
ORIGINAL ARTICLE

A walk in the black-box: 3D visualization of large neural networks
in virtual reality

Christoph Linse1 • Hammam Alshazly2 • Thomas Martinetz1

Received: 25 April 2022 / Accepted: 1 July 2022 / Published online: 18 August 2022
� The Author(s) 2022

Abstract
Within the last decade Deep Learning has become a tool for solving challenging problems like image recognition. Still,

Convolutional Neural Networks (CNNs) are considered black-boxes, which are difficult to understand by humans. Hence,

there is an urge to visualize CNN architectures, their internal processes and what they actually learn. Previously, virtual

realityhas been successfully applied to display small CNNs in immersive 3D environments. In this work, we address the

problem how to feasibly render large-scale CNNs, thereby enabling the visualization of popular architectures with ten

thousands of feature maps and branches in the computational graph in 3D. Our software ’’DeepVisionVR’’ enables the user

to freely walk through the layered network, pick up and place images, move/scale layers for better readability, perform

feature visualization and export the results. We also provide a novel Pytorch module to dynamically link PyTorch with

Unity, which gives developers and researchers a convenient interface to visualize their own architectures. The visualization

is directly created from the PyTorch class that defines the Pytorch model used for training and testing. This approach

allows full access to the network’s internals and direct control over what exactly is visualized. In a use-case study, we apply

the module to analyze models with different generalization abilities in order to understand how networks memorize

images. We train two recent architectures, CovidResNet and CovidDenseNet on the Caltech101 and the SARS-CoV-2

datasets and find that bad generalization is driven by high-frequency features and the susceptibility to specific pixel

arrangements, leading to implications for the practical application of CNNs. The code is available on Github https://github.

com/Criscraft/DeepVisionVR.

Keywords Explainable artificial intelligence � Deep convolutional neural network visualization � Human-understandable AI

systems � Virtual reality

1 Introduction

Convolutional Neural Networks (CNNs) have improved

the benchmarks on difficult image recognition datasets by

huge margins [1, 2], which makes CNNs popular tools for

researchers and developers. While CNNs achieve high

recognition rates, we still not fully grasp how they process

information and what they actually learn. Therefore, CNNs

are criticized to operate like black-boxes, which make

unpredictable decisions, are very complex and leave the

human user with the unsatisfactory feeling of having no

actual understanding and control over the machine.

Explainable Artificial Intelligence (XAI) is a growing

field in computer science, which tries to make deep

learning algorithms more human-understandable [3, 4].

Explainability is an important research subject for different

reasons. First, it verifies whether a machine learning

The work of Christoph Linse was supported by the

Bundesministerium für Wirtschaft und Klimaschutz through

the Mittelstand-Digital Zentrum Schleswig-Holstein Project.

& Christoph Linse

linse@inb.uni-luebeck.de

Hammam Alshazly

alshazly@inb.uni-luebeck.de

Thomas Martinetz

martinetz@inb.uni-luebeck.de

1 Institute for Neuro- and Bioinformatics, University of

Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany

2 Faculty of Computers and Information, South Valley

University, Qena 83523, Egypt

123

Neural Computing and Applications (2022) 34:21237–21252
https://doi.org/10.1007/s00521-022-07608-4(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-7039-5189
http://orcid.org/0000-0002-9942-8642
http://orcid.org/0000-0002-4539-4475
https://github.com/Criscraft/DeepVisionVR
https://github.com/Criscraft/DeepVisionVR
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-022-07608-4&domain=pdf
https://doi.org/10.1007/s00521-022-07608-4

algorithm infers its decisions in a meaningful way using

relevant patterns in the input data. Second, an explainable

model reveals its weaknesses, such that AI researchers and

developers can improve them. Third, an explainable system

can teach us new insights like unknown patterns in the

data. In addition, sensitive applications exist, where the law

might apply strong regulations, like in medicine or law

enforcement. To fulfill those regulations and to gain more

trust in their decisions, black-box systems like neural net-

works will have to become more understandable [5].

Displaying CNNs in 3D environments in virtual reality

(VR) is a promising approach to make CNNs more human-

understandable and accessible [6]. A handful of prototypes

[7–10] show that VR can accelerate the general under-

standing of CNNs and offer an intuitive way to interact

with these complex structures. The immersive experience

provides new possibilities for CNN architecture assess-

ment. However, this field is still relatively unexplored. The

existing approaches currently have two main problems.

First, the rendering of large, popular architectures such as

ResNet50 is not feasible yet. For instance, the tools restrict

the CNNs to be of linear structure (no splits or joints).

Also, the number of visible layers is limited due to com-

putational reasons or due to limitations with the interaction

design. Second, the tools were not designed to offer a

flexible and convenient interface for developers and

researchers to visualize custom architectures.

In this work we address the problem how large, popular

neural networks can be immersively visualized in 3D. We

developed a Unity application to dynamically render CNNs

in a 3D environment and added interaction functionalities

for VR support. When visualizing popular networks, scal-

ability is of crucial importance. We apply Unity opti-

mizations to enable the visualization of large-scale CNNs

like ResNet50 with regularly sized images (for instance

224� 224 pixels) without the need to exclude layers from

being rendered due to performance issues. We also present

a convenient programming interface to reconfigure the

software for different scenarios including switching the

architecture and the dataset. We achieved the interface by

splitting the software into a Unity client and a Python

server and by providing a PyTorch module such that the

networks and datasets can be instantiated from native

PyTorch code. The server obtains the PyTorch network

directly from their implementation, which is convenient as

no other supplementary files or tables have to be prepared.

Most importantly, the framework gets rid of some previous

architectural limitations. The Python implementation of the

network allows diverse computational graphs with

branchings, joints and multiple outputs. The Unity client

automatically places the network layers to represent the

computational graph.

Moreover, we present an interaction design to allow the

interaction with many layers with ten thousands of feature

maps in a VR-friendly way. For example, we made the

layers movable and scalable such that the user can organize

the 3D environment to his preferences. The user has plenty

of options to immersively interact with the CNN, e.g., by

walking through the network and carrying images around.

Images are picked up and placed using a handheld tool. In

addition, we include an interaction module to display

weight distributions, classification results and feature

visualization.

We hope that our software can boost the general

understanding of CNNs for both newcomers and experi-

enced members of the deep learning community. The

software is designed to assist the interpretation of models

and to give the user direct access to them. Hopefully, it will

make 3D network representation more relevant for the deep

learning community and give new insights for improving

network designs, possibly leading to new ideas for novel

architectures.

The main contributions of this work are as follows.

• We present a new visualization tool called DeepVi-

sionVR for popular CNNs in VR, which does not need

to exclude layers from rendering due to performance

issues. We enable displaying branches, joints and

multiple outputs in the computational graph.

• We provide a Python module to send network data to

Unity and to offer developers and researchers a flexible

and convenient Python interface to display their custom

architectures.

• We apply the visualization software to study the

generalization abilities of CNNs. We apply three

training strategies to get networks with different

generalization abilities and visualize how CNNs mem-

orize images by tracking down the visual concepts they

have learnt.

• We nourish the hypothesis that CNNs memorize images

by processing high-frequency patterns and local pixel

arrangements, which is in line with a previous study

[11].

