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Abstract
This study proposes a novel interpretable framework to forecast the daily tourism volume of Jiuzhaigou Valley, Huangshan
Mountain, and Siguniang Mountain in China under the impact of COVID-19 by using multivariate time-series data,
particularly historical tourism volume data, COVID-19 data, the Baidu index, and weather data. For the first time, epidemic-
related search engine data is introduced for tourism demand forecasting. A new method named the composition leading
search index–variational mode decomposition is proposed to process search engine data. Meanwhile, to overcome the
problem of insufficient interpretability of existing tourism demand forecasting, a new model of DE-TFT inter-
pretable tourism demand forecasting is proposed in this study, in which the hyperparameters of temporal fusion transformers
(TFT) are optimized intelligently and efficiently based on the differential evolution algorithm. TFT is an attention-based deep
learning model that combines high-performance forecasting with interpretable analysis of temporal dynamics, displaying
excellent performance in forecasting research. The TFT model produces an interpretable tourism demand forecast output,
including the importance ranking of different input variables and attention analysis at different time steps. Besides, the
validity of the proposed forecasting framework is verified based on three cases. Interpretable experimental results show that
the epidemic-related search engine data can well reflect the concerns of tourists about tourism during the COVID-19
epidemic.
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1 Introduction

The outbreak of COVID-19 has imposed a huge impact on
social behavior, the economy, and the environment [1]. In
particular, globally affected by the COVID-19 epidemic,
many countries have imposed national blockades and

containment measures, which inevitably reduced the will-
ingness to travel and paralyzed travel-related industries,
such as airlines, hotels, and restaurants [2, 3]. As of August
2022, China, New Zealand, and Denmark, among other
countries, have controlled the number of deaths and infec-
tions. These countries have been relaxing state controls and
lifting lockdown measures, allowing companies to gradu-
ally start operations as long as they comply with govern-
ment health and safety guidelines and rules and impose
appropriate social distancing measures [4]. The domestic
tourism industries in countries immensely affected by the
COVID-19 epidemic have since been greatly restored.
Subsequently, investigating the changes in tourism demand
in those countries can provide guidance and insights into the
recovery of tourism.

Equipped with foresight toward the post-pandemic sce-
nario, the accurate prediction of tourism demand appears to
be an extreme initiative for the strategic planning of tourism
destinations and tourism-related companies [5, 6]. However,
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the recurrence of epidemics brought about by the uncer-
tainty of COVID-19 has also caused major challenges to the
tourism demand forecast. Finding suitable indicators to
reflect the people’s concerns about the epidemic is critical in
accurately making travel forecasts.

Search engine data can reflect tourist behavior and
intentions. Expectedly, many scholars have focused on
forecasting tourism volume by using Internet big data [7, 8].
The existing studies often use travel-related search indexes,
such as tour, shopping, recreation, traffic, lodging, and
dining data. However, to the best of our knowledge, no
research has attempted to analyze the effect of epidemic-
related search indexes on tourism prediction during the
COVID-19 epidemic. Unlike previous studies, this study
can contribute to predicting tourism demand based on
tourism-related search indexes and epidemic-related search
indexes. In particular, with Baidu occupying a relatively
large market share in China [9], Baidu Index is adopted in
this study.

The use of search engine data may face the problem of
multicollinearity and overfitting. To reduce the complexity
of the tourism demand forecasting model, researchers have
proposed the use of one or many representative indicators as
explanatory variables [10]. Different approaches, including
the generalized dynamic factor model, principal component
analysis, and Hurst exponent (HE)–time difference corre-
lation (TDC) method, have been proposed for the composite
index [11]. The composite index can help to avoid the
problems of multicollinearity and overfitting [12].

Moreover, as the search form and the diversity of search
purposes are often limited, a large amount of noise signal
interference exists in search engine data [13]. Therefore,
before prediction, a denoising pre-processing of data should
be conducted given improve prediction accuracy [14, 15].
By decomposing the original search engine data sequence
into different components, the ones that contribute the most
to improving the prediction accuracy can be identified.
Therefore, in this study, we innovatively combine the
advantages of using composite and decomposed search
indexes.

In particular, this study offers an effective approach for
simultaneously utilizing historical tourism volume data,
daily increase in confirmed cases, weather data, tourism-
related search engine data, and epidemic-related search
engine data. In this manner, the daily tourism volume of
Jiuzhaigou Valley, Huangshan Mountain, and Siguniang
Mountain—the three popular tourist attractions in China—
can be systematically forecasted.

Most of the existing tourism demand forecasting models
are limited to the research on the selection and processing of
input variables while ignoring the analysis and interpreta-
tion of the coupling relationship between influencing factors
and tourism demand. Although high accuracy has been

achieved in some studies which are based on deep learning
models and predict tourism demand in accordance with
Internet data, the experimental model cannot well explain
how the deep learning model works. To be specific, the
insufficient explanation has created some obstacles for
tourism-related workers to accept this research information.
In other words, how tourism demand forecasts exhibit
persuasive interpretability remains to be further investi-
gated. Therefore, given the limitations of existing research,
the Temporal Fusion Transformers (TFT) are improved in
this study, followed by the construction of a high-quality
interpretable tourism demand prediction model.

The main contributions of the current research can be
summarized as follows:

(a) This study proposes a comprehensive inter-
pretable tourism forecasting framework for incorpo-
rating tourism attention, epidemic situation, and
weather conditions during the COVID-19 epidemic.
Multi-source data can provide a relatively strong
theory and comprehensive overview for tourism
volume forecasting. The validity of the proposed
forecasting framework is verified using the afore-
mentioned three actual cases.

(b) It is one of the first attempts to model an inter-
pretable tourism demand forecast based on Temporal
Fusion Transformers. The analysis of the importance
of different influencing factors affecting tourism
demand via the interpretability of TFT contributes
to identifying important influencing factors in tourism
demand forecasting, thereby providing decision-mak-
ers with persuasive tourism demand forecasting
analysis and decision-making assistance. Besides,
the DE-TFT tourism demand prediction model is
designed, and the parameters of the TFT are opti-
mized based on the differential evolution algorithm
(DE) to improve the prediction accuracy and stability.
All in all, this study complements existing academic
research on the interpretability of input variables in
tourism forecasting, providing novel ideas for tourism
volume forecasting in the post-epidemic era.

(c) To our knowledge, the current research is the first to
introduce epidemic-related search engine data for
tourism demand forecasting. The experimental results
show that epidemic-related search data play a greater
role in forecasting tourism volume than daily newly
confirmed cases. A good reason is that epidemic-
related data can sufficiently reflect the concerns of
tourists about tourism during the COVID-19
epidemic.

(d) This study proposes a new method named the
composition leading search index (CLSI)–variational
mode decomposition (VMD) to process search engine
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data, which is also an attempt to contribute theoretical
insights into big data processing and the tourism
demand forecasting methodology. CLSI, a method for
processing high-dimensional data, is used to incor-
porate tourism-related and epidemic-related search
engine data. This method is commonly employed in
the financial and economic fields, but it is seldom
used in tourism forecasting. VMD is used to further
decompose the composite search index, and then the
relationship investigation method is used to select the
optimal sub-modes of VMD.

The remainder of this study is presented as follows.
Section 2 summarizes the relevant research. Section 3
introduces several modes of basic theory analyses and
presents the proposed forecasting framework of this study.
Section 4 discusses the experimental study and research
findings. Section 5 concludes this study and provides
implications for managers.

2 Literature review

Researchers have explored various methods to predict
tourism demand, and they mainly include econometric, time
series, and artificial intelligence (AI)-based models [16–22].
With the development of big data analysis and Internet
technology, Internet big data (e.g., social media data and
search engine data) have attracted the attention of many
scholars [14]. In particular, search engine data have become
increasingly popular given their unique advantages, such as
high-frequency and real-time characteristics, and the
potential sensitivity of capturing consumer behavior. This
section briefly summarizes the research on the use of search
engine data for tourism forecasting and reviews the research
on tourism demand forecasting under the influence of the
different epidemics.

2.1 Tourism demand forecasting with search
engine data

Search engine data—those data that users enter into search
engines (e.g., Baidu and Google)—have recently provided
social science with a new data source and a basis for
analysis of human behavior [8]. Tourists or consumers often
search and collect information through the Internet before
taking any action. This type of information search provides
tourism decision-makers and scholars with an information
basis for analyzing the decision-making process and future
behavior of tourism consumers [23].

Many studies show that search engine data can signifi-
cantly improve the performance of tourism demand fore-
casting [24]. Bangwayo-Skeete and Skeete [25] proposed a

composite search method from Google for “hotels and
flights” and combined autoregressive mixed data sampling
models with collected data from Google Trends to explain
the remarkable forecasting performance of tourist volume in
Caribbean destinations. Yang et al. [26] emphasized that the
appropriate selection of search engine data according to the
usage rate of search engines for different regions can help to
more accurately forecast tourism demand. For example,
Baidu data are more conducive to forecasting China’s
domestic travel demand, whereas Google data are more
suitable for forecasting China’s international travel demand.

