-encrypted

digital data are assumed to have low byte-level entropy, the

estimator is expected to easily differentiate non-encrypted

and encrypted content.

While this approach remains widely used (e.g., [1–4]), a

number of works have highlighted its limitations. Modern

applications tend to compress data prior to both storage and

transmission. Popular examples include the zip compressed

file format, and HTTP compression [8] (both using the
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DEFLATE algorithm). As compression removes recurring

patterns in data, compressed streams tend to exhibit high

Shannon entropy. As a result, compressed data exhibit

values of ĤMLE that are close and oftentimes overlapping

with those obtained by encryption. In principle, com-

pressed content can be identified by using appropriate

parsers. However, many security-related applications, such

as ransomware detection, traffic analysis and digital

forensics, generally do not have access to whole-file

information, but rather work at the level of fragments of

data. In these settings, the metadata that is required by

parsers is not present or is incomplete [9]. Given this issue,

a number of works have been looking at alternative tests to

distinguish between encrypted and compressed con-

tent [10–16]. While these works have the potential to be

useful, there has been limited evaluation of their perfor-

mance on a standardized dataset. Consequently, there is no

clear understanding of how these approaches: (i) fare on a

variety of compressed file formats and sizes, and (ii)

compare to each other. The potential negative implications

are significant: the use of ineffective techniques for iden-

tifying encrypted content can hinder the effectiveness of

ransomware detectors [17, 18], and significantly limit the

capability of forensic tools.

Our work compares state-of-the-art approaches on a

large dataset of different data types and fragment sizes.

We find that, while more useful than entropy estimates,

current approaches fail to achieve consistently high

accuracy. Tests based on byte-value distribution, such as

v2, can distinguish some encrypted and compressed con-

tent, but have accuracy issues (ref. Sect. 5). Such tests, in

a sense, ‘‘collapse’’ the entire distribution to a single

scalar value, losing information concerning the shape of

the distribution. It is therefore natural to ask if Deep

Neural Networks (DNNs) can improve such results due to

the fact that DNNs can consider the entire discrete dis-

tribution (modeled as a feature vector), and can learn to

recognize complex distributions [19, 20]. To address this,

we propose ENCOD (Encryption/Compression Distin-

guisher), a novel neural network-based approach. Our

evaluation shows that ENCOD outperforms existing

approaches for most considered file types, over all con-

sidered fragment sizes.

ENCOD can distinguish between compressed and

encrypted data fragments as small as 512B with 86%ac-

curacy. The accuracy increases to up to 94% when distin-

guishing between encrypted and purely compressed data

(i.e.,zip, gzip), and up to 100% in the case of compressed

application data fragments (e.g., pdf, jpeg, mp3) when the

fragment size is 8KB. Furthermore, we investigate the

applicability of robust feature extraction techniques such as

autoencoders to our architecture, in an effort to understand

whether feature vector pre-processing can lead to increased

performance compared to a plain neural network (NN)

architecture in this domain.

This paper revises and extends our previous conference

paper [21], by considering a larger and more diverse

dataset of file fragments and evaluating the effectiveness of

data pre-processing on accuracy. Overall, we make the

following contributions:

• We review and categorize existing literature on the

topic of distinguishing compressed and encrypted data

fragments.

• We build and make available to the community a large,

standardized dataset of data fragments of different sizes

from 16 different data formats.1

• We systematically evaluate and compare state-of-the-

art approaches on our dataset for different fragment

formats and sizes.

• We propose a new neural-network-based approach and

show that it outperforms current state-of-the-art tests in

distinguishing encrypted from compressed content for

most considered formats, over all considered fragment

sizes.

• We propose a new multi-class classifier that can label a

fragment with high accuracy as encrypted data, general-

purpose compressed data (zip/gzip/rar/bz2), or one of

multiple application-specific compressed data (png,

jpeg, pdf, mp3, office, video).

• We investigate the effectiveness of data pre-processing

techniques such as autoencoders for our architecture,

and show that plain neural network models outperform

these approaches in the considered domain.

• We thoroughly discuss the implications of our findings

and effectiveness of the evaluated approaches in

distinguishing compressed and encrypted data.

The rest of this paper is structured as follows: Sect. 2

provides background on entropy estimation and its appli-

cations. Section 3 reviews existing approaches to the

problem. Section 4 presents and evaluates a novel

approach to the problem, based on deep learning. Section 5

evaluates the performance of the considered approaches,

discussing their strengths and limitations. Section 6 dis-

cusses the implications of our findings. Section 7 discusses

related work and Sect. 8 concludes the paper.

1 The full dataset is available at https://drive.google.com/file/d/

1IDNv3U1hRILXblwT9fI3G-D8hJquiequ.
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2 Background

Determining the format of a particular data object (e.g., a

file in permanent storage, or an HTTP object) is an extre-

mely common operation. Under normal circumstances, it

can be accomplished by looking at content metadata or by

parsing the object. Things get more complicated, however,

when no metadata is available and the data object is cor-

rupted or partly missing. In this paper, we focus on

detection of encrypted content and, in particular, on dis-

tinguishing between encrypted and compressed data frag-

ments. We begin by examining relevant applications of

encryption detection primitives.

2.1 Ransomware detection

Ransomware encrypts user files with the aim of making

them unusable for the user. It then presents a prompt asking

the user to pay a ransom in order to receive the decryption

key. Ransomware attacks can cause significant financial

damage to organizations [22–24].

