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Abstract
Due to the coronavirus disease 2019 pandemic, local authorities always implanted non-pharmaceutical interventions, such

as maintaining social distance to reduce human migration. Besides, previous studies have proved that human migration

highly influenced air pollution concentration in an area. Therefore, this study aims to explore whether human migration can

work as a significant factor in the post-pandemic age to help PM2.5 concentration forecasting. In this work, we first analyze

the variations of PM2.5 in 11 cities of Hubei from 2015 to 2020 and further compare PM2.5 trends with the migration

trends of Hubei province in 2020. Experimental results indicate that the human migration indirectly affected the urban

PM2.5 concentration. Then, we established a graph data structure based on the migration network describing the migration

flow size between any two areas in the Hubei province and proposed a migration attentive graph convolutional network

(MAGCN) for forecasting PM2.5. Combined with the migration data. The proposed model can attentively aggregate the

information of neighbor nodes through migration weights. Experimental results indicate that the proposed MAGCN can

forecast PM2.5 concentration accurately.

Keywords COVID-19 � Air pollution � Graph neural network � Deep learning

1 Introduction

The novel coronavirus disease 2019 (COVID-19) pan-

demic has become a tremendous thread globally since the

end of 2019. Previous studies indicate that intercity

migrations can accelerate the spread of the COVID-19

[1, 2]. Hence, local authorities always implement non-

pharmaceutical interventions (NPIs) and even lockdown

the whole city to contain the spread of the COVID-19

epidemic. Previous studies indicate that the concentration

of air pollutants in megacities of many countries, including

India, China, Japan, Italy, and the USA, reduced due to the

restriction of human activities (or human migration) caused

by the lockdown of the city [3–8]. From the end of 2019 to

mid-2020, Wuhan suffered from the COVID-19 pandemic,

while the local government took measures to lock the city

down to restrict human migration. At the same time, the air

quality improved in Wuhan and even in the entire Hubei

province [9, 10]. Multiple factors influence the air quality

in an area, such as sand storms, factory exhaust emissions,

transportation exhaust emissions, agricultural incineration,

and waste incineration [11, 12]. Previous studies reveal that
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these factors can be utilized to enhance the performance of

the air quality forecasting method [13, 14]. However, in the

post-pandemic age, human migration is also one of the

most significant factors for forecasting air pollution due to

the frequent lockdown of cities. Many studies have

achieved accurate predictions of air pollution based on

human activities during the COVID-19 epidemic [15, 16].

PM2.5 is considered as one of the main air pollutants in

environmental science [17]. With the development of

machine learning (ML) and deep learning (DL), many

studies utilize improved DL algorithms to predict the

PM2.5 concentration or other air pollutants. Some early

studies use deep neural networks (DNNs) to predict air

pollution concentration [18–20]. Recurrent neural networks

(RNNs) are one of the common methods adopted for pre-

dicting air pollutants, which can extract temporal features.

For instance, RNNs are used to forecast PM10, PM2.5 and

CO2 concentration [21–23]. Convolution neural networks

(CNNs) are also used to convolute the temporal features for

predicting PM2.5 [24]. In addition, studies use wavelet

decomposition (WD) and complete ensemble empirical

mode decomposition (CEEMD) filters to preprocess air

pollution data, and then combine these two methods with

DL algorithms to predict air quality index (AQI) [25, 26].

However, none of the neural network models is effective in

all air quality forecasting problems and can overwhelm all

the other models. Instead, these proposed various methods

all have their advantages and disadvantages.

Graph embedding has been widely used in processing

network (or graph) tasks. Scarselli et al. first proposed the

graph neural network (GNN) [27]. Bruna et al. first pro-

posed the GCN according to the spectral method, using the

Laplacian matrix to transform the graph information into

the spectral domain through the Fourier Transform filter for

convolution calculation [28]. Then Defferrard et al.

replaced the Fourier Transform filter with Chebyshev

polynomials and proposed ChebyNet [29]. Kipf et al. used

the first-order Chebyshev polynomial approximation to

convolute, which is the most common GCN, and its cal-

culation at the node-level can be considered as the calcu-

lation in spatial domain [30]. Velivckovic et al. proposed a

graph attention network (GAT) [31]. This algorithm nor-

malizes the extraction of the weight features of the edges

and further filters the neighbor nodes in the aggregation

process.