The choice of keywords in the search engine data also
directly determines the performance of tourism demand
forecasting [27]. The existing studies have mainly relied on
tourism-related domain knowledge and search engine data
under specific categories for keyword selection. Consider-
ing that the data of search engines are huge and contain a
wealth of information, scholars should choose the most
appropriate information through selection and composite
methods as a means of distinguishing between uncertain
and accurate predictions [28]. On this basis, Peng et al. [11]
selected the most useful keywords in their study based on
HE and TDC analyses. However, the introduction of several
highly relevant search query indicators may bring chal-
lenges to tourism prediction models. Given reducing the
dimensions of search engine data, Li et al. [29] used a
generalized dynamic factor model, Li et al. [10] applied
principle component analysis, and Law et al. [30] used a
deep learning approach to create composite search indexes.
Their experiments demonstrated the validity of using the
composite search index.

In recent years, decomposition methods have been
widely used in tourism forecasting because these methods
can reduce the complexity of the overall forecast without
the need for additional data, thereby improving the accuracy
of the forecast. Li and Law [19] used the ensemble empir-
ical mode decomposition method to decompose search
engine data from Google Trends for tourism demand fore-
casting. Their study proposed a unique decomposition-
based perspective for big data processing based on the
decomposition of search engine data. Nevertheless, little
research has combined the advantages of using the com-
posite search index and decomposition methods. By using
CLSI and VMD to process the search engine data, this study
can more fully tap the value of search engine data for
tourism demand forecasting compared with previous works.

2.2 Tourism demand forecasting
during the different pandemics

During the COVID-19 pandemic, the mobility of the tour-
ism industry is subject to sudden and extreme restrictions
[31]. A pandemic usually causes tourists to change their
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travel plans because they are concerned about possible risks
[32, 33].

As for tourism literature, Table 1 shows the epidemics
and their effects as cited. Choe, Wang, and Song [34] found
that the Middle East Respiratory Syndrome (MERS) coro-
navirus had a statistically and negatively significant effect
on the tourism volume of visitors to South Korea. Shi and
Li [35] discussed the influence of MERS on South Korea’s
inbound tourists. Their results revealed that MERS had a
significant adverse impact on tourism demand; however, for
official and business tourism arrivals, its impact was mini-
mal. Zeng, Carter, and Lacy [36] determined the significant
negative impact of the Severe Acute Respiratory Syndrome
(SARS) epidemic on China’s tourism development. McAl-
eer et al. [37] found that the short-term and long-term
effects of SARS on the entry of international tourists from
Asia were greater than avian flu because travelers were
more concerned about SARS. Page, Song, and Wu [32]
proposed the time-varying parameter model to assess the
simultaneous impact of the swine flu pandemic and the
global economic crisis on the United Kingdom’s inbound
tourists.

Although only a few countries have experience in han-
dling pandemics, two experiences can be drawn from their
recovery measures. Firstly, prior to the elimination of the
epidemic, the number of tourists had started to increase, but

the recovery rate was extremely slow. Secondly, once the
outbreak of the epidemic was eventually controlled, several
months were observed before the return to normal levels,
and the rapid increase was to levels higher than that before
the outbreak. However, unlike the previous epidemic,
COVID-19 has infected almost all countries, triggering an
unprecedented global crisis. Gössling, Scott, and Hall [38]
suggested that the COVID-19 crisis affects the tourism
industry more than other types of crises.

Investigating the performance of tourism data as an
epidemic occurs is critical in helping decision-makers to
design smart measures, responses, and restriction plans,
especially since events similar to COVID-19 are unpre-
dictable [39]. The COVID-19 epidemic is highly uncertain
and affects the future behavior of tourism. When an
unpredictable external shock occurs, more research needs to
be pursued to support the decision-making. On this basis,
scholars have attempted to study the predictors of tourism
demand during COVID-19. Wickramasinghe and Ratnasiri
[5] used travel data classified by region and time and
Google search data to improve the accuracy of travel fore-
casts in Sri Lanka during the COVID-19 pandemic. Liu
et al. [40] and Zhang et al. [13] proposed scenario-based
judgmental forecasting to analyze the amount of tourism
recovery after the COVID-19 epidemic, respectively.

Table 1 Summary of selected tourism forecasting studies during the different pandemics

References Type of
epidemic

Search
data
frequency

Predicted variable Input variables Forecasting model

Choe et al. [34] MERS Monthly Tourism volume visiting
South Korea

Historical tourism volume data The time-series model

Shi and Li [35] MERS Quarterly South Korea's inbound
tourists from China

GDP, CPI, the international oil
price, and dummy variables

The autoregressive distributed lag
model

Zeng et al. [36] SARS Yearly International and domestic
tourist arrivals

– –

McAleer et al.
[37]

SARS and
Avian Flu

Monthly International tourist
arrivals to Asia

The numbers of SARS or
Avian Flu infections and
deaths

Static line fixed-effect model and a
different transformation dynamic
model

Page et al. [32] The Swine
Flu
pandemic

Quarterly Overseas arrivals and
expenditure in the United
Kingdom

GDP, Consumer Price Indices
(CPI), and exchange rates

The Time-Varying Parameter
model

Wickramasinghe
and Ratnasiri
[5]

COVID-19 Monthly International arrivals to Sri
Lanka

Google Trends and dummy
variables to represent
structural breaks

SARIMA

Liu et al. [40] COVID-19 Quarterly The 20 destinations
worldwide

Scenario-based judgmental
forecasting

Judgmental forecast

Zhang et al. [13] COVID-19 Quarterly Tourism recovery in Hong
Kong

Scenario-based judgmental
forecasting

The scenario-based Delphi
adjustment forecasting approach

MERS middle east respiratory syndrome coronavirus, SARS severe acute respiratory syndrome epidemic, COVID-19 coronavirus disease 2019
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However, as shown in Table 1, the existing research on
tourism prediction during the COVID-19 epidemic remains
to be insufficient. This study introduces the number of
epidemic infections and related epidemic search engine data
to forecast tourism volume. This research mainly focuses on
the changes in the number of tourists in different scenic
spots from the perspective of the possible recurrence of the
epidemic in China. Meanwhile, different from previous
studies, this study introduces an interpretable forecasting
deep learning model for tourism demand forecasting for the
first time, which can provide a comprehensive explanation
for tourist demand forecasting based on multi-source
heterogeneous data.

3 Methodology

An integrated forecasting framework was used to incorpo-
rate historical tourism volume data, COVID-19 data, search
engine data, weather data, and temperature data for fore-
casting daily tourism volume (Fig. 1). The framework
entailed three steps: (a) data retrieval, (b) data processing
and variable calculation, (c) tourism volume forecasting,
and the generation of interpretable results from the DE-TFT
model. In the first step, five types of daily data were col-
lected to forecast the tourism volume of Jiuzhaigou Valley,
Huangshan Mountain, and Siguniang Mountain under the
impact of COVID-19. In the second step, the search engine
data were divided into two categories: tourism-related data
and epidemic-related data. CLSI was employed to aggregate
the two types of data, and then VMD was used for the
decomposition. Thereafter, the relationship investigation
method was conducted to select the appropriate sub-se-
quences. The relationship investigation consisted of the
stationarity test, co-integration test, and Granger relation-
ship determination. As Baidu occupies a relatively large
market share in China, this study used it as the search
engine [9]. Finally, the DE-TFT interpretable prediction
model was established to test the effect of multi-source
heterogeneous big data in improving tourism volume pre-
diction, and the interpretability results are given. The
interpretability of TFT is primarily embodied in the three
aspects as follows: the importance ranking of past inputs,
the importance ranking of future inputs, and the attention to
different lag orders. The variable selection network of the
TFT model provides insights into the past or future inputs
which are most important to tourism volume forecasting.
TFT can also suggest the importance order of different lag
orders, which is conducive to identifying suitable lag orders
for tourism demand forecasting and probing into the effect
of long- and short-term lag orders on tourism demand
forecasting.

3.1 Basic theory analysis

3.1.1 Composition leading search index

In the field of tourism forecasting using Internet search data,
selecting a method for data pre-processing is crucial in
achieving an accurate prediction performance. CLSI, an
efficient data synthesis method for handling Internet search
indexes, was proposed by Liu et al. [41]. Taking Jiuzhaigou
as an example, Fig. 2 shows the detailed procedures of
tourism-related CLSI. The procedures of CLSI can be
described as follows:

Step 1: Keyword selection. Keywords are divided into
two categories: tourism-related keywords and epidemic-re-
lated keywords.

a. The step of defining the tourism-related keywords is
based on the psychological process of Chinese tourists
planning to visit a certain scenic spot. Visitors will first
collect relevant information on search engines when
planning to travel to a certain attraction. Six major
aspects of tourism, namely tour, shopping, recreation,
traffic, lodging, and dining, are usually considered.
These six categories can be used to generate the seed
keywords. Thereafter, the seed keywords can be utilized
to obtain the relevant and frequent keywords appearing
on the search engine interface. This method allows for
the collected keywords to cover all aspects of the
tourists’ concerns.

b. As for the epidemic-related keywords, the travelers’
concerns about the epidemic have significantly affected
tourism demand. Nonetheless, such travelers’ concerns
can be reflected in the relevant search engine data.
Three major aspects of COVID-19, namely epidemic,
virus, and vaccine, are considered the seed keywords.

Step 2: Time difference measurement. Firstly, all key-
words are linearly scaled between 0.1 and 0.9. TDC is a
popular technique for testing the leading, consistent or
lagging relationship of a time series. The formula is given
by

rl ¼
Pn

t¼1ðxtþl � xÞðyt � yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
t¼1 ðxtþl � xÞ2

q Pn
t¼1 ðyt � yÞ2

; l

¼ 0;�1;�2;�3; . . .;�L; ð1Þ
where rl represents the coefficient of cross-correlation with
l, in which l is the leading period; yt denotes tourism vol-
ume at time t, and y is the mean of yt; xt denotes the Internet
search index, andx is the mean of xt; and rl is the correlation
coefficient of x ahead of y in the l phases.