Mitigating a ransomware infection requires rapid

detection and termination of all ransomware processes. A

number of approaches based on behavioral process anal-

ysis have been proposed for this purpose [1–4]. These

approaches typically rely on a classifier trained on various

process-related features to distinguish benign and ran-

somware processes. Virtually all proposed behavioral

detectors use entropy of file write operations as one of the

key features, based on the insight that frequently writing

encrypted content is a characteristic behavioral fingerprint

of ransomware. Entropy is typically estimated using ĤMLE.

In several approaches, entropy is estimated on the content

of individual file writes [1, 3, 4], therefore the estimation

procedure has only access to partial file fragments.

2.2 Forensics

Digital forensics oftentimes involves analysis of

phone [25] or PC [9] storage that has been corrupted, or

uses an unknown format. Therefore, forensic techniques

attempt to recover data of interest (contacts, pictures, etc.)

by searching for blocks with recognizable structure. These

techniques typically only have access to data fragments,

rather than whole files.

Encrypted and compressed data represent a corner case,

as they exhibit a complete lack of structure. Still, detecting

such content may be important in data recovery operations

(e.g., if sensitive data is known to have been encrypted).

Distinguishing between compressed and encrypted blocks

is notoriously difficult, and some forensic approaches label

data as ‘‘compressed or encrypted,’’ without attempting to

pinpoint which one of the two it is [5].

2.3 Network traffic analysis

Network traffic analysis examines flows in/out of a network

to identify security issues. Regulations (e.g., HIPAA in the

U.S.) and best practices expect sensitive data to be

encrypted in transit; therefore, entropy-based analyzers

have been proposed to ensure that all traffic leaving a

monitored network is encrypted [7]. Another application is

reverse-engineering of network protocols used by malware.

It has been observed [6] that malware protocols may mix

encrypted and non-encrypted content within the same

message. Encryption detection primitives can be applied to

break messages into encrypted and non-encrypted fields.

In both cases above, encryption detectors have partial

visibility on the data stream and can only access fragments

of data (e.g., an encrypted stream broken into individual

packets), rather than whole data objects.

2.4 Challenges

In the three domains above, the use of Shannon entropy has

been proposed in order to identify encrypted content.

Entropy is used to measure the information content of a

byte sequence; highly structured data exhibit low entropy,

while unstructured data—such as a randomly distributed

sequence—have high entropy. Therefore, an entropy esti-

mate can be used as a proxy for how close a sequence of

bytes is to being randomly distributed. Most encryption

algorithms output ciphertexts whose byte-value distribu-

tions tend to follow a uniform distribution. As a result, an

encrypted bytestream will almost invariably exhibit high

entropy.

One of the most common approaches to entropy esti-

mation is the maximum likelihood estimator

ĤMLE ¼ �
P255

i¼0 filog2ðfiÞ, where fi is the frequency of byte

value i in the sequence. The entropy range is ½0� 8�. The
frequency fi of byte value i, which is measurable, is used in

place of the probability P(i) of that value occurring, which

is unknown. This approach is commonly used in some of

the applications above (e.g., [1, 7]), due to its simplicity

and efficiency.

This reasoning assumes that, while encrypted data has

high entropy, non-encrypted data does not. This appears

reasonable, as most relevant data types (e.g., text, images,

audio) are information-rich and highly structured. How-

ever, this assumption does not hold true in modern com-

puting. Modern CPUs can efficiently decompress data for

processing, and compress it back for storage or transmis-

sion; this is oftentimes performed in real time and
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transparent to the user. As a result, most formats tend to

apply compression [26]. Informally, a good compression

algorithm works by identifying and removing recognizable

structures from the data stream; as a result, compressed

data tend to exhibit high entropy. In practice, this fact

compromises the ability of entropy-based detectors to

distinguish encrypted and non-encrypted, compressed

content.

2.4.1 Entropy estimates for common data formats

In order to substantiate the claim above, we computed

entropy estimates using a dataset consisting of 10,000 file

fragments. The dataset covers various popular file formats

and AES-256-encrypted data. We considered multiple

fragment sizes, from 512B to 8KB (details in Sect. 4).

Figure 1 summarizes the distribution of estimated entropy

values for eight different formats with block size 2048

(some ranges truncated for clarity). Results for other

block sizes were qualitatively similar. As illustrated in

Fig. 1, both general-purpose (e.g., zip, rar) and domain-

specific (e.g., jpeg, mp3) compression algorithms result in

data which exhibits entropy whose ranges are overlapping

with that of encrypted content (enc). The only format that

can be unambiguously distinguished is png. Even so, png

still overlaps with various other formats. Interestingly,

utilities that create and modify data in zip, gzip, office

and png format internally all use the DEFLATE algorithm

for compression: the differences in entropy are likely due

to differences in file structure and algorithm

implementation.

Due to the limits of entropy estimation, the attention of

the community has been increasingly focusing on alterna-

tive measures that can more precisely estimate whether

data follow a random distribution. However, no compre-

hensive review of such approaches exists. In the next

section, we review state-of-art approaches, while we

evaluate and compare them in Sect. 5.

3 Review of existing techniques

This section reviews three state-of-the-art approaches to

distinguish encrypted and compressed content: the NIST

suite, v2 and HEDGE [15]. Strictly speaking, these

approaches test the randomness of a string of bytes, and

make no attempt to determine its type. However, due to

their high precision they can be used to distinguish true

pseudorandom (encrypted) sequences and compressed ones

which, while approximating a randomly generated stream,

maintain structure.