The paper is structured as follows. Section 2 presents a

literature review on existing visualization techniques.

Section 3 explains our work to visualize large-scale

architectures and gives details on the design principles.

Section 4 depicts the experimental setup for our use case

study, where we apply the visualization software on models

with different levels of generalization ability. Section 5

presents the results and the discussion. The paper ends with

our conclusions in Sect. 6.

21238 Neural Computing and Applications (2022) 34:21237–21252

123

2 Previous work

Different visualization techniques have been proposed to

shed light into the black-box nature of neural networks

[12]. This section gives a short overview about 2D and 3D

visualization techniques and relates it to our work.

2.1 2D visualization approaches

Choo et al. [13] gives an overview over XAI software. A

prominent software for CNN visualization is the Deep

Visualization Toolbox [14], which provides activations and

per-unit feature visualization of CNNs. The toolbox com-

bines different visualization techniques with the processing

of live video streams in a 2D application. Liu et al. [15]

proposed a 2D tool called CNNvis as a visual analytics

system to assess the topology of neural networks as a

directed acyclic graph. The software was created to facil-

itate the understanding, diagnosis, and refinement of

CNNs.

A prominent visualization approach highlights regions

in the input image that are relevant for specific network

decisions [16]. A popular algorithm called Grad-CAM [17]

is applied in many fields of research from biometrics to

medical applications. It creates a heatmap, which indicates

input pixels with high contribution to a specific class score.

In [18, 19] the authors studied how different dataset char-

acteristics influence the relevance of ear regions in ear

recognition. In [20] the Grad-CAM technique was used to

show that the automated diagnosis of COVID-19 infection

was based on disease manifestations in CT image datasets.

Zeiler et al. [21] visualized learned features based on a

deconvolutional network architecture using deconvolu-

tional layers, which are attached to each convolutional

layer. An initial activation pattern is used as input to the

deconvolutional layer, which shares the kernel with its

corresponding convolutional layer. The deconvolutional

layers form a continuous path to the input layer of the

network. Visualizing a feature is realized by a forward pass

through the deconvolutional layers.

The feature visualization technique generates images

that strongly activate a specific layer, channel or neuron

using gradient ascent. Applied on neurons in the classifi-

cation layer, feature visualization provides images that

represent maximal confidence in respect of a specific class.

An early approach to feature visualization was proposed by

Erhan et al. [22]. The authors initialized an input image

with noise and modified it via back-propagation to maxi-

mize the activation of certain network parts. Note that the

gradient is computed with respect to the input image, not to

the network weights as required for classical training.

However, the generated images often do not look like

natural images. The reason is that the network drops

information that is irrelevant for the classification task, but

is still needed for constructing natural looking images. A

sophisticated approach to partially restore the information

is the use of regularizers [23, 24]. In [14] regularization is

implicitly applied using image transformations. For

instance, instead of introducing a loss that penalizes

neighboring pixel variations, one applies Gaussian blur on

the image. These robustness transformations effectively

improve the visual quality of the generated images [25, 26].

In our work, we combine different model aspects like

architecture, activations, distribution of activations and

weights, as well as feature visualization and knit them into

a 3D environment. We think that single techniques are not

sufficient to understand CNNs comprehensively, but rather

highlight specific network properties. In order to make

human-understandable interpretations and to draw reason-

able conclusions the combination of different visualization

techniques may be a key factor.

2.2 3D visualization approaches

Recently, a novel approach to visualize loss landscapes of

neural networks was presented. The authors of [27] com-

puted the loss landscape across two dimensions in weight

space and rendered the loss as a surface in 3D. A study

about the shape and the roughness of the loss landscapes

lead to insights about the role of architecture design and

activation functions for optimization.

VanHorn et al. [9] built an immersive deep learning

environment that enables the user to train and test networks

with up to 10 layers in VR. The tool was not intended as a

generic analysis framework for arbitrary CNN architec-

tures, but more as a bridge to allow people with less

knowledge in computational science perform deep

learning.

First prototypes showed that 3D environments are suit-

able for displaying small CNNs in a human-understandable

way [7, 8]. The ability to explore CNNs in VR enabled

interactive exploration on different levels of detail and the

neural networks gained transparency.

Aamir et al. [10] presented a novel approach to

immersively visualize and interpret deep networks in VR,

where the user can move freely inside an AlexNet [28].

The layers are represented as a sequence of 2D planes in

3D space showing the activations, which we adopted in our

approach.

In this paper, we augment previous 3D visualization

approaches to not only display small CNNs, but popular

architectures like ResNet50 with thousands of feature

maps. This requires optimizations, but more importantly,

previous approaches do not allow splits or joints in the

computational graph, which excludes residual, dense or

Neural Computing and Applications (2022) 34:21237–21252 21239

123

inception networks. In addition, we feel that a visualization

tool needs an easy to use interface to incorporate new

architectures. We solve this issue by relying on the

PyTorch implementation of the CNNs and think that this

step is crucial for a smooth workflow when developers and

researchers want to visualize their own architectures.

3 Visualization software

3.1 DeepVisionVR architecture

We provide a Python module to connect the PyTorch

framework [29, 30] with the game engine Unity to enable

the dynamic visualization of CNNs in 3D. We chose Unity

to render the CNNs and to process the interactions, because

it is a flexible framework and offers deployment options on

various platforms. The OpenXR plugin is used for VR

integration. The architecture of the software is illustrated in

Fig. 1.

The software implements a client-server architecture,

which separates the 3D representation in Unity (client)

from the handling of the CNNs in PyTorch (server). This

setup has the following advantages. First, the server

determines the architecture to be visualized based on the

PyTorch implementation of the network. In order to change

the network architecture simply the Python script of the

architecture has to be replaced. The client asks the server

via the HTTP protocol to send the network architecture, the

feature maps or the feature visualizations and adapts

dynamically to the responses. Second, the computational

load can be distributed over two machines. Depending on

the size of the network, we recommend to operate the

server on a machine with GPU and CUDA support and the

client on a PC with GPU and VR-Headset to distribute

memory usage and computational load. Third, it is feasible

to deploy the server online. It sets up a Python-driven Flask

web server to communicate with the client using REST

API. Fourth, Python users do not have to switch their

domain. No Unity skills are required. The server simply

requires the PyTorch implementation of a network and a

PyTorch dataset class to be set-up and we provide a Docker

container for the server.

We apply optimizations to solve the rendering of large-

scale models like ResNet50, which have ten thousands of

feature maps. Our approach is to make heavy use of Unity

prefabs and let Unity handle the feature maps as textures,

which are loaded into the prefabs. We also employ mip-

maps for optimization to reduce the detail of distant feature

maps, leading to a great performance boost. We wrote a

simple unlit shader to quickly apply a colormap on the

feature maps without expensive routines like illumination

or shadow. The shader uses single pass instanced rendering

for minimized CPU and GPU usage, which leads to effi-

cient stereo rendering and low power consumption. The

number of triangles is not of concern, because every fea-

ture map will only use two. This way we achieved to

visualize ResNet50 in VR with an NVIDIA GTX 1080

without the need to exclude any layers from rendering.