Graph embedding models can combine features with a

hidden layer to aggregate important information from dif-

ferent nodes, which is more effective in dealing with net-

work data. Hence, it is worth exploring the potential use of

GCN in air quality forecasting. Using GCNs to aggregate

the information of air pollution concentration in both the

temporal domain and spatial domain can obtain an accurate

prediction. Qi et al. first use GCN to aggregate the air

pollution and meteorological information from different

observation stations in an area to predict the PM2.5 trends

[32]. Using GCN to predict air pollution requires data-

driven processing of air pollution data. Additionally, con-

structing reasonable networks from aggregated informa-

tion, including air pollution, meteorological and other data,

to reveal the key features is one of the most important steps

for developing a GCN model predicting air pollution

treads. For example, Zhou et al. used wind direction data in

an area to build a wind-filed as the network for air pollution

forecasting [33]. Wang et al. established a network to

predict air pollution based on the regional and functional

stations [34]. Wang et al. built a network based on the

relationship of multiple factors such as weather, tempera-

ture, and wind direction to predict air pollution [35].

However, to our knowledge, few researchers consider the

influence of human activity on constructing migration

networks to develop GCNs models for air pollution con-

centration forecasting.

In this study, we adopt 11 cities in Hubei province as the

study area. We first compare the 2020 annual PM2.5

concentration in Hubei with the average PM2.5 concen-

tration from 2015 to 2019, and find that the PM2.5 con-

centrations in Hubei cities all reduced. In order to confirm

that the reduction in PM2.5 concentration in 2020 is related

to the lockdown of cities, we analyze the PM2.5 concen-

tration trends in each city in 2020 and compare them with

the migration pattern. Then, we construct a graph data

structure based on the relationship between migration

patterns and air pollution. Finally, we propose a migration

attentive graph convolutional network (MAGCN) for pre-

dicting the PM2.5 concentration of each city. The model

extracts and aggregates the migration information of the 11

cities to construct weighted migration networks. The pre-

diction results show that the proposed model combining

with migration data is better than the results of the baseline

models, including ChebyNet, GGNN, GCN, and GAT. The

main contributions of this paper are as follows:

• We deeply analyze the relationships between human

migration and the concentration of PM2.5, and clearly

show that the migration flow indirectly affects the air

pollution variation during the COVID-19 pandemic.

• We find the characteristics of the migration network in

Hubei province, and utilize the characteristics to

combine the air pollution dataset and human migration

dataset with time steps, reconstructing them into a new

dynamic graph data structure based on the migration

network, which is named migration air graph (MAG).

• We propose a migration attentive graph convolutional

network (MAGCN) based on the migration attentive

coefficient (MAC) with consideration of the human
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migration data. The MAGCN achieves better perfor-

mance by considering human migration data.

2 Data description

2.1 Air pollution data and human migration data

Air pollution data are provided by the Ministry of Ecology

and Environment and downloaded from the website

(https://www.aqistudy.cn). This dataset records daily air

pollution concentration of 6 air pollutants, including

PM2.5, PM10, CO2;NO2; SO2;O3, and daily climate data

such as temperature, humidity, wind level. Both two kinds

of data are recorded by the observation stations located in

the 168 cities of China from January Jan 1, 2015, to Dec

31, 2020.

Human migration data are provided by AutoNavi Big

Data (https://trp.autonavi.com/home.html). The migration

dataset consists of the migration routes from one city to

another city in a province, while the migration flow size

from one city to another city is denoted by the AutoNavi

Migration Index (AMI). According to the migration flow

size from the AutoNavi data, a migration network can be

established, which is shown in Fig. 1.

2.2 Adopted cities

In this study, we focus on the air quality and migration in

cities of the Hubei province. The details of the air pollution

dataset and AutoNavi migration dataset are shown in

Table 1. In this study, the air pollution dataset of 11 cities,

recorded from January 1st, 2015, to December 31st, 2020,

is adopted for analysis. AutoNavi migration dataset con-

tains the migration flow size of 16 cities. The period of this

dataset is from December 1st, 2019, to November 30th,

2020. The sampling interval of these two datasets is 24 h.

Note that the air pollution dataset covers 11 cities, while

the migration dataset covers 16 cities. Hence, we just

adopted 11 cities, both in the migration and air pollution

datasets, for investigation. These 11 cities are Suizhou,

Ezhou, Xianning, Jingzhou, Jingmen, Xiaogan, Wuhan,

Yichang, Xiangyang, Huangshi, and Huanggang. Addi-

tionally, the analysis period of these two datasets is from

December 1st, 2019, to November 30th, 2020.

3 Data analysis

3.1 Annual PM2.5 variation in Hubei cities

We first analyze the annual variations of PM2.5 concen-

tration. The daily PM2.5 concentration p(t) of each city is

utilized to derive the annual average PM2.5 concentration

�p in a certain year according to the Eq. (1):

�p ¼ 1

T

XT

t¼1

pðtÞ; ð1Þ

where T is the number of days in a year, namely, T ¼ 365

(or T ¼ 366 in 2016, 2020). The annual average PM2.5

concentration for a total of 6 years from 2015 to 2020 are

represented by �p1; �p2; . . .; �p6, respectively.

