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Abstract
Financial forecasting has always been an intriguing research area in the field of finance. The widely accepted approach to

forecast financial data is to perform predictions using time series data. In time series analysis, sampling the financial data

with a predefined frequency (e.g. hourly, daily) leads to an uneven and discontinued data flow. Directional Change is a

newly proposed approach that replaces physical time within the financial data and establishes an event-driven framework.

With the emergence of the machine and deep learning-based methods, researchers have utilised them in financial time

series. These techniques have shown to outperform conventional approaches. This paper aims to employ the CNN-LSTM

model to investigate its predictive competence within the Directional Change (DC) framework to predict DC event prices.

To obtain this objective, we first create the tick bars/candles of the GBPUSD, EURUSD, USDCHF, and USDCAD tick

prices from January to August 2019. Then, the DC-based summaries of the selected tick bar/candle for each currency pair

will be generated and fed to the CNN-LSTM model. The CNN-LSTM network architecture incorporates the robustness of

Convolutional Neural Network (CNN) in feature extraction and Long Short-Term Memory (LSTM) in predicting

sequential data. The results suggest that the performance of the CNN-LSTM model improves significantly within the DC

framework.

Keywords Directional change framework � Event prediction � Price prediction � CNN � LSTM

1 Introduction

Although predicting a financial asset price has been an

intriguing area of research, it is has proven to be a highly

complex task due to the inherent complexity, volatility, and

nonlinearity of financial markets. The widely accepted

approach to analyse financial data is time-series analysis.

Conventionally, in order to analyse the financial time ser-

ies, prices are recorded by sampling data points at fixed

time intervals (Daily, weekly, monthly). Researchers first

decide how often to sample the data in this method, and

then they take snapshots at the chosen frequency.

Consequently, financial time series are unevenly spaced

and discontinuous concerning the flow of physical time [8].

Thereby, the interval-based summary of the price may miss

important key events and lose profitable trade

opportunities.

To tackle the aforementioned shortcoming of the tradi-

tional approach of time series analysis, Guillaume et al.

[10] proposed a new method for scaling time. Directional

changes (DC) is an alternative approach that replaces the

notion of ‘‘physical time scale’’ and looks beyond the

physical time constraints within financial data, and con-

stitutes an event-driven approach. Hence, market data are

being observed from the event-based rather than the

interval-based perspective. With the recent success of

machine and deep learning approaches, many researchers

have applied various algorithms and architectures on

financial time series to predict financial assets’ price and

movement [27]. Mehtab and Sen [19] presented a suite of

CNN-based regression models with a high level of accu-

racy and robustness in forecasting multivariate financial
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time series. This study proposes a deep learning-based

regression model to predict the price of the directional

change framework events the currency pairs in the foreign

exchange (FX) market and evaluate its performance within

and without the Directional Change framework.

The remainder of this research paper is organised as

follows. Section 2 presents a brief overview of the related

work in the field of financial forecasting. Section 3 presents

the methodology of this study, which includes discussing

the directional change framework, Long Short-Term

Memory, Convolutional Neural Networks, Support Vector

and Random Forest regression, data, experiment and

results. Finally, in Sect. 4, we conclude the paper.

2 Related work

Financial forecasting has always been an exciting research

area in the financial industry. Numerous studies have been

published on machine learning models with relatively

better performances than classical time series forecasting

techniques [17, 29, 30, 34, 37]. Researchers endeavoured to

use nonlinear models to predict. With the advent of

machine learning methods such as neural networks, support

vector machines (SVM), researchers utilise them for time

series prediction [16]. Zbikowski [38] employed Volume-

Weighted SVM feature selection techniques to enhance

classifier accuracy to create a stock trading strat-

egy. Choudhury et al. [4] utilised k-means and SVR to

predict market volatility and prices for two days in the

Indian stock market. Artificial neural networks (ANNs), a

sub-class of machine learning models are widely used for

predictive data-mining tasks. The applicability of artificial

neural networks to stock market predictions was first

hypothesised by White [36], with some indications of

success by Saad et al. [25]. Artificial neural networks, in

essence, mimic the structure of biological neural networks

where neurons are interconnected and learn from

experience.