For tourism volume forecasting, keywords should have
leading characteristics to tourism volume, i.e., l� 1. In
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particular, the leading characteristics indicate that the Baidu
Index in the previous period exerts a guiding effect on the
current tourism volume, that is, the Baidu Index contains
predictive features for future tourism demand. TDC can
identify whether the keywords maintain a leading

characteristic to the tourism volume. Considering the
timeliness of daily data, the maximum value of l was set to
3. Furthermore, the search value should contain the
important factors affecting the tourism volume, and it
should have low-noise characteristics to be able to handle

Fig. 1 Forecasting framework

5442 Neural Computing and Applications (2023) 35:5437–5463

123



the tourism-related search engine data. The TDC threshold
was set to 0.6. As for the epidemic-related search engine
data, the TDC threshold was set to−0.2. The keywords
could then be filtered on the basis of 1� l� 3. The TDC
was greater than 0.6 (for tourism-related data) or less than−
0.2 (for epidemic-related data).

Step 3: Leading index composition. As each keyword
can only reflect one behavioral characteristic of tourists, the
overall trend of tourism volume must be described using
multiple keywords. The keywords selected in step 2 must be
composited into a leading index. Given achieving this goal,
TDC values were used to assign the weights of the different
keywords. The greater the correlation between the key-
words and tourism volume, the greater the weight, i.e.,
weight and correlation are linear. The sum of all search
indexes constitutes the leading search index. The specific
formula is given by:

CLSIt ¼
Pm

i¼1 xt � ri
m

ð2Þ

where m represents the total number of keywords, xt
denotes the Baidu Index at time t, ri represents the maxi-
mum TDC value (1� l� 3) between the tourism volume
and Baidu Index corresponding to the ith keyword.

3.1.2 Variational mode decomposition

Dragomiretskiy and Zosso [42] proposed the use of VMD,
an entirely non-recursive model. As a competitive signal
decomposition method, VMD can be used to capture the
irregular characteristics of the original data; furthermore, it
has better adaptability and decomposition effects than
empirical mode decomposition (EMD) [43]. In VMD, the
origin signal f(t) is decomposed by VMD to form multiple
sub-modes (uk , k=1, 2,…, K). Each sub-mode has a center
frequency denoted by xk. The objective function of VMD is
to minimize the sum of the frequency bandwidth of each
sub-mode, and its constraint is the sum of each sub-mode
being equal to the original signal. The formula is given by

minimum
ukf g xkf g

XK
k¼1

ot d tð Þ þ j

pt

� �
� uk tð Þ

� �
e�jxk t

���� ����2
2

( )

s:t:
XK
k¼1

uk tð Þ ¼ f tð Þ;
ð3Þ

where d tð Þ represents the Dirac distribution, and * denotes
convolution. Thereafter, by introducing the quadratic pen-
alty term alpha and the Lagrangian multiplier λ(t), the
constraint problem can be transformed into an uncon-
strained problem, allowing for the identification of the
optimal solution to the abovementioned problem. The alpha
can ensure that the sub-modes will be reconstructed accu-
rately in the presence of Gaussian noise, while λ(t) can
ensure that the unconstrained problem will be equivalent to
the constrained problem. The unconstrained problem can be
described as follows:

L ukf g; xkf g; kð Þ

¼ alpha
XK
k¼1

ot d tð Þ þ j

pt

� �
� uk tð Þ

� �
e�jxk t

���� ����2
2

þ f tð Þk

�
XK
k¼1

uk tð Þ
�����
2

2

þ k tð Þ; f tð Þ �
XK
k¼1

uk tð Þ
* +

:

ð4Þ
The technique called the alternate direction method of

multipliers (ADMM) can further solve the above problem.

Iterating unþ1
k ;xnþ1

k andknþ1 obtains the saddle point of the

Fig. 2 The detailed procedures of tourism-related CLSI in Jiuzhaigou
Valley
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Lagrangian function. Then, bunþ1
k and xnþ1

k are updated by

Eqs. (5) and (6), respectively. bunþ1
k ðxÞ, buiðxÞ, bf ðxÞ andbkðxÞ are the Fourier transform of unþ1

k ðtÞ, uiðtÞ, f ðtÞ and
kðtÞ, respectively.

bunþ1
k xð Þ ¼

bf xð Þ �P
i6¼k bui xð Þ þ bkðxÞ

2

1þ 2alphaðx� xkÞ2
ð5Þ

xnþ1
k ¼

R1
0 x bukðxÞj j2dxR1
0 bukðxÞj j2dx ð6Þ

According to ADMM, bknþ1ðxÞ can be updated by
Eq. (7), and s denotes the updated parameter. The termi-
nation condition of the iteration is given by Eq. (8), in
which e denotes evaluation accuracy.

bknþ1
xð Þ ¼ bkn xð Þ þ sðbf xð Þ �

XK
k¼1

bunþ1
k ðxÞ ð7Þ

XK
k¼1

kbunþ1
k � bunkk22
kbunkk22 \e ð8Þ

Once the iteration ends, the real part of bunþ1
k ðxÞ can be

converted into unþ1
k by Fourier transform. That is, the final

sub-modes are obtained by VMD.
Similar to the approach of Liu et al. [43], we used the

ratio of residual energy rres to determine the appropriate
number of sub-modes. rres is given by

rres ¼ 1

Ns

XNs

t¼1

f tð Þ �PK
k¼1 uk tð Þ

f tð Þ

�����
�����; ð9Þ

where f tð Þ is the origin signal series; uk tð Þ is the decom-
posed sub-mode; K denotes the number of sub-modes; and
Ns denotes the sample number. Empirically, when rres has
no obvious downward trend, the number of modes can be
determined.

3.2 Forecasting models

3.2.1 Temporal Fusion transformers

With stronger interpretability than other black-box machine
learning models, Temporal Fusion Transformers (TFT) is an
interpretable multi-horizon time series prediction deep
learning model proposed by the Google Cloud AI team
[44]. The TFT model can characterize the relevant input
features of three types of data (static input, past inputs, and
known future inputs) efficiently, thereby providing high-
performance solutions for various prediction problems.

The basic architecture of the TFT model consists of five
parts: (a) Gating mechanism which functions to skip unused
components; (b) Variable selection network which searches
for relevant inputs at each time step via a variable selection
network; (c) Static covariate encoder which integrates static
features into the network and constraints temporal dynamics
by encoding context vectors; (d) Temporal processing
through which long- and short-term temporal relationships
are learned from known variables; (e) Prediction intervals
which are defined by quantiles forecast and determine the
range of possible target values within each forecast interval.
Specifically, the important modules of TFT employed in this
study are introduced in detail as follows:

a. Gating mechanisms

Gated Residual Network (GRN) is applied to make the
model flexible to mine the nonlinear relationship between
variables and prediction targets. GRN contains two types of
inputs, namely an optional external environment variable c
and a primary input a. The mathematical expression of GRN
is shown in Eqs. (10–12):

GRNx a; cð Þ ¼ LayerNorm aþ GLUx g1ð Þð Þ; ð10Þ
g1 ¼ W 1;xg2 þ b1;x; ð11Þ
g2 ¼ ELU W 2;xaþW 3;xcþ b2;x

	 

; ð12Þ

where g1 and g2 2 Rdmodel denotes intermediate layers,
LayerNorm represents the normalization of standard layers,
x denotes weight sharing, and ELU represents the Expo-
nential Linear Unit activation function. Component gating
layers based on Gated Linear Units (GLUs) provide certain
flexibility to the TFT deep learning framework to skip any
architectural parts that are not required for a given dataset.
The mathematical description of GLUs is as follows:

GLUx cð Þ ¼ r W 4;xcþ b4;x
	 
� W 5;xcþ b5;x

	 

; ð13Þ

where c 2 Rdmodel denotes the input, W ð:Þ 2 Rdmodel�dmodel and

bð:Þ 2 Rdmodel denotes the weights and biases, rð:Þ means the

element-wise Hadamard product, and dmodel represents the
size of the hidden state, and � represents the element-wise
Hadamard product. The GLU enables the TFT to control
how much the GRN contributes to the original input. This
layer can be skipped if desired, as the GLU output may be
close to 0 to suppress the nonlinear contributions of the
input variables.

b. Variable selection networks

The variable selection network provides insight into
which variables are most important to the prediction prob-

lem. Let I½ 	t ¼ n 1ð Þ
t

s
; . . .; n mxð Þ

t

sh is
denotes the flattened
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vector of all past inputs. n jð Þ
t denotes the transformed input

of the j th variable. In Eq. (14), the flat vector I½ 	t and
external environment variables cs are fed into the GRN and
then passed through a Softmax layer, resulting in variable
selection weights Vxt. The explanatory properties of the
TFT model are provided by variable selection weights. As

shown in Eq. (15), each nðjÞt is nonlinearly processed by
GRN. Thereafter, as shown in Eq. (16), the processed fea-
tures are weighted and combined according to their variable

selection weights, which vðjÞxt represents the jth element of
the vector Vxt.