3.2 Developer interface

The process of adding custom CNNs has to be convenient

for developers and researchers. The interface should allow

arbitrary computational graphs with splits, joints or mul-

tiple outputs. The software infers the architecture directly

from the Python script that implements the PyTorch model

for training and testing. This approach avoids the creation

of additional configuration files or tables. The key com-

ponent is a PyTorch module called TrackerModule, which

subclasses Pytorchs Identity module. It is added after each

layer or tensor operation, that should be visualized and

extracts the activations at this location. This interface gives

the developer or researcher fine-grained control over what

exactly should be visualized. The TrackerModules are

connected forming a graph by specifying the predecessor

TrackerModules. This graph will be used to connect the

layers with edges in the 3D visualization (see Sect. 3.3 for

examples). In order to add landmarks to the visualized

model the user can use a marker layer, which tracks no

activations, but simply is a text field in the computational

graph to divide the network into sections. The

TrackerModule and marker layer do not alter the networks

behavior and thus can be also included in the training and

inference process.

3.3 Design principles

In this subsection the design of the visualization soft-

ware is presented.

3.3.1 Basic concept

The application presents the CNN as a connected graph

like a conveyor system on a workshop floor. When startingFig. 1 DeepVisionVR architecture

21240 Neural Computing and Applications (2022) 34:21237–21252

123

the software, the user faces the network representation as

shown in Fig. 2. The input layer is represented by a canvas

where the user can insert an image using the handheld tool.

On top of the input layer the classification results of the

current input image are summarized. Behind the input layer

the 3 normalized RGB channels are shown. The next layer

illustrates the resulting feature maps of the first convolu-

tional layer, which is a 3� 7� 7 convolution operation for

CovidResNet. Multiple networks can visualized next to

each other in the same world space for comparison.

3.3.2 Controls and interaction

A handheld tool is the main interface to interact with the

environment. It is used to pick up images from the dataset

panel as shown on the left-hand side in Fig. 3. The carried

image is shown as a floating holograph on top of the tool.

Subsequently, the image is inserted into the network to

trigger a forward pass. The visualization and classification

results will update automatically like in Fig. 2. Images

generated by feature visualization can also picked up and

used as regular input to the network. Furthermore, we try to

address the problem that current VR headsets pose limi-

tations in per eye resolution, which limits the level of

perceivable detail. We implemented the floating holograph

over the handheld tool as a magnifying glass such that the

user can inspect the image closely. Free locomotion is

achieved using the VR controllers or using mouse and

keyboard as in many 3D games.

3.3.3 Visualization of the network architecture

The network layers are dynamically placed in 3D space to

reflect the model architecture. We solved the issue of

branches in the computational graph by displaying them

next to each other and connecting layers with labeled

edges. Different architectures can be observed in Fig. 4.

The arrangement of the layers in 3D is automated and the

layers were not placed by hand. The left image shows a

basic block from a ResNet architecture. The computational

graph splits into a left branch with two consecutive con-

volution operations and a right branch, which is simply a

skip connection. The branches combine at the end of the

block (sum). The edges on the ground clarify which layers

are connected. A label explains what computations happen

between the layers as defined in the Python script imple-

menting the architecture. In the right image a dense block

is shown. The input layer is on the bottom left. Then a

convolution operation is performed and the resulting fea-

ture maps are concatenated with the input feature maps.

This process is repeated another two times. The final layer

is the concatenation of all the feature maps. The bottom

image shows an Inception module. The computational

graph splits into four different branches with filters of

different kernel size and is then concatenated to form the

output of the Inception module.

Fig. 2 Representation of CovidResNet in 3D space. Each 2D panel shows the feature maps (channels) of a specific layer. Negative activations are

colored blue, zero activations black and positive activations white

Neural Computing and Applications (2022) 34:21237–21252 21241

123

3.3.4 Layer design

In order to feasibly handle large layers with hundreds of

channels the layers are movable and scalable, which

improves handling and readability. As the feature maps do

not provide information about the absolute tensor values,

the activation distribution is shown to the left of the layer

panel. If the layer has any trainable weights, the weight

distribution is also shown, as can be seen in the center of

Figure 3. The layer contents can be saved using the export

button.

3.3.5 Feature visualization

Feature visualization is used to reveal the functionality of

subunits within CNNs. The software enables feature visu-

alization using a two-step procedure. First, the user takes

an image from the dataset panel or from a noise generator

Fig. 3 Left: Dataset panel from which the user can pick images from.

The software randomly draws images from a provided Pytorch dataset

class. Center: User interface and statistics for a specific network layer.

Right: The feature visualization generates input images, which

maximize the mean activation of one specific channel. Each color

image corresponds to one generated image for that specific channel

Fig. 4 Representation of different architectures. Left: ResNet basic block. Right: Dense block. Bottom: Inception block

21242 Neural Computing and Applications (2022) 34:21237–21252

123

and puts it into the network. Second, the user clicks the

feature visualization button of a specific layer, which

triggers gradient ascent as seen on the right-hand side of

Fig. 3. For each channel a copy of the input image is

optimized to maximize the average activation of each

channel, respectively. Applied on the class neurons in the

classification layer, feature visualization provides images

that the network thinks to belong to specific classes. The

generated images can be picked up with the hand tool and

inserted into the network as input image to check if the

image really activates the channel or neuron.

In order to generate robust feature visualizations, the

software applies the following transformations between

each update step.

• Add padding, 10 pixels on each side.

• Rotate the image within the range of [1, 10] degrees

with a probability of 30%.

• Scale the image with a factor from range [1., 1.05] and

a probability of 5%.

• Blur the image with a (5, 5) Gaussian kernel and sigmas

between [0, 0.5].

• Center crop to remove the padding.

• Roll pixels on the x- and y-axis separately with a

random number between 1 and 5 pixels and a proba-

bility of 30%.

• Shift and scale the pixel distribution to have the mean

and standard deviation of the original dataset. We blend

this normalized image with the original version using a

factor of 5%, such that the normalization occurs slowly

and smoothly. The normalization helps to counteract

exploding pixel values and makes the color distribution

more natural.

3.4 Discussion

The 3D visualization of arbitrary CNNs enables new per-

spectives on large, popular deep learning models. This

section discusses how immersive visualizations might

support the understanding of deep neural networks and

their development. On one hand, 3D space is larger than

2D space and information can be arranged in one additional

dimension. Thus, much more information can be organized

in a clear and tidy way. On the other hand, the visualization

confronts the user with the entire complexity of CNNs.

Nevertheless, the user can turn around, go back and change

the perspective. From a distance, the user has an overview

of the network architecture, without being overwhelmed by

details. Standing close, the user can focus on all the

information about the layers of interest. Our brain is

familiar with 3D space. Therefore, we think that visualiz-

ing the network architecture in 3D helps to cope with its

complexity. The topology of the network architecture

appears to be a touchable, real-life object and a physical

machine. Immersive and intuitive ways to interact with the

environment will probably stimulate our desire for explo-

ration and boost our understanding of CNNs, shaping the

internal representation of CNNs in our mind.

The deep learning community requires an easy mecha-

nism to switch between different scenarios. Therefore, easy

reconfiguration of the software is of crucial importance.

