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Abstract
Computed tomography (CT) is a non-invasive diagnostic imaging modality that reveals more insight into human organs

than conventional X-rays. In general, the CT output is a 3-D image that is formed by combining multiple 2D images or

slices together. It is essential to keep in mind that not all of the slices provide significant information to detect tumours.

Usually, a 3-D CT image obtained from the CT scanners has a significant number of unwanted non-organ slices in it.

Radiologists typically devote a significant amount of time to select the slices with organ from a 3-D CT image. The

presence of a tumour is only evident in the organ slice; hence, radiologists must be cautious not to skip any organ slices.

This work is evaluated on the LITS, 3DIRCADb and COVID-19 CT datasets. The three datasets collectively contain

22,435 organ slices and 53,661 non-organ slices, and there is a huge gap between the number of organ and non-organ

slices. There is a need for the automatic elimination of non-organ slices in 3-D CT volumes to assist the physicians, and

hence, this work focuses on the automatic recognition of organ slices from 3-D CT volumes. In this paper, a new deep

model called the computed tomography slice classification network (CTSC-Net) is proposed for CT slice classification

between organ and non-organ slices. The model is trained on 77,980 CT slices, validated on 9748 slices and tested on

12,571 slices. Nine CNN architectures with different layer settings are trained and tested to arrive at the final optimal

model. The performance measures are computed in terms of true positive rate, true negative rate, sensitivity, specificity and

accuracy. The 20-layer CTSC-Net achieves a validation accuracy of 95.04% and an overall testing accuracy of 99.96%.

The proposed model is compared to eight different pre-trained CNN models, and the results of the proposed CTSC-Net

surpassed all the comparable models. The activation feature maps of different layers of the CTSC-Net are visualized to

verify the discriminative features learned by the network. Hence, the proposed CTSC-Net can be employed as a computer-

aided diagnosis tool to help physicians discard unnecessary non-organ slices from the 3-D CT volume and to speed up the

CT diagnosis process.
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1 Introduction

Significant advancements in the fields of artificial intelli-

gence and machine learning have had a substantial impact

on the interpretation of medical images for early diagnosis

and treatment. Computer-aided diagnosis (CAD) systems

have emerged as an assisting tool for doctors in diagnosing

medical images. The advancements in healthcare image

acquisition devices and growth in medical image modali-

ties have made the task of medical image analysis even

more challenging and interesting [1]. Medical imaging

modalities like magnetic resonance imaging (MRI), posi-

tron emission tomography (PET), ultrasound, X-ray, com-

puted tomography (CT) and mammography produce

images of human anatomical structures for assessment and

treatment purposes [2].

CT is an X-ray-based imaging technique in which a

narrow beam of X-rays is aimed at a patient and quickly

rotated around the body, producing many views of the

same organ or tissue. The resulting signals from the patient

& Emerson Nithiyaraj

ej.jeshua@mepcoeng.ac.in

1 Department of Electronics and Communication Engineering,

Centre for Image Processing and Pattern Recognition, Mepco

Schlenk Engineering College, Sivakasi 626005, India

123

Neural Computing and Applications (2022) 34:22141–22156
https://doi.org/10.1007/s00521-022-07701-8(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-0653-8851
http://orcid.org/0000-0002-2579-501X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-022-07701-8&amp;domain=pdf
https://doi.org/10.1007/s00521-022-07701-8


are picked up by the X-ray detectors and analysed by the

machine’s computer to generate cross-sectional images or

slices of the body. As these slices contain more information

than traditional X-rays, they are referred to as tomographic

images. Once the computer on the machine collects a

number of successive slices, they can be displayed indi-

vidually or digitally stacked together to create a three-di-

mensional (3-D) image of the patient. The skeleton, organs,

and tissues, as well as any abnormalities are all visible in

the CT images. The CT image makes it easier to detect and

spot basic structures as well as possible lesions or

anomalies [3]. These CT images are generally stored in

digital imaging and communications in medicine (DICOM)

file format with a header and image datasets, where the

header contains the patient information like demographics,

study parameters, etc. These images are mostly examined

by radiologists and at the risk of potential fatigue of

experts, poor imaging quality and wide variations in

pathology, CAD systems began to perform better as an

assisting tool for the experts [4].

The remaining sections of this paper are ordered as

follows: The review of literature is briefed in Sect. 2. In

Sect. 3, a detailed explanation of the proposed CTSC-Net

model is elaborated. In Sect. 4, the experimental setup is

provided. The results and discussion are elucidated in

Sect. 5. Finally, a conclusion and areas for further research

are given in Sect. 6.

2 Related work

Inspired by the success of deep learning techniques in

computer vision tasks, deep learning models are employed

to detect, classify and segment patterns in medical images

[5, 6]. One of the core abilities of deep learning is that they

learn features automatically from raw data instead of

extracting hand-crafted features from data by the user. In

medical sector, deep learning techniques are providing

good solutions for diagnosing medical images and it pro-

vides an assist for medical experts to interpret and diagnose

medical images [7–9]. There are numerous deep learning

algorithms in the literature for diagnosing from CT images.

In particular, there are many deep learning approaches for

CT image classification [10]. Wang et al. [11] developed a

deep learning model for nodal metastasis (Nmet) prediction

for lung tumours using different energy level CT images.