Vxt ¼ Softmax GRNVx I½ 	t; cs
	 
	 


; ð14Þ
enðjÞt ¼ GRNen jð Þ n jð Þ

t

� �
; ð15Þ

ent ¼ Xmx

j¼1

vðjÞxt enðjÞt ; ð16Þ

iii. Interpretable multi-head attention

TFT modifies the multi-head attention structure of the
underlying Transformer to enhance the interpretability of
the model, thereby better learning the long-term relationship
between different time steps. The self-attention mechanism
contains three important elements, namely “ queries

Q 2 RN�dattn“, ” keys K 2 RN�dattn“, and ”value

V 2 RN�dV ”. N represents the number of time steps from
the input to the attention layer. The mathematical relation-
ship between the three can be expressed by the following
formula:

Attention Q;K;Vð Þ ¼ A Q;Kð ÞV ; ð17Þ
AðÞ represents a normalization function. For attention

values, a scaled dot product is usually used:

A Q;Kð Þ ¼ Softmax
QKTffiffiffiffiffiffiffiffiffi
dattn

p
� �

; ð18Þ

For the learning ability of the attention mechanism,
multi-head attention is used to use different attention heads
for different subspaces:

MultiHead Q;K;Vð Þ ¼ H1; . . .;HmH½ 	WH ; ð19Þ

Hh ¼ Attention QW hð Þ
Q ;KW hð Þ

K ;VW hð Þ
V

� �
; ð20Þ

where W hð Þ
Q 2 Rdmodel�dattn , W hð Þ

K 2 Rdmodel�dattn and W hð Þ
V 2

Rdmodel�dv represent weights of “queries”, “keys”, and “val-

ues” for specific headers, respectively. WH 2 RðmH 
dV Þ�dmodel

denotes linearly connecting all attention heads Hh.

Considering that each attention head uses different val-
ues, attention weights alone cannot indicate the importance
of specific features. Therefore, the multi-head attention is
modified to a shared value in each attention head and
aggregated using the addition of all heads, the mathematical
expression is shown in Eq. (21–24):

InterpretableMultiHead Q;K;Vð Þ ¼ eHWH ; ð21ÞeH ¼ eA Q;Kð ÞVWV ; ð22Þ

¼ 1

mH

XmH

h¼1

AðQW hð Þ
Q ;KW hð Þ

K Þ
( )

VWV ; ð23Þ

¼ 1

mH

XmH

h¼1

AttentionðQW hð Þ
Q ;KW hð Þ

K ;VWV Þ
( )

; ð24Þ

where WH 2 Rdattn�dmodel denotes that the final linear map is

used, and WV 2 Rdmodel�dV represents a weight value shared
by all attention heads.

iv.
Quantile outputs and loss functions

TFT generates prediction intervals based on point predic-
tions and does so by simultaneously predicting different
percentiles (e.g., 10%, 50%, and 90%) at each time step.
The quantile predictions are generated using a linear
transformation of the temporal fusion decoder output, and
the TFT is trained using a joint minimization of the quantile
loss, summing the outputs of all quantiles, mathematically
expressed as:

L X;Wð Þ ¼
X
yt2X

X
q2.

XTmax

T¼1

QLðyt;by q; t � T ;Tð Þ; qÞ
MTmax

; ð25Þ

QL y;by; qð Þ ¼ qðy� byÞþ þ 1� qð Þ by � yð Þþ; ð26Þ
where y denotes the actual values, by denotes the predicted
values, X represents the domain of the training set con-
taining M samples, . represents the set of quantile inputs,
W means the weights of the TFT model, and ð:Þþ denotes
maxð0; :Þ.

3.2.2 The proposed DE-TFT model

Figure 3 shows the basic architecture of the DE-TFT model.
The key parameters of TFT include the number of batch
sizes, number of time steps, number of hidden layers,
number of attention heads, learning rates, and number of
consecutive hidden layers, which have a great impact on the
performance of TFT. However, in specific applications, it is
difficult to set appropriate parameter values for these
parameters. Therefore, this study uses the evolution
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algorithm (DE) to intelligently and efficiently find the
optimal values of the six key parameters of the TFT deep
learning framework, in which MAPE is selected as the fit-
ness function of DE. The basic steps of DE are described as
follows.

Historical tourism volume data, increased confirmed case
data, and epidemic-related and tourism-related search
engine data are input as past variables into DE-TFT, and at
the same time, due to the existence of weather forecasts,
weather data can be input into DE-TFT as known future
variables. The predictive performance and

interpretable results of the DE-TFT model are analyzed, and
the predictive results are evaluated using MAPE, RMSE,
and MAE.

The interpretable results are divided into three parts: the
order of importance of past input variables, the order of

importance of known future variables, and the attention of
different lag orders. This study complements existing aca-
demic research on the interpretability of input variables in
tourism forecasting and provides new ideas for tourism
volume forecasting in the post-epidemic era.
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3.2.3 Comparable models and evaluation metrics

This study uses five common forecasting models as com-
parable models to forecast tourism volume: the support
vector machine (SVM), backpropagation neural network
(BPNN), gated recurrent unit (GRU), and recurrent neural
network (RNN), and long short-term memory (LSTM). The
SVM, BPNN, GRU, RNN, and LSTM models have been
widely used in the past and are known for achieving good
performance in forecasting empirical studies [45–50]. For a
fair comparison, the model specifications of these fore-
casting models are both selected by the DE algorithm.

The forecasting performances are generally evaluated
based on a percentage error and two scale-dependent errors.
The mathematical equations for calculating MAPE, RMSE,
and MAE are given by

MAPE ¼
Pk

t¼1 byt � ytj j=yt
k

; ð27Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk

t¼1ðbyt � ytÞ2
k

s
; ð28Þ

MAE ¼ 1

k

Xk

t¼1
jðbyt � ytÞj; ð29Þ

where k denotes the size of forecasts; yt represents the actual
number of tourism arrivals at day t; and byt represents the
predicted number of tourism arrivals at day t.

4 Experimental study

The experimental study used Python 3.8 to implement DE-
TFT and other comparable models. All deep learning
models were trained on the CPU. The computation was
evaluated on a personal computer with an Intel (R) Core
(TM) i7-10700 K CPU, 3.80 GHz, 32 GB RAM, and Win-
dows 10 system.

4.1 Data retrieval and pre-processing

Jiuzhaigou Valley, Huangshan Mountain, and Siguniang
Mountain are among the most visited tourist destinations in
China. Thus, this study selected these three scenic spots as
the research objects. The collection and pre-processing of
the relevant data (i.e., historical tourism volume data, epi-
demic data during COVID-19, search engine data, and
weather data) for Jiuzhaigou Valley, Huangshan Mountain,
and Siguniang Mountain tourism volume forecasting are
given as follows.

(1) Historical tourism volume data

The daily tourism volume of each area was taken from their
respective official websites. The details are shown in Fig. 4.
For Jiuzhaigou Valley, the daily tourist arrival from April 1,
2020, to September 12, 2021, totals 530 observations. For
Huangshan Mountain, the daily tourist arrival from March
1, 2020, to August 20, 2021 totals 538 observations. For
Siguniang Mountain, the daily tourist arrival from April 1,
2020, to January 14, 2021 totals 289 observations.

(2) Epidemic data during the COVID-19 period

Fig. 3 The model architecture of the proposed DE-TFT model
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In the post-epidemic era, the recurrence of epidemics in
some areas affects the tourists’ concerns. Thus, the impact
of the epidemic data on the number of tourists was also
considered in this study. The daily increase in the number of
COVID-19 confirmed cases in China was collected from the
National Health Commission of the People’s Republic of
China (http://www.nhc.gov.cn/) to forecast the tourism
demand. To display the comparison in fluctuation between
the increased number of confirmed cases and tourism vol-
ume in the three tourist attractions, the values are linearly
scaled to be between 0.1 and 0.9 in this study. As shown in
Fig. 5, the increase in the confirmed cases has significantly
affected the tourism demand. Most especially, a wave of
epidemics that began in July 2021 caused a rapid decline in
tourist arrivals in scenic areas. However, after the epidemic
was controlled at the end of August 2021, the tourist arri-
vals rebounded rapidly. Therefore, in this study, the daily
increase in the number of COVID-19 confirmed cases were
also considered in the tourism volume forecasting.

The search indexes related to the epidemic were also
collected to reflect the people’s concerns. The higher the
search index value, the higher people’s attention and the
greater their concerns about travel. These aspects are
expected to affect the number of tourists to a certain extent.
Thus, in this study, the search engine data related to the
epidemic were also analyzed and processed.

(3) Search engine data

Keyword selection from search engines should be broad
and reflect the various dimensions of tourism demand, and
the selected search keywords should include as much
accurate information as possible while eliminating irrele-
vancies [51]. As Baidu has the largest market share in
China, the search engine data were gathered from Baidu.
From the keyword selection method mentioned in
Sect. 3.1.1, the relevant and frequent keywords are shown in
Table 2 and Table 3, and several keywords were finally
obtained as shown in Table 4. The Baidu index was col-
lected from its website (https://index.baidu.com/).

In this study, CLSI was used to composite keywords. A
synthesized search index not only would contain multidi-
mensional information but could also eliminate the problem
of multicollinearity. The tourism-related Baidu index and
the epidemic-related Baidu index were synthesized into
positive CLSI (Pos-CLSI) and negative CLSI (Neg-CLSI),
respectively. Figure 6 shows the sequence diagram of the
correlation between tourism volume and the composite
search index. The variation trend is roughly the same
between tourism volume and Pos-CLSI, whereas the
opposite trend can be observed for Neg-CLSI. Regardless of
the off-season or peak season, when the people’s attention
to COVID-19 is high, the amount of tourism has declined

significantly. When the people’s attention to COVID-19 has
declined, the amount of tourism rebounds significantly.