Here, we discuss three different use cases: (a) to recon-

figure the network weights, (b) to reconfigure the network

architecture and (c) to reconfigure the dataset. For point (a),

loading the network weights, access to the server part of

the software is required. The server instantiates the

PyTorch class of the network model, which is implemented

in a separate Python script. The user has to modify the

Python script and load the custom network weights from

disk, which is a standard procedure for PyTorch users. For

point (b), the user simply replaces the script that defines the

architecture. For point (c), changing the dataset, the user

also needs access to the server. The server instantiates a

Pytorch dataset class, randomly draws images from it and

sends it to the Unity client. In order to change the dataset

one simply has to replace the Pytorch dataset implemen-

tation. Note that the images have to be compatible with the

network requirements such as input size or image format

(RGB, grayscale). The rest of the software works with all

image sizes and both, RGB and grayscale images.

Our approach comes with certain limitations, which are

discussed in this paragraph. We focus on image data as

input for the networks. Other datatypes like text, sound,

video or any time series data are not supported. The soft-

ware is capable of displaying feed-forward networks.

Recurrent structures are currently not in scope of this work

and might require a different visualization design. One

limitation is that the visualization shows CNNs in their

entire complexity. Rather than abstracting or hiding parts

of the network all information is shown. Nevertheless, as

discussed above, we see advantages of 3D CNN repre-

sentations to cope with the complexity. From far away the

user can see the architecture and what the computational

graph looks like. Moving closer, the user can focus on

details in the network he or she is interested in.

4 Experiments

In our use case, we demonstrate the versatility of the

visualization software. We apply three different training

strategies and obtain models with three different levels of

generalization abilities. Subsequently, we compare the

models against each other and visualize how CNNs

memorize images.

Neural Computing and Applications (2022) 34:21237–21252 21243

123

4.1 Training strategies

4.1.1 First training strategy

The first strategy is a common setup to train robust models.

The strategy is illustrated on the left of Fig. 5. We apply

augmentation steps in our pre-processing pipeline to boost

the formation of generic features and to increase the

robustness of the network decisions. The augmentation

includes a series of image transformations, e.g., cropping,

random location, adding of Gaussian noise, jittering of

brightness and contrast and random horizontal flipping.

4.1.2 Second training strategy

The second strategy uses shuffled training labels, which

destroys all patterns in the data. Therefore, it is expected to

provide a network with no generalization abilities. The

labels stay consistent over the entire training process. The

images are not augmented.

4.1.3 Third training strategy

Bad global minima, where the training error is zero but the

test error is high, exist [31]. However, in practice it is

difficult to find them. The authors of [31] shuffle the labels

of the training set and train until all training samples are

classified correctly. Then, one restores the original labels

and adjusts the weights of the same model to the new task.

Our experiments with this strategy lead to models with

moderate test accuracies. Therefore, we experimented with

alternative techniques to get models with zero training

error and high test error. The third training strategy

involves training with the original train set and 9 aug-

mented copies with wrong labels. We create n copies to the

original train data. Each training image exists in nþ 1

versions. The first version is the original image with the

original label. The n other versions get random labels and

some white noise added. Every image gets its own noise

and this noise is consistent over all training epochs. The

modified copies act like a bait to memorize noise instead of

learning universal features. No image augmentation is

applied.

4.2 Training details

We use Pytorch as deep learning framework [29, 30] and

its automatic differentiation pipeline to train our models

using the Lamb optimizer [32]. Over time the learning rate

is reduced stepwise to 0:001 � lrinit. The training hyper-pa-

rameters are summarized in Table 1. The network weights

are initialized using Kaiming initialization [33].

4.3 Datasets

The Caltech101 dataset [34] and the SARS-CoV-2

dataset [35] cover both, medical and non-medical domains.

The former contains 8677 images from 101 different cat-

egories. We ignore the background class in our experi-

ments. The categories are very easy to understand for

humans including animal and plant species, human-made

devices and buildings. Figure 6 shows example images and

gives an impression of the large amount of variation in the

data. As there is no official test split available, we create

our own using an 80–20% ratio. We also rescale the images

to an input size of ð175� 150Þ pixels. We counteract the

class imbalance of the dataset by performing

undersampling.

The CT scan images of the SARS-CoV-2 dataset were

collected from hospitals in Sao Paulo, which is located in

Brazil. The dataset contains 2482 images from 120 people.

About half of the images are CT slices from COVID

patients and the other half shows other lung diseases. Thus,
Fig. 5 Three training strategies for getting models with different

levels of generalization abilities

21244 Neural Computing and Applications (2022) 34:21237–21252

123

the image recognition model has to focus on the charac-

teristics of the manifestations of the COVID infection.

Table 2 presents examples for COVID and Non-COVID

CT slices. We choose an input image size of ð250� 180Þ
pixels and split the data into training and test sets with an

80 – 20% ratio.

4.4 Architectures

We apply two recent architectures in our analysis called

CovidResNet and CovidDenseNet [36]. They were recently

proposed to detect COVID manifestations in CT scan

images and have proven to generalize well on small-scale

CT datasets with a few thousand images. CovidResNet and

CovidDenseNet have a total of 4.98 million parameters and

1.63 million parameters, respectively. Tables 3 and 4 give

detailed information about the CovidResNet and Covid-

DenseNet architectures [36], their layers and feature map

sizes. In both architectures the first convolution operation

has a 7� 7 kernel and a stride of 2. Subsequently, a max

pooling operation further reduces the size of the feature

maps.

The architecture of CovidResNet continues with a

sequence of residual blocks [33]. to get the vanishing

gradient problem and the performance degradation prob-

lem under control [33]. Each basic block consists of a skip

connection, two 3� 3 convolutions and a summing oper-

ation as can be seen in Fig. 4 on the left-hand side. One

residual blocks is shown with the input layer on the left-

hand side. The computational graph splits into two differ-

ent branches, the closer one being the skip connection. The

other branch contains two 3� 3 convolution operations.

The resulting feature maps are shown in the visualization

as separate layers. Finally, the convolution output and the

skip connection output are summed up, which can be seen

in the final layer in the image.

CovidDenseNet [36] uses dense blocks [37] instead of

residual blocks. A dense block is illustrated in Fig. 4 on the

right-hand side. The input layer is located on the bottom

left in the image. The input is convoluted once and the

result is concatenated with the input. This procedure is

repeated a couple of times, such that the total number of

feature maps increases. The output of the dense block is

shown at the very top of the image.

5 Results and discussion

5.1 Model performance

Table 5 summarizes the performance metrics of the

trained models. At the end of the training process, the

models have zero error on the train set. The results show

that the three training strategies lead to models with dif-

ferent levels of generalization abilities.

The first training strategy on Caltech101 with Covi-

dResNet achieves a test accuracy of 78%. CovidResNet

Table 1 Details on training the models used for visualization

Experiment Mode Epochs Initial lr Weight decay Augmentation Image shape

Caltech CovidResNet Standard 200 0.002 On On 175� 150

Labels shuffled 250 0.001 Off Off

Noisy samples 1000 0.001 Off Off

SARS CovidResNet Standard 150 0.002 On On 250� 180

Labels shuffled 250 0.001 Off Off

Noisy samples 1000 0.001 Off Off

SARS CovidDenseNet Standard 150 0.002 On On 250� 180

Labels shuffled 250 0.001 Off Off

Noisy samples 1000 0.001 Off Off

Fig. 6 Example images from the Caltech101 dataset for the classes crocodile head, panda, pyramid, rooster, schooner, Snoopy, sunflower, wild

cat and Yin and Yang

Neural Computing and Applications (2022) 34:21237–21252 21245

123

and CovidDenseNet reach test accuracies of 96% and 97%

on the SARS-CoV-2 dataset, respectively.

