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Abstract
This research is based on the capacitated vehicle routing problem with urgency where each vertex corresponds to a medical

facility with a urgency level and the traveling vehicle could be contaminated. This contamination is defined as the

infectiousness rate, which is defined for each vertex and each vehicle. At each visited vertex, this rate for the vehicle will be

increased. Therefore time-total distance it is desired to react to vertex as fast as possible- and infectiousness rate are main

issues in the problem. This problem is solved with multiobjective optimization algorithms in this research. As a multi-

objective problem, two objectives are defined for this model: the time and the infectiousness, and will be solved using

multiobjective optimization algorithms which are nondominated sorting genetic algorithm (NSGAII), grid-based evolu-

tionary algorithm GrEA, hypervolume estimation algorithm HypE, strength Pareto evolutionary algorithm shift-based

density estimation SPEA2-SDE, and reference points-based evolutionary algorithm.

Keywords Vehicle routing problem � Multiobjective optimization algorithm � Many objective optimization algorithm �
Optimization

1 Introduction

This research is based on vehicle routing problems (VRPs)

and this problem can be changed/improved for a specific

real-life engineering challenge. Therefore, there are many

variants of these problems (Appendix 1). These variants are

based on the formulation and definition of the specific

problem/challenge. Although it can be categorized in dif-

ferent ways, in general, the VRP (and its variants) can be

categorized based on the number of objectives: single-ob-

jective and multiobjective problems. In single-objective

problems, generally the traveled distance (minimization

problem) is the objective in VRPs. In addition, VRPs are

proposed/changed as multiobjective optimization problem

with many different objective definitions; in [51], a col-

laborative multicenter vehicle routing problem with

resource sharing and refrigerated vehicles with temperature

control constraints (CMCVRP-RSTC) is proposed (biob-

jective mixed-integer linear model) with the objectives of

minimizing the total cost and minimizing the number of

vehicles. Therefore, a hybrid heuristic algorithm that

combines the k-means clustering-based tabu search into

NSGA (TS-NSGA-II) is proposed and used to solve the

problem. Similarly, in [49], a metaheuristic algorithm

called the NSGA-large neighborhood search (NSGA-LNS)

is proposed to solve the model. Many optimization algo-

rithms have been proposed: the distributionally robust

equilibrium optimization (DREO) method [57] and the

membrane-inspired multiobjective algorithm (MIMOA) (as

a biobjective problem where business interests and cus-

tomer satisfaction are objectives of the study and are

compared with the NSGA-II, SMG-MOMA, and MIMOA

algorithms) [33]. As stochastic (stochastic customer

requests), a multiobjective and time window problem

named the dynamic vehicle routing problem with time

window (DVRPTW) is investigated in [48], and a dynamic

multiobjective optimization evolutionary algorithm
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(DMOEA) based on an ensemble learning (EL) (EL-

DMOEA) algorithm is proposed to solve this problem.

Real-life problems are modeled as single- and multi-

objective VRPs engineering applications, solid waste

management is investigated in [32] with many objectives

that are based on financial, environmental, and social

considerations. These problems are solved by a new algo-

rithm named the adaptive memory social engineering

optimizer (AMSEO), which performs better than simulated

annealing (SA) and the social engineering optimizer (SEO)

for the solid waste management problem. A stochastic VRP

team of mobile police units in Brussels is considered such

that the team acts on urgent conditions such as accidents,

violence, or alarms [39]. Emergency water trucking (EWT)

is an important problem for large-scale water distribution

to drought-affected areas [47]. This problem is modeled as

a CVRP. It is solved by a new algorithm that hybridizes ant

colony optimization metaheuristic with random variable

neighborhood descent (MACS-RVND) [47]. The biomass

supplies logistic problem [8, 9] is critical for sustainable

development. In [9], the two-echelon biomass resource

location and routing problem (2E-BRLRP) was discussed,

where the location of the biomass resources and corre-

sponding routes were evaluated to obtain the best biomass

collection facilities. A hybrid heuristic algorithm (H-HA)

that embeds variable neighborhood search (VNS) into the

framework of tabu search (TS) is proposed in [9]. Railway

maintenance management is discussed as a VRP with

respect to the traveling cost in [16]. To solve the problem, a

branch-and-bound approach based on a partition and per-

mutation model is proposed for the railway maintenance

management problem. The battery manufacturing industry

is one of the application areas for VRP (as a two-echelon

problem), and in [41], the green transportation problem for

this area is considered a two-echelon problem. At the first

echelon, the green transportation with inventory problem is

discussed, and at the second echelon, the simultaneous

pickup and delivery of capacitated multidepot (distribution

and collection center) heterogeneous green vehicle routing

problem (MDHVRPSPD) is the main focus (heterogeneous

vehicles for the multidepot routing problem are discussed

in [34] with a definition of open location (MD-OLRP), and

in [26], the multidepot open vehicle routing problem

(MDOVRP) is analyzed with state-of-the-art formulations).

Three objectives are selected and integrated in the problem:

carrying cost, transportation cost and carbon emission cost

(as a single-objective problem). The simulated annealing

algorithm (SAA) with the swap neighborhood solution

method is evaluated to solve the problem (the simulated

annealing algorithm with the insertion method is also

considered) [41]. Transportation of the valuable items, also

called The Cash-in-Transit (CIT), is the application of the

VRP in real-life, in [45]. CIT is selected as the main topic

(time-dependent CIT routing problem (TD-CITRM)) of the

study such that the time dependency, stochasticity, non-

linearity, and multigraph structure problem is solved with

respect to the travel speeds: deterministic (TD-CITRM-

DT) and stochastic (TD-CITRM-ST) [45]. Urban trans-

portation is perhaps the fundamental application area of

VRP in such a way that the travel time, trips per vehicle,

and loading time (constants are time, vehicle capacity, and

trip duration) are important criteria of the problem where in

[36] multi-trip time-dependent vehicle routing problem

with time windows (MT-TDVRPTW) is proposed and

solved with hybrid meta-heuristic algorithm adaptive large

neighborhood search (ALNS) and variable neighborhood

descent (VND). Transporting military personnel is aVRP in

[24] and named the vehicle routing problem, and it con-

siders reconnaissance and transportation (VRPCRT) for

wartime troop movements. Additionally, an ant colony

optimization (ACO) algorithm is developed and used to

solve the problem. The problem of gas field sewage recy-

cling is modeled as the period vehicle routing problem

(PVRP) in [19], where customers have an uncertain fre-

quency of service. Therefore, customers’ sewage data are

initially predicted, and a two-stage preoptimization and

real-time optimization model is proposed by using five

single-objective optimization algorithms: jDE-niche, jDE,

DE, GA, and ACO. As another interesting application of

machine learning algorithms to VRP, in [54], a deep

reinforcement learning framework was used to solve

CVRP, and deep reinforcement learning was also used for

the pickup and delivery problem (PDP) in [27]. Also, deep

reinforcement learning methodology is applied to mobile

edge computing (MEC) network problem [23], where dis-

tributed resource scheduling is considered [22]. In [5],

human preferences are evaluated for the optimization of

taxi fares in the network during the COVID-19 pandemic,

where in that study, a network optimization problem to

optimize taxi fares is formulated and solved. Heath care is

the most critical application area. Vaccine distribution is

one of the critical application areas of VRPs, similar to the

motivation of the research in [18] under epidemic condi-

tions, distribution of vaccines requires special vehicles

(with refrigeration). In [18], a central depot has the vaccine

doses, and they are distributed from this depot. There are

different priority groups that are distributed to locations

with temporary housing. It is clear that there are limited

numbers of vaccines and trucks with refrigerated com-

partments and related healthcare workers. In [18], a novel

hybrid solution procedure that merges the augmented �-

constraint method, optimal control theory, and dynamic

programming is used to solve the developed biobjective

VRP model. In [35], home healthcare (HHC) logistics as a

real-life problem is discussed as a cumulative vehicle

routing problem (CCVRP) in such a way that the times
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(especially the arrival time to the vertex for this problem

minimizing the system’s delayed latency by satisfying

mandatory visit times) are minimized, unlike the distance

with many nonfixed depots, and travel from the depots and

vertexes is inside that problem.

The observations obtained because of examining the

relevant studies in the literature can be briefly summarized

as follows: *There are many VRP models exists in the

literature; however, these models are insufficient to solve

the problems of the pandemic period and a new model/

framework is needed. *Modeling VRP (or the proposed

model in this research) only as a single-objective problem

prevents solution diversity and detailed examination of the

problem. Therefore, VRP should be modeled as a multi-

objective optimization problem (minimum total traveled

distance may not enough to investigate the problem and

solution). *The objectives of multiobjective in VRP prob-

lems are generally minimizing the total cost, minimizing

the number of vehicles. However, these objectives are not

sufficient for the medical distribution problem in pandemic

period. A set of new variables and objectives are needed.

*From the results of the hybrid heuristic algorithms for

VRP, it can be inferred that hybrid algorithm may present

promising performances; however, their necessity is not

clear because there is not any paper presented to give

overall performances of the algorithms. *Two-phase

problems (for example two echelon) can be generalized as

many phases system which can be useful for evaluating the

proposed model where urgency level is defined to give

priority for the vertexes. Therefore, an improved encoding

scheme is needed to integrate on optimization algorithms.

1.1 Motivation of the research

This research uses capacitated vehicle routing problem

with urgency (CVRP-U) as a variant of VRP. Different

models of problems related to routing are given in the lit-

erature—as given in the literature. When different varia-

tions in VRP are compared with the problem proposed in

this study, the following points can be made:

• CVRP-U has no time window; during the pandemic, all

medical units—vertexes—can be accessible without a

strict working time (can be reached/ worked 24/7);

however, the important property is the urgency of the

desired product (urgency value at the vertex). It is

desired to deliver the medical products as fast as

possible to the higher urgency vertex.

• CVRP-U has no multidepot and/or multicompartment,

and it is not desirable to visit other depots by the vehicle

because it could cause spread of the virus to other

depots and also to other vehicles and units. If multiple

depots are needed, then a separate route planning

problem will be considered (vehicle routing problem).

Similarly, multicompartments means that different

types of products are delivered with the same vehicle,

and it is assumed that all necessary products are

combined into one package for sterilization.

• CVRP-U is an open system, which means that the

vehicles do not return to the depot; after they deliver to

the vertex, they must be cleaned.

• CVRP-U has vehicles that are of the same type; this

problem is assumed to be inside a limited region, and

therefore, the vehicles have almost the same category,

with similar capacity. It is important to deliver products

quickly during the pandemic, and it is recommended to

prefer vehicles of similar categories that best meet the

transportation and parking features of the distribution

area. Thus, the disinfection of these vehicles, loading of

products, and maintenance of vehicles are easier (and

less expensive) for the same types of vehicles. In

addition, when there are more vehicles than are

necessary, the extras can easily be used interchangeably

in the case of accidents. However, in future studies,

heterogeneous vehicles (properties and their types as in

two-echelon problems) will be considered.

• CVRP-U has distance constraints with the infectious-

ness constraints; not only the maximum distance but

also the maximum infectiousness is considered to

terminate the vehicle’s job.