The NIST suite and v2 are standard statistical tests for

identifying randomly-distributed data. HEDGE is a

recently proposed statistical approach which shows

promising results. HEDGE is a combination of a subset of

the NIST tests and two forms of v2 tests. Note that, despite
the inclusion of HEDGE, we decided to also report separate

results for NIST and v2 due to the fact that those are

designed to be, and oftentimes are, used as standalone tests.

3.1 NIST SP800-22

The NIST SP800-22 specification [27] describes a suite of

tests whose intended use is to evaluate the quality of ran-

dom number generators. The suite consists of 15 distinct

tests, which analyze various structural aspects of a byte

sequence. These tests are commonly employed as a

benchmark for distinguishing compressed and encrypted

content (e.g., [15, 16]). Each test analyzes a particular

property of the sequence, and subsequently applies a test-

specific decision rule to determine whether the result of the

analysis suggests randomness or not. When using the NIST

suite for discriminating random and non-random sequen-

ces, an important question concerns aggregation of the

results of individual tests. Analysis of the tests [27] sug-

gests that they are largely independent. Given this obser-

vation, and the intrinsic complexity of a priori defining a

ranking between the tests, we use a majority voting

approach. In other words, we consider a fragment to be

random (and therefore encrypted) when the majority of

tests considers it so. Since some of the tests require a block

Fig. 1 Entropy ranges for

common formats (2048B

blocks)
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length much bigger than the ones we use for our smaller

fragment sizes, we did not consider in the voting the tests

that cannot be executed.

3.2 v2 Test

The v2 test is a simple statistical test to measure goodness

of fit. It has been widely applied to distinguish compressed

and encrypted content [10, 13, 15]. Given a set of samples,

it measures how well the distribution of such samples

follows a given distribution. Mathematically, the test is

defined as:

v2 ¼
X255

i¼0

ðNi � EiÞ2

Ei

where Ni is the actual number of samples assuming value i,

and Ei is the expected number of samples assuming value i

according to the known distribution of interest. Since the

distribution being evaluated for goodness of fit is the dis-

crete uniform distribution, 8iEi ¼ L=256, where L is the

particular fragment length being considered. The results of

the test can be interpreted using either a fixed threshold, or

a confidence interval [15].

3.3 HEDGE

HEDGE [15] simultaneously incorporates three methods to

distinguish between compressed and encrypted fragments:

v2 test with absolute value, v2 with confidence interval and

a subset of NIST SP800-22 test suite. Out of the NIST

SP800-22 test suite HEDGE incorporates 3 tests: frequency

within block test, cumulative sums test, and approximate

entropy test. These tests were selected due to (i) their

ability to operate on short byte sequences, and (ii) their

reliable performance on a large and representative dataset.

In the HEDGE detector, the threshold of the number of the

above-mentioned NIST SP800-22 tests failed is set to 0.

For the v2 with absolute value test, the thresholds are pre-

computed for each of the considered packet sizes, by

considering the average and its standard deviation. For v2

with confidence interval, the v% interval is

ðv%[ 99%jjv%\1%Þ. For classifying the content of a

packet, HEDGE applies the three randomness tests to the

input data. Data are considered random only if it passes all

tests.

4 ENCOD: a learning-based approach

Past work and our own evaluation suggest that tests based

on byte-value distribution, such as v2, can distinguish some

encrypted and compressed content, but have accuracy

issues (ref. Sect. 5). Such tests, in a sense, ‘‘collapse’’ the

entire distribution to a single scalar value, losing infor-

mation concerning the shape of the distribution. It is

therefore natural to ask if Deep Neural Networks (DNNs)

can improve such results. DNNs can consider the entire

discrete distribution (modeled as a feature vector) and can

learn to recognize complex distributions [19].

In order to evaluate the potential of DNNs, we designed

ENCOD, a set of two distinct neural network-based

approaches for distinguishing encryption and compression.

4.1 Model architecture #1: binary classifiers

Our first model is a binary classifier trained to distinguish a

single specific compressed format from encrypted content.

It may be used in cases where only one compressed format

is known to exist in the dataset (e.g., detecting writes of

encrypted data performed by a potential ransomware on

image files vs legitimate writes of JPEG-compressed data).

We explored several alternative architectures for this

application, and we found that the structure depicted in

Fig. 2a provides the best performance. The binary-classi-

fier architecture consists of 4 fully-connected layers with

dimensions as shown in the figure. We initialize the model

weights using Glorot uniform [28]. The activation function

is ReLU for the first three layers, followed by a softmax on

the output layer. We used a batch size of 64 for training our

model. Each hyperparameter has been chosen using grid

search. We used the same procedure also for the model

described in Sect. 4.2.

4.2 Model architecture #2: content-type detector

In many applications, a classifier may encounter more than

one type of compressed data. Furthermore, it may be

important to determine the specific type being encountered.

To support these use cases, we design a content-type

detector: a multi-class classifier that can determine whether

a given fragment is encrypted, or belongs to one of mul-

tiple known compressed formats. We explored several

designs for the neural network, converging to the model

depicted in Fig. 2b. Its architecture consists of 5 fully-

connected layers with dimensions as shown in the figure.

We initialize model weights using LeCun normal [29].