The second learning strategy with shuffled training

labels performs as good as a random classifier with 1% test

accuracy on Caltech101 and about 50% on SARS-CoV-2,

which is also in line with our expectations.

Our third strategy with noisy samples reached a test

accuracy of only 42% on Caltech101. It generalizes worse

than the first network, but its ability to classify the test data

correctly in almost every second case considering 101

classes is remarkable. We find it surprisingly difficult to get

a network, which has a zero training error, but generalizes

badly, proving the good bias of CovidResNet and Covid-

DenseNet for image recognition problems, as well as

CNNs in general. On SARS-CoV-2 the test accuracy of the

CovidResNet and CovidDenseNet is similar to the first

training approach. One should notice, that these two

models managed to perform two leanings at once: The

memorization of many train images and the development

of generic features. We visualize the networks to learn how

memorization and generalization can coexist within CNNs

in the subsequent section.

5.2 Memorization correlates with the processing
of local information

This section compares activation patterns within networks

with different generalization abilities. Figures 7, 8 and 9

show the activations of the last convolutional layer for the

three training approaches and different architectures. The

input image is a sunflower or a COVID CT image,

respectively. The white color denotes high activation,

while blue means negative values and black zero.

5.2.1 First training strategy

Figure 7 presents the 512 feature maps of the last convo-

lutional layer of CovidResNet and CovidDenseNet trained

with the first training strategy. Active channels spread their

activity over large spatial areas and neighboring pixels tend

to have a similar level of activation. The channels tend to

be either activated or not. We observed the activations of

many input images and found empirically no test image

with significantly different findings.

5.2.2 Second training strategy

Figure 8 shows the activation in networks trained with

shuffled train labels and no generalization abilities. The

feature maps contain a lot of spatial information. Almost

all channels show some level of activity. The 512 image

filters seem to respond to various local image regions

spreading over the entire image space. There is no hint that

the channels process any semantic information or mark

consistent image regions, where the sunflower or Covid

manifestations are located. We assume that very specific

textures or even pixel-to-pixel correlations are processed in

the last layer. We will support this assumption later using

feature visualization.

5.2.3 Third training strategy

The feature maps in Fig. 9 contain plenty of local infor-

mation. The neighbors of active pixels do not necessarily

have similar levels of activation, which suggests the pro-

cessing of high-frequency patterns. This characteristic

applies for all three networks trained with the third training

strategy. However, CovidResNet trained on the SARS-

CoV-2 dataset has sparser activations compared to the

Caltech101 model. CovidDenseNet has a similar behavior

with flipped sign. It is a hint, that some channels dominate

others. Possibly they strongly fire when confronted with

image-specific properties letting the network identify the

train images.

5.3 Feature visualization on the caltech101
dataset

We apply feature visualization to analyze how the CNNs

are able to both memorize images and keep the ability to

generalize at the same time. Table 6 shows the results for

feature visualization applied on CovidResNet trained on

the Caltech101 dataset. We strongly recommend to view

the visualizations digitally and to zoom into the images to

see the great level of detail and high-frequency patterns.

5.3.1 First training strategy

The first column in Table 6 consists of images, which

maximize the activation of specific channels in the network

that was trained with the first training strategy. Apparently,

the filters in the first convolutional layer have learnt edge

filters in various orientations with different color prefer-

ences. Some channels focus more on color than structure.

Table 2 Example images from the SARS-CoV-2 dataset

21246 Neural Computing and Applications (2022) 34:21237–21252

123

The image filters in block 1 are susceptible to monotonous

textures, some containing small-scale, some larger struc-

tures. Stripes and grid-like patterns from the first layer are

still visible, indicating the hierarchical filter structure of

residual networks. The feature visualizations in the second

block of CovidResNet look like more complex versions of

the previous block with more detail. The two last images of

the third row seem to show copies of shapes, which

emerged from a grid-like pattern and a horizontal bar

pattern. The complexity of the textures increase in blocks 3

and 4, where first instances of objects or animals can be

observed. One image could show trees standing next to

each other, which seem to have originated from horizontal

stripe patterns. Some of the images may show birds, some

mammals and sometimes undefinable objects, which is a

strong hint for the processing of semantics in this layer.

The feature visualization of the classification neurons

unveils what visual concepts the CNN has learned from the

classes. Please see Fig. 6 for references from the dataset.

The first image is supposed to be a crocodile head and

shows two phenomena, typically found on a crocodile

head: Large scales and eyes. The arrangement of these

elements seems to be irrelevant to the network. The second

image shows what the network thinks to be a panda. The

reader may notice the large, black spots, which are char-

acteristic for panda faces. The third image is supposed to

be a pyramid. Usually, pyramids stand on a sandy ground

and the sky is blue. Triangular shapes populate the image.

The first image of the second row shows a group of

roosters, the second a schooner and the third the cartoon

character Snoopy. Remarkably, Snoopy is detected by the

characteristic form of his snout and the small, black dog

nose. The last row illustrates a sunflower, a wild cat and a

Yin Yang symbol. For the cat the network simply detects

dotted fur patterns and a bright belly. No body parts or

heads are visible. The arrangement of Ying and Yang

shapes are also irrelevant.

5.3.2 Second training strategy

In the first layer the feature visualizations show edges and

repetitive noise patterns. The high-frequency patterns are

only visible using zoom. In block one and two the feature

visualizations are much noisier and less plastic than for the

first training strategy. The channels do not focus on

structure or shape but on combinations of colorful pixels.

The deeper layers are dominated by specific high-

Table 3 CovidResNet architecture. The output sizes are determined

for an input size of 250� 180 pixels

Layers Output size CovidResNet

Convolution 125� 90 7� 7, 64, stride 2

Max pool 63� 45 2� 2, stride 2

ResNet block 1 63� 45 3� 3; 64
3� 3; 64

� �
� 2

ResNet block 2 32� 23 3� 3; 128
3� 3; 128

� �
� 1

ResNet block 3 16� 12 3� 3; 256
3� 3; 256

� �
� 1

ResNet block 4 8� 6 3� 3; 512
3� 3; 512

� �
� 1

Classification layer 1� 1 Adaptive average pool

Fully connected, softmax

Table 4 CovidDenseNet architecture. The output sizes are deter-

mined for an input size of 250� 180 pixels

Layers Output size CovidResNet

Convolution 125� 90 7� 7, 64, stride 2

Max pool 63� 45 2� 2, stride 2

Dense block 1 63� 45 1� 1; 128
3� 3; 32

� �
� 6

Transition 1 63� 45 1� 1, 128

31� 22 Average pool

Dense block 2 31� 22 1� 1; 128
3� 3; 32

� �
� 10

Transition 2 31� 22 1� 1, 256

15� 11 Average pool

Dense block 3 15� 11 1� 1; 128
3� 3; 32

� �
� 2

Transition 3 15� 11 1� 1, 512

7� 5 Average pool

Dense block 4 7� 5 1� 1; 128
3� 3; 32

� �
� 1

Classification layer 1� 1 Adaptive average pool

Fully connected, softmax

Table 5 Performance metrics for the three different training strategies

Architecture Dataset Type Test accuracy

CovidResNet Caltech Standard 0.78

CovidResNet Caltech Shuffled labels 0.01

CovidResNet Caltech Noisy samples 0.42

CovidResNet SARS-CoV-2 Standard 0.96

CovidResNet SARS-CoV-2 Shuffled labels 0.49

CovidResNet SARS-CoV-2 Noisy samples 0.97

CovidDenseNet SARS-CoV-2 Standard 0.97

CovidDenseNet SARS-CoV-2 Shuffled labels 0.50

CovidDenseNet SARS-CoV-2 Noisy samples 0.99

Neural Computing and Applications (2022) 34:21237–21252 21247

123

frequency patterns and pixel combinations. There is no

hint, that the CNN processes any semantic information.