• CVRP-U is a vehicle routing problem, not an arc

problem that considers the edges (vertexes). However,

it is possible to consider all vertexes to be a residence,

and that problem can be considered an arc problem. For

a future study, it could be considered an arc problem for

the distribution of daily products—food and medi-

cine—in a pandemic distribution with vehicles with

multicompartments.

• CVRP-U is a multiobjective optimization problem. In

this way, it is possible to select one solution from many.

Thus, it is possible to select the solution for the different

periods of a pandemic.

The problem is considered to be a multiobjective problem

in this research, and the NSGA-II, GrEA, HypE,

SPEA2SDE, and RPEA algorithms are applied to the

problem. The problem described in this research is mod-

eled as a multiobjective optimization problem. The most

important purpose of doing so is to be able to offer a more

general solution. Measures can be taken according to dif-

ferent risk levels in cases to be taken in pandemic or

similar situations. Accordingly, the infectiousness rate can

be taken into consideration. If the spread of the disease is

more important than the urgency of the product, then a

solution can be sought for small infectiousness rates. In a

similar situation, in the case of spreading the disease, it can
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be desirable to make the product distribution fast. This

presentation of the possible options between these two

extreme situations is the motivation of this research.

Therefore, in this research, a model with new datasets is

proposed and solved with multiobjective optimization

algorithms. To examine this proposed model, different

cases (implementations) have been considered, and the

datasets have been updated under these situations.

This paper is organized as follows. Section 2 givens the

definitions for the algorithm, Sect. 3 gives the operators

and the encoding scheme used in this study with a brief

definition of the multiobjective optimization algorithms.

Then, in Sect. 4, the implementation is given with the

definition of the dataset, implementation results and their

discussion. In the last section, the future work, advantages

and disadvantages of the research and some missing links

are emphasized, and a benchmark is defined for the

researchers.

2 Problem Definition

In Fig. 1, the position of the vertex on the CMT1C problem

dataset is presented - datasets will explain at the imple-

mentation section- (The presentation of the CMT1C

problem only is for illustrative purposes. The same is true

for all datasets in the research.). The whole dataset is

composed of vertex sets with different urgency values. The

urgency situation is one of the important parameters in the

pandemic and the distribution of medical products

according to this urgency is of critical importance. Since

urgency is an important issue for the problem under study,

it is clear that we should start with the vertexes with the

highest level of urgency. For this reason, it is important to

make preliminary preparations before starting to solve the

problem in order to understand the problem and to produce

solutions accordingly. For this, the problem can first be

divided into different urgency levels as shown in the figure.

The reason for this is to observe whether the problem

solution has the necessary resources for the highest urgency

level. These resources are the number of vehicles, vehicle

capacity and contamination levels. These are the parts that

make problem solving easier or harder (In this section,

different urgency levels are shown in order to analyze the

problem). Therefore, the distribution network can be divi-

ded into subsets according to Urgency (as shown in Fig. 1).

Subsets created due to urgency situations should be com-

bined in succession. After visiting the vertex with the

highest urgency subset, current vehicle can move to the

next subset. However, the most accurate decision for this

transition is to make it between the closest vertexes in the

subsets that are neighbors of each other. This situation

constitutes one of the difficulties in this research and it is

expected that the optimization algorithm will find the most

suitable solution. In case the number of vehicles exceeds

the specified number of emergency levels, more than one

vehicle serves the units in the same emergency situation.

This can be observed in each sample in this study. In this

case, some vehicles may skip the next emergency and try to

reach other units with the lower emergency level. Simi-

larly, as examined in this study, any node can suddenly

change the emergency level (dynamic situation) and at this

stage, it is expected that the most appropriate vehicle will

serve this situation. In this dynamic case, it will be solved

by the optimization algorithm. For all these reasons, the

urgency situation proposed in this study, which is impor-

tant in the pandemic, complicates the VRP.

Considering all of these new variables and the tradi-

tional CVRP problem, the problem in this study is descri-

bed below.

Fig. 1 The subsets of the CMT1C dataset, as an example
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f1 ¼
XPk

j¼1

X

m;l2Pk ;

dm;l � xm;l

 !
ð1Þ

f2 ¼ max exp c
X

j2Pk

ij

 ! !
ð2Þ

where f1 and f2 are objectives, dm;l is the distance between

vertex m and vertex l in the path j where Pk is the path of

vehicle k which is the number of paths (or similarly number

of vehicles), x is the binary decision variable, c is the

scaling factor, ij is the infectiousness rate of node j. In this

research, two objective functions (f1 and f2, respectively)

are defined. The first objective function (f1) is to follow the

shortest path in the desired total. The shortest route also

corresponds to the fastest delivery. The second goal (f2) is

the highest infectiousness value among the paths. Thus, it

is desired to minimize the possibility of transmitting the

disease. If both objectives are aimed at minimization, these

two objectives can be combined with the help of the pen-

alty function. So why should be address the multiobjective

problem? The answer depends on the decision making.

Periods of pandemics can demand different requirements

and needs. The transport of medical products as soon as

possible at the onset of a pandemic could be more impor-

tant than other criteria. In contrast, if medical supplies are

in a manageable condition, preventing the spread of the

epidemic can stand out more than the delays that could

occur from product distribution. Therefore, the decision

maker is asked to choose one of the possible solutions. For

this reason, the problem mentioned in this study has been

considered and analyzed as a multiobjective optimization

problem. However, the problem must meet some basic

criteria. These criteria are as follows: (i) Each vertex in the

entire vertex must be visited only once, (ii) all vertexes

must be delivered, (iii) the vehicle does not return to the

warehouse after completing its deliveries, (vi) the capacity

of each vehicle must be greater than the sum of the

capacities of the vertexes that it visits, and (vii) the order of

the vertexes is given with respect to the urgency u.

3 Coding/Encoding

An encoding scheme is an efficient way to represent

decision variables. It is possible to encoding decision

variables in binary, real or permutation, where decision

variables are represented as a set of binaries, real or non-

repeated integer values, respectively. Since in VRPs (like

traveling salesman problem) the order of the vertex is the

decision variables and it is not desired to travel the same

vertex, permutation encoding is the most appropriate

method to present decision variables. However, directly

creating permutational encoded variables (decision vari-

ables, which are the members of the population) and pro-

cessing them (for example crossover methods, mutation

methods etc.) may not be possible or efficient through the

optimization algorithm. Therefore, the most basic method

is to use real numbers and then sorting them. In addition,

number of decision variables are increased with the number

of vehicles because the decision variable set is divided/

distributed into the vehicles. The index of these sorted

values became the desired encoding scheme, and opti-

mization algorithm process only real valued decision

variables. However, the VRP uses index of the sorted

decision variables. This sorting-based encoding method-

ology is generally preferred for optimization algorithms.

However, in this research a new parameter for pandemic

period is defined: urgency. For this reason, it is not possible

to use conventional sorting-based encoding methodology.

For this reason, an improved encoding methodology is

proposed and an example of this operation is given in

Fig. 2.

The proposed/improved encoding scheme begins with

the pre-definite/known information about number of

urgency levels and corresponding vertexes with the number

of vehicles. The size of decision variable set is equal to

sum of number of vertexes with number of vehicles - 1.

Therefore, the decision variable can be divided into vehi-

cles. For example (in Fig. 2), two levels of urgency are

given so that vertexes 3, 4, and 6 belong to urgency level A

and 1, 2, 5, and 7 belong to urgency level B; with two

vehicles. Then, the real numbered decision variable set is

generated (either randomly at the initialization phase or

from the generations of the optimization algorithm). For

example the decision variable is generated as

[0.2, 0.8, 0.5, 0.7, 0.4, 0.9, 0.3, 0.1, 0.6]. Next, it is divi-

ded into the urgency level as [0.2, 0.8, 0.5, 0.7] and

[0.4, 0.9, 0.3, 0.1, 0.6] with respect to the vehicle

Fig. 2 An example of the preferred levels of encoding
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numbers. Then, this variable set is sorted and their index is

recorded as [1, 4, 2, 3] and [3, 5, 2, 1, 4]. The higher

index is replaced by zero which means it is the point to

divide/distribute sorted decision variable to the vehicles.

Finally the indexes indicated vertexes are become a new

sets as [4, 0, 3, 6] and [1, 0, 5, 2, 7], and then they are

distributed to the vehicle with respect to the zero value.

The encoding scheme—given in Fig. 2—can be summa-

rized as follows. (1) The vertex of each urgency level is

found. (2) The decision variable is created. (3) This deci-

sion variable is divided into parts by the urgency number.

(4) Each piece is sorted, and its rank index is kept. (5)

Values exceeding the data size are replaced with 0. Thus, it

is divided into vehicles. (6) Vertexes are determined

according to these indexes. (7) The vertex is distributed to

vehicles, and a route is determined for each vehicle.

The size of the encoded decision variable depends on

(i) the number of urgency level, (ii) the number of vehicles,

and (iii) the number of vertexes. At the problem given in

Fig. 2, there are 2 urgency level 2 vehicle and 7 vertexes.

Therefore, the size of the decision variable is selected as 9.

The size of decision variable is divided into two because of

the number of vehicles. This division must not be equal

like the example in Fig. 2. Also, each part is divided into

number of urgency level. For this reason, each level needs

and additional variable size (?1) (if the size of part is

larger than two for this example because there is two

urgency level). In Fig. 2 (at the sort part line 4) the higher

index is the indicator to divide these sub-sequences (in-

dexes 4 and 5, in Fig. 2 line 4). It is also noted from Fig. 2,

it is showed that (from line 5 to line 6) the sorted and

indexed sequence is applied to the urgency-vertex set (first

line) to get the id of the vertexes. Therefore for each

vehicle at first the higher urgency level units are visited and

the next urgency level and goes on until all vertex are

visited. By this way, asynchronously (with respect to the

vehicle), it is guarantees that (if there are enough resour-

ces) same urgency levels are visited sequentially by each

vehicle, and after that vehicle moves to the next urgency

level; and it continues until all vertex are visited.

4 Implementation

In this section, the methods and results of the research are

given. For this purpose, first of all, the dataset used in this

research is explained. A total of 24 different datasets were

used for 4 different situations and 6 datasets in total. After

the dataset is explained, the optimization algorithms used

in this research, the parameters of these algorithms, and the

operators of the algorithms will be explained. Finally, the

solutions obtained as a result of applying the optimization

algorithms to the datasets and the connections between

these solutions and the algorithms will be presented as the

Sect. 4.3.

4.1 Dataset

In this research, the dataset from [11] is selected as the

basis of the used dataset. Table 1 gives the properties for

the dataset (meta-dataset).

Three features of each dataset (in total six dataset are

selected) are given in the table. Vertex corresponds to the

units within the dataset (corresponding to the medical

centers in this research); vehicle corresponds to the number

of vehicles selected for that dataset; and capacity corre-

sponds to the unit load that each vehicle can carry. In this

research, different datasets will be derived based on this

dataset.

Six dataset are selected from the study of [11]. These

datasets are changed to be useful for the current research.