In 2003, Zhang used neural network and auto-regressive

integrated moving average model (ARIMA) to forecast

stocks. The experimental results proved the advantage of

neural networks in nonlinear data forecasting [39]. Abu

Hammad et al. [1] investigated the Jordanian stock market

with a multi-layer back propagation (BP) network,

nonetheless did not discuss the BP proneness to fall into a

local minimum. Zhang et al. [40] proposed a stock fore-

casting model based on LM-BP neural network which

improves the traditional BP neural network. Wang et al.

[35] proposed a wavelet neural network to forecast stock

prices. Persio and Honchar [6] compared the performance

of three different variants of RNNs to predict Google’s

stock price. Their model showed better results for LSTM

compared to the basic RNN and the Gated Recurrent Unit

(GRU), with an accuracy of 72% within a five day period.

They shuffled the train and test data to prevent the network

from over-fitting.

The prediction of the Nifty Index movements using the

open, high, low, close prices was implemented with an

LSTM RNN architecture in Roondiwala et al. [24] work.

Their work reached a root mean squared error of 0.0086

after training with 500 epochs. Karmiani et al. [13] com-

pared the performance of LSTM to SVM, backpropagation

and Kalman filter with epochs between 10 to 100 and found

that LSTM has high accuracy and low variance. Fischer

and Krauss [5] performed a large-scale prediction of S and

P500 from December 1992 to October 2015 and showed

that the LSTM model outperforms the machine learning

methods and deep networks. Nelson et al. [20] proposed an

LSTM-based model in combination with 175 technical

indicators to predict the stock market movement. Salis

et al. [26] presented a thorough investigation of the

application of LSTM models and artificial neural networks

in predicting the fluctuation of daily gold prices. Zhuge

et al. [41] predicted the opening stock prices using their

proposed LSTM model. They combined the classification

results and the analysis of the naive Bayesian-based emo-

tions. In 2018, Hu [12] used CNN to predict time series.

Their results showed that CNN can predict time series,

however, the forecasting accuracy is relatively low. Sezer

and Ozbayoglu [28] utilised the CNN model to classify the

daily price of Dow 30 stocks and Exchange-Traded Funds

(ETFs).

3 Methodology

The methodology is structured as follows. In Sect. 3.1, the

directional change framework will be introduced. Sec-

tions 3.2 and 3.3 explain Long-Short Term Memory

(LSTM) and Convolutional Neural networks (CNNs).

Section 3.4 briefly introduces Support Vector and Random

Forest regression. Sections 3.5 and 3.6 describe the data

and the Average True Range. Finally, in Sect. 3.7, the

experiment will be presented in detail.

3.1 Directional change framework

The directional Change (DC) is an approach to summarise

price movement by transforming a time series price curve

into an intrinsic time curve [32]. Under the DC framework,

a DC event is identified by a substantial change in the price

of an asset, defined as a price change greater than a pre-

defined threshold value h. Following a DC event, an

overshoot (OS) event happens until the next DC event in

the opposite direction. Figure 1 illustrates a time series and
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the corresponding intrinsic time series for a h = 0.01%.

Based on DC approach, the market is broken down into an

alternating uptrend and downtrend. An upturn event indi-

cates that the price change between the current market

price pt and the last low price pl is greater than a threshold

h:

pt � plð1þ hÞ ð1Þ

As illustrated in Fig. 1, the move from point A to B is an

upturn DC event. By the same token, a downturn event is

defined as an event where the difference between the cur-

rent price pt and the last high price ph is lower than a fixed

threshold h [32]:

pt � phð1� hÞ ð2Þ

A trend ends whenever a price change of the same

threshold h is observed in the opposite direction, see [2]. It

should be noted that different thresholds generate different

series of events. The notion of using different thresholds is

that each threshold might be considered significant by a

different trader. Smaller thresholds create more directional

changes compared to larger ones. As it was mentioned

above the value of the threshold needs to be predetermined

when summarising price movements using the DC. It

represents how big of a price change the observer considers

as significant.