Then, we utilize the annual average PM2.5 concentra-

tions �p1; �p2; . . .; �p6 to derive the annual variation of PM2.5

in 11 cities of Hubei province. There are two types of

variation:

• Type 1: Variation between annual PM2.5 concentration

in 2020 and the concentration in 2019:

r2019 ¼
�p5 � �p6

�p5
� 100%; ð2Þ

where r2019 is the reduction rate of PM2.5 concentra-

tion between 2019 and 2020.

• Type 2: Variation between the annual concentration in

2020 and the average concentration of past five years

(2015–2019):

rf ¼
1
M

PM
i �pi � �pj

1
M

PM
i �pi

� 100%

¼ 1�
M �pjPM
i �pi

� 100%;

ð3Þ

where rf is the reduction rate ofthe PM2.5 concentra-

tion between 2020 and past 5 years (2015–2019), M ¼
5 , i ¼ 2; 3; . . .; 6 and j ¼ 1; 2; . . .; 5.

Fig. 1 AutoNavi migration network in Hubei province, red points

stand for cities in Hubei province, and the gray lines with arrows are

the directed routes of migrations. Thus, the migration network is a

fully connected direct graph (color figure online)
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Results indicate that the PM2.5 concentration of 11 cities

in 2020 all decreased (shown in Fig. 2), especially for

Jingzhou city, the reduction rate is high as 33.89%, com-

pared with the past 5 years. Additionally, the PM2.5 con-

centration in Yichang, Jingzhou, and Jingmen cities,

respectively, reduced by 21.94%, 20.39%, and 19.38% in

2020. Approximately 20% reduced the PM2.5 concentra-

tion in these cities compared with the concentrations in

2019. The annual variations of PM2.5 concentration in the

11 cities are presented in Table 2.

In order to further prove the annual PM2.5 reduction of

each city, we plot the annual average PM2.5 concentration

in each city for comparison based on original daily data.

The comparison results are shown in Fig. 3, and the

maximum, minimum, mean and median are shown in

Table 3.

3.2 PM2.5 concentration trends from 2015
to 2020

The Moving Average (MA) of the daily PM2.5 concen-

tration from 1st January to 31st December in the past 5

years and the MA of PM2.5 trend from 1st January to 31st

December 2020 are derived, respectively. The PM2.5

concentration in a city at time t is represented by x(t), then,

the PM2.5 MA can be calculated using the Eq. (4):

�xðtÞ ¼ 1

W

XW�1

k¼0

xðt � kÞ; ð4Þ

where W is the window size of MA. Here, we set the

window size toW ¼ 7, and k is the step of the window. The

original daily PM2.5 concentration and the MA PM2.5

concentration in 2020 and the past 5 years are shown in

Fig. 4.

The PM2.5 concentration in 2020 rose before the lock-

down of Wuhan from 1st January to 25th January. How-

ever, after 25th January, the Wuhan lockdown restricted

large-scale human migration. Therefore, the trend of

PM2.5 concentration in Hubei cities in 2020 reduced

sharply. This phenomenon continued until the end of the

lockdown in Wuhan. Obviously, the PM2.5 concentrations

from 25th January to 6th April in 2020 were smaller than

the same period in the past five years because of the

COVID-19 lockdown and the restriction of human migra-

tion. Due to the COVID-19 epidemic, the PM2.5 concen-

tration in each city remained lower than the average

concentration in the past five years.

3.3 Comparative analysis between PM2.5
and migration trends

We combine the monthly averages of PM2.5 concentration

in 11 cities in 2020 with the monthly average trends of

AMI data for comparative analysis, is shown in Fig. 5. Due

to the COVID-19 epidemic, Wuhan began to lockdown the

city from 23rd January 2020 until 8th April 2020. In

addition, Wuhan is the capital city of Hubei province,

which inevitably affects migration flow size in other sur-

rounding cities. This leads to a sharp decrease in the

migration population in all most cities of Hubei province

from January to April. Until April, the AMI slowly

recovered to 0.3. Thus, the decline of the monthly PM2.5

trend from January to Jun 2020 is related to the lockdown

Table 1 Dataset information

Dataset Cities Period Sampling

interval

Air pollution Suizhou, Ezhou, Xianning, Jingzhou, Jingmen, Xiaogan, Wuhan, Yichang, Xiangyang,

Huangshi, Huanggang

2015/01/

01–2020/12/

31

24 h

AutoNavi

migration

Suizhou, Ezhou, Xianning, Jingzhou, Jingmen, Xiaogan, Wuhan, Yichang, Xiangyang,

Huangshi, Huanggang, Xiantao, Qianjiang, Shiyan, Shennongjia, Enshi Tujia and Miao

2019/12/

01–2020/11/

30

24 h

Fig. 2 PM2.5 reduction rate in each city. The yellow bar represents

the reduction rate of the city’s annual PM2.5 between the past 5 years

and 2020. The orange bar represents the reduction rate of PM2.5

concentration between 2020 and 2019 (color figure online)
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of the Wuhan. After human migration recovered in April,

the overall PM2.5 concentration in Hubei province grad-

ually rose in August.