Therefore for every dataset, 4 different variants are formed,

and labeled as A, B, C, and D, for example CMT1B or

CMT12D. The variants are; Case A: only one vertex with

highest urgency and other vertexes have the lowest urgency

level. Case B: similar to Case A but other vertexes have

random urgency levels in [1, 5]. Case C: All vertexes have

the random urgency. Hence, number of vertex with

urgency=5 is larger than the number of vehicles. Case D:

almost 5% of vertexes are chosen with urgency = 5. The

other vertex urgency levels are assigned randomly.

4.2 Optimization algorithms

In this study, the problem is discussed as multiobjective,

and five multiobjective evolutionary algorithms are used

for problem solving. These algorithms are the nondomi-

nated sorting genetic algorithm (NSGAII) [12], grid-based

evolutionary algorithm GrEA [55], hypervolume estima-

tion algorithm HypE [3], strength Pareto evolutionary

algorithm shift-based density estimation SPEA2SDE [28],

and reference points-based evolutionary algorithm (RPEA)

[29]. In this section, these algorithms are defined only

Table 1 Dataset properties [11]

Dataset Vertex Vehicle Capacity

CMT1 50 5 160

CMT2 75 10 140

CMT3 100 8 200

CMT4 150 12 200

CMT5 199 17 200

CMT12 100 10 200
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briefly, and important differences are indicated when the

results are discussed at the next section. The reader can find

detailed information about the algorithms in the given

references (however, the proposed operators are

investigated).

NSGA-II is a nondominated sorting algorithm such that

the domination of the solutions is used with respect to their

position in the objective space, where each solution is

compared with every other solution with respect to the

domination principle. Then, these sorted solutions are

nominated to the next generation with respect to their rank

and distances between the neighborhood solutions by using

the operator to maintain their diversity, which is called

crowding the distance. As evolutionary algorithm NSGA-II

uses tournament selection operator with SBX crossover and

polynomial mutation so that simulated binary crossover

and polynomial mutation with both distribution indexes of

20 with crossover and mutation probabilities are 1.0 and 1/

n, respectively. Crowding distance operator and dominance

idea are used to sort the solution candidates and the best

members are selected by using the ranking.

In GrEA (simulated binary crossover and polynomial

mutation with both distribution indexes of 20 with cross-

over and mutation probabilities are 1.0 and 1/n, respec-

tively), the new operators are defined as grid dominance

and grid difference. The solutions are located on a grid, and

the performance of each solution is evaluated with this

position. The distance and grid dominance idea are used to

distinguish the better solutions. Three properties related to

the grid are defined in the algorithm which are grid rank-

ing, grid crowding distance, and grid coordinate point

distance, which are defined in both the mating selection

and environmental selection processes. In addition to the

three operators, grid setting is defined as a new operator. At

the grid, each solution has a location on it, and perfor-

mances is estimated by their location at the grid with

respect to the number of solutions with identical or similar

grid locations. At each generation lower and upper

boundaries of the grid are determined from the current

population and this range is divided to form a grid (grid

division div ¼ 50). The performance of the member of the

population is measured as the sum of the coordinates at the

grid, and it is used in tournament selection operator.

Finally, the difference between grid locations of the

member’s objective values with respect to each other is

used to select best candidates to the next generator.

HypE (hypervolume estimation algorithm for multiob-

jective optimization with crossover and mutation are

selected as simulated binary crossover and polynomial

mutation with both distribution indexes of 20 with cross-

over and mutation probabilities are 1.0 and 1/n, respec-

tively) is another algorithm that proposed a new

domination idea called the hypervolume (the indicator-

based performance assessment). Hypervolume is a good

indicator; however, it requires more time to calculate.

Therefore, in HypE, a fast approximate (uses Monte Carlo

simulation) hypervolume calculation is proposed. HypE

algorithm has three operators mating selection (crossover),

variation (mutation), and environmental selection (selec-

tion) operators. For mating selection binary tournament

selection is used in the algorithm the only difference is to

calculate hypervolume instead of objective value, and this

value is evaluated in tournament selection. After the

mutation of the offspring, environmental selection aims to

select best members with respect to the hypervolume

value-based domination.

Strength Pareto evolutionary algorithm with shift-based

density estimation (SPEA2-SDE) is another estimator used

in multiobjective algorithms. This estimator is directly

used to distinguish the solution performance. The SDE

operator is used to estimate the density (both the distribu-

tion and convergence of individuals) in order to make

Pareto-based algorithms applicable to many-objective

optimization problems. The density of the surrounding area

of an individual is estimating by shifting the position of

other individuals/members with respect to the proximity to

the Pareto approximation. In brief the aim of SDE is to

drag individuals at poor convergence from crowded

regions.

Finally, the RPEA algorithm is a reference point-based

algorithm with nondominated individuals to solve many-

objective optimization problems. There are two important

operators in RPEA, which are generation of reference

points and selection of individuals. The reference points are

applied to the selection operator to drag the solution can-

didates towards the Pareto front. The individuals who are

survived to the next generator are selected among the

generated population based on the by calculating the dis-

tances between the reference points and the individual in

the objective space by a modified/weighted Euclidean

distance (weighted Euclidean distance measure where

weight value is selected as 1/(numberofobjectives)). A set

of reference points is generated based on the combined

population with parents and offspring that genetic opera-

tors (crossover and mutation are simulated binary crossover

and polynomial mutation with both distribution indexes of

20 with crossover and mutation probabilities are 1.0 and 1/

n, respectively) are performed to obtain an offspring pop-

ulation. A reference point may be a local ideal point.

Therefore, initially all the non-dominated individuals are

sorted based on the crowding distances, and then a ¼ 0:4

rate of individuals with the largest crowding distances of

this sorted and combined population is chosen. Finally, the

c ¼ 0:05 multiplied local nadir points are generated and

selected as the reference points for the algorithm.
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In additional to these algorithmic parameters, all these

multiobjective optimization algorithm uses the proposed

uniquely encoding scheme which presents and applies real

valued sequences. The implementations are repeated 30

times and statistical properties are recorded on tables as

numerical metric values (metrics are explained in the next

section). These statistical results are both mean and stan-

dard deviation of these independent run results. In addition

Wilcoxon rank sum test is used to compare the algorithms

at a significant level of 0.05.

4.3 Results

In this section, the results of the multiobjective optimiza-

tion algorithms are reported and compared/discussed by

using numerical and graphical results. In this research six

benchmark test suits are selected and altered (four different

cases from static to dynamic problems are also considered)

to make them suitable to be used as an example for pan-

demic period. Figure 3 gives these datasets and their

known best solutions where the datasets and their corre-

sponding best results present in [11] which are demon-

strates both complexity of these datasets and their best

solutions. In this research these problems are altered and

they became harder (also not possible) to be solved by

using conventional methods reported in [11].

As the multiobjective part of the evaluation of the

CVRP-U model, in this research, five multiobjective opti-

mization algorithms (all of these algorithms use same basic

genetic operators to alter and generate offspring solution

candidates) have been applied to these problems, and two

metrics are selected to evaluate the performance of the

algorithms. These metrics are hypervolume [53] and spread

metrics [40, 52]. The hypervolume metric is an area mea-

surement technique (in 2D objective space it is the mea-

surement of the area with respect to the solution candidates

on objective space) such that as the solutions are closer to

the optimal position and distributed well enough, a larger

value for the hypervolume metric is obtained with respect

to the reference point. This metric provides general infor-

mation about the distribution and convergence of the

solutions when the exact Pareto front is not known. How-

ever, additional metric is needed to clearly present the

distribution of the solutions. It is important for this research

because the main motivation of the study is to give options

to the decider. Therefore, it is desired from the algorithm to

give uniformly spaced (if possible) solutions on the

objective space to cover the entire Pareto approximation set

(almost) uniformly. Therefore, a spread metric is preferred

and used to compare the solutions. This spread metric is

defined as;

D ¼ df þ db þ
PN

i¼1 di � d0j j
df þ db þ Nd0

ð3Þ

where df and db are the Euclidean distances between the

extreme solutions and the boundary solutions, and d0 is the
average Euclidean distance. The results are investigated

from case A to case D. The results for each case, the

Fig. 3 Solutions for the minimum distance of VRPs applied to CMT problems [11]
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datasets and corresponding performances of the algorithms

will be investigated.

Initially, for all datasets with case A (CMTxA) is con-

sidered in the Tables 2, 3, 4 and 5 give the results with

respect to the hypervolume, and spreading metrics are

considered. For Case A, only one vertex with highest

urgency and other vertexes has the lowest urgency level.

Therefore, case A may be considered as the basic case

among other three cases. For this case the vertex with the

highest urgency will be the permanent member at every

decision variable. In addition to this information, the

number of vertexes is increased in number for CMT1-

CMT5, in other words the CMT1 relatively easier problem

than CMT5. For CMT12 problem, even the number of

vertex equal to CMT3, since the vertex are located in

groups in CMT12. The definition of the urgency will make

it harder to travel between any different urgency level

vertex that are located relatively faraway. When the results

on tables are investigated, the HypE algorithm gives the

best hypervolume value among the obtained results. The

HypE algorithm is a hypervolume based algorithm so that

the selection operator is based on hypervolume indicator. It

is also indicated/concluded that for a more static

problem—case A—the calculation of hypervolume metric

is easier and more accurate, for this reason HypE algorithm

gives the best hypervolume metric performance for both

small or large decision space dimension. However, the

same is not true for the distribution of solutions. The HypE

algorithm showed the worst performance with the RPEA

algorithm for the spreading metric [29], which gives the

distribution performance of the solutions to the purpose

space and cannot provide a better solution for any dataset

compared with the other algorithms. The main reason that

HypE could not present good results for the distribution is

mainly because of there is not any efficient method to drag

the solution candidates to the Pareto approximated front.

The only mechanism is the selection of the solutions to

create reference points. However, as the solutions moves to

each other the generated reference points also come close

to each other. While the HypE algorithm obtained one of

the best performance outcomes for the hypervolume metric

value, it did not yield acceptable results in the distribution

stage. This situation can be understood when assessing how

the algorithm works. The algorithm uses the hypervolume

metric as the dominance method as the motivation for

development. When the study in which the HypE algorithm

Table 2 Hypervolume metric statistical results for CMT1-D, CMT2A-D, and CMT3A-D

Problem D NSGAII GrEA HypE SPEA2SDE RPEA

CMT1A 54 6.8852e-1 (3.25e-3)

?

6.8932e-1 (3.23e-3)

þ
6.9301e-1 (2.48e-3)

þ
6.8509e-1 (4.39e-3)

�
6.8249e-1

(5.74e-3)

CMT1B 65 6.5287e-1 (5.89e-3)

?