Aiming to reduce the non-stationary characteristics,
VMD was conducted to disaggregate the raw CLSI series
into several sub-modes. Before VMD was used for the
decomposition, the number of sub-modes needed to be
determined. On the one hand, if the number of sub-modes is
extremely small, then the original sequence may not be fully
decomposed, leading to inaccurate predictions. On the other
hand, if the signal is over-decomposed, then the difference
between each sub-mode will become extremely small,
resulting in reduced accuracy and unnecessary computa-
tional overhead. Here, the ratio of residual energy rres was
used to determine the appropriate number of sub-modes.
The equation for calculating rres is shown in Eq. (9).
Empirically, when rres is less than 3% and no obvious
downward trend is observable, the number of sub-modes
can be determined. The rres under the different number of
sub-modes is shown in Table 5. The suitable number of sub-
modes of the six datasets are 12, 13, 18, 13, 12, and 14,
respectively. Take the Pos-CLSI of Huangshan Mountain as
an example. Its sub-modes of decomposition results are
shown in Fig. 7. The relatively low-frequency sub-modes
represent the overall trend of the original CLSI, whereas the
higher frequency sub-modes reflect the local fluctuation
trend. The extracted sub-sequences are smoother than the
raw data, which is conducive to the improvement of tourism
volume prediction performance.

After decomposing the CLSI series, the relationship
investigation method was conducted to filter out the sub-
modes that were conducive to forecasting the tourism vol-
ume. Take the tourism volume and tourism-related big data
of Huangshan Mountain as an example. The resultant trends
can describe the relationship investigation method. The co-
integration test and the Granger relationship analysis can
only be performed when the time series is stationary.
Table 6 shows the results of the stationarity test (i.e., aug-
mented Dickey–Fuller test) and the co-integration tests.
Except for S1, the other sub-modes are all stationary with
the tourism volume of Huangshan Mountain at the original
level. Thereafter, the sub-modes were tested with the tour-
ism volume of Huangshan Mountain for the next step of the
co-integration test. Table 6 presents the results for illus-
trating the co-integration relationships between the tourism
volume and sub-modes of Huangshan Mountain other than
S2 and S6.

The purpose of adopting Granger causality analysis is to
statistically explore whether the sub-modes that pass the co-
integration test are beneficial for predicting tourism volume.
Table 7 shows that S3, S4, S5, S8, S11, and S16 affect the
tourism volume of Huangshan Mountain across one, two,
and three orders at the 5% significance level. However, the
other sub-modes do not manifest a Granger causality of the
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tourism volume. Thus, S3, S4, S5, S8, S11, and S16 were
considered for the forecasting of Huangshan Mountain.

Table 8 shows the sub-modes determined by the rela-
tionship investigation in each case. Figure 8 illustrates the

time series of these selected sub-modes and tourism vol-
ume. For the tourism-related sub-modes, the low-frequency
sub-modes have a general trend similar to that of tourism
volume, whether with a slight lag or contemporarily, and the

Fig. 4 Daily tourism volume of the three tourist attractions
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Fig. 5 Time series of increase in confirmed cases and tourism volume of the three tourist attractions
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high-frequency sub-modes produce large fluctuations when
the tourist volume fluctuates sharply or when an inflection

point occurs. For the epidemic-related sub-modes, the low-
frequency sub-modes have a general trend opposite to that

Table 2 The relevant and frequent tourism-related keywords in each case

Jiuzhaigou Valley Huangshan Mountain Siguniang Mountain

Jiuzhaigou (“九寨沟”) Huangshan (“黄山”) Siguniang Mountain (“四姑娘山”)

Weather (“九寨沟天气”) Weather (“黄山天气”) Weather (“四姑娘山天气”)

Jiuzhaigou County (“九寨沟县”) Tourism (“黄山旅游”) Altitude (“四姑娘山海拔”)

Nuorilang Falls (“诺日朗瀑布”) Travel guide (“旅游攻略”) Where is Siguniang Mountain (“四姑娘山在哪

里”)

Tourism (“九寨沟旅游”) Map (“黄山地图”) Bipengou valley (“毕棚沟”)

Ticket (“九寨沟门票”) Tourist attractions (“黄山景点”) Hailuo valley (“海螺沟”)

Travel strategy (“九寨沟旅游攻略”) Tickets (“黄山门票”) Gongga Snow Mountain (“贡嘎雪山”)

Five-color lake (“五彩池”) Scenic area (“黄山风景区”) Twin bridge trench (“双桥沟”)

Huanglong (“黄龙”) Travel notes (“黄山游记”) Dagu Glacier (“达古冰川”)

Where is Jiuzhaigou (“九寨沟在哪”) Jiuhua Mountain (“九华山”) Xiling Snow Mountain (“西岭雪山”)

Jiuzhai Huanglong Airport (“九黄机场”) Huangshan smoke (“黄山烟”) Daocheng Yading (“稻城亚丁”)

Huanglong tourism (“黄龙旅游”) Huangshan sea of clouds (“黄山云海”) Meili Snow Mountain (“梅里雪山”)

Huanglong airport (“黄龙机场”) Huangshan four unique (“黄山四绝”) Chengdu to Siguniang Mountain (“成都到四姑娘
山”)

Elevation of Jiuzhaigou (“九寨沟海拔”) Huangshan stone (“黄山奇石”) Siguniang Mountain Self-driving Tour (“四姑娘山

自驾游”)

Huanglong scenic spot (“黄龙风景区”) Hefei to Huangshan (“合肥到黄山”) Siguniang Mountain weather forecast (“四姑娘山

天气预报”)

Jiuzhaigou Waterfall (“九寨沟瀑布”) Flying stone (“飞来石”) Ganzi Prefecture tourism (“甘孜州旅游”)

From Chengdu to Jiuzhaigou Valley (“成都到
九寨沟”)

Tour group (“黄山旅游团”) Moishi Park (“墨石公园”)

Scenery of Jiuzhaigou (“九寨沟风光”) Hotel (“黄山酒店”) Qinling Ao Tai (“秦岭鳌太”)

Self-help tour to Jiuzhaigou (“九寨沟自助
游”)

Accommodation (“黄山住宿”) Three peaks of Siguniang Mountain (“四姑娘山三

峰”)

The fairy pool (“神仙池”) Taishan Mountain (“泰山”) Xiling Snow Mountain tour guide (“西岭雪山导游
词”)

Jiuzhaigou Mirror Sea (“九寨沟镜海”) Which province is Huangshan in (“黄山在

哪个省”)
Siguniang Mountain, Sichuan (“四川四姑娘山”)

Is Jiuzhaigou open yet (“九寨沟开放了吗”) Which city is Huangshan in (“黄山在哪个

城市”)
Travel guide (“四姑娘山攻略”)

Jiuzhaigou tourist route (“九寨沟旅游路线”) Introduction (“黄山简介”) Tourist attractions in Siguniang Mountain (“四姑

娘山景区”)

Pearl Shoal Waterfall (“珍珠滩瀑布”) Huangshan city (“黄山市”) Tickets (“四姑娘山门票”)

Sparkling Lake (“火花海”) Huashan Mountain (“华山”) Travel (“四姑娘山旅游”)

Jiuzhaigou address (“九寨沟地址”) The Five Mountains (“五岳”) Hotel (“四姑娘山住宿”)

Traffic (“九寨沟交通”) Lu Mountain (“庐山”) –

Hotel (“九寨沟酒店”) Huangshan hot spring (“黄山温泉”) –

Which city is Jiuzhaigou in (“九寨沟在哪个

城市”)
Huangshan verse (“黄山诗句”) –

Weather forecast (“九寨沟天气预报”) Tiandu Peak (“天都峰”) –

Map (“九寨沟地图”) The Pine Greeting Guests (“迎客松”) –

Jiuzhaigou Introduction (“九寨沟简介”) Tianzhu Mountain (“天柱山”) –

Scenic spot (“九寨沟景点”) Huangshan data (“黄山资料”) –

Lodging (“九寨沟住宿”) Huangshan pines (“黄山奇松”) –

– Hong village (“宏村”) –
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of tourism volume. Its high-frequency sub-modes fluctuate
sharply when the attention of the epidemic changes
drastically.

(4) Weather data

The weather data of the three tourist attractions, which
were collected from the Tianqi website, include weather
condition data and temperature data, as shown in Fig. 9.
According to their impact on travel, the weather conditions

were transformed into dummy variables, i.e., a degree of
impact from one to six levels.