To prove that the lockdown of Wuhan affects the

migration flow size in surrounding cities, we plot the

migration network of Hubei. We use Eq. (5) for averaging

the AMI weight of each edge of the migration network for

an entire year:

�aij ¼
1

T

XT

t

aijðtÞ ð5Þ

where T is the days of a year, and �aij is the annual average
AMI of each edge. The annual average AMI of all edges of

the migration network is shown in Fig. 6, which indicates

the variations in the migration population of 11 cities in

Hubei province in 2020.

Obviously, most of the travelers in Hubei migrate from

Wuhan to Xiaogan, Wuhan to Huanggang, Wuhan to

Ezhou, and Wuhan to Xianning. It can be found that most

of the routes with a relatively large AMI are all related to

Wuhan. This proves that if the scale of human migration

between Wuhan and surrounding cities is still very large,

once Wuhan is in lockdown, the migration flow size of

surrounding cities will inevitably be affected. The results of

migration flow in the network provide an important refer-

ence for PM2.5 prediction. Moreover, the migration flow

also is an additional feature of the prediction model, which

reveals the information of nodes that the proposed model

should aggregate. Hence, the analysis of migration flow is

significant and helpful for the improvement of the proposed

model.

4 PM2.5 concentration prediction based
on migration attentive graph
convolutional network

4.1 Migration-air graph representation

Here, we first develop weighted migration networks G ¼
ðV; EÞ for representing the migration flow size from one

city to another city. In this network, node-j stands for the

migration flow size from city-i to city-j at time t. Note that

the migration network of cities in Hubei is a fully con-

nected network. In order to facilitate prediction, we com-

bine migration flow size aij and aji to derive the total

migration flow size between city-i and city-j as follows:

mij ¼ aij þ aji ð6Þ

Then, we can derive a simplified migration network, with

mij ¼ mji, which is shown in Fig. 7.

Cities can be represented as a set V ¼ fv1; v2; . . .; vNg,
and the number of nodes is jVj ¼ N. The migration net-

work is transformed from a directed graph to an undirected

graph, which is represented as G ¼ ðV; E;MÞ. M is the

edge weight set formed by the AMI data, mij 2 M, which

represents the weight of the edge connecting node-i and

node-j. Additionally, we adopt the air pollution concen-

trations and climate data of each city in Hubei province as

features hi of each node in the migration network graph.

Then, we can define migration-air graphs (MAGs), which

are shown in Fig. 8.

Obviously, a MAG consists of multiple city nodes V,

and each city node has a feature set of air pollution and

climate data hviðtÞ 2 R1�F at the time step t, where F is the

number of features. Then the feature set combination

matrix of all nodes can be expressed as

HðtÞ ¼ fhv1ðtÞ; hv2ðtÞ; . . .; hvN ðtÞg;HðtÞ 2 RN�F , each

MAG is represented by G(t) at time step t.

Table 2 Variations of PM2.5

concentration in each city
City Type 1: 2019 and 2020 (%) Type 2: past 5 years avg. versus 2020 (%)

Suizhou �11.94 �28.28

Ezhou �10.39 �29.32

Xianning �16.82 �32.31

Jingzhou �20.39 �33.89

Jingmen �19.38 �21.12

Xiaogan �17.80 �28.79

Wuhan �17.21 �29.95

Yichang �21.94 �30.50

Xiangyang �12.87 �18.82

Huangshi �13.00 �32.62

Huanggang �12.58 �25.08
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Furthermore, we use a time window k with size d, and

combine the MAG time series and feature set with the same

window size for adopting the input data. It means that if the

window size is d, then Gk ¼ fGðt þ d � 1Þ;Gðt þ d �
2Þ; . . .;GðtÞg; t ¼ 1; 2; . . .; T and feature set Hk ¼ fHðt þ
d � 1Þ;Hðt þ d � 2Þ; . . .;HðtÞg are adopted as input data

for training forecasting model. MAG can not only use the

air pollution concentration and climate characteristics of

each node, but also predict the PM2.5 concentration based

on the AMI data (edge weight) and the characteristics of

each neighbor.