The model includes a principal feature enhancement block

(PFE) that incorporates radiologist and feature knowledge

for Nmet prediction. The model has resulted in an accuracy

of 93%. Zhang et al. [12] proposed a deep learning model

that can classify multiple organ specific cancers from CT/

PET images. This model is a six-class classification system

that includes normal, liver cancer, pancreatic cancer,

esophageal cancer, gastric cancer and lung cancer. The

model resulted in an F-score of 82.3%, which could assist

physicians in screening cancers. Shigeru Kiryu et al. [13]

developed a CNN to differentiate five liver tumours, where

their CNN has five convolution, three max pooling and

three fully connected layers. The developed system was

validated using 100 test images which has resulted a

median accuracy of 0.95 and 0.84 for training and test data,

respectively. The sensitivity of each individual class for

test data is 0.71, 0.33, 0.94, 0.90 and 0.10. The dynamic

contrast agent-enhanced CT images are downsampled to

70 9 70 pixels. KyuJin Choi et al. [14] developed a deep

learning system (DLS) for CT-based staging of liver

fibrosis using portal venous phase CT images. The five

stages of fibrosis (F1-F5) were no-fibrosis (F1), portal

fibrosis (F2), periportal fibrosis (F3), septal fibrosis (F4)

and cirrhosis (F5). The developed DLS has two steps such

as liver segmentation and fibrosis staging, and both steps

were developed on the basis of CNN. The overall staging

accuracy of the DLS was 79.4%, and the dataset was not

balanced for pathologic fibrosis stage which is a limitation.

Chaunzwa et al. [15] developed a deep learning framework

for lung cancer classification from CT images. The VGG-

16 network architecture is fine-tuned and utilized for the

proposed work. This model is validated on a dataset

comprising 311 early-stage lung cancer patients and the

model is able to predict tumour with an AUC of 0.71.

Rahimzadeh et al. [16] developed a deep model to detect

COVID-19 from the CT images. The dataset contains

15,589 COVID-19 images from 95 patients and 48,260

normal images from 282 persons. In this work, the images

are pre-processed such that the non-lung slices from the

3-D CT image are eliminated based on dark pixels count

and a threshold value. Based on prior experiments in the

dataset, a fixed region is set for all the images in the area of

120 to 370 pixels in the x-axis and 240 to 340 pixels in the

y-axis ([120,240] to [370,340]). For all the slices in 3-D

CT, the number of dark pixels in the fixed region is counted

and a threshold is set by dividing the difference between

the maximum counted number and the minimum counted

number by 1.5. The images with higher dark pixels than the

threshold is termed as the lung slices, and the images with

fewer dark pixels than the threshold are eliminated. The

selected lung slices are classified using the proposed model

based on ResNet50V2 and feature pyramid network. Still,

this work has selected the lung slices by setting a manual

fixed region in all the slices, which is a time-consuming

process and the area of this fixed region may vary for

different datasets.

CT scans produce 3-D medical images by stacking

multiple 2-D images or slices on top of one another to

provide a volumetric representation of the internal features

of human bodies. The CT scan produces a 3-D volume with
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50 to more than 1000 slices for each patient, and it depends

upon factors such as the type of CT machine being used,

the radiologist’s interest, and the complexity of the region

under diagnosis. Modern CT machines can produce hun-

dreds of slices of a patient, which is very useful in deter-

mining the disease’s location. However, all the slices do

not contain enough useful information for the detection and

diagnosis of disease. A major number of slices in the 3-D

CT volume do not visualize the whole contour of the organ,

and some slices do not contain any region of the organ in

them. Firstly, it is important to recognize the CT slices that

contain the organ to examine the presence of tumours in

them. It is vital for a radiologist not to skip any slices that

are candidates for further analysis. The advances in med-

ical imaging tools enable the physician to select the slices

of interest virtually. However, the practise is considered

semi-automated because a radiologist must scroll through

hundreds of slices manually in the software. This approach

is not only time-consuming but also subjective, and there’s

a significant chance that a useful slice will get scrolled out

in the process. So, it takes some time for radiologists to

cross over the unwanted or non-organ slices and then

interpret the organ slices to diagnose any abnormality. A

tumour may appear in any organ slice of a 3-D CT volume

and in any region within the organ’s contour of that slice,

so it is important to recognize and diagnose all the slices

that contain the organ. In all the above-mentioned literature

works, CT image classification is carried out by manually

selecting the 2-D slices from a 3-D CT volume that con-

tains the whole contour of the organ and there is no auto-

matic procedure to segregate organ and non-organ slices.

Consider a deep model that is trained to classify some types

of tumours from a CT dataset that contains only the organ

slices. If the same model is tested with images of both

organ and non-organ slices, the network may fail. Since the

network has learnt to classify only the types of tumours, the

network may perform poorly when a non-organ slice is fed

in. There are currently no studies in the literature for the

classification of CT slices into organ and non-organ slices.

It is always important to remove non-organ slices from a

CT dataset in order to achieve a faster and more robust

diagnosis. This will allow radiologists to focus only on a

subset of CT images that contain the most useful infor-

mation. The prime objective of this work is to develop an

automatic model to classify organ and non-organ slices

from a 3-D CT image.

In this work, a novel model called computed tomogra-

phy slice classification network (CTSC-Net) is proposed

for CT slice classification between organ and non-organ

slices. The proposed CTSC-Net is a 20-layer fully convo-

lutional neural network. The proposed model is evaluated

on three clinical datasets, namely LiTS, 3DIRCADb and

COVID-19 CT. The performance evaluation metrics such

as true positive rate, true negative rate, sensitivity, speci-

ficity and accuracy are adopted for statistical analysis. The

results of the proposed CTSC-Net model are compared

with the pre-trained CNN classification models like Alex-

Net [17], SqueezeNet [18], Vgg-16 [19], ResNet18 [20],

GoogleNet [21], MobileNetV2 [22], ShuffleNet [23] and

DarkNet19 [24]. The contributions of this work are sum-

marized as follows:

1. A novel computed tomography slice classification

network (CTSC-Net) is proposed to classify organ

and non-organ slices from a 3-D CT volume.

2. The proposed model is evaluated on three datasets such

as LITS, 3DIRCADb and COVID-19 CT and nine

different CNN architectures are developed to arrive at

the optimal CTSC-Net.