Tsang and Chen [31], Bakhach et al. [2] , and Golub

et al. [9] have explored classical machine learning tech-

niques such as the Hidden Markov Model and Naı̈ve Bayes

classifier to predict the behaviour of tick prices within an

event-driven approach in the directional change frame-

work. In our work, we extended their work into a deep

neural network paradigm. Since different thresholds gen-

erate different market summaries, we also proposed

incorporating the Average True Range indicator to deter-

mine the DC thresholds dynamically. For the interested

reader, a more detailed discussion on Directional Change

may be found in [3].

3.2 Long short-term memory (LSTM)

Recurrent Neural Networks (RNN), are a robust type of

artificial neural network which process sequences by

iterating through the sequence elements and maintaining

a state containing information relative to previous states.

Unlike the Feed-Forward neural networks, RNNs models

can leverage the previous inputs’ sequential information

through memory gates. The RNNs memory, which is

called recurrent hidden state, enable the network to

predict the next item in the input data sequence. Prac-

tically, however, the length of the sequential information

is limited to only a few steps back. Although RNNs

should theoretically retain information from previous

time-steps, such long-term dependencies are impossible

to learn in practice. A common problem among RNNs is

vanishing gradient when the gradients’ information van-

ish while passing through a deep layered network. The

gradient is the partial derivative of a function’s output

with respect to its inputs’ changes. This problem

Fig. 1 A share price and the corresponding intrinsic time curve for h
= 0.05%, for a selected time period
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prevents the network from learning long-term depen-

dencies which causes the learning process to slow down

or stop altogether. Conversely, there is the exploding

gradient problem in which the gradient’s information

accumulate and result in a large gradient. In the ‘‘van-

ishing gradient’’ problem, the network assigns smaller

values to the weight matrix, and in the ‘‘exploding

gradient’’ problem, the opposite is true. As mentioned

earlier, RNNs are not capable of learning long-term

dependencies [11]. The LSTM models are an extension

of RNNs and are designed to address the vanishing

gradient problem. Generally, the LSTM model consists

of three gates: forget, input, and output gates, as shown

in Fig. 2. The forget gate is responsible for deciding to

preserve or removing the existing information. The input

gate determines the extent to which the new information

will be added into the memory, and the output gate

controls whether the current value in the cell contributes

to the output [11].

• Forget Gate: In the forget gate block of the LSTM layer,

the information from the current input xt and the

previous hidden state ht�1 is passed through an

activation function (e.g. sigmoid). The gate output ft
will be a value between 0 and 1, where zero implies

removing the learned value while one means to

preserve the value. The output is computed as:

ft ¼ rðWf :½ht�1; xt� þ bf Þ ð3Þ

where bf is called the bias value.

• Input Gate: This gate which determines the additions of

new information to the LSTM memory has two layers.

A sigmoid layer decides which values need to be

updated and the hyperbolic tangent layer generates a

vector of new values that will be added to the memory.

The output value of the input gate is computed through

the following formulas:

it ¼ rðWi:½ht�1; xt� þ biÞ ð4Þ
~Ct ¼ tanhðWc:½ht�1; xt� þ bcÞ ð5Þ

Together, these two layers update the LSTM memory,

forgetting the current value by multiplying the old value

and adding a new value it � ~Ct. The following repre-

sents its equation:

~Ct ¼ ft � Ct�1 þ it � ~Ct ð6Þ

• Output Gate: Here the gate first uses a sigmoid function

to determine which part of the LSTM memory

contributes to the output. Subsequently, through the

nonlinear tanh function, it maps the values between �1

and 1.

ot ¼ rðWo½ht�1; xt� þ boÞ ð7Þ

ht ¼ ot � tanhðCtÞ ð8Þ

Figure 2 is the depiction of the LSTM architecture.

3.3 Convolutional neural networks (CNN)

Convolutional Neural Network (CNN), designed by Lecun

et al. [15] is a special type of Feed-Forward network with

high performance in image processing and natural lan-

guage processing [14]. The main parts of the CNN are the

convolution and pooling layer. Each convolution layer

contains different kernels. Following the convolutional

operations, the high dimensional extracted features pass

through a pooling layer to reduce the dimensionality.

lt ¼ tanhðxt � kt þ btÞ ð9Þ

In the above equation, lt represents the convolution’s out-

put, xt is the input vector, kt is the convolution kernel

weights, and bt is the bias. Although Convolutional Neural

Network was initially designed for image processing, it can

be utilised for time series forecasting. The reduced number

of parameters by the CNN improves the efficiency of the

model [23].