6.4941e-1 (4.88e-3)

þ
6.4569e-1 (6.25e-3)

�
6.4410e-1 (7.66e-3)

�
6.3915e-1

(5.69e-3)

CMT1C 70 6.4539e-1 (6.27e-3)

�
6.4820e-1 (5.95e-3)

�
6.4955e-1 (3.88e-3)

þ
6.4626e-1 (5.80e-3)

�
6.4165e-1

(8.74e-3)

CMT1D 63 6.4569e-1 (7.14e-3)

�
6.4652e-1 (5.41e-3)

þ
6.4472e-1 (7.85e-3)

�
6.4489e-1 (4.27e-3)

�
6.3932e-1

(7.94e-3)

þ=� = � 2/0/2 3/0/1 2/0/2 0/0/4

CMT2A 84 7.1413e�1 (8.21e�3)

�
7.1799e�1 (6.00e�3)

þ
7.3348e�1 (5.60e�3)

þ
7.0866e�1 (6.38e�3)

�
7.0916e�1

(6.48e�3)

CMT2B 110 6.7557e�1 (9.13e�3)

�
6.8754e�1 (6.98e�3)

þ
6.8156e�1 (5.04e�3)

�
6.8423e�1 (7.96e�3)

þ
6.7305e�1

(1.16e�2)

CMT2C 120 6.7834e�1 (8.90e�3)

þ
6.8193e�1 (8.22e�3)

þ
6.8155e�1 (9.49e�3)

þ
6.8281e�1 (4.18e�3)

þ
6.6792e�1

(9.57e�3)

CMT2D 107 6.7426e�1 (8.15e�3)

�
6.8210e�1 (5.28e�3)

þ
6.8306e�1 (7.06e�3)

þ
6.7934e�1 (6.28e�3)

þ
6.6532e�1

(8.30e�3)

þ=� = � 1/0/3 4/0/0 3/0/1 3/0/1

CMT3A 107 6.3371e-1 (9.06e-3)

�
6.4351e-1 (1.13e-2)

þ
6.6786e-1 (9.81e-3)

þ
6.2583e-1 (7.60e-3)

�
6.2775e-1

(1.30e-2)

CMT3B 127 5.9294e-1 (1.17e-2)

�
6.1284e-1 (1.09e-2)

þ
6.1719e-1 (1.05e-2)

þ
6.0332e-1 (1.02e-2)

�
5.9229e-1

(1.32e-2)

CMT3C 135 5.9037e-1 (7.05e-3)

�
6.0263e-1 (1.26e-2)

þ
6.0069e-1 (1.08e-2)

þ
5.9644e-1 (1.08e-2)

�
5.8278e-1

(1.56e-2)

CMT3D 123 6.0122e-1 (1.64e-2)

�
6.0479e-1 (1.21e-2)

þ
6.0321e-1 (1.09e-2)

þ
5.9769e-1 (1.09e-2)

�
5.8925e-1

(1.20e-2)

þ=� = � 0/0/4 4/0/0 4/0/0 0/0/4
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is proposed is examined, it is applied to 2-, 3-, 5-, 7-, 10-,

25-, and 50-purpose DTLZ problems to show the perfor-

mance of the algorithm [3]. Within this framework, hints

about the performance that can be obtained for two-pur-

pose problems, as in this study, are encountered. However,

information about the distribution of the solutions pro-

duced by the algorithm proposed in the study is not

available. The results were compared considering only the

hypervolume metric. Since it is also in the study here, it has

been shown that it performs better for some test problems

than the NSGA-II, SHV, IBEA, RS, SPEA2 algorithms for

which the algorithm is compared for biobjective problems

[3]. However, overall, it could not be concluded that it is

better than the other algorithms. However, for the DTLZ2

and DTLZ4 problems, better results are obtained than those

from the NSGA-2 algorithm [3]. However, there was no

detailed discussion with regard to the distribution of the

results. To evaluate this concern, the working focus of the

algorithm should be understood. The algorithm basically

realizes superiority among solutions with approximately

one equivalent of hypervolume calculation. However,

when the number of objectives is two, the real

hypervolume calculation is used (not the estimation) due to

the lack of difficulties in the calculation. Even though it is

thought to be caused by an estimate hypervolume calcu-

lation at first glance, it is obvious that this approach is not

valid since the study in this study is for two purposes. The

main purpose of the problem in the distribution is that the

solutions converge over generations. In other words, no

measures have been taken for the distribution of the solu-

tions. Solutions can become groups close to each other,

including in the Pareto front corners. In this case, solutions

grouped with solutions at the boundaries of the objective

space can increase the value of the hypervolume metric,

while grouped solutions cause an increase in the distance

between them. Therefore, while good values were obtained

for the hypervolume metric, a good solution was not

obtained for the distribution. The distribution of the solu-

tions is an important criterion for this research and the

spread metric is the indicator for the distribution of the

solutions. From all the algorithms NSGA-II gives the best

distributed solutions. Also, GrEA algorithm gives almost

same performance with the NSGA-II algorithm with

respect to the distribution of the solutions. The main reason

Table 3 Spacing metric statistical results for CMT1-D, CMT2A-D, and CMT3A-D

Problem D NSGAII GrEA HypE SPEA2SDE RPEA

CMT1A 54 4.4707e?0 (2.13e?0)

�
1.3829e?1 (1.97e?1)

�
1.3517e?1 (7.29e?0)

�
9.4228e?0 (1.14e?1)

�
1.1872e?1

(1.59e?1)

CMT1B 65 1.0015e?0 (2.27e?0)

�
5.1824e-1 (9.21e-1)

þ
9.9550e?0 (1.55e?1)

�
4.0118e-1 (1.13e?0)

þ
2.7407e?0

(3.16e?0)

CMT1C 70 2.9685e-1 (5.02e-1)

þ
2.4032e-1 (7.60e-1)

þ
4.1866e?0 (2.47e?0)

�
1.0798e?0 (2.94e?0)

þ
3.0864e?0

(4.10e?0)

CMT1D 63 1.5785e-1 (2.76e-1)

þ
6.9772e-1 (1.80e?0)

�
1.1421e?1 (1.96e?1)

-

1.7369e?0 (3.64e?0)

�
1.5910e?0

(1.65e?0)

þ=� = � 2/0/2 2/0/2 0/1/3 2/0/2

CMT2A 84 1.1070e?1 (3.37e?0)

�
1.5524e?1 (6.51e?0)

�
2.4197e?1 (2.36e?1)

�
1.5798e?1 (7.76e?0)

�
2.3951e?1

(3.61e?1)

CMT2B 110 3.0470e?0 (7.02e?0)

�
2.9731e?0 (5.19e?0)

�
9.4570e?0 (1.79e?1)

�
1.5214e?0 (2.74e?0)

�
3.0039e?0

(4.25e?0)

CMT2C 120 1.5939e?0 (1.74e?0)

�
1.8752e?0 (2.11e?0)

�
7.9732e?0 (6.63e?0)

�
2.0396e?0 (2.00e?0)

�
6.1387e?0

(1.13e?1)

CMT2D 107 1.3247e?0 (1.99e?0)

�
1.4407e?0 (2.39e?0)

�
4.8709e?0 (4.55e?0)

�
1.6396e?0 (2.20e?0)

�
2.7664e?0

(2.39e?0)

þ=� = � 0/0/4 0/0/4 0/0/4 0/0/4

CMT3A 107 2.7457e?1 (1.62e?1)

�
2.4061e?1 (2.62e?1)

�
3.3316e?1 (3.37e?1)

�
2.8344e?1 (3.79e?1)

�
3.2854e?1

(2.02e?1)

CMT3B 127 1.9737e?0 (1.06e?0)

�
2.3127e?0 (2.94e?0)

�
6.9867e?0 (9.76e?0)

�
5.3523e?0 (6.07e?0)

�
6.0778e?0

(5.91e?0)

CMT3C 135 8.5709e-1 (1.18e?0)

þ
1.6317e?0 (2.86e?0)

�
9.8284e?0 (1.69e?1)

�
1.1166e?1 (2.18e?1)

�
1.9667e?1

(4.13e?1)

CMT3D 123 1.9009e?0 (1.92e?0)

�
1.7261e?0 (2.11e?0)

�
3.6689e?0 (3.31e?0)

�
3.0585e?0 (3.30e?0)

�
4.0594e?0

(4.37e?0)

þ=� = � 1/0/3 0/0/4 0/0/4 0/0/4
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that these two algorithms give the best distributes results is

the crowding distance operator that is common for NSGA-

II and GrEA algorithms. This method helps the algorithm

to obstruct solutions to from groups, come closer to each

other.

Table entities are for the results of CMTxB problems

with respect to the hypervolume, and spreading metrics are

considered. The case B is similar to case A but other

vertexes have random urgency levels in [1, 5]. This prob-

lem set is relatively harder than case A with respect to the

different urgency levels on the vertexes. Even a similar

comment can be made for the CMTxB dataset with respect

to the hypervolume metric, NSGA-II and GrEA algorithms

also presents better/similar (very close) results statistically.

HypE gives the best result in overall due to the same reason

as explained in case A. Another similarity is obtained for

the distribution property of the algorithms so that the

NSGA-II and GrEA algorithms produced better distributed

solutions, while the HypE algorithm produced better

hypervolume values in general. While not obviously per-

forming well, GrEA, with its acceptable performance,

performed particularly well for problems with relatively

small decision variable dimensions and even better than the

other algorithms. The largest reason for result is the grid

definition. It is the determination of the purpose space that

is dominant according to this grid by dividing the grid. In

the proposed study, the performance was evaluated over

the 4-, 5-, 6-, 8- and 10-purpose DTLZ problems [55].

However, no investigation has been made for dual-purpose

problems. However, in the study for DTLZ5, it is seen that

the performance of the algorithm decreases when the

number of objectives is small (for example, 3 and 4) [55].

Another inference appears to be in comparison with the

HypE algorithm. As expected, DTLZ1, DTLZ3, DTLZ5,

and DTLZ6 have been shown to converge better than the

HypE algorithm. Although some discussions were made

for the distribution feature, comparative results were not

given. From the results given in the study and the tables in

this research, it is shown that the GrEA algorithm is not

better than the other algorithms, but better solutions can be

obtained for some datasets. Although these results say that

its performance is only acceptable, the two-objective

problem performance is sufficient for the many-objective

optimization algorithm.