3. The proposed CTSC-Net is experimented with differ-

ent activation functions and normalization techniques

and promising results are obtained compared to the

state-of-the-art deep models.

4. The proposed 20-layer CTSC-Net has attained faster

convergence during training, resulting in a testing

accuracy of 99.96% for the test set of 12,571 CT slices.

The organ slices can be effectively recognized by the

proposed CTSC-Net model irrespective of the size and

shape of the organ in it.

3 Proposed CTSC-Net

The work flow of the proposed computed tomography slice

classification system is depicted in Fig. 1. The proposed

work is fed with the 3-D CT image as the input and the

individual CT slices enter the pre-processing step. The

processed CT slices are fed into the CTSC-Net for the

classification between organ and non-organ slices.

The proposed CTSC-Net architecture for the task of CT

slice classification is shown in Fig. 2. The architecture has

4 Conv blocks named Conv 1, Conv 2, Conv 3 and Conv 4.

Each Conv block has a convolutional layer followed by a

batch normalization layer, ReLU layer and a max pooling

layer. All the convolutional layers have a fixed kernel size

of 5 9 5, and each convolutional layer in each Conv block

has a varying number of filters. Zero padding with one row

and one column is performed before every convolution

operation to maintain the same size of input and output of

the convolution layer.

3.1 Convolutional neural network

Classical machine learning techniques [25, 26] require the

domain expertise of a human expert to extract significant

features from images that define the pattern or regularities
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in the image, making it difficult for non-experts to under-

stand. Deep learning, on the other hand, automates the

learning process by requiring only the input data and dis-

covering the informative representations in a self-taught

manner [27]. Deep learning has shifted the burden of fea-

ture learning from humans to computers, resulting in

improved performance [28]. The convolutional neural

network (CNN) is a frequently used deep learning archi-

tecture that is based on the structure and function of the

human brain and is suited for most computer vision tasks

such as classification, detection and segmentation [29].

3.2 Convolutional layer

Convolutional layer is the key element in any CNN

architecture which extracts hierarchical features from the

input image. Convolution is a mathematical operation that

takes two inputs such as image matrix and a filter or kernel.

A convolutional layer has multiple number of kernels, and

a feature map is produced by convolving each kernel with

the input image [30]. In general, convolution is a dot

product operation. Figure 3 shows a convolution operation

of a 3 9 3 kernel on a 5 9 5 input matrix. The kernel is

slided over the input image in both horizontal and vertical

manner to produce output feature map. The dimension of

the feature map produced by the convolutional layer is

based on the given Eq. (1).

O ¼ Ip� K þ 2P

S
þ 1 ð1Þ

where O is dimension of output feature map; Ip is input

matrix size; K is kernel size; P is padding value; and S is

stride value.

The initial convolutional layers extract low level fea-

tures such as edges, lines and deep convolutional layers

learns global features like texture, boundary and shapes.

The proposed CNN architecture has four convolutional

layers of constant kernel size 5 9 5 and varying number of

kernel layers 16, 32, 64, 128 and stride 1 and padding 1.

3.3 Pooling layer

Pooling layer is generally placed after the convolutional

layer to reduce the spatial size of the feature maps. Pooling

essentially reduces the computation and number of

parameters in the network and also helps in extracting the

dominant features from the input feature map. Max pool-

ing, min pooling and average pooling are the types of

pooling, where max pooling of window size 2 9 2 with a

stride value of 2 is used in the proposed CNN architecture.

A max pooling operation with window size 3 9 3 and

Fig. 1 Work flow of the proposed CT slice classification system

Fig. 2 Proposed CNN architecture for CTSC-Net
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stride 2 is explained in Fig. 4, where maximum value of

each 3 9 3 window is the output. The max pooling layer

reduces the size of the incoming feature matrix based on

the given Eq. (2).

P ¼ Ip�W þ 2P

S
� 1 ð2Þ

where P is output size of max pooling layer; Ip is input

matrix size; W is max pooling window size; P is padding

value; and S is stride value.

3.4 Batch normalization

During the training of the network, the distribution of the

activations is constantly changing. This slows down the

training process because each layer must learn to adapt

itself to a new distribution in every training step. This

problem is known as internal covariate shift. Batch nor-

malization normalizes the inputs of each layer and so the

problem of internal covariance shift is reduced [31]. The

steps followed by the batch normalization layer during the

training phase are given below.

1. Calculate the mean and variance of the layer’s input.

Batchmean: lb ¼
1

m

Xm

i¼1

xi ð3Þ

Batch variance: r2B ¼ 1

m

Xm

i¼1

ðxi � lbÞ2 ð4Þ

2. Normalize the layer inputs using the previously

calculated batch statistics.

xi ¼
xi � lbffiffiffiffiffiffiffiffiffiffiffiffiffi
r2B þ �

p ð5Þ

3. Scale and shift in order to obtain the output of the

layer.

yi ¼ cxi þ b ð6Þ

Fig. 3 Convolution operation of a (5 9 5) image and (3 9 3) kernel

Fig. 4 Max pooling operation of

window size 3 and stride 2
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Parameters c and b in Eq. (6) are learned during training

phase and the past means and variances of each training

batches are used for the testing phase. In this proposed

CNN architecture, batch normalization is done after each

convolutional layer.

3.5 Activation functions

Activation functions introduce nonlinearity in the network

by applying a nonlinear transformation to the input. There

are different activation functions such as tangent, sigmoid,

rectified linear unit (ReLU) that makes the network to learn

and perform more complex tasks. ReLU is the commonly

used activation function where any negative input given

into the ReLU becomes zero. In this work, ReLU activation

function is used. The main advantage of using the ReLU

function over other activation functions is that it is com-

putationally efficient, since it does not activate all the

neurons at the same time [32]. The ReLU activation

function R ið Þ can be defined as in Eq. (7).