3.4 Support vector and random forest regression

Support Vector Machines proposed by Vapnik [33] for-

mulate the binary classification problem as convex opti-

misation problems, which entails finding the maximum

margin separating the hyperplane. Support vectors repre-

sent the optimal hyperplane. The introduction of an �-in-

sensitive region around the function forms epsilon-tube

around the function, generalising the Support Vector

Machine to Support Vector Regression. The so-called �-Fig. 2 LSTM architecture
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tube redefine the optimisation problem to find the tube with

the best approximation of the continuous values function

and balanced complexity and prediction error. Another

widely used regression method in financial forecasting is

Random Forest. With the intuition of combining multiple

decision trees and a bootstrap aggregation technique, a

Random Forest (RF) is an ensemble method in the field of

classification and regression problems. Ensemble tech-

niques employ multiple weak learners, e.g. decision trees,

and create a strong one such as Random Forest. In Random

Forest, the bootstrapping technique reduces the variance

and maintains the low bias.

3.5 Data

Financial data comes in a variety of shapes and forms. The

four essential financial data types are fundamental data,

market data, analytics, and alternative data. To apply

machine learning algorithms on unstructured financial data,

we need to parse it and extract valuable information, then

store those extractions in a regularized format. The tabular

representations of data used in ML algorithms (i.e.

table rows) equate to what finance practitioners refer to as

bar in bar charts [7]. Time bars which perhaps are the most

popular among market practitioners and academics are

generated through sampling price information at fixed time

intervals. The information usually includes; timestamp,

volume-weighted average price, open, high, low, close, and

traded volume. Time bars unrealistically process informa-

tion at a fixed time interval, leading to an exhibition of poor

statistical properties [7].

In financial jargon, a tick refers to a change in the price

of a security from a trade to the next. In order to create tick

bars, sample variables mentioned earlier will be extracted

each time a predefined number of transactions occurs,

allowing synchronising sampling with a proxy of infor-

mation arrival. For instance, if we wish to generate

100-tick bars, we need to store the 100 price information

and then extract the open, high, low, and close value from

the observations. Mandelbrot and Taylor [18] found that

sampling as the function of transaction numbers exhibit

Gaussian distribution properties. In contrast, sampling over

a fixed interval may follow a stable Paretian distribution,

whose variance is infinite [7]. It should be mentioned that

throughout this paper, tick bars and tick candles are used

interchangeably. The sole difference between the two is

that the tick candles are colour coded to reflect any increase

or decrease in price.

3.6 Average true range

The average true range (ATR) is a technical analysis

indicator that measures market volatility. It decomposes

the whole range of an asset price for a specific period. It is

typically derived from a moving average of length 14 of a

series of true range values and can be calculated on an

intra-day, daily, weekly or monthly basis. If the current

high is above the prior period’s high and the low is below

the prior period’s low (i.e. outside day) high less the low

will be used as the True Range. In addition, in the case of a

Table 1 Sample of tick price transformation into a 1000 Tick-Bars

and DC confirmation points for GBPUSD

Open High Low Close Directional change

1.27605 1.27615 1.27250 1.27460 1.27615

1.27460 1.27605 1.27360 1.27400 1.27490

1.27400 1.27615 1.27400 1.27615 1.27435

1.27615 1.27615 1.27470 1.27555 1.27400

1.27565 1.27615 1.27380 1.27490 1.27515

1.27490 1.27555 1.27380 1.27435 1.27535

1.27380 1.27525 1.27355 1.27400 � � �
1.27475 1.27555 1.27400 1.27495 � � �
1.27500 1.27510 1.27470 1.27490 � � �
1.27495 1.27525 1.27460 1.27515 � � �
1.27515 1.27545 1.27500 1.27535 � � �

Fig. 3 The first 100 observations of GBPUSD with a predefined

number of tick prices

Table 2 Durbin–Watson statistic of the currency pairs

Currency

pair

50 tick-

bar

100 tick-

bar

200 tick-

bar

500 tick-

bar

1000 tick-

bar

GBPUSD 2.294 2.163 2.126 2.094 2.092

EURUSD 2.591 2.447 2.320 2.180 2.131

USDCHF 2.289 2.181 2.158 2.138 2.112

USDCAD 2.678 2.511 2.379 2.386 2.461

Bold indicates tick bars with the lowest DW values
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gap when the previous close is greater than the current high

or the previous close is lower than the current low, or an

inside day (i.e. when the current high is below the previous

high and the current low is above the previous low), current

high less the previous close or the current low less the

previous close will be used. Following equations represents

the calculation of ATR:

TR ¼ max½ðH � LÞ; j H � Cprevious j; j L� Cprevious j�
ð10Þ

ATR ¼ 1

n

Xn

i

TRi ð11Þ

ATR % ¼ ATR

current price
ð12Þ

where TRi is the true range, and n is the time period. In

Eq. 12, ATR%, is the ATR division by the current price of

the asset. Table 1 illustrates a sample of raw tick prices

transformed into tick bars, sampled for every one thousand

observations. The open, high, low, and close are the first,

highest, lowest, and last tick prices within a sequence of a

thousand tick prices. The last column is the price at which

the directional change occurs. The change in direction is

confirmed if the price exceeds a threshold in either direc-

tion. The remaining values in the directional change col-

umn are excluded since no more ATR%-defined changes in

direction happened in the sample.

3.7 Experiment

This paper’s objective is to apply the CNN-LSTM net-

work to the generated DC-based summaries of GBPUSD,

EURUSD, USDCHF, and USDCAD tick prices to pre-

dict the following price of the directional change event.

The initial dataset comprises of the currency pairs’ tick

prices from January to August of 2019, in comma-sep-

arated variables (CSV) format. As we mentioned earlier,

a tick price alludes to a change in an asset price from

one trade to the next. Our model aims to predict the

immediate step-ahead movement of the financial asset

tick prices instead of the time prices. Note that predic-

tions are short-term and sensitive to the threshold values,

i.e., different user-defined thresholds produce different

summaries of the price movements.

To generate the tick bars, we will aggregate 50, 100,

200, 500, 1000 data points from the original tick prices of

the GBPUSD, EURUSD, USDCHF, USDCAD currency

pairs. Every tick bar has an open, high, low, and close

price. The open and close prices correspond to the price of

the first and last trade. The high and close prices are the

maximum and minimum prices within the range of the

predefined number of ticks. Figure 3 is the depiction of the

generated tick bars/candles from the GBPUSD tick prices

with the predefined number of ticks. The tick bar with the

Table 3 CNN-LSTM

parameters
Parameters Value

Convolution layer filters 32

Convolution layer kernel size 1

Convolution layer padding Same

Pooling layer pool size 3

Pooling layer padding Same

Number of units in LSTM layer 64

LSTM activation function tanh

Dropout rate 0.2

Optimizer learning rate 0.001

Fig. 4 CNN-LSTM model
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least auto-correlation will be used to generate the DC-

based summaries. In order to obtain the least auto-corre-

lated tick bar, the Durbin–Watson (DW) statistic was

performed on all the currency pairs’ tick bars.

The DW test is calculated with the following formula:

DW ¼
PT

t¼2ðet � et�1Þ2PT
t¼1 et

2
ð13Þ

The Durbin–Watson test reports a value from 0 to 4, where:

• DW ¼ 2 is no auto-correlation.

• 0\DW\2 is positive auto-correlation.

• 2\DW\4 is negative auto-correlation.

Table 2 represents the Durbin–Watson results for the tick

bars. As the results imply, 1000 tick-bar has the lowest DW

value for GBPUSD, EURUSD, USDCHF and 200 tick-bar

for the USDCAD pair. The Average True Range will be

calculated for the tick-bars with the smallest DW and will

then be used as the Directional Change threshold h. As it

Fig. 5 CNN–LSTM results within DC framework and on raw tick bars for GBPUSD
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was previously mentioned, the Average True Range (ATR)

is a market volatility measure and is typically calculated

from the 14-day simple moving average of true range

values. With the derived h, DC-based summaries will be

generated and used within a sliding window of length 5 to

predict the next event value. The CNN-LSTM model, as its

name implies, consists of a convolutional neural network

layer and a long short-term memory layer. Figure 4 is the

illustration of the employed model.