Differently from the binary models, this multi-class clas-

sifier seemed prone to the dying neuron problem associated

with the ReLU activation function [30]. We therefore

opted for the SelU activation function [31] for the first 4

layers, followed by a softmax on the output layer. We used

a batch size of 64 instances for training.
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4.3 Model architecture extension: autoencoders

In addition to the architectures described in Sects. 4.1 and

4.2, we design a third model architecture that makes use of

autoencoders. Autoencoders (AE) are NN models that are

trained to compress an N-dimensional feature vector into

an M-dimensional latent representation, with M\N, and

then reconstruct the original input from the latent repre-

sentation. AE are composed of two parts: the encoder,

which compresses the original feature vector into the latent

representation, and the decoder, which takes the output of

the encoder and reconstructs the input. AE are generally

used to extract robust features from a feature vector and aid

classification [32, 33].

In our third architecture, we use the encoder portion of a

trained autoencoder to pre-process samples into a com-

pressed latent representation, which is then used as input by

a fully-connected NN. We design two different set of NN

with two different encoders:

• AE architercure #1: The encoder is composed of 3

fully-connected layers of size 256� 200� 128, respec-

tively, followed by a 3-layer fully-connected NN of size

128� 64� 2.

• AE architecture #2: The encoder is composed of 4

fully-connected layers of size 256� 156� 128� 64,

respectively, followed by a 3-layer fully-connected NN

of size 64� 64� 2.

Both AE are trained for 25 epochs using the Adam opti-

mizer and Mean Squared error as loss function. We ini-

tialize the weights using Glorot uniform for the NN model

and uniform distribution for the AE. The activation func-

tion used is ReLU for all layers except for the output ones,

which use softmax in the NN and sigmoid in the AE. We

used a batch size of 64 for training the NN and 128 for the

AE. The hyperparameters were chosen using grid search.

4.4 Fragment dataset

We built a dataset of 400 million encrypted and com-

pressed fragments from 16 different data formats. For the

compressed data, we selected a set of formats covering

common, popular content types. To generate the encrypted

data fragments, we used the AES cipher in CBC mode

implemented by the PyCryptodome library.2 We chose

AES because it is the most widely used and well-known

symmetric cipher, representative of modern ciphers which

result in byte streams consistently close to random.

In constructing the dataset, we focused on ensuring a

diversity of compressed formats, rather than compression

algorithms. While algorithms such as DEFLATE are used

in multiple compression formats, they are generally used

with different parameters and/or embed compressed data in

different ways within the compressed archive. Conse-

quently, compressed archives created with different for-

mats tend to differ considerably from each other even when

using the same underlying compression algorithm. This

observation is empirically confirmed by our evaluation in

Sect. 5. Finally, our dataset does not include data which is

both compressed and encrypted, and we ensured such data

are not present in the dataset. The dataset is comprised of

the following data types:

1. AES encrypted data (enc). We used the AES

implementation provided by the Cryptodome Python

library. AES was configured to use CBC mode with

256-bit keys, with a random IV generated before

encrypting each file.

2. zip, gzip, rar, bz2, xz: DEFLATE, rar, Burrows–

Wheeler and Lempel–Ziv–Markov compressed data.

These algorithms are among the most used for generic

file compression, with DEFLATE and rar being akin to

de-facto standards. DEFLATE is also widely used for

documents (such as in the Microsoft office file

formats), and network applications (e.g., HTTP header

compression).

3. png and jpeg images: png is used for lossless image

compression; it internally uses DEFLATE, but png

files present a structure that is different from that of zip

files. jpeg uses DCT-based lossy compression.

4. mp3 audio files: MP3 compressors use a psychoa-

coustic model to remove inaudible frequencies from

audio data, and compress the resulting data using a

lossy algorithm based on the modified-DCT transform.

5. pdf documents: PDF is an office format used for

document exchange and form filling. Internally, PDF

files consist of a tree of objects that can be compressed

INPUT FULLY-
CONNECTED RELU FULLY-

CONNECTED
FULLY-

CONNECTEDRELU FULLY-
CONNECTEDRELU SOFTMAX

[256] [64] [2][256]

(a) Binary Classifier Architecture

INPUT FULLY-
CONNECTED SELU FULLY-

CONNECTED
FULLY-

CONNECTEDSELU FULLY-
CONNECTEDSELU

[256] [256] [128][256]

FULLY-
CONNECTEDSELU SOFTMAX

[6]

(b) Multi-Class Classifier Architecture

Fig. 2 Neural network

architectures

2 https://pycryptodome.readthedocs.io.
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using a variety of techniques. In practice, most PDF

documents contain a large amount of compressed

content, such as embedded images.

6. Microsoft office files: Ms office is one of the most

used tool suites for office productivity. Internally,

office files use the deflate algorithm for

compression.

7. h264, h265, mpeg2, mpeg4 and vp8 video formats:

h264 is one of the most widely used video codecs

today, being the recommended codec for Youtube

videos. H265 is the successor of h264 and substan-

tially improves compression rate while maintaining

the same video quality. Mpeg4 (Xvid codec) is a

format that was widely used before h264. Vp8 and

mpeg-2 are fairly dated video codecs that are not

often used anymore, but there still exists old contents

using them.

4.4.1 Fragment generation process

We generate fragments from a dataset of files:

• zip/gzip/rar/bz2/xz/enc: we used various textual doc-

uments obtained from a 2020 English Wikipedia

dump 3. We created four copies of each file, each of

which was either compressed using one of zip, gzip, rar,

bz2, xz utilities (with default parameters), or encrypted

using AES-256.

• png: we crawled � 116; 000 png images from the web

and various repositories [34].