5.3.3 Third training strategy

The feature visualization of CovidResNet trained with the

third training strategy share much similarity to the second

training strategy. However, in the first block, the patterns

deviate strongly from the first two models because the

visualizations are dominated by distinct groups of pixels. In

the subsequent layers, all large structures disappear. The

visualization of the classification neurons show rough,

high-frequency patterns without any global structure.

5.4 Feature visualization on the SARS-CoV-2
dataset

The results of the feature visualization technique for

CovidResNet and CovidDenseNet trained on the SARS-

CoV-2 dataset are shown in Tables 7 and 8, respectively.

As the feature visualization of the architectures are similar

to each other, they are discussed jointly.

(a) (b) (c)

Fig. 7 First training strategy: activations of the last convolutional layer

(a) (b) (c)

Fig. 8 Second training strategy: activations of the last convolutional layer. Before training, all labels in the train set were shuffled

(a) (b) (c)

Fig. 9 Third training strategy: activations of the last convolutional layer. The train set was copied 9 times and each copy received white noise and

random labels. The original dataset with original labels is contained exactly once

21248 Neural Computing and Applications (2022) 34:21237–21252

123

5.4.1 First training strategy

The filters in the first layer of the CNNs trained with the

first training strategy are susceptible to edges and grid-like

patterns. Deeper in the network, the stripes and grid pat-

terns evolve into characteristic shapes with different levels

of roughness and smoothness. In contrast to Caltech101,

the SARS-CoV-2 models loose diversity in the deeper

layers. We see that the channels in the fourth layer can be

roughly clustered into two groups, one obviously related to

COVID cases and one to Non-COVID cases. The feature

visualization of the classification layer reveals manifesta-

tions of the COVID disease.

5.4.2 Second training strategy

Similar to the models trained on the Caltech101 dataset, the

layers are susceptible to local features, tiny edges and rif-

fles in different orientations. A high density of high-

frequency patterns exists in the generated images, which

can only be seen with zoom enabled. There is no hint for

the processing of semantic information.

5.4.3 Third training strategy

The models trained with the third training approach had to

memorize many images and are also able to generalize.

Large structures in the feature visualizations exist, but are

not as defined as in the first training strategy. This is a hint,

that semantic relationships are processed by the network,

but there are also high-frequency patterns. The good gen-

eralization abilities of the models imply that the class

neurons must be susceptible to both, Covid manifestations

and memorized noise patterns. It appears, that the forma-

tion of Covid manifestations does not occur, because the

noise patterns, which are used to memorize the images,

already maximize the activation. The feature visualization

algorithm might be biased toward finding high-frequency

patterns. Thus, there is no incentive to generate any objects

or textures related to Covid infections. We assume that the

networks contain subnetworks, which are susceptible to the

memorized noise patterns. These subnetworks dominate

the feature visualization, such that the formation of Covid

Table 6 Feature visualization

for single channels in Covi-

dResNet trained on the

Caltech101 dataset with differ-

ent training strategies. Best

viewed in color with zoom

Table 7 Feature visualization

for single channels in CovidRes-

Net trained on the SARS-CoV-2

CT-scan dataset with different

training strategies. Best viewed

in color with zoom

Neural Computing and Applications (2022) 34:21237–21252 21249

123

manifestations does not occur and the optimization gets

stuck in a local minimum.

5.5 Discussion

The visualization suggests that the memorization of images

involves the processing of high-frequency patterns and the

memorization of local pixel arrangements. Interestingly, it

is possible for the same CNN to learn both, generic features

and high-frequency patterns. These two modalities are not

mutually exclusive and they are entangled. No channels

could be identified, that process exactly one modality.

Possibly, memorization happens in entangled subnetworks.

Triggering the high-frequency memorization subnetwork

could be a lever for adversarial attacks, where a slight

variation in the input image changes the decision of the

network drastically, motivating the development of new

architectures and training algorithms with lower risk of

memorizing images.

In order to discourage neural networks from memorizing

images, one approach is to remove high-frequency patterns

from the training images, such that it is impossible track

down specific pixel arrangements. However, blurring input

images can remove relevant information needed for clas-

sification. Also, the absence of high frequencies might

make the trained network less robust when confronted with

real-world scenarios. Another idea is to augment the

training data with noise, which is a standard approach to

make networks robust toward high-frequency image data.

Another idea is the suppression of local information pro-

cessed in the network by adding random noise to the

activations. However, there is the risk of negatively

affecting the performance and it is unclear how to choose

the trade-off between noise and lowering the training loss.

Some regularization strategies prune information from the

network internals, for instance dropout. Moreover, one

could introduce a total variation loss on the feature maps.

An easier implementation could be Gaussian blurring on

layer activations to destroy some of the spatial information.

The generalization ability of CNNs could benefit from a

simplification of the visual concepts processed in the lay-

ers. The analysis of the well-generalizing neural networks

showed the immense complexity and variability of features

within the deeper layers. One form of simplification is the

reduction in model parameters, for example by the use of

depth wise convolution. As a next step one could try to

make the 3� 3 convolutions of the depth wise convolution

handcrafted to further reduce the number of parameters and

simplify the patterns a CNN is susceptible to. This idea

breaks with the paradigm that CNNs should learn all of

their convolutional filters. With an appropriate set of filter

kernels the CNN would only learn how to combine and

weight the pre-defined filters using linear combinations via

trainable 1� 1 convolutions.

6 Conclusions

This work presents open-source software for the immersive

visualization of popular CNN architectures using Python

and the Unity game engine, where the user can freely walk

in a 3D environment in VR or desktop mode. The user can

move, turn around and change the perspective, which gives

a good overview of complex architectures. Feature maps,

activation histograms, weight histograms and feature

visualizations provide information to improve the design of

layers and the architecture, encourage exploration and lead

to a deeper understanding of CNNs. We think that the 3D

environment promotes a deeper understanding of deep

networks, because much more information can be arranged

in 3D compared to 2D while keeping clarity and tidiness.