As demonstrated in Fig. 4, the convolutional layer

outputs are passed into a max-pooling layer. In order to

prevent the model from over-fitting, a dropout layer is

placed following the LSTM layer. The number of Con-

volutional filters, LSTM units and activation function, as

well as the Dropout percentage and optimizer learning

rate, were determined through hyper-parameter tuning

with KerasTuner [21]. Table 3 presents the parameters’

setting for the CNN-LSTM model. The DC summaries

of the currency pairs were divided into training, valida-

tion, and test sets, where 80% of data points constitute

the training, and the remaining 20% is the test set.

Moreover, 20% of the training set was used as the val-

idation set to prevent data leakage. The training process

was performed with the Adam optimiser and the mean

squared error as the loss function. To evaluate the pre-

dictive performance of the model, the mean absolute

error (MAE), root mean squared error (RMSE), and

coefficient of determination (R2) will be used. The fol-

lowings are the equations for the MAE, RMSE, and R2

(Table 1).

MAE ¼ 1

n

Xn

i¼1

yi � byij j ð14Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðyi � byiÞ2
s

ð15Þ

R2 ¼ 1�

P
i

ðyi � byiÞ2

P
i

ðyi � �yÞ2
ð16Þ

The CNN-LSTM model will be trained and validated with

the DC summaries of GBPUSD, EURUSD, USDCHF, and

USDCAD with an EarlyStopping of Keras callback API.

Initially, DC summaries of the GBPUSD pair will be used

to train and validate the model on the training and vali-

dation sets with respective 4,567 and 1,138 data points.

Prediction on the test set, which is considered the out-of-

sample set, resulted in a 0.0142 mean absolute error and a

0.0179 root mean squared error. Figure 5a represents the

prediction of the model on the GBPUSD DC summaries.

As it is observable, the model has reached a reasonably

well prediction throughout the summaries with the coeffi-

cient of determination of 0.985. The accuracy of prediction

has dwindled near the end of the graph. To explore the

predictive capability of the CNN-LSTM model within the

directional change framework and on the raw tick bars, we

applied the identical CNN-LSTM model on the close price

of the 1000 tick bar dataset. Training and validating the

CNN-LSTM model on the GBPUSD raw 1000 tick bar

dataset with the respective number of 14,921 and 3727

observations resulted in 0.0604 mean-absolute error

(MAE), and 0.0697 root mean squared error (RMSE). We

then utilised the trained model to perform predictions on

the out-of-sample dataset. From Table 4b, in the absence of

the DC Framework, the coefficient of determination has

plummeted from 0.985 to 0.359. Figure 5b portrays this

noticeable decline in the prediction accuracy of the model.

The same steps were applied for EURUSD, USDCHF, and

USDCAD currency pairs. With the suggestion of Table 4

and the comparison of Fig. 6a and b , an increase in the

MAE and RMSE metrics from 0.0188 to 0.0294 and

0.0248 to 0.0368 is discernible. Furthermore, the coeffi-

cient of determination (R2) for EURUSD has decreased

Table 4 Prediction accuracy

results
CNN-LSTM Support vector regression Random forest regression

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

(a) Results within DC framework

GBPUSD 0.0142 0.0179 0.985 0.2909 0.3604 - 1.8945 0.2841 0.3543 - 1.7975

EURUSD 0.0188 0.0248 0.972 0.5746 0.6047 - 8.3019 0.5993 0.6294 - 9.0758

USDCHF 0.0301 0.0387 0.865 0.0917 0.1149 0.0035 0.1016 0.1220 - 0.1219

USDCAD 0.0182 0.0221 0.973 0.5791 0.5914 - 23.1734 0.5488 0.5579 - 30.1266

(b) Results without DC framework

GBPUSD 0.0604 0.0697 0.359 0.3435 0.3942 - 3.1636 0.2501 0.3158 - 1.6722

EURUSD 0.0294 0.0368 0.946 0.5107 0.5409 - 6.9423 0.6003 0.6304 - 9.7862

USDCHF 0.0466 0.0516 0.772 0.1029 0.1291 - 0.0081 0.1133 0.1382 - 0.1549

USDCAD 0.0989 0.1094 0.548 0.5812 0.5948 - 21.071 0.5625 0.5725 - 28.2334
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from 0.972 to 0.946. Despite capturing the overall trend of