4.2 Tourism volume forecasting

(a) Forecasting procedure

The three datasets were partitioned into three sets, namely
the training, validation, and test sets (Table 9). The training
set, validation set, and test set accounted for approximately

Table 3 The relevant and frequent epidemic-related keywords in each case

Jiuzhaigou Valley Huangshan Mountain Siguniang Mountain

Epidemic situation (“疫情”) Epidemic situation (“疫情”) Epidemic situation (“疫情”)

Epidemic map (“疫情地图”) Epidemic map (“疫情地图”) Epidemic map (“疫情地图”)

Epidemic data (“疫情数据”) Epidemic data (“疫情数据”) Epidemic data (“疫情数据”)

Novel coronavirus (“新冠病毒”) Novel coronavirus (“新冠病毒”) Novel coronavirus (“新冠病毒”)

COVID-19 vaccine (“新冠疫苗”) COVID-19 vaccine (“新冠疫苗”) COVID-19 vaccine (“新冠疫苗”)

Vaccine (“疫苗”) Vaccine (“疫苗”) Vaccine (“疫苗”)

Epidemic prevention and control (“疫情防控”) Epidemic prevention and control (“疫情防
控”)

Epidemic prevention and control (“疫情防
控”)

Epidemic in Sichuan province (“四川疫情”) Epidemic in Anhui Province (“安徽疫情”) Epidemic in Sichuan Province (“四川疫情”)

Epidemic in Guangdong province (“广东疫情”) Epidemic in Jiangsu Province (“江苏疫情”) Epidemic in Guangdong Province (“广东疫

情”)

Epidemic in Jiangsu Province (“江苏疫情”) Epidemic in Zhejiang Province (“浙江疫情”) Epidemic in Chongqing Province (“重庆疫

情”)

Epidemic in Shandong Province (“山东疫情”) Epidemic in Guangdong Province (“广东疫

情”)
Updated list of mid- and high-risk areas (“疫
情中高风险地区最新名单”)

Epidemic in Shanghai Province (“上海疫情”) Epidemic in Shandong Province (“山东疫

情”)
Epidemic risk areas (“疫情风险地区”)

Epidemic in Beijing Province (“北京疫情”) Epidemic in Shanghai Province (“上海疫情”) Medium and high risk areas (“中高风险地

区”)

Epidemic in Henan Province (“河南疫情”) Epidemic in Beijing Province (“北京疫情”) Epidemic risk level query (“疫情风险等级查

询”)

Epidemic in Hebei Province (“河北疫情”) Epidemic in Henan Province (“河南疫情”) Risk area (“风险地区”)

Updated list of mid- and high-risk areas (“疫情

中高风险地区最新名单”)
Epidemic in Hebei Province (“河北疫情”) Novel coronavirus mutations (“新冠病毒变

异”)

Epidemic risk areas (“疫情风险地区”) Epidemic in Sichuan Province (“四川疫情”) Domestic epidemic (“国内疫情”)

Medium and high risk areas (“中高风险地区”) Updated list of mid- and high-risk areas (“疫
情中高风险地区最新名单”)

The latest data news of the epidemic (“疫情最

新数据消息”)

Epidemic risk level query (“疫情风险等级查

询”)
Epidemic risk areas (“疫情风险地区”) –

Risk area (“风险地区”) Medium and high risk areas (“中高风险地

区”)
–

Novel coronavirus mutations (“新冠病毒变异”) Epidemic risk level query (“疫情风险等级查

询”)
–

Domestic epidemic (“国内疫情”) Risk area (“风险地区”) –

The latest data news of the epidemic (“疫情最新

数据消息”)
Novel coronavirus mutations (“新冠病毒变

异”)
–

– Domestic epidemic (“国内疫情”) –

– The latest data news of the epidemic (“疫情最

新数据消息”)
–
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70%, 10%, and 20% of the total datasets, respectively. The
training and validation sets were used to adjust the param-
eters of the forecasting models. Thereafter, the training and
validation sets were combined to train the forecasting
model, whereas the test set was used to test the forecasting
performance. The tourism volume forecasting models all
implemented the rolling window method.

(b) Parameter set
For a fair comparison, the DE algorithm was used to

determine the optimal parameters of BPNN, SVM, RNN,
GRU, and LSTM. The grid search method was used to
optimize the parameters of DE. The parameters of the dif-
ferent comparable models are listed in Table 10.

The search range of TFT parameters is as follows: the
range of time step is [2, 12], the range of batch size is
[12, 48], and the range of learning rate is [0.001, 0.1], the

range of the number of hidden layers is [2, 16], the range of
the number of attention heads is [1, 4], the range of the
number of consecutive hidden layers is [2, 8]. The deter-
mined parameters of DE-TFT are shown in Table 11. To
show the types of input data of the TFT model more clearly,
taking Jiuzhaigou Valley as an example, Table 12 shows the
input variables contained in different input types. Because
the historical data of known future variables are also known,
the known future variables are also input into the TFT
model as past variables. To eliminate the effect of 0 values
on the calculation, all input variables and tourism volume
data were scaled between 0.1 and 0.9.

The program running speed of TFT is about 35 s every
time. The running speed of DE-TFT is mainly determined
by the iteration number and population size of the DE
algorithm. In this study, the running times of the Jiuzhaigou

Table 4 Keywords identified and their maximum TDC (1� l� 3) in each case

Jiuzhaigou Valley Huangshan Mountain Siguniang Mountain

Keywords TDC Keywords TDC Keywords TDC

Tourism-
related
keywords

Weather (“九寨沟天

气”)
0:858��,l ¼ 2 Travel guide (“黄山旅

游攻略”)
0:712��,l ¼ 2 Twin bridge trench

(“双桥沟”)
0:799��,l ¼ 1

Jiuzhaigou (“九寨沟”) 0:808��,l ¼ 1 Map (“黄山地图”) 0:707��,l ¼ 1 Weather (“四姑娘山天

气”)
0:782��,l ¼ 2

Nuorilang Falls (“诺日

朗瀑布”)
0:744��,l ¼ 1 Huangshan (“黄山”) 0:704��,l ¼ 1 Bipengou valley (“毕

鹏沟”)
0:764��,l ¼ 2

Tourism (“九寨沟旅

游”)
0:741��,l ¼ 3 Tickets (“黄山门票”) 0:679��,l ¼ 3 Siguniang Mountain

(“四姑娘山”)
0:707��,l ¼ 2

Five-color lake (“五彩

池”)
0:737��,l ¼ 1 Tourist attractions (“黄

山景点”)
0:671��,l ¼ 1 Altitude (“四姑娘山海

拔”)
0:668��,l ¼ 2

Where is Jiuzhaigou
(“九寨沟在哪”)

0:673��,l ¼ 1 Tourism (“黄山旅游”) 0:645��,l ¼ 3 – –

Huanglong (“黄龙”) 0:657��,l ¼ 1 From Hefei to
Huangshan (“合肥到
黄山”)

0:639��,l ¼ 3 – –

Travel strategy (“九寨

沟旅游攻略”)
0:617��,l ¼ 3 Jiuhua Mountain (“九

华山”)
0:638��, l ¼ 1 – –

Epidemic-
related
keywords

Epidemic prevention
and control (“疫情防
控”)

�0:471��,l ¼ 1 Epidemic prevention
and control (“疫情防
控”)

�0:340��,
l ¼ 1

Epidemic prevention
and control (“疫情防
控”)

�0:320��,l ¼ 1

Epidemic map (“疫情

地图”)
�0:461��,l ¼ 3 COVID-19 (“新冠病

毒”)
�0:313��,l ¼ 2 Epidemic situation

(“疫情”)
�0:259��,
l ¼ 1

Epidemic situation
(“疫情”)

�0:459��,l ¼ 3 Epidemic situation
(“疫情”)

�0:309��,l ¼ 1 Vaccine (“疫苗”) �0:255��,l ¼ 1

Epidemic data (“疫情

数据”)
�0:367��,l ¼ 1 Epidemic map (“疫情

地图”)
�0:238��,l ¼ 1 COVID-19 (“新冠病

毒”)
�0:250��,
l ¼ 1

Novel coronavirus (“新
冠病毒”)

�0:299��,l ¼ 3 Epidemic data (“疫情

数据”)
�0:221��,l ¼ 1 Epidemic map (“疫情

地图”)
�0:236��,l ¼ 1

– – Epidemic in Jiangsu
Province (“江苏疫

情”)

�0:212��,l ¼ 3 Epidemic data (“疫情

数据”)
�0:229��,l ¼ 1

**Tourism volume and keywords have a significant correlation at the 1% level (two-tailed)
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Fig. 6 Time series of CLSI and tourism volume of the three tourist attractions

Table 5 rres corresponding to
the different number of sub-
modes

K Jiuzhaigou (rres, %) Huangshan Mountain (rres, %) Siguniang Mountain (rres, %)

Pos-CLSI Neg-CLSI Pos-CLSI Neg-CLSI Pos-CLSI Neg-CLSI

2 7.53 12.24 14.47 11.05 11.92 12.23

3 7.14 10.60 10.70 7.71 8.52 11.44

4 4.76 10.47 10.21 7.48 8.26 11.26

5 4.49 6.59 7.85 6.19 7.02 7.81

6 4.13 4.92 6.18 5.89 6.69 7.34

7 3.93 4.80 5.97 5.75 5.53 7.24

8 3.02 4.52 4.72 4.74 4.06 4.83

9 2.91 4.43 4.48 4.67 3.89 4.66

10 2.69 3.20 3.94 3.13 3.21 4.40

11 2.59 3.08 3.80 3.05 3.01 4.30

12 1.97 2.52 3.44 3.00 2.73 3.27

13 1.93 2.05 3.30 2.33 2.69 3.17

14 1.82 1.95 3.11 2.27 2.08 2.28

15 1.80 1.90 3.07 1.94 2.04 2.25

16 1.76 1.73 2.54 1.87 1.69 2.12

17 1.30 1.65 2.52 1.59 1.53 2.12

18 1.26 1.63 2.08 1.56 1.49 2.05

19 1.25 1.40 2.04 1.43 1.44 2.02

20 1.23 1.38 2.03 1.42 1.44 1.95

Bold values indicate rres corresponding to the optimal number of submodes
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dataset, Huangshan dataset, and Siguniangshan dataset are
about 230 min, 350 min, and 300 min, respectively.