• jpeg: we downloaded � 68; 000 images from the Open

Images Dataset v54 and various online sources.

• mp3: we used the FMA medium dataset5, which

contains 25,000 mp3 files.

• pdf: we crawled � 3; 000 randomly-selected papers

from arXiv.6

• office: we sampled 4500 Word, 1700 PowerPoint and

1800 Excel files from a private hard drive. For privacy

reasons, these files are not included in the provided

dataset.

• video files: we downloaded a large, h264-encoded

video from Youtube and re-encoded it to the remaining

formats.

We split each file into fragments of 512B, 1KB, 2KB, 4KB,

and 8KB. In an effort to ensure that the dataset remains

balanced, we randomly sampled 1M fragments for each

fragment size/data-type combination.

4.5 Dataset analysis methodology

Statistical tests (NIST, v2, HEDGE)

For each fragment size, we randomly selected 10,000

compressed fragments (evenly distributed across the dif-

ferent compressed data types) and 10,000 encrypted frag-

ments. We then executed the tests directly on these

fragments.

ENCOD/Binary Classifiers

We separately trained and evaluated classifiers for each

fragment size. The features that are fed to our models for

training/classification are derived from the histograms of

the byte values for the observed fragment size. Each fea-

ture is the value of the probability density function at a

given bin, normalized such that the integral over the range

is 1.

We trained the binary classifiers by randomly select-

ing 3M vectors from the encrypted class and 3M vectors

from the data type that we aim to distinguish. We par-

titioned this dataset into 85% training, 5% development

and 10% test. Before fitting the data to the model for

training, we applied a MinMax scaler to scale the dataset

from the range [0, 1] to the range [0, 2] (range selected

via grid search). Scaling helps the ML model to more

easily capture minute differences in the inputs, allowing

to better distinguish among the classes and converge

faster.

ENCOD/Content-Type Detector

To train the content-type detectors, for each fragment size

we randomly sampled 6M feature vectors consisting of a

mix of the considered file types. This dataset was parti-

tioned into training, development and test sets in the same

ratios used for the binary classifiers. We also scaled the

dataset using the MinMax scaler with the same parameters

used above.

ENCOD/Binary Classifiers with Encoder

We trained one autoencoder per fragment size for all file

types. The autoencoder was trained by randomly sampling

8M feature vectors in total (500,000 per each of the 16

file types). The feature vectors are created following the

procedure used to train the plain binary classifiers. The

dataset was partitioned into training, development and test

sets following the same ratios used for the binary clas-

sifiers. The binary models are trained as previously

described. The only variation is that the latent represen-

tation generated by the trained encoder is used as input by

the NN, rather then the original feature vector derived

from a given sample.

3 English Wikipedia Dump - https://dumps.wikimedia.org/enwiki/.
4 Open Images Dataset v5 - https://www.figure-eight.com/dataset/.
5 FMA: A Dataset For Music Analysis - https://github.com/mdeff/

fma.
6 Arxiv Online Repository - http://arxiv.org/.
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5 Evaluation

This section comprehensively evaluates existing approa-

ches (see Sect. 3) and our own neural network-based

approach, ENCOD. We frame the evaluation in terms of the

following comparisons:

1. Binary classification: all formats. In Sect. 5.2, we

consider the ability of different detectors to discrim-

inate encrypted and compressed data, regardless of the

specific compressed format. Results show that our

classifier outperforms NIST, v2-test and HEDGE for all

fragment sizes, with NIST performance approaching

that of ENCOD only for large fragment size.

2. Binary classification by format. In Sect. 5.3, we

break down the performance of v2, NIST and HEDGE

by compressed format. We also report the performance

of our per-format binary classifiers (see Sect. 4.1). The

latter perform comparably or better than other tests on

all formats but one.

3. Format fingerprinting. In Sect. 5.4, we evaluate the

accuracy of our multi-class classifier in labeling

unknown fragments as the correct compressed format

(or as encrypted). Results show that our classifier is

able to distinguish the file type with an overall

accuracy of 83% for the 2048 byte fragment size. It

also achieves high precision, especially on png, jpeg,

mp3.

4. Autoencoder approach. In Sect. 5.5, we analyze the

performance of the encoder-based feature extraction

approach in the binary classification task. Our evalu-

ation shows that the plain NN approach outperforms

the encoder-based consistently for all considered

formats, with the exception of the pdf file type.

5.1 Implementation

We implemented the classifier described in Sect. 4 using

the Keras7 Library for machine learning. For the NIST

tests, we used the official implementation.8 In order to

aggregate the NIST tests results, we use the majority voting

approach described in Sect. 3.1. In order to label fragments

as compressed or encrypted based on v2 results, we used

the thresholds suggested in the HEDGE paper [15], as the

analysis in HEDGE is specifically aimed at producing a

dataset-independent threshold for general use. We imple-

mented HEDGE according to the published descrip-

tion [15]. Finally, all experiments were conducted using

the dataset described in Sect. 4.

5.2 Binary classification: all formats

The first part of our evaluation considers the binary clas-

sification problem of determining whether a given high-

entropy data fragment is compressed or encrypted. Given a

fragment, the v2 test, HEDGE, and the NIST test suite

return whether the fragment’s content appears random or

not. Therefore, a binary classifier can be constructed from

the above-mentioned three tests by simply labeling the

random content as encrypted. Our binary classifier used for

this evaluation is based on our multi-class classifier. The

multi-class classifier labels each fragment either as

encrypted, or as one of the fourteen supported compressed

formats. Since in this experiment we are only interested in

distinguishing encryption and compression, regardless of

the type, we combine all compressed type labels into one.