4.2 Migration attentive graph convolutional
network

In the previous sections, we analyze that human migration

has an indirect impact on the trend of PM2.5 concentration

(especially during the post-pandemic age), and the air

quality in each city is related to its neighbors. Therefore,

we propose a model that fits the situation of this research

by improving the attention mechanism. In this study, based

on the established MAG graph data structure, we use graph

GCNs to predict PM2.5 concentration in each city of Hubei

province simultaneously. We are inspired by the GCN

(a) PM2.5 Dis-
tributions in
Suizhou

(b) PM2.5 Dis-
tributions in
Ezhou

(c) PM2.5 Dis-
tributions in
Xianning

(d) PM2.5 Dis-
tributions in
Jingzhou

(e) PM2.5 Dis-
tributions in
Jingmen

(f) PM2.5 Dis-
tributions in
Xiaogan

(g) PM2.5 Dis-
tributions in
Wuhan

(h) PM2.5 Dis-
tributions in
Yichang

(i) PM2.5 Dis-
tributions in
Xiangyang

(j) PM2.5 Dis-
tributions in
Huangshi

(k) PM2.5 Dis-
tributions in
Huanggang

Fig. 3 PM2.5 concentration in 11 cities. The red box represents the

distribution of average daily PM2.5 concentration from 2015 to 2019;

the yellow box represents the distribution of daily PM2.5 concentra-

tion in 2019; the blue box represents the distribution of daily PM2.5

concentration in 2020. The upper and lower edges of each box

represent the upper and lower quartiles, and the red line in the middle

represents the median (color figure online)
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proposed and summarized by Kipf et al. [30] and the GAT

proposed by Velivckovic et al. [31]. In this work, we

propose a migration attentive graph convolutional network

(MAGCN), which is a developed GCN for the node-task

regression prediction of air quality with migration

networks.

The GCN aggregation layer we utilize is a 1st order

approximation to ChebyNet which was proposed by Def-

ferrard [29], which can be defined as:

Hlþ1 ¼ rð eD�1
2 eA eD�1

2HlWlÞ ð7Þ

where r is the ReLU function. Hl is the hidden feature

matrix in layer l. Wl is learnable parameter matrix in layer

l. eA is the self-loop adjacent matrix eA ¼ Aþ I. eD�1
2 eA eD�1

2

is the normalization in the spectral graph processing, where

D is the degree matrix.

Here, we define a degree matrix D as follows:

Dij ¼
dðviÞ i ¼ j;

0 otherwise,

�
ð8Þ

where d(v) represents the degree of the node v and we haveP
v2V dðvÞ ¼ 2jEj.
Each node vi has hidden layer feature set hvi . We can

directly derive the aggregation of the GCN layer from the

node-level, then the GCN aggregation layer can be defined

as:

hlþ1
vi

¼ r
X

vk2N ðviÞ[vi

1

cik
hlvkW

l

0

@

1

A; ð9Þ

where cik ¼ 1
Âik

is the normalization constant, and N ðviÞ [
vi represents the node vi and its neighbor set and itself (self-

loop).

Here, we utilize the migration index mij of each edge in

MAG as the Migration Attentive Coefficient (MAC) of the

model, and calculate Softmax normalization processing on

the MAC mij:

bij ¼ softmaxj mij

� �
¼

exp mij

� �
P

vk2N ðviÞ exp mikð Þ : ð10Þ

Then, we define the MAGCN layer with the normalized

MAC bij and the conventional GCN aggregation:

hlþ1
vi

¼ r
X

vj2N ðviÞ

1

cj
bijh

l
vj
Wl

vj
þ 1

ci
hlviW

l
vi

0
@

1
A: ð11Þ

A layer of aggregation process of MAGCN can be repre-

sented in Fig. 9. The green area represents the neighbor

aggregated nodes in the layer of MAGCN. The red node is

the target node vi, and the color depth of the brown edge

connected to the red node and its neighbor nodes represents

the value of MAC bij.
The MACs b of different edges can be combined as

MAC matrix B. Finally, the convolutional aggregation

process of a layer of Migration Attentive aggregation in

matrix form can be expressed as:

Hlþ1 ¼ rð eD�1
2B eA eD�1

2HlWlÞ ð12Þ

where M 2 RN�N . The difference between the proposed

MAGCN and ordinary GAT is that ordinary GAT directly

uses the hidden information h to calculate the attention

coefficient, while MAGCN directly uses the migration

index to calculate the MAC, which means that MAGCN

uses the migration index as the edge weight to extract the

information of neighbor city nodes.