R ið Þ ¼ i i[ 0

0 i� 0

�
ð7Þ

Finally, fully connected (FC) layer is a simple feed

forward neural network where the output from convolu-

tional or pooling layer is flattened (i.e., matrix values are

unrolled into a vector) and fed into the FC layer. The final

layer is a softmax activation that is used to get the proba-

bilities of the input image belonging to a particular class in

a classification application and classification layer classi-

fies the input image as liver or non-liver slice.

3.6 Loss function

Loss function measures the loss value that is used to predict

the error rate of the network. In this work, binary cross-

entropy loss function is used to evaluate the loss value.

Cross-entropy loss function is given in Eq. (8).

CE ¼ �
Xc

i

ti log si ð8Þ

where ti is the actual value and si is the predicted output of

the CNN for each class i € {liver, non-liver}.

3.7 Learning algorithm

Training and testing are the two phases in developing any

model for classification application. Training helps to

optimize the parameters of the model such as weights,

biases and testing evaluates the performance of the model.

The initial weights are assigned based on Gaussian distri-

bution with the mean and standard deviation values as zero

and 0.01, respectively, and the initial bias values are set as

zero. In CNN, the images are forward passed into the

network where various layers in the architecture perform

their respective functions and finally the loss function is

calculated between the predicted output and actual output.

Using the loss value, the network parameters such as

weights and biases of the network are updated using a

backpropagation technique called gradient descent algo-

rithm [33]. This algorithm aims to minimize the loss

function by updating the network parameters in the direc-

tion of the negative gradient of the loss function [34]. This

process of weight updation is repeated for as many epochs

as necessary to reach the desired level of accuracy. The

weight updation is given in Eq. (9).

hiþ1 ¼ hi � arE hið Þ ð9Þ

where h is the parameter vector (weights or biases), i is the

iteration number, E hð Þ is the loss function, rE hð Þ is the

gradient of the loss function, and a is the learning rate.

Learning rate refers to the number of weights that are

updated during training with respect to the loss gradient.

The training data are split into batches called mini-batch

and full pass of the entire training data using mini batches

into the training algorithm is one epoch. Mini batch

stochastic gradient descent (MBSGD) is a variant of gra-

dient descent algorithm, in which the parameter updates are

computed for every mini-batch. A variant of MBSGD

called Adam optimizer that is derived from adaptive

moment estimation is used in this work [35].

4 Experimental setup

4.1 Dataset

The ‘LITS-Liver Tumour Segmentation Challenge’,

3DIRCADb (3D Image Reconstruction for Comparison of

Algorithm Database) and COVID-19 CT scan datasets are

used in this work, which are publically available [36–38].

The LITS and 3DIRCADb datasets contain the CT images

of the liver organ, and the COVID-19 CT dataset contains

the CT images of the lung organ. The LiTS data are col-

lected from seven academic and clinical institutions around

the world, and the image data are acquired with different

CT scanners and acquisition protocols [39]. The 3DIR-

CADb is provided by the University Hospital in Stras-

bourg, France (Centre Hospitalier et Universitaire), and the

COVID-19 CT scan dataset provided by Kaggle. The LITS

dataset contains 130 CT scans and the 3DIRCADb and

COVID-19 CT datasets contain 20 CT scans each. Each

scan has varying number of 2-D slices ranging from 46 to

1026, and the image size is 512 9 512 pixels. The CT

scans also contains abnormalities from primary to
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secondary level tumour and metastases. Some sample

images from the datasets are shown in Fig. 5 including

both organ and non-organ slices.

As seen in Fig. 5a, c, e, the organ slices maintain a

constant intensity range over a larger area than the non-

organ slices in Fig. 5b, d, f. From the LITS dataset, all the

71,131 axial 2-D slices from the 130 scans are used and it

includes 19,907 liver slices and 51,224 non-liver slices.

From the 3DIRCADb dataset, all the 2823 axial 2-D slices

from the 20 CT scans are selected and it contain 1096 liver

slices and 1727 non-liver slices. The COVID-19 CT dataset

has 2142 CT slices, combining 1432 lung slices and 710

non-lung slices. The three datasets have all the different

shapes and sizes of the organ. The total number of organ

and non-organ slices of the three datasets is 22,435 and

53,661. All the three datasets have a huge difference

between the number of organ and non-organ slices. To

avoid data imbalance between organ and non-organ slices,

data augmentation techniques like horizontal flipping,

vertical flipping and horizontal vertical flipping are per-

formed on the organ slices of the LITS and COVID-19 CT

datasets. As a result of data augmentation, a total of

1,00,299 slices were acquired, including 46,638 organ sli-

ces and 53,661 non-organ slices.

4.2 Image pre-processing

The pixel values of each CT image are in Hounsfield units

[40]. Hounsfield units (HU) are a dimensionless unit uni-

versally used in computed tomography (CT) scanning to

express CT numbers in a standardized and convenient

form. The Hounsfield density of tissues reflects their

attenuation of X-ray and is proportional to their physical

density. The Hounsfield density provides accurate density

for the type of tissue. The HU for various regions like

water, air and bone is 0 HU, air, - 1000 HU and ? 1000

HU, respectively. The HU unit of the LITS, 3DIRCADb

and COVID-19 datasets varies for different cases. In order

to make all CT volumes convenient for visualization and

further processing, the intensity values of the CT volumes

are windowed to a particular range. A truncation range of

(400, - 100) is applied to the CT slices of LITS and

3DIRCADb datasets, and a truncation range of (400,

- 1200) is applied to the CT slices of COVID-19 dataset.

The difference between the raw CT image from the

dataset and truncated image is shown in Fig. 6. The texture

of the organs in the CT image can be clearly seen in the

truncated image. Hence, it is more effective to carry out

further processing using the processed image.