(iii) Results and discussion

The comparison of the forecasting models depicting the
forecasting accuracies of the three tourist attractions using
all input data is shown in Table 13 and Fig. 10. The results
indicate that the DE-TFT model has the best forecasting
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Fig. 7 Decomposition results by VMD for Pos-CLSI of Huangshan Mountain

Table 6 Test results of the
stationarity test and the co-
integration tests at a 5% level

Time series (at the original level) The stationarity test The cointegration tests

Huangshan Mountain tourism volume − 3.9831 (0.015) –

S1 − 2.4202 (0.1361) –

S2 − 4.2879 (0.0005) − 2.155 (0.4474)

S3 − 8.3233 (0.0000) − 5.6615 (0.0000)

S4 − 8.7390 (0.0000) − 13.3305 (0.0000)

S5 − 10.2239 (0.0000) − 8.1316 (0.0000)

S6 − 10.1061 (0.0000) − 3.3338 (0.0503)

S7 − 11.3783 (0.0000) − 4.5010 (0.0012)

S8 − 9.9999 (0.0000) − 3.9973 (0.0072)

S9 − 8.5458 (0.0000) − 3.9632 (0.0080)

S10 − 10.0238 (0.0000) − 3.6417 (0.0217)

S11 − 8.8418 (0.0000) − 3.5702 (0.0266)

S12 − 10.1864 (0.0000) − 3.6532 (0.0210)

S13 − 8.8741 (0.0000) − 3.7654 (0.0150)

S14 − 8.5955 (0.0000) − 3.7944 (0.0137)

S15 − 8.3070 (0.0000) − 3.8859 (0.0103)

S16 − 8.0741 (0.0000) − 4.3564 (0.0020)

S17 − 10.2667 (0.0000) − 5.7541 (0.0000)

S18 − 10.6150 (0.0000) − 3.5857 (0.0255)

Bold value indicate that the result is significant at a 5% level
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accuracy for Jiuzhaigou Valley in contrast to DE-BPNN,
DE-SVM, DE-LSTM, DE-GRU, and DE-RNN. In terms of
MAPE, the results of DE-TFT are improved by 56.14%,
77.82%, 50.78%, 59.71%, and 44.12% over DE-BPNN,
DE-SVM, DE-LSTM, DE-RNN, DE-GRU, respectively. In
particular, the forecasting results of DE-TFT are closer to
the actual tourism volume, especially when the tourism
volume fluctuates greatly.

As a means of verifying whether the historical tourism
volume data, increase in confirmed cases, weather data,
tourism-related search engine data, and epidemic-related
search engine data can enhance the forecasting accuracy of
tourism volume, we further use “historical tourism volume
data,” “historical tourism volume data? increase in con-
firmed cases, “historical tourism volume data? increase in
confirmed cases?weather data,” “historical tourism volume

Table 7 Test results of the
Granger causality analysis at 5%
level

Lags 1 2 3

Panel A H0: S3 does not Granger cause Huangshan Mountain tourism volume

F-stat (p value) 14.0818 (0.0002) 7.1235 (0.0008) 5.1623 (0.0016)

Panel B H0: S4 does not Granger cause Huangshan Mountain tourism volume

F-stat (p value) 9.4198 (0.0023) 5.7909 (0.0033) 3.9786 (0.0080)

Panel C H0: S5 does not Granger cause Huangshan Mountain tourism volume

F-stat (p value) 10.8125 (0.0011) 6.2854 (0.0020) 4.3419 (0.0049)

Panel D H0: S7 does not Granger cause Huangshan Mountain tourism volume

F-stat (p value) 2.6024 (0.1073) – –

Panel E H0: S8 does not Granger cause Huangshan Mountain tourism volume

F-stat (p value) 15.2964 (0.0001) 7.7163 (0.0004) 5.1636 (0.0016)

Panel F H0: S9 does not Granger cause Huangshan Mountain tourism volume

F-stat (p value) 1.7755 (0.1833) – –

Panel G H0: S10 does not Granger cause Huangshan Mountain tourism volume

F-stat (p value) 1.2189 (0.2701) – –

Panel H H0: S11 does not Granger cause Huangshan Mountain tourism volume

F-stat (p value) 28.5279 (1.3681e-07) 16.2620 (1.3939e-07) 10.9049 (5.8238e-07)

Panel I H0: S12 does not Granger cause Huangshan Mountain tourism volume

F-stat (p value) 1.2632 (0.2616) – –

Panel J H0: S13 does not Granger cause Huangshan Mountain tourism volume

F-stat (p value) 0.8664 (0.3524) – –

Panel K H0: S14 does not Granger cause Huangshan Mountain tourism volume

F-stat (p value) 1.3925 (0.2385) – –

Panel L H0: S15 does not Granger cause Huangshan Mountain tourism volume

F-stat (p value) 0.2343 (0.6285) – –

Panel M H0: S16 does not Granger cause Huangshan Mountain tourism volume

F-stat (p value) 8.2800 (0.0042) 6.5877 (0.0015) 4.8314 (0.0025)

Panel N H0: S17 does not Granger cause Huangshan Mountain tourism volume

F-stat (p value) 0.1501 (0.6985) – –

Panel O H0: S18 does not Granger cause Huangshan Mountain tourism volume

F-stat (p value) 0.3159 (0.5743) – –

Bold value indicate that the result is significant at a 5% level

Table 8 Sub-modes were identified in each case

Jiuzhaigou (rres, %) Huangshan Mountain (rres, %) Siguniang Mountain (rres, %)

Pos-CLSI Neg-CLSI Pos-CLSI Neg-CLSI Pos-CLSI Neg-CLSI

Sub-modes identified S2, S9 S2 S3, S4, S5, S8, S11, S16 S8 S2, S3, S4, S6 S9
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data? increase in confirmed cases?weather data? tourism-
related search engine data” and “historical tourism volume
data? increase in confirmed cases?weather data? tourism-
related search engine data?epidemic-related search engine

data,” respectively, as the independent variables of the three
cases. The performance of different variable combinations
is shown in Table 14.

Fig. 8 Time series of determined sub-modes and tourism volume of the three tourist attractions

Fig. 9 Daily weather and temperature conditions of the three tourist attractions

5456 Neural Computing and Applications (2023) 35:5437–5463

123



The forecasting performance of “historical tourism vol-
ume data? increase in confirmed cases?weather data?
tourism-related search engine data?epidemic-related
search engine data” is better than those of the other variable
combinations for the three tourist attractions. The results
demonstrate the validity and superiority of using

multisource big data in improving the performance of
tourism demand forecasting under the impact of COVID-
19.

Further aiming to verify the role of the composite and
decomposition indexes in tourism volume forecasting, this
study compared the various forecasting situations that do
not deal with the search index. CLSI was used for the

Table 9 Training, validation, and test sets of the three cases

Training set Validation set Test set

Jiuzhaigou Valley Apr 1, 2020-Mar 31, 2021

(A total of 365 days)

Apr 1, 2021- May 31, 2021

(A total of 61 days)

Jun 1, 2021- Sep 12, 2021

(A total of 104 days)

Huangshan Mountain Mar 1, 2020-Mar 11, 2021

(A total of 376 days)

Mar 12, 2021-Apr 30, 2021

(A total of 50 days)

May 1, 2021- Aug 20, 2021

(A total of 112 days)

Siguniang Mountain Apr 1, 2020-Oct 20, 2020

(A total of 203 days)

Oct 21, 2020-Nov 20, 2020

(A total of 31 days)

Nov 21, 2020-Jan 14, 2021

(A total of 55 days)

Table 10 Parameters of the different models

Model and
variable

Adopted parameters

Jiuzhaigou Valley Huangshan Mountain Siguniang Mountain

DE-BPNN Hidden neurons=6; Learning rate=0.005;
Epochs=201

Hidden neurons=8; Learning rate=0.051;
Epochs=249

Hidden neurons=6; Learning rate=0.008;
Epochs=168

DE-SVM Kernel=“rbf”; Gamma=0.11; C=3.01 Kernel=“rbf”; Gamma=0.20; C=2.59 Kernel=“rbf”; Gamma=0.12; C=1.51

DE-LSTM batch size=32; hidden Neurons=26;
epochs=241; time step=9

Batch size=33; hidden Neurons=30;
epochs=245; time step=7

Batch size=15; hidden Neurons=26;
epochs=302; time step=8

DE-GRU Batch size=31; hidden Neurons=25;
epochs=233; time step=9

Batch size=30; hidden Neurons=28;
epochs=241; time step=7

Batch size=14; hidden Neurons=21;
epochs=301; time step=8

DE-RNN Batch size=38; hidden Neurons=21;
epochs=245; time step=9

Batch size=35; hidden Neurons=32;
epochs=245; time step=7

Batch size=14; hidden Neurons=21;
epochs=235; time step=8

Table 11 Parameters of the DE-TFT in the three data sets

Parameter Jiuzhaigou Valley Huangshan Mountain Siguniang Mountain

DE Population size (M ) 15 15 20

Maximum number of iterations (T ) 20 30 25

Crossover probability (CR) 0.2 0.4 0.6

Mutation operator (F) 0.3 0.2 0.3

TFT Number of time steps 9 7 8

Number of batch sizes 31 30 28

Learning rates 0.098 0.092 0.051

Number of hidden layers 16 13 8

Number of attention heads 1 1 1

Number of consecutive hidden layers 8 7 4

Dropout rate 0.1 0.1 0.1

Max gradient norm 0.1 0.1 0.1
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aggregate search index, and then VMD, EMD, and EEMD
were utilized for further decomposition. As shown in
Table 15, on the one hand, using the CLSI method can
obtain better forecasting performance than the use of raw
search engine data concerning the three tourist attractions.
On the other hand, VMD can obtain a better decomposition
effect than EMD and EEMD.