Table 4 Hypervolume metric statistical results for CMT4-D, CMT5A-D, and CMT12A-D

Problem D NSGAII GrEA HypE SPEA2SDE RPEA

CMT4A 161 5.1887e-1 (2.27e-2)

�
5.3401e-1 (1.27e-2)

�
5.8515e-1 (7.52e-3)

þ
5.0586e-1 (1.30e-2)

�
5.1848e-1

(1.74e-2)

CMT4B 193 5.3477e-1 (1.41e-2)

þ
5.3301e-1 (1.67e-2)

þ
5.3418e-1 (1.11e-2)

þ
5.1042e-1 (2.62e-2)

�
5.0548e-1

(1.81e-2)

CMT4C 205 4.9285e-1 (2.64e-2)

�
5.2779e-1 (9.78e-3)

þ
5.3232e-1 (1.46e-2)

þ
5.0155e-1 (1.73e-2)

�
4.9391e-1

(1.73e-2)

CMT4D 187 5.1375e-1 (7.61e-3)

�
5.2582e-1 (2.88e-2)

�
5.3913e-1 (1.73e-2)

þ
5.0544e-1 (1.37e-2)

�
5.0940e-1

(1.96e-2)

þ=� = � 1/0/3 2/0/2 4/0/0 0/0/4

CMT5A 215 4.0318e-1 (1.30e-2)

�
4.0259e-1 (1.53e-2)

�
4.7486e-1 (1.42e-2)

þ
3.7096e-1 (1.32e-2)

-

4.0035e-1

(1.68e-2)

CMT5B 262 4.2418e-1 (1.46e-2)

�
4.3130e-1 (1.64e-2)

�
4.6331e-1 (1.47e-2)

þ
4.2738e-1 (4.39e-2)

�
4.2705e-1

(2.30e-2)

CMT5C 279 4.0970e-1 (2.08e-2)

�
4.2669e-1 (2.64e-2)

�
4.4239e-1 (8.35e-3)

�
4.1454e-1 (3.91e-2)

�
4.1629e-1

(3.12e-2)

CMT5D 253 3.9413e-1 (1.89e-2)

�
4.3315e-1 (3.13e-2)

�
4.4526e-1 (1.69e-2)

�
3.9558e-1 (2.51e-2)

�
4.1849e-1

(2.01e-2)

þ=� = � 0/0/4 0/0/4 2/0/2 0/1/3

CMT12A 109 6.5708e-1 (5.97e-3)

þ
6.4925e-1 (1.41e-2)

�
6.8792e-1 (1.23e-2)

þ
6.3411e-1 (1.20e-2)

�
6.4052e-1

(1.82e-2)

CMT12B 135 6.0975e-1 (1.36e-2)

�
6.1657e-1 (1.84e-2)

�
6.2008e-1 (1.82e-2)

�
6.0766e-1 (1.46e-2)

�
6.0449e-1

(1.33e-2)

CMT12C 145 5.8812e-1 (1.58e-2)

�
5.9827e-1 (1.56e-2)

þ
6.0763e-1 (1.65e-2)

þ
5.8587e-1 (1.26e-2)

�
5.7497e-1

(2.05e-2)

CMT12D 126 5.9627e-1 (2.37e-2)

�
6.0869e-1 (1.65e-2)

þ
6.0461e-1 (1.53e-2)

þ
5.9219e-1 (1.38e-2)

�
5.8650e-1

(1.45e-2)

þ=� = � 1/0/3 2/0/2 3/0/1 0/0/4
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For case C, CMTxC, where all vertexes have the random

urgency where number of vertexes with urgency=5 is lar-

ger than the number of vehicles; and for case D, CMTxD,

almost 5% of vertexes are chosen with urgency = 5. The

other vertex urgency levels are assigned randomly are two

hardest cases in the research. However, the optimization

algorithms can handle the get solutions for the cases. As

explained reasons and with the proposed coding scheme,

similar results are obtained for all cases even case C and

case D. The best solutions are obtained from HyPE algo-

rithm where for all cases the size of the decision space

remains almost same with respect to the proposed coding

scheme. Also, NSGA-II and GrEA algorithms give the

better distributed solution sets due to the crowding distance

operator. Therefore, as a suggestion an improved HyPE

algorithm with crowding distance operator may improve

the distributed property of the algorithm

Next, we consider a review over the dataset. Tables 2

and 3 give the results for the CMT1 dataset. When the

results and statistical information are analyzed, it is seen

that the NSGA-II and HypE algorithms give similar results

in terms of more hypervolume metrics. In the case of

convergence, NSGA-II was able to produce results with a

better distribution than the other algorithms. The most

important reason for NSGA-II’s performance is that the

number of decision variables is the smallest for the CMT1

problems. This algorithm, compared to the relatively older

algorithm, produced more acceptable results for a smaller

number of decision variables. Tables 2, 3, 4 and 5 have

been evaluated together because they are close to each

other and are therefore algorithms that produce approxi-

mately similar performance. The HypE algorithm is the

hypervolume metric, and the NSGA-II algorithm has

become prominent in the distribution of solutions. When

considering the hypervolume metric of the performance of

the NSGA-II algorithm, the CMT3-CMT5 dataset is

observed. Despite this consideration, this algorithm gave

good results for the distribution due to the crowding dis-

tance and nondominated sorting operators. As shown in

Tables 2, 3, 4 and 5, the performance of the NSGA-II

algorithm has decreased due to the explanation reason, and

it could not exhibit its superiority as in CMT1. However,

Table 5 Spacing metric statistical results for CMT4-D, CMT5A-D, and CMT12A-D

Problem D NSGAII GrEA HypE SPEA2SDE RPEA

CMT4A 161 1.9829e?1 (6.79e?0)

�
1.4021e?1 (3.08e?0)

�
3.5873e?1 (1.92e?1)

�
3.3170e?1 (1.64e?1)

�
1.9337e?1

(5.13e?0)

CMT4B 193 1.5803e?0 (1.47e?0)

�
2.8447e?0 (2.69e?0)

�
7.5232e?0 (7.85e?0)

�
5.7540e?0 (5.25e?0)

�
9.7930e?0

(1.15e?1)

CMT4C 205 4.6337e?0 (4.35e?0)

�
1.7576e?0 (1.13e?0)

þ
7.3111e?0 (5.19e?0)

�
6.6013e?0 (7.02e?0)

�
9.7100e?0

(7.41e?0)

CMT4D 187 2.7342e?0 (2.86e?0)

�
5.2667e?0 (5.43e?0)

�
5.8602e?0 (2.74e?0)

�
7.1918e?0 (7.66e?0)

�
8.1336e?0

(7.88e?0)

þ=� = � 0/0/4 1/0/3 0/0/4 0/0/4

Problem D NSGAII GrEA HypE SPEA2SDE RPEA

CMT5A 215 2.8980e?1 (2.50e?1)

�
1.7209e?1 (4.50e?0)

�
5.1331e?1 (4.45e?1)

�
2.3154e?1 (7.02e?0)

�
2.6512e?1

(1.93e?1)

CMT5B 262 1.0923e?1 (1.12e?1)

�
8.1653e?0 (8.52e?0)

�
9.8718e?0 (5.86e?0)

�
4.2663e?0 (1.25e?0)

þ
1.1569e?1

(4.24e?0)

CMT5C 279 4.6598e?0 (3.64e?0)

�
5.9879e?0 (3.31e?0)

�
1.1095e?1 (1.36e?1)

�
4.5891e?0 (4.03e?0)

�
6.3916e?0

(3.59e?0)

CMT5D 253 4.7829e?0 (4.52e?0)

�
6.8720e?0 (8.02e?0)

�
1.2405e?1 (1.94e?1)

�
7.6219e?0 (4.59e?0)

�
5.9965e?1

(1.11e?2)

þ=� = � 0/0/4 0/0/4 0/0/4 1/0/3

CMT12A 109 2.4093e?1 (1.00e?1)

�
1.6897e?1 (9.73e?0)

�
2.2360e?1 (1.04e?1)

�
2.5573e?1 (1.52e?1)

�
1.8480e?1

(1.06e?1)

CMT12B 135 3.6280e?0 (6.67e?0)

þ
3.8240e?0 (3.13e?0)

�
2.8340e?1 (6.36e?1)

�
6.5996e?0 (3.66e?0)

�
2.5250e?1

(3.02e?1)

CMT12C 145 4.4516e?0 (5.92e?0)

�
4.6346e?0 (6.94e?0)

�
5.5363e?0 (2.79e?0)

�
8.8254e?0 (1.72e?1)

�
1.1497e?1

(1.57e?1)

CMT12D 126 3.1996e?0 (4.56e?0)

�
4.2630e?0 (6.26e?0)

�
5.0732e?0 (5.40e?0)

�
1.5659e?1 (2.29e?1)

�
8.0584e?0

(5.02e?0)

þ=� = � 1/0/3 0/0/4 0/0/4 0/0/4
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with the HypE algorithm, the GrEA algorithm resolved this

gap and became a rival to HypE for CMT3. Nevertheless,

as the number of variables increases, its performance

decreases. However, it has been observed that the GrEA

algorithm gives acceptable results for all of the CMT

datasets.

Tables 2, 3, 4 and 5 demonstrate the performance of the

algorithms on all the datasets considered and discussed in

this research. When all the results obtained and the con-

nection of these results with the dataset are examined, the

first output obtained is the inadequacy of the effect of the

RPEA algorithm on the problem examined. The RPEA

algorithm is a many-objective optimization algorithm

based on the reference point set definition idea that is the

main theme for many similar optimization algorithms [29].

As stated in the RPEA study, the performance of the

method is focused on many-objective problems. In the

study on DTLZ problems [13], its performance for 6.8- and

15-dimensional objective spaces was examined [29].

Although it has been shown from the results that better

results are obtained for DTLZ2 and DTLZ4, it is not dis-

cussed how the algorithm can perform for a small number

of objectives [29]. An adaptive method is preferred to find

reference points in the algorithm. Accordingly, dominated

individuals in the combined population are chosen as the

reference point. The basis of the algorithm is to determine

reference points adaptively in every iteration and calculate

the distance according to these reference points. The

selection of reference points as nondominated individuals

in each iteration causes less distance between them and the

other solution and distortion of the distribution of solutions

in the objective space. Since the motion of the solutions in

the objective space depends on these reference points

(Tchebychev), the convergence of the solutions will slow

down, and the distribution will be distorted. In this study,

the RPEA algorithm did not produce good results for any

dataset compared to the other algorithms. The problem

examined in this study has two objectives. While the small

number of objectives is an advantage for the multiobjective

optimization algorithm, it has been observed that it also

creates a disadvantage in algorithms designed for many-

objective problems. Therefore, the NSGA-II and

SPEASDE algorithms, which are older than the other

algorithms in this study, give similar results for the

hypervolume metric. The NSGA-II algorithm, which was

developed to provide a uniform distribution of solutions in

the objective space, gave better results for spreading met-

rics on many datasets.

4.4 Research development opportunities
and future studies

In this research, while discussing a new model for product

distribution in a pandemic period, the system was modeled

as static, a dynamic model and a multiobjective problem to

present solution candidates to a decision maker for possible

situations. The development of the CVRP-U model pro-

posed in this study should be seen as a futuristic study in

terms of examining the problem. In this model, the situa-

tions where products such as vaccines that must be stored

and distributed under certain conditions must be brought to

the nodes within a certain period of time. In this case, there

should be changes in the vehicles; even high-cost heli-

copter transportation should be a problem, and certain

products should be distributed within the specified time. It

should even be proposed when it cannot be distributed in

certain situations.

In addition to these improvements, the requirement for

the dataset is obvious. Although 24 datasets were produced

with 3 different datasets for dynamic cases used in this

study, the number of datasets should be increased only for

this study or similar studies since this dataset was created

with an existing dataset update. One of the most important

problems is the dynamic case. In this research, the urgency

of the vertexes is changed. The problem environment

(number of vertexes, number of vehicles, and parameters)

can also vary. This change can occur after the product

distribution has started. In these cases, the vehicles must

communicate with each other, and similar to in this

research, a centralized solution is distributed to the vehicles

in such a way that their routes are changed. However, for

the problems in which communication is limited, a

decentralized problem and solution are required. The

decentralized problem is considered to be an important

problem that should be discussed in the future.