Effectively, we consider classification in two labels: (1) a

macro-label ‘‘compressed,’’ which is comprised of the

labels fzip, rar, gzip, bz2, png, jpeg, mp3, pdf, h264, h265,

mpeg2, mpeg4, vp8, office g and (2) the label ‘‘encrypted.’’

We analyze file type fingerprinting accuracy separately in

Sect. 5.4. It is worth noting that in experiment shown in

Fig. 4 we do not consider the xz file type. This is due to the

fact that none of the considered approaches is able to

reliably distinguish xz files from encryption for small

fragment sizes, as we will see in Sect. 5.3.

The results of this evaluation are depicted in Fig. 4. As

we can see, the performance of all classifiers tends to

improve as fragment size increases. This behavior is

expected, as it is hard to approximate distribution infor-

mation from short fragment sizes. However, as the frag-

ment size increases, differences in distribution become

more apparent and the models can exploit additional

information for classification. We further discuss this

phenomenon in Sect. 6. In the binary classification task,

ENCOD outperforms all the other approaches on all block

sizes, with the NIST approach reaching similar perfor-

mance for 8K fragment size only. The v2 accuracy remains

consistently low across the range of block sizes, while

performance for HEDGE increases for larger sizes but

remains approximately � 10 percentage points lower than

ENCOD’s. These results suggest that the v2 test has an

intrinsic difficulty in discriminating non-random content

which closely approaches a uniform random distribution.

5.3 Binary classification by format

Our second experiment considers the question of whether

some compressed formats are harder than others to dis-

tinguish from encrypted content. Such phenomenon may

arise due to (i) differences in effectiveness between com-

pression algorithms in removing redundancy (and thus
7 Keras Library for Machine Learning–https://keras.io.
8 NIST suite–https://csrc.nist.gov.
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structure) from the uncompressed data; and (ii) presence

(or absence) of metadata, or other structured information

interleaved with compressed data.

In order to answer this question, we break down results

for the v2-test, NIST suite, HEDGE test and ENCOD by

format. In this experiment, for ENCOD we evaluate multiple

binary NN classifiers, one per file type (see Sect. 4.1). Each

type-specific classifier is trained to distinguish content of a

given type from encrypted content (e.g., zip vs encrypted).

Note that, while each of these classifiers is trained specifi-

cally on one format, the other tests (v2, NIST and HEDGE)

work the same regardless of the format. Despite this limi-

tation, we believe this experiment to provide an informative

analysis, as there are scenarios in which file type is known a

priori, and we are interested only in differentiating between

that type and encryption. For instance, if we consider a

storage dedicated only to pictures backups, we can use a

binary classifier (e.g., png/enc) to detect potential ran-

somware activity encrypting the pictures.

Figure 3 shows the comparison between the four

approaches on 2048-byte blocks. Overall, neural network-

based classifiers tend to fare better than the other tests,

particularly on challenging formats such as zip/gzip, rar

and bz2. PDF is the only format on which the NIST and

HEDGE tests outperform the neural network classifier,

while for the office format ENCOD performs slightly worse

but comparably. Interestingly, the v2 fares slightly better

than NIST on most formats, but its accuracy is significantly

worse on formats that are typically easy to distinguish, such

as PNG and MP3. We believe this to be due to the fact that

the NIST tests look at a richer set of properties beyond byte

value distribution, such as a presence of runs and repeated

sequences. HEDGE test outperform v2 on all file types,

while outperforming NIST on most formats, beside PDF,

and have similar performance on PNG, MP3, office and all

video formats but vp8. Intersingly, all approaches fail to

consistently distinguish the xz compressed type (Lempel-

Ziv-Markov chain algorithm), with accuracy at � 50%.

This behavior is indicative of the great compression per-

formance of this algorithm, which pushes compressed data

extremely close to a uniform distribution. Due to the

inability of any of the considered approaches to consis-

tently detect xz files, this type is not included in any of the

aggregated results presented in this evaluation.

Finally, Fig. 5 presents the performance of all our binary

classifiers across all considered fragment sizes. The results

are split in three images for clarity, all images have the

same scale. These results highlight once again how accu-

racy increases significantly as block size increases. Indeed,

for larger fragment sizes ENCOD can successfully classify

xz compressed files from encryption reliably, with

approximately 70% accuracy on 8k fragment size, com-

pared to 50% for fragment sizes in the range ½512� 2k�.

Fig. 4 Performance comparison (binary classification: all formats)

Fig. 3 Performance comparison between our binary-classifier approach, NIST, v2 with Threshold and HEDGE. All results are for 2048 Bytes

data fragments
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5.4 Format fingerprinting

Our multiclass classifier has the ability to (1) distinguish

encrypted and compressed data, and (2) pinpoint the

specific format compressed data belong to. This is a sig-

nificant improvement over the functionality of existing

tests, that can only distinguish encryption and compression,

but cannot tell the specific format or even generic type of

the compressed data. In this section, we analyze the

effectiveness of our multi-class classifier in fingerprinting

the correct type of compressed content. Since for some

type families, we have many subtypes (e.g., for video we

have 5 types, for cmp we have 4), while for others only one

or two, in this experiment we group some of the classes in

macro-labels. Specifically, the office macro-label includes

all office file types, the compressed (cmp) macro-labels

includes zip, gzip, rar, bz2 and the video macro-label

includes h264, h265, mpeg2, mpeg4 and vp8.