4.3 Performance evaluation metrics

The performance of the proposed CTSC-Net is statistically

evaluated in terms of sensitivity, specificity, accuracy and

AUC [41]. Sensitivity (also called as true positive rate

(TPR)) measures the proportion of positive samples that

are correctly identified as positives and specificity (also

called as true negative rate (TNR)) measures the proportion

of negative samples that are correctly identified as nega-

tives as given in Eqs. (10) and (11). Accuracy is the

number of correctly classified samples to the total number

of samples as given in Eq. (12). False positive rate (FPR)

and false negative rate (FNR) denote the misclassified

samples, which in reality these samples belong to the other

class. AUC stands for ’area under the ROC (receiver

operating characteristics) curve’ and is a performance

measurement for classification problem which is plotted

with TPR against the FPR [42]. AUC represents the

model’s degree of separability between the classes where

AUC value of 1 indicates a good measure of separability

and AUC value of 0 indicates worst measure of

separability.

Sensitivity ¼ TP

TPþ FN
ð10Þ

Specificity ¼ TN

TNþ FP
ð11Þ

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
ð12Þ

where TP refers to true positive, FP refers to false positive,

TN refers to true negative, and FN refers to false negative.

Fig. 5 a, b CT slices from LITS, c, d CT slices from 3DIRCADb, e, f CT slices from COVID-19 CT
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5 Experimental results and discussion

The experiments that were conducted to evaluate the pro-

posed CTSC-Net for CT slice classification using LITS,

3DIRCADb and COVID-19 CT datasets are presented

illustratively. The prime objective of the proposed CTSC-

Net is to classify between organ and non-organ CT slices

from a 3-D CT volume. The implementation of the pro-

posed work is done using Matlab 2020a in a personal

computer having Intel (R) core i5 and 64-bit processor with

8 GB RAM. The optimization algorithm used in this work

is Adam optimizer, and the mini batch size is 32. The mini

batch images are shuffled for every epoch. The weights of

the network are initialized by Glorot initializer [43] which

independently samples from a uniform distribution of zero

mean and variance 2/(input size ? output size) and the

initial bias values are zero. In this work, the network is

trained for 10 epochs, initial learning rate is set as 0.01, and

the learning rate drop factor is set to 0.001 for every 5. The

learning rate for epochs 1 to 5 is 0.01, and the learning rate

for epochs 6 to 10 is 10–5.

5.1 Results of the proposed CTSC-Net

For training the network, 72,830 CT slices from the LITS

dataset and 5150 slices from the COVID-19 CT dataset are

used. For validation, 9104 slices from the LITS dataset and

644 slices from the COVID-19 CT dataset are used. For

testing, 9104 slices from LITS, 644 slices from COVID-19

CT, and all 2823 slices from the 3DIRCADb dataset are

used. The training set contains 77,980 slices, which

includes 38,990 organ slices and 38,990 non-organ slices.

The testing set of 12,571 slices includes 6285 organ slices

and 6286 non-organ slices to test the proposed CTSC-Net.

The remaining 9748 slices are allotted for validation. The

collective dataset includes non-organ slices and organ sli-

ces of the liver and lungs. This training set is ensured such

that an equal number of organ and non-organ slices are

present in order to avoid overfitting. Since deep learning

models can unintentionally memorize training data, it is

important to make sure that there is no case overlap

between the sets. The 2-D slices of a case only occur in one

of the sets. When the training and testing sets are split in

this way, all the slices of a case are in the same set. Hence,

overfitting of the model is prevented when there are no case

overlaps between the sets. All the images are pre-processed

as discussed in Sect. 4.2 and then fed into the CTSC-Net

model.

Nine CNN architectures with different layer assemblies

are built for experimentation, and their performance is

compared to arrive at the best CNN architecture and

finally, the efficient CTSC-Net is proposed. Table 1 pre-

sents the accuracy obtained while training, validating and

testing the nine CNN architectures for the task of organ and

non-organ CT slice classification. From Table 1, it can be

observed that, for the 1st architecture, with 100% training

accuracy, the validation accuracy is only 58.82% and

testing accuracy is 80.91%. This accuracy difference in

training and validation is due to the overfitting of the model

to the training data. Because of overfitting, the model is not

able to generalize for unseen test data. Similarly, for 2nd to

7th architectures, this overfitting can be observed even after

increasing additional layers, providing batch normalization

and enabling max pooling. The architecture 8 seems to

improve both validation and testing accuracy, but still the

validation accuracy is lesser. Finally, the architecture 9

yields the maximum validation and testing accuracy and

this model has perfectly overcome overfitting. Based on

this inference, the architecture 9 is selected as the optimal

network for the proposed CTSC-Net model. The proposed

CTSC-Net took approximately 9 h for training the model

using 77,980 images for 10 epochs.

All the architectures listed in Table 1 are initially trained

using a constant learning rate of 0.01, but the results are not

convincing. Hence, adaptive learning rate is adopted.

Adaptive learning rate changes the learning rate during the

training process where the initial learning rate is specified

for some epochs and the learning rate is multiplied with the

learning rate drop factor for every certain number of

epochs. Constant learning rate of 0.01 produced 92.64%

Fig. 6 Raw image (left) and truncated image (right) from: a LITS, b 3DIRCADb and c COVID-19 CT datasets
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accuracy and adaptive learning rate improved the accuracy

of CTSC-Net to 99.96% for the task of classification

between organ and non-organ CT slices.

The confusion matrix is used to describe the perfor-

mance of a classification model on a test set. The confusion

matrix for the testing set of images is shown in Table 2.

Thus, using the Eqs. (10), (11), (12) and the confusion

matrix, the performance measures are evaluated. The pro-

posed method results in 99.93% sensitivity, 100% speci-

ficity, 99.96% accuracy.