Additionally, during pandemic periods, it is necessary to

carry necessities in homes. Thus, the problem can be turned

into an arc problem. In the case of high virus contagion

during the pandemic period, the transportation of drugs to

each household can be modeled as an arc problem. In this

case, it is necessary to ensure that these products are dis-

tributed within a day (approximately 18 h). In this case, the

number and capacity of the vehicles are another study that

must be examined.

In addition to these discussions, vehicles rented with

many possible roads should be considered in such a way

that not only the type of vehicle but also the road (or dif-

ferent possible routes) can be selected and considered to be

the decision variable.
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5 Conclusion

In this study, the distribution of important medical products

in the case of a pandemic or similar disaster was modeled

as CVRP-U and developed with two new definitions. These

definitions are the urgency and the infectiousness rate. The

definition of urgency affects the decision variables and the

operators associated with them, and the definition of the

infection rate, on the other hand, increases the number of

objectives and reveals the nature of the problem. CVRP-U

model was modeled as a biobjective problem, and solved

by using optimization algorithms. The definition of

urgency became the definition of a sequence for the ver-

texes. Therefore, the crossover and mutation operators

have been updated with this new definition. Since there is

no related dataset in the literature, a new dataset was cre-

ated by updating the existing dataset. Thus, the definition

of the problem, the tools necessary to solve the problem

and the environment where the problem will be tested have

been created. The problem has been solved through this

dataset using five different optimization algorithms. It has

been shown that the operators proposed from the results

can be applied in more than one algorithm. In addition, it

was observed that the NSGA-II algorithm gave better

results in terms of convergence in the results examined

from two different frames in terms of the convergence and

distribution, while the HypE algorithm gave better results

for the hypervolume metric.

Appendix 1

A vehicle routing problems and variants

Vehicle Routing Problems are one of the important prob-

lem set in real life engineering challenges. Many real-life

applications and corresponding problems can be considered

inside special applications of the VRP. As the engineering

problem defines more detailed, the conventional VRP

needs to improved to became a new form/variant. In the

literature, there are many variants have been proposing to

solve these problems. In Appendix 1, these variants are

briefly presented to support not only the impact and

important of the proposed research but also the authors

believes that these variants may help the researcher to solve

their investigated problem.

Delivery problems are one of the case for the variants of

the VRP. Online retailer deliveries are most likely the most

frequently used indirect application for the VRP. The

indirect problem is generally that the shipping company

manages the distribution of goods to the customers. How-

ever, occasionally, retailers distribute their own products,

and that problem is considered to be a vehicle routing

problem with time windows (VRPTWs) [25, 38]. As a

different point of view, that problem is considered and

solved in terms of a case-based reasoning (CBR) method-

ology in [38] (an experience-based problem-solving tech-

nique based on artificial intelligence). In the discussion in

[38], the experience and metrics of the previous drivers

along the same path are recorded and used to obtain the

best solution for the VRP. Additionally, these metrics are

the objectives of the problem, which maximizes the num-

ber of lengthy historical customer chains and minimizes the

total cost.

The dial-a-ride problem (DARP) is a delivery problem

in such a way that the aim is to transport customers from

the origin to the destination locations [30]. In [30], single-

depot and multidepot DARPs are considered with respect

to the heterogeneous fleet of vehicles, and the problem is

solved with a multistart hybrid algorithm that combines the

iterated local search (ILS) and set partitioning (SP)

approaches. The evacuation of people by buses and cars is

the VRP problem discussed in [59]. The bidirectional

multilane conflict-eliminating cell transmission model

(BCECTM) with the split delivery vehicle routing problem

(BCECTM-SDVRP) is proposed in [59], where a genetic

algorithm with a chromosome coding scheme is con-

structed to solve the evacuation optimization model. The

aim is to generate an optimal vehicle traveling trajectory in

this way to improve the evacuation performance. As a

delivery and pickup case, the multiproduct vehicle routing

problem with simultaneous pickup and delivery (VRPSPD)

is the main problem in [37, 43, 60]. A waiting strategy

(WS) based on a re-routing indicator (RI) (the threshold to

decide) for the vehicle routing problem is proposed with a

genetic algorithm (GA) with a meta-heuristic method.

The capacitated vehicle routing problem with alternative

delivery, pick-up and time windows is considered in [42]

(based on postal and courier delivery). Alternative delivery

points and parcel lockers are innovations for the VRP, and

a hybrid approach that integrates CP (constraint program-

ming), GA (genetic algorithm) and MP (mathematical

programming) was proposed for the optimization of the

problem. In delivery problems in real life, the participation

of ordinary people in the logistics of products helps the

company reduce the delivery costs, and in this way, ordi-

nary drivers can be hired to deliver with their own vehicles.

This problem is called the vehicle routing problem with

occasional drivers (VRPOD), which is discussed in [31].

To solve this problem, a multistart ILS algorithm where a

greedy randomized constructive method with an extended

neighborhood is proposed.

3878 Neural Computing and Applications (2023) 35:3865–3882

123



Two-echelon problems consider the additional (inter-

mediate) unit (vertex or depot) that connects the trans-

portation units. Two-echelon problems can be considered

to be two-phase problems; in this point of view, the line-

haul feeder vehicle routing problem (LFVRP) can be

evaluated in this category. In [6], LFVRP is discussed

where two types of vehicles, small and large, are used in

the research. Therefore, their parking lines only provided

service for both of them, and the other provided service

only for the small vehicles. As suggested in [6], large

vehicles can be considered to be depots (virtual depots);

therefore, both vehicles must be at the same place and at

the same time, and thus, the problem becomes a synchro-

nization problem (actually a time window problem, as in

line-haul feeder vehicle routing problem with time win-

dows (LFVRPTW)).

Two-echelon problems are suitable for transfering goods

to the vertex in urban deliveries [1]. These two-echelon

ideas are considered to be the inner and outer areas of the

urban area in [1], where the gray zone is defined as the

border of the inner city and outer area. Therefore, a three

objectives which are the total transportation cost, total

GHG emissions and total disturbance) is the two-echelon

vehicle routing problem (2eVRP) with vehicle synchro-

nization and gray zone customers is discussed in [1], and it

is solved by using heuristics based on a large neighborhood

search into a heuristic cuboid splitting integrated LNS into

a multiobjective method. Similar to two-echelon problems,

it is possible to consider the time window to be two layers.

In [20], the vehicle routing problem with two-layer time

window assignment and stochastic service times (2 L-

TWAVRPSST) is formed by using this idea, and it is

solved with the progressive hedging algorithm. These two

windows are formed based on the customers’ choice and

assigned a flexible width of time where the time window is

decided with a combination of stochastic demand and

service time [20]. The motivation of the study is to serve

more customers with a smaller number of vehicles [20] (the

objectives are the minimization of the traveling costs,

penalty costs and vehicle fixed costs), where adding new

vehicles is more costly in terms of penalties to customers.

Similar to the study in [20], a two-echelon collaborative

multidepot multiperiod vehicle routing problem (2E-

CMDPVRP) is proposed as a multiobjective integer pro-

gramming model where the objectives are the minimization

of operational costs, waiting times, and number of vehicles

[50]. Collaboration is a means to form pseudosynchro-

nization among multiple facilities and transportation times.

Three-dimensional k-means clustering and NSGA-III (IR-

NSGA-III) are merged as a hybrid algorithm to solve 2E-

CMDPVRP [50].

In addition to all of these problems, environmental

studies have emerged, such that reducing the emission or

route planning of electrical vehicles are discussed, over the

past decade (as a part of green engineering, these studies

are named green vehicle routing problems G-VRPs).

Electrical vehicles and the corresponding environmental

(carbon) emissions are also considered by the study

[32, 57]. G-VRP can be divided into two groups: electrical

vehicles and emission reduction problems. The aim of

emission reduction (minimization)-based studies is to

decrease the total pollution from vehicles. Various types of

optimization algorithms and models are proposed and

discussed, such as in the [14] whale optimization algorithm

(WOA) algorithm combined with the tabu search algorithm

and local search procedures; and in [21] grey wolf opti-

mizer is prefered. In [4], the multipath (multiple possible

arcs for traveling between two vertexes) map on an urban

area of Berlin is considered with randomly generated

demands (orders). Historical information about the traffic

of the road (arc) is a parameter of the problems for a green

VRP, and in [17], the time-dependent multidepot green

vehicle routing problem with time windows

(TDMDGVRPTW) is considered based on the historical

traffic information of the network. Connected and auto-

mated vehicles (CAVs) use the technologies of communi-

cation and control to accelerate and break the vehicle

without (or very little) driver intervention, and a hybrid

particle swarm optimization (HPSO) algorithm is devel-

oped to solve this problem.

Localization and routing problems are joined in [2] and

are called the green stochastic open (stochastic customers’

location) location-routing problem (GSOLRP), where dif-

ferent vehicles are assigned with respect to the demand and

road limitations with uncertainty (Taguchi’s method is

applied for parameter estimation). A hybrid metaheuristic

method joining the imperialist competitive algorithm (ICA)

and variable neighborhood search (VNS) was developed in

[2]. The multiobjective multidepot heterogeneous vehicle

capacitated arc routing problem (CARP) is solved for

G-VRP in [10], where four objectives are given for the

problem: total cost, emission, span and load utilization rate.

For this problem, a memetic algorithm based on Two

Arch2 (MATA) is proposed and compared with the

D-MAENS, MDILSMA/D, and IACO algorithms. The

usage of electrical vehicles makes the emissions zero

(carbon-free); however, the charging time and charging

frequency are the reasons for the VRP problem for elec-

trical vehicles. Charging stations are considered to be

vertexes on the map [44]. In [46], a day-ahead scheduling

framework is proposed as the electrical vehicle routing

problem, and it is solved by using the salp swarm algorithm

(SSA) on a real-life case from San Francisco.

The time window property of the VRP is inserted into

the electrical VRP in [61], where the elitist genetic algo-

rithm addresses the electric vehicle routing problem with a
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time window, and it is applied to the simulation of a postal

service system problem. In [58], the VRP named the green

mixed fleet vehicle routing problem with realistic energy

consumption and partial recharges (GMFVRPREC-PR),

which contains three important aspects (realistic energy

consumption, partial recharging policy, and carbon emis-

sions) is discussed, and an adaptive large neighborhood

search heuristic is developed to solve the problem. In [56],

an electric vehicle routing problem with mixed back-hauls,

time windows, and recharging strategies (EVRPMBTW-

RS) is proposed in such a way that the total travel cost is

minimized as an objective of the problem and is solved.

Similar to stochastic (dynamic) VRP, electrical vehicles

are also considered for dynamic cases. In [48], a dynamic

electric vehicle routing problem (DEVRP) is proposed,

where the demand from customers, battery capacity and

load degree change with respect to time while minimizing

the total driving distance. The adaptive memetic algorithm

(MA) for DEVRP is proposed, and the alternating direction

method of the multipliers (ADMM) solution algorithm is

developed to solve the applied problem. Carbon emissions

minimization is one of the aims of CAV technologies [7].

Therefore, in [7], the speed of the vehicle is selected as the

decision variable for low-carbon VRP for CAVs. As some

of the electrical vehicles, drones (or UAVs) are used for

delivery to specific areas in such a way that they can pick

up from a center (depot) and deliver to specific locations

with a defined flying time with respect to the battery power.