Figure 6 shows the confusion matrix for the multi-class

classifier. Results indicate that our classifier is able to

pinpoint the type of a given sample with consistently high

precision for most formats, especially png, mp3, jpeg and

encryption. It performs fairly well on the other considered

compressed formats such as cmp (which contains a mixture

of zip, rar, gzip and bz2 feature vectors) but with a slightly

higher rate of misclassified instances between enc and cmp.

This can be explained by the fact that their distributions are

very close, and intrinsically hard to distinguish. The worse-

performing class is the video macro-label, for which a

sizable portion of the samples is classified as encrypted

content. However, given the results of the binary classifi-

cation presented in Fig. 3, this behavior is expected. The

compressed formats
(b) Performance of our binary classifiers for
video formats

(c) Performance of our binary classifiers for
miscellaneous formats

(a) Performance of our binary classifiers for

Fig. 5 Performance of our binary classification models on different formats and block size ranging from 512 bytes to 8192 bytes
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binary classifiers were already struggling in distinguishing

the h264 and h265 types from encryption. Therefore, it is

expected that the multiclass classifier would struggle as

well with these formats.

5.5 Autoencoder approach

We analyze the effectiveness of the autoencoder approach

presented in Sect. 4.3 compared to the base ENCOD binary

approach. As previously discussed, we have two separate

encoder architectures, encoder64 and encoder128, com-

pressing the feature vector in a 64-dimensional and

128-dimensional latent representation, respectively. This

compressed representation is then fed to a binary NN

classifier to distinguish between encrypted data and com-

pressed data of a specific type.

Figure 7 compares the performance of base ENCOD

binary classifiers to the binary classifiers extended with

encoder64 and with encoder128. As we can see, the base

ENCOD models outperform the encoder models in all bin-

ary classification tasks, with the only exception being the

pdf type where the encoders slightly outperform the base

model. The difference in accuracy is especially apparent

for the four general purpose compression formats bz2, zip,

rar and gzip, where the best autoencoder (encoder128)

results in accuracies 5 to 10 percentage points lower than

the base model. Similar results can be observed in Fig. 8,

which compares the average accuracy of all binary models

Fig. 6 Confusion matrix for the content-type classifier

Fig. 7 Performance comparison between plain EnCoD binary clas-

sifiers, EnCoD binary classifier with Encoder64 and EnCoD binary

classifier with Encoder128. Encoder64 uses 64 dimensions for the

latent space representation and Encoder128 uses 128 dimensions. All

results are for 2048 Bytes data fragments

Fig. 8 Performance comparison for all formats binary classification

between plain EnCoD, EnCoD with Encoder64 and EnCoD with

Encoder128. Encoder64 uses 64 dimensions for the latent space

representation and Encoder128 uses 128 dimensions
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for different data fragment sizes. The performance of the

encoder-based approaches trails that of the base ENCOD

models for all fragment sizes, with accuracy differences in

the range of 4 to 10 percentage points.

These results indicate that, while the encoder is able

capture meaningful features for classification in the latent

representation, it also loses critical information that the

plain NN can use to achieve better performance.

5.6 Overhead

In the final part of our evaluation, we analyze the practical

applicability of the three approaches, comparing their

runtime in order to understand if they can be deployed in

time-critical applications. For this test, we used a small

dataset comprised of 1000 randomly-selected compressed

or encrypted samples. We ran three approaches (NIST,

HEDGE and our binary ML model) on each sample, taking

individual runtime and repeating the experiment 1000

times. We did not include the autoencoder approach in this

evaluation, given its poor performance when compared to

the plain NN models. Table 1 presents the results of our

evaluation. As we can see, while both mean and median

runtime for NIST tests are faster then HEDGE, our pro-

posed binary classifier is considerably faster than both.

Both mean and median runtime for the ML model are three

orders of magnitude faster than both NIST and HEDGE,

making it easily applicable to scenarios that require fast

classification results such as ransomware detection. It is

worth noting that the evaluation of our ML model was

carried out by measuring the time required to predict a

single sample, rather than a batch of samples. However, our

model can easily classify multiple samples in parallel by

exploiting the heavy parallelism of GPUs, further

decreasing the runtime required per individual sample.

6 Discussion of findings

Results shown in Sect. 5 highlight the difficulty of dis-

criminating compressed and encrypted fragments. State-of-

the-art statistical tests tend to fare better than entropy

measures (ref. Sect. 2), but their performance varies sig-

nificantly depending on the specifics of the compressed

format and fragment size. Moreover, such approaches can

only determine whether a given fragment is encrypted with

a certain confidence, but cannot distinguish between dif-

ferent compressed formats. ENCOD, the learning-based

approach introduced in Sect. 4, tackles both these limita-

tions. Both per-format and multi-class classifiers outper-

form existing tests on all considered file types/block sizes.

Moreover, our multi-class classifier can be used to deter-

mine the format of a given unknown fragment, even in the

complete absence of any context or information on its type.

Results show that accuracy improves consistently with

increasing fragment size. This is in a sense to be expected;

all approaches considered in this paper leverage differences

between the byte value distribution of random data (which

is uniform) and that of compressed data. Perfectly esti-

mating the byte value distribution of a short data stream is

generally not possible. As sequences get shorter, the

probability that the estimated distribution may not reflect

the typical distribution for their content type increases.