5.1.1 Experimentation with different normalization
techniques

The proposed network is experimented with different

normalization techniques, and the results are presented in

Table 3. From Table 3, it is inferred that batch normal-

ization results in maximum test accuracy and avoids

overfitting.

Table 1 Experimentation with different set of layers to find an optimal CNN architecture

Architecture

No

Layers Kernel

size

Number of

kernels

Training accuracy in

%

Validation accuracy in

%

Testing accuracy in

%

1 Conv 5 16 100 58.82 80.91

2 Conv 5 16 100 66.38 75.19

Max pooling with

(2 9 2)

– –

3 Conv 5 16 100 75.97 73.74

BN

4 Conv 5 16 100 72.77 76.36

BN – –

Max pooling with

(2 9 2)

– –

5 Conv1

Conv 5 16 100 80.14 87.40

BN – –

ReLU – –

Max poolingwith

(2 9 2)

– –

6 Conv 5 16 100 79.26 85.56

Conv 5 32

BN – –

ReLU – –

Max pooling with

(2 9 2)

– –

7 Conv1 5 16 100 79.53 85.56

Conv1 5 32

8 Conv1 5 16 100 89.85 94.74

Conv1 5 32

Conv1 5 64

9 Conv1 5 16 100 95.04 99.96

Conv1 5 32

Conv1 5 64

Conv1 5 128

*Conv, Convolutional layer; BN, Batch normalization; ReLU, Rectified linear unit; Conv1, a block of four layers

Table 2 Confusion matrix of the test images

Actual class Predicted class

Organ slice Non-organ slice

Organ slice 6285 0

Non-organ slice 5 6281
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5.1.2 Experimentation with different activation functions

Even though ReLU is the most commonly used activation

function for any CNN architecture, the proposed architec-

ture is also experimented with hyperbolic tangent, leaky

ReLU and clipped ReLU activation functions and their

performance is shown in Fig. 7. As inferred from Fig. 7,

ReLU activation function in the CTSC-Net outperforms the

tanh, leaky ReLU and clipped ReLU activation functions

for the task of CT slices classification.

5.1.3 Visualization of the feature activation maps

A richer grasp of what the CNN model learns can be

achieved by visualizing the feature maps that are obtained

as a result of applying the kernels to the input. A sample

liver slice from the LiTS dataset is shown in Fig. 8a, and it

is fed into the trained CTSC-Net to visualize the activations

of different layers of the proposed network. Mostly, CNNs

learn to detect features like colour and edges in their first

convolutional layer and deep layers build up their features

by combining features from earlier layers. Figure 8b shows

the activations of 128 kernels of the ReLU layer in the

conv4 block of the proposed architecture, where white

pixels represent strong positive activations and black pixels

represent strong negative activations. As depicted in

Fig. 8b, the white pixels at some channels indicate that the

channel is strongly activated at that position. As evident in

Fig. 8b, the whole liver organ is strongly activated at some

of the channels of the conv4 block. A non-liver slice shown

in Fig. 9a is fed into the proposed architecture, and the

activations of 128 kernels of the ReLU layer in the conv4

block are shown in Fig. 9b. The activations of the ReLU

layer in the conv4 block show that the vertebral canal

region is strongly activated and these strong activations in

the non-liver region decide the slice as a non-liver slice.

Some kernels of conv4 block learn the contour of the actual

organ, as shown in Fig. 8b. Hence, the robustness of the

proposed CTSC-Net is proved by visualizing the feature

activation maps and the proposed network proves to be an

effective model to classify between organ and non-organ

slices.

5.2 Comparison of the proposed CTSC-Net
with conventional machine learning
techniques

For the purpose of comparison with conventional tech-

niques, the machine learning techniques [44–46] are used

and features are extracted from the same datasets and are

trained using different classifiers. Conventional feature

extraction techniques like grey level run length matrix

(GLRLM), grey level co-occurrence matrix (GLCM),

wavelet-based feature extraction techniques and classifiers

like support vector machine (SVM) and AdaBoost are

used. Different wavelets like db1, db2, db3, db4 are applied

on the images, and features were extracted from all the four

components of the wavelet decomposition such as

Table 3 Summary of the effect

of different normalization

techniques in the CTSC-Net

Type Validation accuracy in % Testing accuracy in %

Without normalization 50 50

Cross channel normalization 89.06 92.64

Batch normalization 95.04 99.96

89.63 

82.33 

79.13 

95.04 

87.11 87.56 

83.65 

99.96 
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Fig. 7 Response of the proposed

CTSC-Net to different

activation functions
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approximation (LL), horizontal detail, vertical detail,

diagonal detail and the discrete wavelet transform (DWT)

decomposition level is done up to 3rd level. SVM and

AdaBoost classifiers [47, 48] are used to classify the liver

slices from non-liver slices. From Table 4, it is inferred

that, among db1, db2, db3, db4, a maximum accuracy of

88% is achieved using the GLRLM features obtained from

db1 wavelet for the two level of DWT decomposition while

GLCM and GLRM features extracted from raw images

results in an accuracy of 89% using AdaBoost classifier.