We addressed the problem of how to make the visual-

ization of large-scale models feasible in VR. Therefore, we

developed a Pytorch module to allow the optimized visu-

alization of almost arbitrary computational graphs in Unity

including branches and joints. In the client-server approach

the Python server handles the network architecture using

Pytorch. The ability to quickly visualize large-scale

Table 8 Feature visualization

for single channels in Covid-

DenseNet trained on the SARS-

CoV-2 CT-scan dataset with

different training strategies. Best

viewed in color with zoom

21250 Neural Computing and Applications (2022) 34:21237–21252

123

networks in 3D will probably make immersive approaches

more relevant to the deep learning community. The soft-

ware targets developers and researchers, as well as new-

comers to deep learning.

In a use case study, we analyzed how CNNs memorize

images. We trained the architectures CovidResNet and

CovidDenseNet on the Caltech101 and the SARS-CoV-2

datasets using three different training strategies to get

models with different generalization abilities. For getting

bad generalizing models we proposed a new training

method where we trained with multiple copies of the

training data, random labels and some additive white noise

to make the copies distinguishable. Using the visualization

software we concluded that the CNNs memorized images

based on high-frequency patterns. It appears that CNNs can

contain subnetworks, that are susceptible to specific local

pixel arrangements. These findings nourish the threat of

adversarial attacks. The use case study motivates the usage

of regularization techniques like dropout, blurring of fea-

ture maps or adding random noise to them. We also suggest

new measures to make it harder for the network to mem-

orize images involving the combination of deep learning

with handcrafted filter kernels.

The ability to visualize popular, state-of-the-art archi-

tectures raises new questions for future work. With the

visualization embedded in a 3D world space it seems

convenient to consider machine learning problems with 3D

input data such as in pose estimation [38, 39]. Applying a

3D visual analysis system would be interesting, because

not only the networks, but also the input data can be shown

in 3D. Another point for future work is the visualization of

statistical variations in network features. The visualization

could be extended to make these variations accessible to

the user. Also, one could combine feature maps using PCA

[40, 41]. Another idea is to cluster the channels according

to the cross-correlation of their filter outputs. This could

further improve the presentation of the feature space and

illustrate the semantic connections between different

channels.

Funding Open Access funding enabled and organized by Projekt

DEAL. The work of Christoph Linse was supported by the Bundes-

ministerium für Wirtschaft und Klimaschutz through the Mittelstand-

Digital Zentrum Schleswig-Holstein Project.

Data availability The Caltech101 [34] and the SARS-CoV-2 [35]

datasets that are analyzed during this study are openly available from

the public data platform Kaggle at www.kaggle.com/datasets/athota1/

caltech101 and www.kaggle.com/datasets/plameneduardo/sarscov2-

ctscan-dataset, respectively.

Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classi-

fication with deep convolutional neural networks. In: Proceedings

of the 25th International conference on neural information pro-

cessing systems, pp. 1097–1105

2. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S,

Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei

L (2015) Imagenet large scale visual recognition challenge. Int J

Comput Vis 115(3):211–252

3. Arrieta AB, Dı́az-Rodrı́guez N, Del Ser J, Bennetot A, Tabik S,

Barbado A, Garcı́a S, Gil-López S, Molina D, Benjamins R et al

(2020) Explainable artificial intelligence (xai): concepts, tax-

onomies, opportunities and challenges toward responsible ai. Inf

Fusion 58:82–115

4. Tjoa E, Guan C (2020) A survey on explainable artificial intel-

ligence (xai): toward medical xai. IEEE Trans Neural Netw Learn

Syst 32(11):4793–4813

5. Samek W, Wiegand T, Müller K-R (2017) Explainable artificial

intelligence: understanding, visualizing and interpreting deep

learning models. ITU J ICT Discov 1(1):1–10

6. Meissler N, Wohlan A, Hochgeschwender N, Schreiber A (2019)

Using visualization of convolutional neural networks in virtual

reality for machine learning newcomers. In: 2019 IEEE Interna-

tional Conference on artificial intelligence and virtual reality

(AIVR), pp. 152–1526. IEEE, San Diego, CA. https://doi.org/10.

1109/AIVR46125.2019.00031. https://ieeexplore.ieee.org/docu

ment/8942366/ Accessed 05 apr 2022

7. Bock M, Schreiber A (2018) Visualization of neural networks in

virtual reality using Unreal Engine. In: Proceedings of the 24th

ACM symposium on virtual reality software and technology,

pp 1–2. ACM, Tokyo .https://doi.org/10.1145/3281505.3281605.

https://dl.acm.org/doi/10.1145/3281505.3281605 Accessed 05

apr 2022

8. Schreiber A, Bock M (2019) Visualization and exploration of

deep learning networks in 3D and virtual reality. In: Stephanidis,

C. (ed.) HCI International 2019 - Posters vol. 1033, pp. 206–211.

Springer, Cham. https://doi.org/10.1007/978-3-030-23528-4_29.

Series Title: communications in computer and information sci-

ence. http://link.springer.com/10.1007/978-3-030-23528-4_29

Accessed 2022-04-05

9. VanHorn KC, Zinn M, Cobanoglu MC (2019) Deep learning

development environment in virtual reality. arXiv:1906.05925

[cs, stat]. arXiv: 1906.05925. Accessed 5 Apr 2022

Neural Computing and Applications (2022) 34:21237–21252 21251

123

http://www.kaggle.com/datasets/athota1/caltech101
http://www.kaggle.com/datasets/athota1/caltech101
http://www.kaggle.com/datasets/plameneduardo/sarscov2-ctscan-dataset
http://www.kaggle.com/datasets/plameneduardo/sarscov2-ctscan-dataset
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/AIVR46125.2019.00031
https://doi.org/10.1109/AIVR46125.2019.00031
https://ieeexplore.ieee.org/document/8942366/
https://ieeexplore.ieee.org/document/8942366/
https://doi.org/10.1145/3281505.3281605
https://dl.acm.org/doi/10.1145/3281505.3281605
https://doi.org/10.1007/978-3-030-23528-4_29
http://arxiv.org/abs/1906.05925
http://arxiv.org/abs/1906.05925

10. Aamir A, Tamosiunaite M, Wörgötter F (2021) Caffe2Unity:

immersive visualization and interpretation of deep neural net-

works. Electronics 11(1):83. https://doi.org/10.3390/electro

nics11010083. Accessed 5 Apr 2022

11. Wang H, Wu X, Huang Z, Xing EP (2020) High-frequency

component helps explain the generalization of convolutional

neural networks. In: 2020 IEEE/CVF Conference on computer

vision and pattern recognition (CVPR), pp. 8681–8691. IEEE,

Seattle, WA, USA. https://doi.org/10.1109/CVPR42600.2020.