However, as the size of the sample increases, the estimated

empirical distribution approaches the underlying data dis-

tribution, allowing us to capture any deviation from the

uniform distribution. For modern compression algorithms,

these deviations are quite minor, and a 512-byte block

gives even accurate tests very little data to work with.

However, when enough data are available, it is possible to

identify the class of data with high accuracy; our learning-

based classifier exceeds 90% accuracy already for

2048-byte blocks. In general, we recommend against using

any one approach as the sole guidance for automated

security decisions (e.g., dropping/allowing flows, termi-

nating processes, etc.). However, when integrated as part of

a more complete set of features in a larger system, our

proposed classifiers can provide an additional robust fea-

ture to use in the decision-making process.

Given the discussion above, we suspect an intrinsic

bound on the accuracy reachable by any classifier which

looks purely at byte value distributions. However,

approaches attempting to parse fragments or identify rec-

ognizable structures are likely to incur an impractical

computational cost. Moreover, it is not apparent that any

such structure is preserved for very short fragment sizes.

7 Related work

7.1 Entropy-based encryption detection

Use of entropy estimation to detect encrypted content is

common in ransomware detection. Proposals such as

RWGuard [2], UNVEIL [4], Redemption [1] and

ShieldFS [3] use entropy of written content either directly

as a feature, or as part of feature calculation. It should be

noted that none of these detectors use entropy as the sole

Table 1 Time required by each approach to classify one sample, in

seconds

Approach Mean Median Std.dev

NIST 0.1 0.1 0.004

HEDGE 0.44 0.43 0.008

Binary classifier 0.00046 0.00044 0.00012
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feature for detection. However, evidence from Sect. 2

suggests that they may be better ignoring entropy alto-

gether. In the realm of digital forensics, entropy estimation

has been used to determine the type of unknown disk data

fragments. One of the most complete approaches is that of

Conti et al. [5]. However, the same authors found that such

estimates have limited discerning power in distinguishing

encrypted and compressed content, and aggregated the two

types under a single label.

Entropy estimation has also been applied to the real-

time analysis of network traffic. Dorfinger’s Master the-

sis [7] proposes a system for discriminating encrypted and

non-encrypted traffic, to ensure that all communications

from a target network are encrypted. Similar approaches

were also proposed by Mamun et al. [35] and Malho-

tra [10]. Zhang et al. proposed an entropy-based classifier

for the identification of botnet traffic [36]. All these

approaches also suffer from the limitations of using high

entropy as a fingerprint of encryption. Wang et al. [11]

report positive results in using an SVM classifier to dis-

criminate between various data types using entropy esti-

mates. Their application scenario is different from ours, as

they consider both low-entropy (non-compressed) and

high-entropy (compressed or encrypted) formats. We only

consider high-entropy formats, which are difficult to dis-

tinguish using entropy alone. MovieStealer [37] aims at

identifying encrypted and decrypted-but-compressed media

buffers in order to break DRM. It uses an entropy test to

single out encrypted and compressed buffers from other

data, and the v2-test to distinguish them. It requires 800KB

of data to reliably identify random data, which is far

beyond the fragment size in the scenarios that we consider.

7.2 Non-entropy-based approaches

HEDGE, by Casino et al. [15], evaluates a combination of

v2-test and a subset of NIST SP800-22 [27] to discriminate

encrypted and compressed traffic. They use a dataset which

is significantly smaller than ours, and do not discuss

learning-based approaches. A limitation of this class of

approaches is the fairly low accuracy, especially for small

block sizes (ref. Sect. 5). Also, this and other similar

approaches based on statistical randomness tests

(e.g., [13, 16]) cannot distinguish between different types

of compressed archives. Mbol et al. [12] investigate the use

of the Kullback–Leibler divergence (relative entropy) to

differentiate encrypted files from JPEG images. Their

analysis does not investigate other formats and assumes the

availability of blocks of significant size (128 to 512KB)

from the beginning of each file. Especially in forensic and

networking applications, uninterrupted blocks of such size

are difficult to obtain.

While the application of neural networks to the problem

at hand is fairly new, there exist some preliminary work.

Ameeno et al. [38] show promising preliminary results;

however, the analysis is limited in scope: it only attempts

to distinguish zip archives from rc4-encrypted data and

considers whole files (not fragments).

8 Conclusions

Discriminating encrypted from non-encrypted content is

important for a variety of security applications, and

oftentimes tackled via entropy estimation. We compre-

hensively highlighted the limits of this technique and

reviewed the effectiveness of the leading alternative

approaches: v2-test, NIST SP800-22 test suite, and

HEDGE. In addition, we proposed ENCOD, a novel neural

network classifier of our own design. In order to ensure

generality of results, we created a dataset of 400M frag-

ments covering five different sizes and 16 data formats.

Results show that previous state-of-the-art methods have

blind spots which result in low accuracy for certain frag-

ment sizes/data types. However, our neural network-based

approach appears promising. While statistical tests only

discriminate between compressed and encrypted data

fragments, our multiclass classifier is able to classify

between specific compressed formats with � 83% accu-

racy already on 2KB fragments, and our binary classifier

reaches � 90% accuracy on the same fragment size. This

suggests that systems incorporating encrypted content

detection (e.g., ransomware detectors) would be better

served by learning-based, rather than hand-crafted statis-

tical approaches. This finding also suggests that learning

may have useful applications to other problems in content-

type inference. Overall, we believe this work is an

important step forward toward reliable encryption

detection.
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