These problems are named VRP-drones (VRPDs). In [15],

in VRPDs, vehicles (drones) make deliveries as long as the

capacity and constraints are not exceeded. A hybrid

approach to improve the combination of sweep and genetic

algorithms is proposed for VRPD [15].

Data availability The datasets generated during and/or analyzed

during the current study are not publicly available due to the research

on these datasets still going on but are available from the corre-

sponding author on reasonable request.

Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

References

1. Anderluh A, Nolz PC, Hemmelmayr VC, Crainic TG (2021)

Multi-objective optimization of a two-echelon vehicle routing

problem with vehicle synchronization and ‘grey zone’ customers

arising in urban logistics. Eur J Oper Res 289(3):940–958. https://

doi.org/10.1016/j.ejor.2019.07.049

2. Araghi MET, Tavakkoli-Moghaddam R, Jolai F, Molana SMH

(2021) A green multi-facilities open location-routing problem

with planar facility locations and uncertain customer. J Clean

Prod 282:124343. https://doi.org/10.1016/j.jclepro.2020.124343

3. Bader J, Zitzler E (2011) Hype an algorithm for fast hypervol-

ume-based many-objective optimization. Evol Comput

19(1):45–76. https://doi.org/10.1162/evco-a-00009

4. Behnke M, Kirschstein T, Bierwirth C (2021) A column gener-

ation approach for an emission-oriented vehicle routing problem

on a multigraph. Eur J Oper Res 288(3):794–809. https://doi.org/

10.1016/j.ejor.2020.06.035

5. Beliaev M, Biyik E, Lazar DA, Wang WZ, Sadigh D, Pedarsani R

(2021) Incentivizing routing choices for safe and efficient trans-

portation in the face of the covid-19 pandemic. In: Proceedings of

the ACM/IEEE 12th International Conference on Cyber-Physical

Systems, pp. 1–11. ACM. https://doi.org/10.1145/3450267.

3450546

6. Brandstatter C (2019) A metaheuristic algorithm and structured

analysis for the line-haul feeder vehicle routing problem with

time windows. CEJOR 29(1):247–289. https://doi.org/10.1007/

s10100-019-00625-0

7. Cai L, Lv W, Xiao L, Xu Z (2021) Total carbon emissions

minimization in connected and automated vehicle routing prob-

lem with speed variables. Expert Syst Appl 165:113910. https://

doi.org/10.1016/j.eswa.2020.113910

8. Cao B, Zhang W, Wang X, Zhao J, Gu Y, Zhang Y (2021) A

memetic algorithm based on twoarch2 for multi-depot heteroge-

neous-vehicle capacitated arc routing problem. Swarm Evol

Comput 63:100864. https://doi.org/10.1016/j.swevo.2021.100864

9. Cao JX, Wang X, Gao J (2021) A two-echelon location-routing

problem for biomass logistics systems. Biosys Eng 202:106–118.

https://doi.org/10.1016/j.biosystemseng.2020.12.007

10. Cao JX, Zhang Z, Zhou Y (2021) A location-routing problem for

biomass supply chains. Comput Ind Eng 152:107017. https://doi.

org/10.1016/j.cie.2020.107017

11. Cristofides N (1979) etc: Combinatorial optimization. Wiley,

New Jersey

12. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and

elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evol

Comput 6(2):182–197. https://doi.org/10.1109/4235.996017

13. Deb K, Thiele L, Laumanns M, Zitzler E (2005) Scalable test

problems for evolutionary multiobjective optimization. Advanced

information and knowledge processing. Springer-Verlag, Berlin,

pp 105–145. https://doi.org/10.1007/1-84628-137-7-6

14. Dewi SK, Utama DM (2020) A new hybrid whale optimization

algorithm for green vehicle routing problem. Syst Sci Control

Eng 9(1):61–72. https://doi.org/10.1080/21642583.2020.1863276

15. Euchi J, Sadok A (2021) Hybrid genetic-sweep algorithm to solve

the vehicle routing problem with drones. Phys Commun

44:101236. https://doi.org/10.1016/j.phycom.2020.101236

16. Theurich F, Fischer A, Scheithauer G (2021) A branch-and-

bound approach for a vehicle routing problem with customer

costs. EURO J Comput Optim 9:1–11. https://doi.org/10.1016/j.

ejco.2020.100003

17. Fan H, Zhang Y, Tian P, Lv Y, Fan H (2021) Time-dependent

multi-depot green vehicle routing problem with time windows

considering temporal-spatial distance. Comput Oper Res

129:105211. https://doi.org/10.1016/j.cor.2021.105211

18. Gamchi NS, Torabi SA, Jolai F (2020) A novel vehicle routing

problem for vaccine distribution using sir epidemic model. OR

Spectrum 43(1):155–188. https://doi.org/10.1007/s00291-020-

00609-6

19. Haixiang G, Fang W, Wenwen P, Mingyun G (2021) Period

sewage recycling vehicle routing problem based on real-time

data. J Clean Prod 288:125628. https://doi.org/10.1016/j.jclepro.

2020.125628

20. Jalilvand M, Bashiri M, Nikzad E (2021) An effective progres-

sive hedging algorithm for the two-layers time window

3880 Neural Computing and Applications (2023) 35:3865–3882

123

https://doi.org/10.1016/j.ejor.2019.07.049
https://doi.org/10.1016/j.ejor.2019.07.049
https://doi.org/10.1016/j.jclepro.2020.124343
https://doi.org/10.1162/evco-a-00009
https://doi.org/10.1016/j.ejor.2020.06.035
https://doi.org/10.1016/j.ejor.2020.06.035
https://doi.org/10.1145/3450267.3450546
https://doi.org/10.1145/3450267.3450546
https://doi.org/10.1007/s10100-019-00625-0
https://doi.org/10.1007/s10100-019-00625-0
https://doi.org/10.1016/j.eswa.2020.113910
https://doi.org/10.1016/j.eswa.2020.113910
https://doi.org/10.1016/j.swevo.2021.100864
https://doi.org/10.1016/j.biosystemseng.2020.12.007
https://doi.org/10.1016/j.cie.2020.107017
https://doi.org/10.1016/j.cie.2020.107017
https://doi.org/10.1109/4235.996017
https://doi.org/10.1007/1-84628-137-7-6
https://doi.org/10.1080/21642583.2020.1863276
https://doi.org/10.1016/j.phycom.2020.101236
https://doi.org/10.1016/j.ejco.2020.100003
https://doi.org/10.1016/j.ejco.2020.100003
https://doi.org/10.1016/j.cor.2021.105211
https://doi.org/10.1007/s00291-020-00609-6
https://doi.org/10.1007/s00291-020-00609-6
https://doi.org/10.1016/j.jclepro.2020.125628
https://doi.org/10.1016/j.jclepro.2020.125628


assignment vehicle routing problem in a stochastic environment.

Expert Syst Appl 165:113877. https://doi.org/10.1016/j.eswa.

2020.113877

21. Jiang F, Dong L, Dai Q (2022) Designing a mixed multilayer

wavelet neural network for solving eri inversion problem with

massive amounts of data: A hybrid stgwo-gd learning approach.

IEEE Trans Cybern 52(2):925–936. https://doi.org/10.1109/tcyb.

2020.2990319

22. Jiang F, Dong L, Wang K, Yang K, Pan C (2022) Distributed

resource scheduling for large-scale mec systems: a multiagent

ensemble deep reinforcement learning with imitation accelera-

tion. IEEE Internet Things J 9(9):6597–6610. https://doi.org/10.

1109/jiot.2021.3113872

23. Jiang F, Wang K, Dong L, Pan C, Xu W, Yang K (2020) Deep-

learning-based joint resource scheduling algorithms for hybrid

mec networks. IEEE Internet Things J 7(7):6252–6265. https://

doi.org/10.1109/jiot.2019.2954503

24. Ju B, Kim M, Moon I (2021) Vehicle routing problem consid-

ering reconnaissance and transportation. Sustainability

13(6):3188. https://doi.org/10.3390/su13063188

25. Khoo TS, Mohammad BB (2021) The parallelization of a two-

phase distributed hybrid ruin-and-recreate genetic algorithm for

solving multi-objective vehicle routing problem with time win-

dows. Expert Syst Appl 168:114408. https://doi.org/10.1016/j.

eswa.2020.114408

26. Lalla-Ruiz E, Mes M (2020) Mathematical formulations and

improvements for the multi-depot open vehicle routing problem.

Optim Lett 15(1):271–286. https://doi.org/10.1007/s11590-020-

01594-z

27. Li J, Xin L, Cao Z, Lim A, Song W, Zhang J (2021) Heteroge-

neous attentions for solving pickup and delivery problem via deep

reinforcement learning. IEEE Trans Intell Transp Syst. https://

doi.org/10.1109/tits.2021.3056120

28. Li M, Yang S, Liu X (2014) Shift-based density estimation for

pareto-based algorithms in many-objective optimization. IEEE

Trans Evol Comput 18(3):348–365. https://doi.org/10.1109/tevc.

2013.2262178

29. Liu Y, Gong D, Sun X, Zhang Y (2017) Many-objective evolu-

tionary optimization based on reference points. Appl Soft Com-

put 50:344–355. https://doi.org/10.1016/j.asoc.2016.11.009

30. Malheiros I, Ramalho R, Passeti B, Bulhoes T, Subramanian A

(2021) A hybrid algorithm for the multi-depot heterogeneous

dial-a-ride problem. Comput Oper Res 129:105196. https://doi.

org/10.1016/j.cor.2020.105196

31. Martin-Santamaria R, Lopez-Sanchez AD, Delgado-Jalon ML,

Colmenar JM (2021) An efficient algorithm for crowd logistics

optimization. Mathematics 9(5):509. https://doi.org/10.3390/

math905050

32. Mojtahedi M, Fathollahi-Fard AM, Tavakkoli-Moghaddam R,

Newton S (2021) Sustainable vehicle routing problem for coor-

dinated solid waste management. J Ind Inf Integr 23:100220.

https://doi.org/10.1016/j.jii.2021.100220

33. Niu Y, Zhang Y, Cao Z, Gao K, Xiao J, Song W, Zhang F (2021)

Mimoa: a membrane-inspired multi-objective algorithm for green

vehicle routing problem with stochastic demands. Swarm Evol

Comput 60:100767. https://doi.org/10.1016/j.swevo.2020.100767

34. Nucamendi-Guillen S, Padilla AG, Olivares-Benitez E, Moreno-

Vega JM (2021) The multi-depot open location routing problem

with a heterogeneous fixed fleet. Expert Syst Appl 165:113846.

https://doi.org/10.1016/j.eswa.2020.113846

35. Osorio-Mora A, Soto-Bustos M, Gatica G, Palominos P, Linfati R

(2021) The multi-depot cumulative vehicle routing problem with

mandatory visit times and minimum delayed latency. IEEE

Access 9:27210–27225. https://doi.org/10.1109/access.2021.