00871. https://ieeexplore.ieee.org/document/9156428/. Accessed

5 Mar 2022

12. Grün F, Rupprecht C, Navab N, Tombari F (2016) A taxonomy

and library for visualizing learned features in convolutional

neural networks. arXiv preprint http://arxiv.org/abs/1606.07757

13. Choo J, Liu S (2018) Visual analytics for explainable deep

learning. IEEE Comput Gr Appl 38(4):84–92

14. Yosinski J, Clune J, Nguyen A, Fuchs T, Lipson H (2015)

Understanding neural networks through deep visualization. In:

Proceedings of the 31st international conference on machine

learning

15. Liu M, Shi J, Li Z, Li C, Zhu J, Liu S (2016) Towards better

analysis of deep convolutional neural networks. IEEE Trans Vis

Comput Gr 23(1):91–100

16. Simonyan K, Vedaldi A, Zisserman A (2014) Deep inside con-

volutional networks: visualising image classification models and

saliency maps. In: Proceedings of the International Conference on

learning representations

17. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra

D (2017) Grad-CAM: visual explanations from deep networks via

gradient-based localization. In: Proceedings of the IEEE Con-

ference on computer vision and pattern recognition, pp 618–626

18. Alshazly H, Linse C, Barth E, Idris SA, Martinetz T (2021)

Towards explainable ear recognition systems using deep residual

networks. IEEE Access 9:122254–122273

19. Alshazly H, Linse C, Barth E, Martinetz T (2019) Ensembles of

deep learning models and transfer learning for ear recognition.

Sensors 19(19):4139

20. Alshazly H, Linse C, Barth E, Martinetz T (2021) Explainable

COVID-19 detection using chest CT scans and deep learning.

Sensors 21(2):455

21. Zeiler MD, Fergus R (2014) Visualizing and understanding

convolutional networks. In: Proceedings of the European con-

ference on computer vision, pp. 818–833, Springer

22. Erhan D, Bengio Y, Courville A, Vincent P (2009) Visualizing

higher-layer features of a deep network. Univ Montreal

1341(3):1–13

23. Mahendran A, Vedaldi A (2015) Understanding deep image

representations by inverting them. In: Proceedings of the IEEE

Conference on computer vision and pattern recognition,

pp 5188–5196

24. Mahendran A, Vedaldi A (2016) Visualizing deep convolutional

neural networks using natural pre-images. Int J Comput Vis

120(3):233–255

25. Mordvintsev A, Olah C, Tyka M Inceptionism: going deeper into

neural networks (2015)

26. Nguyen A, Yosinski J, Clune J Deep neural networks are easily

fooled: high confidence predictions for unrecognizable images.

In: Proceedings of the IEEE Conference on computer vision and

pattern recognition, pp. 427–436 (2015)

27. Li H, Xu Z, Taylor G, Studer C, Goldstein T (2018) Visualizing

the loss landscape of neural nets. In: Proceedings of the 32nd

Conference on neural information processing system, pp 1–11

.https://proceedings.neurips.cc/paper/2018/file/

a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf

28. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classi-

fication with deep convolutional neural networks. In: Pereira, F,

Burges CJ, Bottou, L, Weinberger KQ (eds.) Advances in neural

information processing systems, vol 25. Curran Associates, Inc.

https://proceedings.neurips.cc/paper/2012/file/

c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

29. Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin

Z, Desmaison A, Antiga L, Lerer A (2017) Automatic differen-

tiation in PyTorch. In: Proceedings of the 31st Conference on

neural information processing system, pp 1–4

30. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G,

Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A,

Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner

B, Fang L, Bai J, Chintala S (2019) PyTorch: An imperative

style, high-performance deep learning library. In: advances in

neural information processing systems 32, pp 8024–8035

31. Liu S, Papailiopoulos D, Achlioptas D (2020) Bad global minima

exist and SGD can reach them. In: Proceedings of the 34th

Conference on neural information processing system

32. You Y, Li J, Reddi S, Hseu J, Kumar S, Bhojanapalli S, Song X,

Demmel J, Hsieh C-J (2020) Large batch optimization for deep

learning: training bert in 76 minutes. In: International Conference

on learning representations

33. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for

image recognition. In: Proceedings of the IEEE Conference on

computer vision and pattern recognition, pp 770–778

34. Fei-Fei L, Fergus R, Perona P (2004) Learning generative visual

models from few training examples: an incremental bayesian

approach tested on 101 object categories. In: Proceedings of the

IEEE Conference on computer vision and pattern recognition,

pp 178–178

35. Soares E, Angelov P, Biaso S, Froes MH, Abe DK (2020) SARS-

CoV-2 CT-scan dataset: a large dataset of real patients CT scans

for SARS-CoV-2 identification. medRxiv

36. Alshazly H, Linse C, Abdalla M, Martinetz T (2021) COVID-

Nets: deep CNN architectures for detecting COVID-19 using

chest CT scans. Peer J Comput Sci 7:655

37. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017)

Densely connected convolutional networks. In: Proceedings of

the IEEE Conference on computer vision and pattern recognition,

pp 4700–4708

38. Basak H, Kundu R, Singh PK, Ijaz MF, Woźniak M, Sarkar R

(2022) A union of deep learning and swarm-based optimization

for 3D human action recognition. Sci Rep 12(1):5494

39. Haker M, Böhme M, Martinetz T, Barth E (2009) Self-organizing

maps for pose estimation with a time-of-flight camera. In:

dynamic 3D imaging: workshop in conjunction with DAGM.

lecture notes in computer science, vol. 5742, pp. 142–153. http://

www.springerlink.com/content/006305183070t383/. https://web

mail.inb.uni-luebeck.de/inb-publications/pdfs/HaBoMaBa09a.

pdf

40. Pearson KLIII (1901) On lines and planes of closest fit to systems

of points in space. Lond Edinb Dublin Philos Mag J Sci

2(11):559–572

41. Dong W, Wozniak M, Wu J, Li W (2022) Bai Z De-noising

aggregation of graph neural networks by using principal com-

ponent analysis. IEEE Trans Indus Inf. https://doi.org/10.1109/

TII.2022.3156658

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

21252 Neural Computing and Applications (2022) 34:21237–21252

123

https://doi.org/10.3390/electronics11010083
https://doi.org/10.3390/electronics11010083
https://doi.org/10.1109/CVPR42600.2020.00871
https://doi.org/10.1109/CVPR42600.2020.00871
https://ieeexplore.ieee.org/document/9156428/
http://arxiv.org/abs/1606.07757
https://proceedings.neurips.cc/paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://webmail.inb.uni-luebeck.de/inb-publications/pdfs/HaBoMaBa09a.pdf
https://webmail.inb.uni-luebeck.de/inb-publications/pdfs/HaBoMaBa09a.pdf
https://webmail.inb.uni-luebeck.de/inb-publications/pdfs/HaBoMaBa09a.pdf
https://doi.org/10.1109/TII.2022.3156658
https://doi.org/10.1109/TII.2022.3156658

	A walk in the black-box: 3D visualization of large neural networks in virtual reality
	Abstract
	Introduction
	Previous work
	2D visualization approaches
	3D visualization approaches

	Visualization software
	DeepVisionVR architecture
	Developer interface
	Design principles
	Basic concept
	Controls and interaction
	Visualization of the network architecture
	Layer design
	Feature visualization

	Discussion

	Experiments
	Training strategies
	First training strategy
	Second training strategy
	Third training strategy

	Training details
	Datasets
	Architectures

	Results and discussion
	Model performance
	Memorization correlates with the processing of local information
	First training strategy
	Second training strategy
	Third training strategy

	Feature visualization on the caltech101 dataset
	First training strategy
	Second training strategy
	Third training strategy

	Feature visualization on the SARS-CoV-2 dataset
	First training strategy
	Second training strategy
	Third training strategy

	Discussion

	Conclusions
	Open Access
	References