the USDCHF, distinguished from Fig. 7a and b, metrics

altogether corroborate the substantial drop in the accuracy

of the CNN-LSTM model. Both MAE and RMSE have

risen from 0.0301 to 0.0466 and from 0.0387 to 0.0516.

The R2 has declined from 0.865 to 0.772. Figure 8a sub-

stantiates the prediction accuracy of the CNN-LSTM

model within the DC framework. The model captured the

overall trend correctly and predicted more than 6000

observations with the coefficient of determination (R2) of

0.973. In Fig. 8b the performance of the model in pre-

dicting nearly three times more observations without DC

framework plummeted to 0.548. For the USDCAD, MAE

and RMSE have surged from 0.0182 to 0.0989 and from

0.0221 to 0.1094. R2 has plunged from 0.973 to 0.548. We

observed that the CNN-LSTM model, within the DC

framework, outperforms itself with a considerable margin.

Consequently, applying the CNN-LSTM model within the

DC framework for the GBPUSD, EURUSD, USDCHF, and

USDCAD currency pairs enhances the accuracy of the

Fig. 6 CNN–LSTM results within DC framework and on raw tick bars for EURUSD
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prediction in all performance metrics. It is concluded from

the results that applying the CNN-LSTM architecture

within the directional change framework improves the

accuracy of prediction for high-frequency FX data. Support

Vector and Random Forest regression, two widely used

machine learning techniques in financial forecasting, were

also utilised to compare to the CNN-LSTM model. Both

models’ hyper-parameters were tuned with Ran-

domisedSearchCV [22] and used in the same fashion as the

CNN-LSTM with and without DC framework. It is con-

cluded from Table 4 that Support Vector, and Random

Forest regression failed to perform an acceptable prediction

with significantly high error and negative coefficient of

determination (R2).

Summarily, the tick bars were created from raw tick

prices and the least auto-correlated were determined using

the Durbin–Watson statistic. Next, the least auto-correlated

tick bars were used to calculate the ATR value, which then

was used as the Directional Change threshold h. Then, the
DC summaries of the tick bars were generated. Finally, the

proposed model was applied to the mentioned DC sum-

maries of all the currency pairs as well as their raw tick

Fig. 7 CNN–LSTM results within DC framework and on raw tick bars for USDCHF
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bars to investigate the performance of the CNN-LSTM

model with and without the DC framework.

4 Conclusions and future work

This paper has investigated applying the CNN-LSTM

model within the Directional Change (DC) framework, an

approach to summarise price movement by transforming a

time series price curve into an intrinsic time curve to

predict the subsequent event price. An event is identified

by a significant change in the price of an asset, defined as a

price change greater than a predefined threshold value

theta. The threshold h is determined with the Average True

Range (ATR) indicator. The CNN-LSTM employs the DC

summaries of tick bars with the lowest Durbin–Watson

statistic for GBPUSD, EURUSD, USDCHF, and USDCAD

currency pairs as the model’s input. The same model was

applied to the closing prices of the currency pairs tick bars

without the DC framework to inspect the model’s

Fig. 8 CNN–LSTM results within DC framework and on raw tick bars for USDCAD
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performance. The experimental results suggest that the

CNN-LSTM performance improves significantly within the

directional change framework concerning MAE, RMSE,

and R2 metrics for all the currency pairs.

In future research, we intend to apply our model to

predict more extended periods and experiment with more

complex GRU and BiLSTM architectures on different

currency pairs and financial assets. Due to the fact that

thresholds are determined based on the practitioner’s

preferences, it would be of importance and interest to

explore ways to determine the Directional Change thresh-

old dynamically to address the sensitivity of the model to

thresholds.
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