3058242

36. Pan B, Zhang Z, Lim A (2021) A hybrid algorithm for time-

dependent vehicle routing problem with time windows. Comput

Oper Res 128:105193. https://doi.org/10.1016/j.cor.2020.105193

37. Park H, Son D, Koo B, Jeong B (2021) Waiting strategy for the

vehicle routing problem with simultaneous pickup and delivery

using genetic algorithm. Expert Syst Appl 165:113959. https://

doi.org/10.1016/j.eswa.2020.113959

38. Quirion-Blais O, Chen L (2021) A case-based reasoning approach

to solve the vehicle routing problem with time windows and

drivers’ experience. Omega 102:102340. https://doi.org/10.1016/

j.omega.2020.102340

39. Saint-Guillain M, Paquay C, Limbourg S (2021) Time-dependent

stochastic vehicle routing problem with random requests:

Application to online police patrol management in brussels. Eur J

Oper Res 292(3):869–885. https://doi.org/10.1016/j.ejor.2020.11.

007

40. Schott JR (1995) Fault tolerant design using single and multi-

criteria genetic algorithm optimizations. M.S. thesis

41. Sherif SU, Asokan P, Sasikumar P, Mathiyazhagan K, Jerald J

(2021) Integrated optimization of transportation, inventory and

vehicle routing with simultaneous pickup and delivery in two-

echelon green supply chain network. J Clean Prod 287:125434.

https://doi.org/10.1016/j.jclepro.2020.125434

42. Sitek P, Wikarek J, Rutczynska-Wdowiak K, Bocewicz G,

Banaszak Z (2021) Optimization of capacitated vehicle routing

problem with alternative delivery, pick-up and time windows: A

modified hybrid approach. Neurocomputing 423:670–678. https://

doi.org/10.1016/j.neucom.2020.02.126

43. Tao N, Shishasha S, Peng Z, Tao G (2020) Disruption manage-

ment decision model for vrpsdp under changes of customer dis-

tribution demand. J Ambient Intell Humaniz Comput

12(2):2053–2063. https://doi.org/10.1007/s12652-020-02304-4

44. Theeb NA, Hayajneh M, Qubelat NA (2020) Optimization of

logistic plans with adopting the green technology considerations

by utilizing electric vehicle routing problem. Ind Eng Manag Syst

19(4):774–789. https://doi.org/10.7232/iems.2020.19.4.774

45. Tikani H, Setak M, Demir E (2021) A risk-constrained time-

dependent cash-in-transit routing problem in multigraph under

uncertainty. Eur J Oper Res 293(2):703–730. https://doi.org/10.

1016/j.ejor.2020.12.020

46. Tookanlou MB, Kani SAP, Marzband M (2021) A comprehen-

sive day-ahead scheduling strategy for electric vehicles operation.

Int J Electr Power Energy Syst 131:106912. https://doi.org/10.

1016/j.ijepes.2021.106912

47. Vieira YEM, de Mello Bandeira RA, da Silva Junior OS (2021)

Multi-depot vehicle routing problem for large scale disaster relief

in drought scenarios: the case of the brazilian northeast region. Int

J Disaster Risk Reduct 58:102193. https://doi.org/10.1016/j.ijdrr.

2021.102193

48. Wang N, Sun Y, Wang H (2021) An adaptive memetic algorithm

for dynamic electric vehicle routing problem with time-varying

demands. Math Probl Eng 2021:1–10. https://doi.org/10.1155/

2021/6635749

49. Wang X, Lin N, Li Y, Shi Y, Ruan J (2021) An integrated

modeling method for collaborative vehicle routing: facilitating

the unmanned micro warehouse pattern in new retail. Expert Syst

Appl 168:114307. https://doi.org/10.1016/j.eswa.2020.114307

50. Wang Y, Li Q, Guan X, Xu M, Liu Y, Wang H (2021) Two-

echelon collaborative multi-depot multi-period vehicle routing

problem. Expert Syst Appl 167:114201. https://doi.org/10.1016/j.

eswa.2020.114201

51. Wang Y, Zhang J, Guan X, Xu M, Wang Z, Wang H (2021)

Collaborative multiple centers fresh logistics distribution network

optimization with resource sharing and temperature control

constraints. Expert Syst Appl 165:113838. https://doi.org/10.

1016/j.eswa.2020.113838

Neural Computing and Applications (2023) 35:3865–3882 3881

123

https://doi.org/10.1016/j.eswa.2020.113877
https://doi.org/10.1016/j.eswa.2020.113877
https://doi.org/10.1109/tcyb.2020.2990319
https://doi.org/10.1109/tcyb.2020.2990319
https://doi.org/10.1109/jiot.2021.3113872
https://doi.org/10.1109/jiot.2021.3113872
https://doi.org/10.1109/jiot.2019.2954503
https://doi.org/10.1109/jiot.2019.2954503
https://doi.org/10.3390/su13063188
https://doi.org/10.1016/j.eswa.2020.114408
https://doi.org/10.1016/j.eswa.2020.114408
https://doi.org/10.1007/s11590-020-01594-z
https://doi.org/10.1007/s11590-020-01594-z
https://doi.org/10.1109/tits.2021.3056120
https://doi.org/10.1109/tits.2021.3056120
https://doi.org/10.1109/tevc.2013.2262178
https://doi.org/10.1109/tevc.2013.2262178
https://doi.org/10.1016/j.asoc.2016.11.009
https://doi.org/10.1016/j.cor.2020.105196
https://doi.org/10.1016/j.cor.2020.105196
https://doi.org/10.3390/math905050
https://doi.org/10.3390/math905050
https://doi.org/10.1016/j.jii.2021.100220
https://doi.org/10.1016/j.swevo.2020.100767
https://doi.org/10.1016/j.eswa.2020.113846
https://doi.org/10.1109/access.2021.3058242
https://doi.org/10.1109/access.2021.3058242
https://doi.org/10.1016/j.cor.2020.105193
https://doi.org/10.1016/j.eswa.2020.113959
https://doi.org/10.1016/j.eswa.2020.113959
https://doi.org/10.1016/j.omega.2020.102340
https://doi.org/10.1016/j.omega.2020.102340
https://doi.org/10.1016/j.ejor.2020.11.007
https://doi.org/10.1016/j.ejor.2020.11.007
https://doi.org/10.1016/j.jclepro.2020.125434
https://doi.org/10.1016/j.neucom.2020.02.126
https://doi.org/10.1016/j.neucom.2020.02.126
https://doi.org/10.1007/s12652-020-02304-4
https://doi.org/10.7232/iems.2020.19.4.774
https://doi.org/10.1016/j.ejor.2020.12.020
https://doi.org/10.1016/j.ejor.2020.12.020
https://doi.org/10.1016/j.ijepes.2021.106912
https://doi.org/10.1016/j.ijepes.2021.106912
https://doi.org/10.1016/j.ijdrr.2021.102193
https://doi.org/10.1016/j.ijdrr.2021.102193
https://doi.org/10.1155/2021/6635749
https://doi.org/10.1155/2021/6635749
https://doi.org/10.1016/j.eswa.2020.114307
https://doi.org/10.1016/j.eswa.2020.114201
https://doi.org/10.1016/j.eswa.2020.114201
https://doi.org/10.1016/j.eswa.2020.113838
https://doi.org/10.1016/j.eswa.2020.113838


52. Wang YN, Wu LH, Yuan XF (2009) Multi-objective self-adap-

tive differential evolution with elitist archive and crowding

entropy-based diversity measure. Soft Comput 14(3):193–209.

https://doi.org/10.1007/s00500-008-0394-9

53. While L, Hingston P, Barone L, Huband S (2006) A faster

algorithm for calculating hypervolume. IEEE Trans Evol Comput

10(1):29–38. https://doi.org/10.1109/tevc.2005.851275

54. Wu Y, Song W, Cao Z, Zhang J, Lim A (2021) Learning

improvement heuristics for solving routing problems. IEEE Trans

Neural Netw Learn Syst. https://doi.org/10.1109/tnnls.2021.

3068828

55. Yang S, Li M, Liu X, Zheng J (2013) A grid-based evolutionary

algorithm for many-objective optimization. IEEE Trans Evol

Comput 17(5):721–736. https://doi.org/10.1109/tevc.2012.

2227145

56. Yang S, Ning L, Tong LC, Shang P (2021) Optimizing electric

vehicle routing problems with mixed backhauls and recharging

strategies in multi-dimensional representation network. Expert

Syst Appl 176:114804. https://doi.org/10.1016/j.eswa.2021.

114804

57. Yin F, Zhao Y (2021) Optimizing vehicle routing via stackelberg

game framework and distributionally robust equilibrium opti-

mization method. Inf Sci 557:84–107. https://doi.org/10.1016/j.

ins.2020.12.057

58. Yu VF, Jodiawan P, Gunawan A (2021) An adaptive large

neighborhood search for the green mixed fleet vehicle routing

problem with realistic energy consumption and partial recharges.

Appl Soft Comput 105:107251. https://doi.org/10.1016/j.asoc.

2021.107251

59. hua Zeng M, Wang M, Chen Y, Yang Z (2021) Dynamic evac-

uation optimization model based on conflict-eliminating cell

transmission and split delivery vehicle routing. Saf Sci

137:105166. https://doi.org/10.1016/j.asoc.2021.107251

60. Zhang W, Chen Z, Zhang S, Cai Y (2020) Dynamic multi-stage

failure-specific cooperative recourse strategy for logistics with

simultaneous pickup and delivery. Soft Comput

25(5):3795–3812. https://doi.org/10.1007/s00500-020-05408-3

61. Zhu Y, Lee KY, Wang Y (2021) Adaptive elitist genetic algo-

rithm with improved neighbor routing initialization for electric

vehicle routing problems. IEEE Access 9:16661–16671. https://

doi.org/10.1109/access.2021.3053285

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article

under a publishing agreement with the author(s) or other rightsh-

older(s); author self-archiving of the accepted manuscript version of

this article is solely governed by the terms of such publishing

agreement and applicable law.

3882 Neural Computing and Applications (2023) 35:3865–3882

123

https://doi.org/10.1007/s00500-008-0394-9
https://doi.org/10.1109/tevc.2005.851275
https://doi.org/10.1109/tnnls.2021.3068828
https://doi.org/10.1109/tnnls.2021.3068828
https://doi.org/10.1109/tevc.2012.2227145
https://doi.org/10.1109/tevc.2012.2227145
https://doi.org/10.1016/j.eswa.2021.114804
https://doi.org/10.1016/j.eswa.2021.114804
https://doi.org/10.1016/j.ins.2020.12.057
https://doi.org/10.1016/j.ins.2020.12.057
https://doi.org/10.1016/j.asoc.2021.107251
https://doi.org/10.1016/j.asoc.2021.107251
https://doi.org/10.1016/j.asoc.2021.107251
https://doi.org/10.1007/s00500-020-05408-3
https://doi.org/10.1109/access.2021.3053285
https://doi.org/10.1109/access.2021.3053285

	Multiobjective problem modeling of the capacitated vehicle routing problem with urgency in a pandemic period
	Abstract
	Introduction
	Motivation of the research

	Problem Definition
	Coding/Encoding
	Implementation
	Dataset
	Optimization algorithms
	Results
	Research development opportunities and future studies

	Conclusion
	Appendix 1
	A vehicle routing problems and variants
	Data availability
	References