Table 3 PM2.5 concentration distribution of the 11 cities

City Past 5 years avg. 2019 2020

Max Min Mean Median Max Min Mean Median Max Min Mean Median

Suizhou 124.00 15.80 51.23 42.10 199.00 7.00 41.73 32.00 139.00 5.00 26.74 30.00

Ezhou 132.60 20.80 53.67 48.90 210 8.00 42.27 37.0 172.00 6.00 37.87 33.00

Xianning 106.00 18.80 43.89 39.40 132.00 6.00 35.72 30.00 140.00 4.00 29.71 26.00

Jingzhou 142.60 20.60 55.52 48.30 204.00 9.00 46.10 39.00 115.00 6.00 36.70 29.00

Jingmen 161.40 18.40 57.35 47.30 298.00 6.00 56.11 42.00 169.00 3.00 45.24 34.00

Xiaogan 112.40 14.80 50.20 44.00 164.00 8.00 43.49 39.00 145.00 6.00 35.75 31.00

Wuhan 134.20 19.00 53.57 45.50 164.00 7.00 45.33 39.00 173.00 5.00 37.52 32.00

Yichang 220.00 14.60 58.60 45.50 284.00 5.00 52.17 37.00 161.00 3.00 40.72 30.00

Xiangyang 227.00 19.00 64.06 50.60 323.00 11.00 60.13 44.00 188.00 7.00 52.38 42.00

Huangshi 123.60 21.20 52.05 48.60 151.00 8.00 40.31 35.00 143.00 7.00 35.07 32.00

Huanggang 118.00 16.80 47.56 42.60 246.00 8.00 40.76 35.00 129.00 4.00 35.63 33.00
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5 Experimental results

5.1 Algorithm settings

In this study, four Graph Neural Networks are used for

comparison as the baseline models, including ChebyNet

[29], GGNN [36] , GCN [30] and GAT [31]. In the opti-

mization framework, L2 regularization is added to the

Mean Square Error (MSE) loss function. The loss function

of L2 regularization is as follows:

lðwÞ ¼ 1

N

XN

i¼1

1

T

XK

k¼1

ðfi;k � yi;kÞ2 þ k
XM

j¼1

w2
j ; ð13Þ

(a) PM2.5 Concentration
Trends in Suizhou

(b) PM2.5 Concentration
Trends in Ezhou

(c) PM2.5 Concentration
Trends in Xianning

(d) PM2.5 Concentration
Trends in Jingzhou

(e) PM2.5 Concentration
Trends in Jingmen

(f) PM2.5 Concentration
Trends in Xiaogan

(g) PM2.5 Concentration
Trends in Wuhan

(h) PM2.5 Concentration
Trends in Yichang

(i) PM2.5 Concentration
Trends in Xiangyang

(j) PM2.5 Concentration
Trends in Huangshi

(k) PM2.5 Concentration
Trends in Huanggang

Fig. 4 PM2.5 concentration in past 5 years and 2020 in 11 cities. The

light blue and light red solid lines are the original PM2.5 concen-

tration in 2020 and the original PM2.5 concentration in the past 5

years; the dark blue dotted line and the dark red dotted line are the

MA concentration in 2020 and the past 5 years, respectively. The

orange region is the lockdown period of Wuhan city from January

23rd, 2020, to April 8th, 2020 (color figure online)

Fig. 5 Monthly PM2.5 trends and AutoNavi Migration Index. The red

line is the AutoNavi Migration Index (AMI), and the blue line is the

PM2.5 concentration trend. The trend range of the line segment in the

figure is from December 2019 to November 2020. The y axis on the

left is the specific value of the migration index, and the y axis on the

right is the PM2.5 concentration (color figure online)
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where fi;k and yi;k is the predicted and observed PM2.5

concentration over a k days time windows, respectively;

l(w) is the error depending on the model parameter w;

k
PM

j¼1 w
2
j is the L2 parameter of k L2 regularization term.

We use 70% of the entire dataset as the training set and

the remaining 30% dataset as the test set. Here, we adopt a

grid search method to search the optimal hyper-parameters

of each model. Here, we consider three testing scenarios

with different time window sizes, namely, d ¼ 1, 4, and 7

days, respectively. In each scenario, the grid search method

is adopted to find the optimal hyper-parameters of the four

baseline models and the MAGCN model, while the detailed

information of the hyper-parameters of these models is

presented in Tables 4, 5 and 6, respectively, where

’’Order’’ is the order of Chebyshev polynomials.

We adopt 4 common regression task evaluation criteria

for evaluating the performance of these model, including

MSE, RMSE, MAE and R2. These 4 evaluation criteria can

be calculated from Eqs. (14) to (17), where fi and yi stand

for the predicted and observed PM2.5 concentration of

node vi.