(iv) Interpretable results

Figure 11 shows the interpretable results of the DE-TFT
model, which are primarily categorized into three parts: the
importance ranking of past inputs, the importance ranking
of future variables, and the attention of different lag orders.
The specific analysis is as follows:

● The analysis of the importance of past inputs suggests
that historical tourism volume data and tourism-related
search indexes are most helpful to tourism forecasting.
On the other hand, it demonstrates that the epidemic-
related search index has played a more pivotal role in
forecasting than the daily increased confirmed cases.
This finding can be attributed to the fact that the

epidemic-related search engine data can reflect travelers’
concerns more objectively than the daily increased
confirmed cases. Besides, concerns about the COVID-
19 epidemic at that time affected travelers’ travel plans.
The locally newly confirmed cases may only reflect the
local situation, incapable of fully reflecting the concerns
about the epidemic nationwide.

● Regarding the importance of known variables, various
weather conditions including both the max and min
temperature can be conducive to the forecast of tourism
demand, of which the temperature factor accounts for the
main contribution, indicating that the tourism season is
closely related to the season. Generally speaking,
travelers will choose to travel when the temperature is
suitable. Based on the data on the number of tourists and
weather conditions in these three scenic spots, it can be
concluded that bad weather will be followed by a sharp
drop in the daily number of tourists in each scenic spot.

● Interpretability results show that the general trend of
attentional changes is that the smaller the lag order, the
greater the contribution to tourism demand forecasting.
However, larger lag sequences are sometimes also

Table 12 Inputs of the DE-TFT
in the Jiuzhaigou Valley

Static covariates Past inputs Known future inputs

ID (name of tourism volume series) Weather condition data Weather condition data

– Max temperature data Max temperature data

– Min temperature data Min temperature data

– Day Day

– Month Month

– Increased confirmed cases Time index

– Historical tourism volume data Relative time index

– Pos-CLSI-S2 –

– Pos-CLSI-S9 –

– Neg-CLSI-S2 –

– Time index –

– Relative time index –

Table 13 Forecasting accuracy of each model

Model Jiuzhaigou Valley Huangshan Mountain Siguniang Mountain

MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE

DE-BPNN 11.49 0.0317 0.0434 13.24 0.0319 0.0547 9.62 0.0137 0.0241

DE-SVM 22.72 0.0618 0.0832 27.72 0.0627 0.0998 13.41 0.0167 0.0211

DE-LSTM 10.24 0.0275 0.0409 12.92 0.0332 0.0611 11.16 0.0150 0.0229

DE-RNN 12.51 0.0384 0.0542 12.34 0.0319 0.0610 9.42 0.0142 0.0270

DE-GRU 9.02 0.0232 0.0338 13.64 0.0346 0.0624 12.82 0.0172 0.0254

DE-TFT 5.04 0.0136 0.0179 8.59 0.0190 0.0263 5.89 0.0081 0.0120

Bold values indicate best forecasting performance
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Fig. 10 Forecasting results of the DE-TFT and other comparable models

Table 14 Forecasting accuracy of different kinds of variables

Variable Jiuzhaigou Valley using DE-TFT Huangshan Mountain using DE-TFT Siguniang Mountain using DE-TFT

MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE

1 9.32 0.0216 0.0421 14.51 0.0361 0.0783 14.07 0.0184 0.0262

1?2 7.67 0.0197 0.0437 14.38 0.0354 0.0663 12.46 0.0153 0.0267

1?2?3 6.89 0.0179 0.0283 13.37 0.0345 0.0643 11.57 0.0140 0.0259

1?2?3?4 6.51 0.0169 0.0229 11.92 0.0295 0.0534 10.70 0.0128 0.0253

1?2?3?4?5 5.04 0.0136 0.0179 8.59 0.0190 0.0263 5.89 0.0081 0.0120

“1” denotes historical tourism volume data. “2” denotes an increase in confirmed cases. “3” denotes weather data. “4” denotes tourism-related
search engine data. “5” denotes epidemic-related search engine data. Bold values indicate the best forecasting performance
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related to larger attention. For example, in the Siguniang
Mountain dataset, the longer the lag order, the higher the
attention. Therefore, it requires the prediction model to
be equipped with the memory ability to retrieve long-
term input, thereby making it particularly important to
determine the appropriate lag order, which also proves
the necessity of optimizing the TFT parameters proposed
in this study via DE.

5 Conclusion and implications

The objective of this study is to construct a comprehensive
interpretable forecasting framework to forecast daily tour-
ism demand under the impact of COVID-19. A novel
approach that can simultaneously use historical tourism
volume data, daily increase in confirmed cases, weather
data, tourism-related search engine data, and epidemic-re-
lated search engine data was used to forecast the daily
tourism volume of Jiuzhaigou Valley, Huangshan Mountain,
and Siguniang Mountain—the three famous tourist

Table 15 Forecasting accuracy with different ways to handle the search engine data

Variable Jiuzhaigou Valley using DE-TFT Huangshan Mountain using DE-TFT Siguniang Mountain using DE-TFT

MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE

Without CLSI-VMD 10.78 0.0307 0.0442 14.19 0.0346 0.0659 14.30 0.0188 0.0275

CLSI 10.43 0.0314 0.0448 12.80 0.0331 0.0619 9.20 0.0146 0.0332

CLSI-EMD 11.37 0.0322 0.0511 13.72 0.0346 0.0629 11.66 0.0145 0.0210

CLSI-EEMD 6.55 0.0181 0.0325 12.42 0.0319 0.0612 11.75 0.0142 0.0259

CLSI-VMD 5.04 0.0136 0.0179 8.59 0.0190 0.0263 5.89 0.0081 0.0120

Bold values indicate the best forecasting performance

Fig. 11 Interpretable results of the DE-TFT model in three data sets
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attractions in China. Moreover, this study introduced the
concept of epidemic-related search indexes, thus offering
new insights into tourism forecasting during the COVID-19
pandemic. In particular, a new search engine data process-
ing method called CLSI-VMD was utilized.

The contributions of the study are multifaceted, and the
specific contributions are as follows: Firstly, to the best of
our knowledge, our research is the first to incorporate
tourism attention, epidemic situation, and weather condi-
tions into tourism demand forecasting during the COVID-
19 pandemic. Multi-source data can provide a much
stronger theory and a more comprehensive overview for
tourism volume forecasting. Secondly, a novel inter-
pretable forecasting model, DE-TFT, is proposed, which
can better improve the performance of tourism demand
forecasting and explain the role of input variables. The DE
algorithm is used to optimize the parameter combination of
the TFT model, which improves the performance and sta-
bility of the model. The interpretability analysis of tourism
demand forecasts can also provide more persuasive analysis
to tourism-related decision-makers, helping them to make
more accurate forecasts and make more reliable plans.
Thirdly, this study has introduced a new keyword category
—the epidemic-related keywords—to forecast tourism
demand under the impact of COVID-19. The experimental
results indicate that the epidemic-related search engine data
can better improve the forecasting performance compared
with the general epidemic data (e.g., daily increase in
confirmed cases), further implying that the concerns of
tourists about tourism during the COVID-19 epidemic can
be better reflected. Fourthly, this study has proposed a new
CLSI–VMD method to process the search engine data (e.g.,
Google Trends and Baidu index) and provided a novel
perspective on tourism demand forecasting by exploring
decomposition methods in extracting the sub-modes of
composite search engine data.

Our work has practical implications for managers of
tourism destinations and attractions. Firstly, the recurrence
of epidemics has caused large fluctuations in tourism
demand, and the effects cannot be judged by solely relying
on the traditional off-season and peak seasons, which are
the information generally used in the past. Our proposed
approach highlights the importance of epidemic-related
data, allowing for the improved accuracy of tourism
demand forecasting during the COVID-19 epidemic. Thus,
tourism authorities can apply tourism demand forecasting to
support crowd management and better guard against
COVID-19 in the long run. Secondly, tourist site operators
can judge the impact of the epidemic based on the number
of tourists by using the search index related to the epidemic
rather than the number of new epidemics, as the former can
better reflect the concerns of tourists. Finally, the high-fre-
quency sub-sequences obtained using CLSI–VMD can help

to identify turning points (peaks and valleys) in the tourism
market, providing better support for the decision-making of
tourism managers.

This study has some limitations that can be further
investigated. Firstly, during the recurrence of the COVID-
19 epidemic, the forecast of tourism demand is very com-
plicated. More predictive factors, such as the impact of
policies and restrictions, may be considered. Secondly,
when considering multi-source data, a more powerful pre-
dictive model is needed given the diversity and complexity
of the input variables [52–54]. Finally, apart from the CLSI
and VMD methods, other effective composite or decom-
position methods can be employed in handling search
engine data. In the future, we will further study the above-
mentioned issues of tourism demand forecasting during the
COVID-19 epidemic.
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