Fig. 8 a Sample organ slice, b visualization of activation maps corresponding to 128 kernels of ‘conv4’ ReLU layer

Fig. 9 a Sample non-organ image, b visualization of activation maps corresponding to 128 kernels of ‘conv4’ ReLU layer

Table 4 Comparison of the proposed CNN model with the conventional machine learning techniques

S.No Input image Features extracted SVM

accuracy

(%)

AdaBoost

accuracy (%)

1 Raw image Histogram based features 64 72

2 Raw image GLRLM features 80 89

3 Raw image GLCM features 75 89

4 Wavelet transformed image. Wavelet: Db1

Wavelet, decomposition level: level 2

GLRLM features from approximation ? details

(combining all the four coefficients)

65 88

5 Wavelet transformed image. Wavelet: Db1

wavelet, decomposition level: level 2

GLCM features from approximation ? details

(combining all the four coefficients)

68 79

6 Proposed CTSC-Net model CNN accuracy 99.96
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But such conventional techniques using hand crafted fea-

tures need a lot of manual intervention. Since CNN auto-

mates the task of feature learning from the input data, the

time taken for experimenting and finding an effective

conventional machine learning-based technique for an

application is not needed. Hence, the proposed CTSC-Net

model outperforms the conventional techniques with an

accuracy of 99.96% and the proposed method proves to be

an effective and accurate system which could assist the

radiologists in diagnosing a 3-D CT volume.

5.3 Comparison of the proposed CTSC-Net
with existing Deep Learning methods

CNN architectures [37] like AlexNet, SqueezeNet, Vgg-16,

ResNet18, GoogleNet, MobileNetV2, ShuffleNet and

DarkNet19 are the pre-trained deep models that were

trained on more than a million images from the ImageNet

database, and these architectures were trained to classify

over a thousand different object categories. Transfer

learning is a way of training the deep learning models

which transfers the learned features from the pre-trained

CNN architectures to perform a new task [38]. The optimal

weights of the pre-trained architectures are set as the initial

weights for the new task and then these models learn and

update the weights during training.

Table 5 presents the comparison of the proposed model

with the existing state-of-the-art deep learning models for

the classification of organ and non-organ slices using the

LITS, 3DIRCADb and COVID-19 CT datasets. For any

pre-trained CNN architecture, the input layer requires the

input image size to be the same as per its own architecture

[49]. Since changing the input image size in the input layer

would affect all internal dimensions of the corresponding

architecture, the input image size for all the existing deep

models in Table 5 is changed according to the actual input

size of the corresponding architectures. The implementa-

tion of the existing models in Table 5 used the same dataset

and same hyper-parameter settings (epochs, weights

initialization, loss function, learning rate and optimization

algorithm) as CTSC-Net.

Transfer learning [50] is performed in all the methods 1

to 8 in Table 5. In each method 1 to 8, the optimal weights

of the respective pre-trained network are considered as the

initial weights for the task of CT slice classification and the

weight updates are performed over the initial weights. In

contrast, the proposed CTSC-Net is built from scratch

based on various experiments as discussed in Table 1. As

inferred from Table 5, the CTSC-Net has outperformed all

the other existing methods for the task of CT slice classi-

fication between organ and non-organ slices. Still, the

existing architectures could not provide the maximum

accuracy where accurate results are the most essential in

medical imaging applications. The proposed CNN archi-

tecture has only 20 layers, which is very little compared to

the pre-trained architectures discussed in Table 5. The

proposed model contains only 0.5 million network

parameters, which is less compared to the other existing

models. The memory consumption of the trained CTSC-

Net model is 5.39 MB, which outperforms the other

comparable models. In the proposed work, the original

dimension of the dataset images is used where the CTSC-

Net has effectively learnt the discriminative features from

the input slices and has produced the maximum results

compared to the state-of-the-art deep learning methods.

Hence, the proposed CTSC-Net model has produced the

maximum accuracy as well as the highest AUC score

compared to the existing deep models for the task of CT

slice classification.

Table 6 presents the network complexity of different

models in terms of training time of an epoch, prediction

time per image, number of network parameters and mem-

ory consumption of the trained model. As evident in

Table 6, the network complexity of CTSC-Net is very

minimal than the other existing models. The training time

of a complete epoch is considered as the unit training time.

The training time and prediction time of the proposed

model are less than the other models. The training time of

CTSC-Net is obviously less due to the lower number of

Table 5 Comparison of the

proposed CTSC-Net with the

state-of-the-art deep learning

models

S. No Model name Input image size No of layers Testing accuracy (%) AUC

1 AlexNet [17] 227 9 227 9 3 25 50 0.50

2 SqueezeNet [18] 227 9 227 9 3 68 76.02 0.887

3 Vgg-16 [19] 224 9 224 9 3 41 91.21 0.984

4 ResNet18 [20] 224 9 224 9 3 71 93.80 0.976

5 GoogleNet [21] 224 9 224 9 3 144 91.6 0.965

6 MobileNetV2 [22] 224 9 224 9 3 154 83.04 0.830

7 ShuffleNet [23] 224 9 224 9 3 172 89.10 0.922

8 DarkNet19 [24] 256 9 256 9 3 64 75.10 0.792

9 Proposed CTSC-Net 512 9 512 9 1 20 99.96 0.985
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network parameters. The proposed model contains only 0.5

million network parameters, which is less compared to the

other existing models. The memory consumption of the

trained CTSC-Net model is 5.39 MB, which outperforms

the other comparable models. Hence, the computational

burden of the CTSC-Net is reduced to a great extent

compared to the existing models.

For all the models in Table 5, the training accuracy and

loss values at each epoch are depicted in Fig. 10a, b.

The performance of the proposed CTSC-Net is indicated

by the red straight lines in both the training accuracy and

training loss plots. The accuracy and loss values for dif-

ferent models are shown by different types of lines and

colours. As seen in Fig. 10a, the training accuracies of

VGG-16, DarkNet19, SqueezeNet and AlexNet models

have not reached their maximum at the end of 10 epochs.

Despite the fact that all of the remaining models have

reached maximum training accuracy, the CTSC-Net

achieves maximum training accuracy faster than the other

models. As evident in Fig. 10b, the proposed CTSC-Net

shows faster convergence than all the other existing mod-

els. The training loss value of the CTSC-Net reached and

settled around the stable-point final solution faster than all

the other models. Hence, the CTSC-Net proves to be a

more efficient model than the existing models in terms of

faster convergence.