• Mean square error (MSE):

MSE ¼ 1

K

1

N

XK

k¼1

XN

i¼1

ðfi;k � yi;kÞ2: ð14Þ

• Root mean square error (RMSE):

Fig. 6 2020 Average AutoNavi Migration Index on Hubei Migration

Network. The darker the color of an edge in the figure, the larger the

average AMI of the edge

Fig. 7 Sum of direction migration indexes

Fig. 8 Migration-air pollution

Graph Representation

Fig. 9 The process of 1 layer MAGCN aggregation
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RMSE ¼ 1

K

1

N

XK

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

ðfi;k � yi;kÞ2
vuut : ð15Þ

• Mean absolute error (MAE):

MAE ¼ 1

K

1

N

XK

k¼1

XN

i¼1

jfi;k � yi;kj: ð16Þ

• R square (R2):

R2 ¼ 1

K

XK

k¼1

1�
PN

i¼1 ðfi;k � yi;kÞ2PN
i¼1ðyi;k � �ykÞ

2
: ð17Þ

where �y is the average of observed PM2.5

concentrations.

For MSE, MAE, and RMSE, they are smaller for the better

model. The range of R2 is ð�1; 1�, then the closer R2 to 1,

the better the prediction result.

5.2 Forecasting results

We set 3 different window sizes (d ¼ 1, 4, and 7 days) as 3

scenarios for training and use MSE, RMSE, MAE and R2

as criteria to evaluate these models, including ChebyNet,

GGNN, GCN, GAT and the proposed MAGCN model. The

experimental results are shown in Table 7 and Fig. 10. the

bold texts in the table stand for the best scores. Forecasting

results after tests denote that the proposed MAGCN model

can provide adequate performance when d ¼ 1 day with

MAE as 9.5444. If the window sizes are d ¼ 4 and d ¼ 7

days, the proposed MAGCN model outperforms other

models. When the window size is d ¼ 4 days, the best

forecasting models are MAGCN with MSE as 191.9483,

RMSE as 12.9515, MAE as 9.3074, and R2 as 0.4383.

Similarly, in the scenario with d ¼ 7 days, the MSE,

RMSE, MAE and R2 of the MAGCN prediction PM2.5

concentration are 189.2669, 12.8878, 9.4314, 0.4328,

which is also the best results.

In detail, we compare the evaluation criteria of MAGCN

model in different scenarios d ¼ 1; d ¼ 4; d ¼ 7, as shown

in Fig. 11. The evaluation results show that, in scenario

d ¼ 1, all criteria are far worse than in scenario d ¼ 4 and

d ¼ 7. In the scenario with d ¼ 4, the MAE of MAGCN is

better than the scenario with d ¼ 7, which is 9.3074.

Besides, in scenario d ¼ 7, the R2 is higher than the sce-

nario d ¼ 4, which reaches 0.4383. On the contrary, both

MSE and RMSE score in scenario d ¼ 7 are better than the

results in scenario d ¼ 7. These results show that the

proposed MAGCN forecasts the PM2.5 concentration can

perform better results in scenarios d ¼ 4 and d ¼ 7.

In order to further compare the PM2.5 concentration

prediction performances of five models in the scenario d ¼
4 and d ¼ 7, Fig. 12 are shown to represent predicted and

Table 4 Hyper-parameters in

scenario-I with window size

d ¼ 1 day

Model Batch size Neuron Layer num Order Learning rate L2

ChebyNet 8 64 4 2 0.1 0.0001

GGNN 8 8 1 NA 0.1 0.0001

GCN 16 64 3 NA 0.1 0

GAT 16 64 3 NA 0.1 0

MAGCN 32 8 1 NA 0.1 0

Table 5 Hyper-parameters in

scenario-II with window size

d ¼ 4 day

Model Batch size Neuron Layer num Order Learning rate L2

ChebyNet 8 8 4 1 0.1 0.01

GGNN 32 32 3 NA 0.1 0.1

GCN 16 64 1 NA 0.1 0.0001

GAT 8 8 1 NA 0.1 0.1

MAGCN 8 128 1 NA 0.1 0.0001

Table 6 Hyper-parameters in

scenario-III with window size

d ¼ 7 day

Model Batch size Neuron Layer num Order Learning rate L2

ChebyNet 8 8 1 4 0.1 0.01

GGNN 32 56 2 NA 0.1 0

GCN 8 64 1 NA 0.01 0.0001

GAT 8 64 1 NA 0.01 0.0001

MAGCN 8 64 1 NA 0.1 0.001
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observed values by scatters and lines. The scatters dis-

tribute closely around the diagonal. The slopes of the

scatter trend line of all these models are all less than 1.0

and the intercepts are positive. Note that the scatter trend

slope is more close to 1.0, which stands for the prediction

performance better. The ChebyNet shows the worst fore-

casting performance (Fig. 12a, b), the slopes of scatter

trend in both scenario d ¼ 4 and d ¼ 7 are smallest (0.3148

Table 7 Forecasting precision indexes with different window size

Model Window size d ¼ 1 Window size d ¼ 4 Window size d ¼ 7

MSE RMSE MAE R2 MSE RMSE MAE R2 MSE RMSE MAE R2

ChebyNet 222.3544 13.5801 9.7783 0.4187 210.9322 13.575 10.0912 0.3941 226.613 13.7837 9.9426 0.3897

GGNN 199.1878 13.3448 9.6168 0.4087 199.8944 13.3703 9.778 0.4043 222.02 14.0395 10.4437 0.3303

GCN 208.6679 13.3026 9.692 0.4197 217.1349 13.5393 9.9001 0.3952 218.2019 13.5783 9.9258 0.379

GAT 209.3639 13.4263 9.8171 0.4019 221.929 13.5432 9.8969 0.4134 204.1847 13.2148 9.9102 0.402

MAGCN 203.1844 13.305 9.5444 0.4164 191.9483 12.9515 9.3074 0.4383 189.2669 12.8878 9.4314 0.4328

(a) Evaluation results of MSE (b) Evaluation results of
RMSE

(c) Evaluation results of MAE (d) Evaluation results of R2

Fig. 10 Evaluation criteria. The

y axis represents the score of

each evaluation criteria, the blue

bar represents the result tested

with the window size d ¼ 1, and

the red bar represents the test

result of the dataset using the

window size d ¼ 4 and the

yellow bar represents the test

result of the dataset with the

window size d ¼ 7 (color

figure online)

(a) Evaluation results
of MSE

(b) Evaluation results
of RMSE

(c) Evaluation results
of MAE

(d) Evaluation results
of R2

Fig. 11 MAGCN test with different window sizes of datasets
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and 0.2906). For GCN and GAT in scenario d ¼ 7

(Fig. 12f, h), although the slopes of the scatter trend are

0.4431 and 0.4841, the distribution of scatters between the

predicted and observed values deviate from the diagonal.

Comparing with all the models, Fig. 12i, j show that the

proposed MAGCN in this paper performs the best fit

between the predicted and observed values, the slopes of

scatter trend in both scenario d ¼ 4 and d ¼ 7 are highest

(0.4847 and 0.4896), while the R2 of the proposed model

are also highest at 0.4383 and 0.4328. The experimental

results indicate that considering the human migration data

in graph embedding models like GCN and can achieve a

better prediction performance.

6 Conclusion

In this study, we propose an MAGCN model for PM2.5

concentration forecasting considering human migration

data. In order to prove the human migration is influenced

by the COVID-19 outbreak and affects the variation of

PM2.5 concentration, we conduct a series of data analysis.

Above all, we analyze the annual PM2.5 concentration

variation in 11 Hubei cities from 2015 to 2020. We find

that the PM2.5 concentration in 2020 reduces in all cities,

compared with the past 5 years. Besides comparing the

human migration flow size with PM2.5 concentration and

finding that in January 2020, both of two variables simul-

taneously reduced until April 2020. Based on the results of

data analysis, we establish a human migration network

migration-air graph (MAG) by utilizing human migration

flow size from the AutoNavi and air pollution datasets.

Then, we adopt four graph embedding models ChebyNet,

GGNN, GCN, GAT as baseline models, and we test all of

the models, including our proposed MAGCN model, in

three scenarios with d ¼ 1, 4, 7. Experimental results

indicate that the proposed MAGCN model can predict

more accurately than other baselines, especially in sce-

narios with d ¼ 4, 7.

Our MAGCN model shows a better result for forecasting

PM2.5 concentration while considering human migration.

Human migration is not the only factor for PM2.5 con-

centration forecasting in the post-COVID-19 pandemic

age. We will explore and combine more other potential

factors that could improve the accuracy of forecasting

PM2.5 concentration while using graph embedding models

in future work.
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(e) GCN scatter
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(f) GCN scatter
with d = 7 dataset

(g) GAT scatter
with d = 4 dataset

(h) GAT scatter
with d = 7 dataset

(i) MAGCN scat-
ter with d = 4
dataset

(j) MAGCN scat-
ter with d = 7
dataset

Fig. 12 Scatter plots with the comparison models. The x axis is the

true PM2.5 concentration (Observed Value), and the y axis is the

predicted PM2.5 concentration value (Predicted Value). The color of

the scatters represents the density of the scatters. The red dotted line is

the fitting trend of scatters, and gray dotted line is the diagonal (color

figure online)
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