The proposed task of classification of organ and non-

organ slices can also be accomplished using a segmentation

model. To affirm the presence of an organ in the CT slice,

the remaining pixels from the segmented organ region can

be analysed. The segmentation networks consist of double

the number of network layers and require nearly double the

number of training parameters as the classification net-

works. The higher number of training parameters leads to

Table 6 Comparison of network complexity of CTSC-Net with other models

S.

No

Model name Training time of an epoch

(hours)

Prediction time per image

(seconds)

Parameter quantity (M—

million)

Memory consumption (MB—

megabyte)

1 AlexNet [17] 4.7 5.8 60 M 990 MB

2 SqueezeNet

[18]

4.5 5.2 51.2 M 780 MB

3 Vgg-16 [19] 6.2 9.1 138 M 2309 MB

4 ResNet18 [20] 2.9 3.6 11.7 M 112 MB

5 GoogleNet [21] 2.5 2.9 7 M 73 MB

6 MobileNetV2

[22]

1.9 2.2 3.4 M 37.2 MB

7 ShuffleNet [23] 1.4 1.8 2.3 M 29 MB

8 DarkNet19 [24] 3.4 4.2 20 M 197 MB

9 Proposed

CTSC-Net

0.9 1.15 0.5 M 5.39 MB
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Fig. 10 a Training accuracy of different models at each epoch, b loss values of different models at each epoch
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high computational complexity and high memory usage.

Any deep segmentation model should be provided with the

ground truth or label images along with the actual input

images. At each iteration during training of the model, the

segmentation model deals with the input image along with

its corresponding ground truth and it needs more compu-

tational power than a classification model. Any small

margin of error during segmentation will result in the

incorrect classification of organ slices. Thus, segmenting

the organ and analysing the segmented results for the

presence of an organ is a two-step computationally com-

plex and time-consuming process. Consequently, the clas-

sification strategy is an efficient and straightforward

approach for distinguishing organ slices from non-organ

slices in a 3-D CT image.

There are some advantages to the proposed CTSC-Net

when compared with the existing deep models. First, the

CTSC-Net has performed very well on three different

datasets, such as LiTS, 3DIRCADb and COVID-19 CT.

The proposed model is not trained and tested on the three

datasets individually; indeed, all the 2-D slices from the

three datasets are mixed together. The model is collectively

trained and tested on the 2-D slices of the three data-

sets. None of the slices of 3DIRCADb dataset are included

in the training and validation sets, but only in the test set.

Even though the CTSC-Net has been trained only on the

LITS and COVID-19 CT datasets, the model has classified

the slices of the 3DIRCADb dataset precisely. Second, the

proposed model has attained faster convergence during

training than the other existing deep models. Third, the

20-layer CTSC-Net has resulted in 0.5 million network

parameters and the memory consumption of the trained

model is 5.39 MB. Low memory consumption and high

computational efficiency are achieved by using a lower

number of layers in the architecture. Fourth, many authors

have down-sampled the original image size to compensate

for the memory requirements and network performance in

the literature, but the original image of size 512 9 512

pixels is used in this work. Even though down-sampling the

image produces faster computation, it might result in some

loss of information from the images. Thus, the constant

intensity range of the organ in the CT slice makes the CNN

kernels learn discriminating and effective features for

classification between organ and non-organ slices. Fifth,

the organ in any shape and size can be recognized by the

proposed method so that tumour detection on the recog-

nized organ slices can be done effectively. Finally, the

CTSC-Net focuses on reducing the time taken by radiolo-

gists for differentiating the organ and non-organ slices in a

3-D CT volume. The proposed method can automatically

recognize organ slices from a 3-D CT volume and this will

fasten the initial stages of analysing a CT scan image. The

application of the proposed work is that the organ slices

recognized by the CTSC-Net can be used as inputs to the

organ segmentation or tumour detection algorithms where

the input organ slices are automatically selected by the

proposed method instead of manual process. Hence, the

proposed CTSC-Net can automatically select the appro-

priate organ slices from the 3-D volume where those slices

contain the organ of interest, and from those selected slices,

the diagnosis can be done easily and faster.

6 Conclusion

In this paper, a novel CNN called the computed tomogra-

phy slice classification network (CTSC-Net) is proposed

for the automatic classification of organ and non-organ

slices from a 3-D CT volume. The proposed system is

validated on three different datasets such as LITS, 3DIR-

CADb and COVID-19 CT, including the liver and lung

organs. Nine different CNN architectures are developed

and experimented with the collective dataset to arrive at the

optimal CTSC-Net. The CTSC-Net achieved the highest

accuracy of 99.96%, sensitivity of 99.93% and specificity

of 100% for a test set of 12,571 CT slices. The main

advantage of the proposed work is that organ slices are

classified accurately irrespective of the organ’s shape and

size, since medical image diagnosis should be maximally

accurate in order to prevent any misdiagnosis. For better

comparison, the same task of CT slice classification is also

experimented with using different conventional machine

learning techniques as well as pre-trained deep models. The

proposed CTSC-Net is a 20-layer architecture that has

outperformed all the comparable models in the literature

for CT slice classification between organ and non-organ

slices. The visualization of the feature activation maps of

the trained model also ensures that the CTSC-Net has

learned discriminative features and the proposed network

proves to be an effective model to classify between organ

and non-organ slices. The proposed model achieved only

0.5 M network parameters, which is a significant outcome

for this work. Hence, the proposed CTSC-Net is an

effective model to recognize the organ slices from a 3-D

CT volume that will be helpful in clinical diagnosis and

reduce the time of diagnosis. In the future, the proposed

CTSC-Net can be tested on other medical imaging

modalities such as MRI, PET and for other classification

tasks.
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