
Springer Nature 2021 LATEX template

Black-box Error Diagnosis in Deep Neural Networks for

Computer Vision: a Survey of Tools

Piero Fraternali1†, Federico Milani1*†, Rocio Nahime Torres1† and Niccolò
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Abstract

The application of Deep Neural Networks (DNNs) to a broad variety of tasks demands methods
for coping with the complex and opaque nature of these architectures. When a gold standard is
available, performance assessment treats the DNN as a black box and computes standard metrics
based on the comparison of the predictions with the ground truth. A deeper understanding of per-
formances requires going beyond such evaluation metrics to diagnose the model behavior and the
prediction errors. This goal can be pursued in two complementary ways. On one side, model inter-
pretation techniques “open the box” and assess the relationship between the input, the inner layers
and the output, so as to identify the architecture modules most likely to cause the performance
loss. On the other hand, black-box error diagnosis techniques study the correlation between the
model response and some properties of the input not used for training, so as to identify the features
of the inputs that make the model fail. Both approaches give hints on how to improve the archi-
tecture and/or the training process. This paper focuses on the application of DNNs to Computer
Vision (CV) tasks and presents a survey of the tools that support the black-box performance diag-
nosis paradigm. It illustrates the features and gaps of the current proposals, discusses the relevant
research directions and provides a brief overview of the diagnosis tools in sectors other than CV.
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1 Introduction

The advances in Machine Learning (ML) led to
the development of more complex neural net-
works nowadays known as Deep Neural Networks
(DNNs), which are powerful models able to pro-
cess complex data of various types [1]. DNNs have
achieved outstanding results in many diverse do-
mains and have become the solution of choice for

addressing big data analysis [2]. One of the do-
mains in which DNNs have attained the most
impressive results is Computer Vision (CV) where
they have outperformed previous methods in a
variety of tasks, including image and scene clas-
sification, object detection, semantic and instance
segmentation, object and activity tracking and
pose estimation [3].
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Figure 1 Life cycle of a DNN application

The life cycle of a DNN application differs from
the development workflow of a traditional software
system, because it relies on predefined algorithms
that must be trained for the specific task and data
at hand [4].

Figure 1 illustrates the typical development
workflow of a DNN-powered application.

The peculiarity of such a workflow is the selec-
tion of the predefined algorithm more suited to the
task and its fitting to the problem data via train-
ing, which introduces a distinction between the
preparatory stage and the execution (inference)
stage. A further specificity of DNNs is their com-
plex and opaque nature, which makes debugging
particularly hard.

The ordinary way of assessing DNNs is the
evaluation of their prediction performance with
a gold standard. Prediction performance analysis
treats the DNN as a black-box and compares its
output with the ground truth with metrics such
as accuracy, precision, recall, etc. As DNNs get
more and more applied to critical tasks, the need
arises for a deeper understanding of the way in
which predictions are made. This insight can be
exploited to justify the output and/or to improve
the performances.

The investigation of the behavior of ML mod-
els in general, and of DNNs in particular, can be
pursued with analysis approaches that focus on
distinct aspects:

• Prediction performance: is the assessment of
the quality of the predictions. Performance can

be evaluated either qualitatively via manual in-
spection or quantitatively by comparison with
ground truth test data. Quantitative perfor-
mance analysis exploits standard metrics, such
as Accuracy, Precision, Recall, F1-Score, or
Average Precision.

• Model interpretability and explainability: is the
ability to explain or to present in understand-
able terms to a human how a model makes a
prediction [5, 6]. Intrinsic interpretability refers
to those models that are simple and thus inter-
pretable by design, such as short decision trees
or sparse linear models. Conversely, post-hoc
interpretability requires specific investigation
techniques applied to the trained model. In
DNNs, post hoc interpretability aims at expos-
ing the relation of the internal representations
of deep models to the input and output [7–11].
Techniques such as the Class Activation Maps
(CAMs) [12–16] highlight the most influential
regions of the feature maps at different network
levels and enable the insight into the model
prediction process. The difference between in-
terpretability and explainability is subtle: the
former emphasizes human intuition whereas the
latter stresses the comprehension of the internal
logic of the model [17].

• Counterfactual explanations: is the approach
that exposes the model behavior by showing
how some actions, such as a change to the input,
alter the behavior of the system [18, 19].

• Fairness and bias: is the assessment of how an
algorithm delivers predictions when applied to
inputs belonging to data populations with dif-
ferent characteristics (e.g., to images of people
belonging to different demographic groups) [20].

• Distribution shift: is the evaluation of how the
model performances evolve when the distribu-
tion of data changes with respect to the one of
the training and testing data [21].

The support of computer tools to the devel-
opment life cycle of DNN applications has con-
centrated mostly on the basic tasks of model de-
velopment/selection, training and testing. Several
software packages provide off-the-shelf functional-
ities for defining the structure of a DNN, executing
the training process and evaluating the most com-
mon metrics on the test set [22]. As the application
of DNNs matures and becomes a common practice
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in the industry, tool support beyond model defini-
tion, training and testing needs to be developed.
This paper surveys the status of a specific sector
of the research in this direction: black-box error
diagnosis tools for CV tasks.

1.1 Focus of the survey

The survey has a threefold focus: on the appli-
cation task, on the analysis type, and on the life
cycle phase.

The task focus concentrates on the use of
DNNs for CV. The motivation for this choice is the
fact that CV is the sector in which the availability
of black-box diagnosis tools is more significant. To
complete the overview, we also provide in Section
4.7 a brief appraisal of the status of DNN diagnosis
tools in other domains, such as time series analy-
sis, natural language processing and recommender
systems.

The analysis focus concentrates on predic-
tion performance as the target of black-box diag-
nosis. Among the analysis approaches mentioned
above, explainability and interpretability have al-
ready been described in several survey papers
[23–26]. Fairness and bias detection is also well
documented in several overview works [20, 27],
as well as distribution shift [21]. Counterfactual
explanations have been long used in statistical
learning and have been recently rediscovered as a
DNN explainability technique: the works [18, 19]
document the status of research in that area.

The life cycle focus considers the tools that
offer computerized support to the model evalua-
tion and refinement steps.

When appropriate, if a tool supporting primar-
ily the black-box diagnosis approach offers also
functionalities for other types of analysis and/or
development steps, these will be mentioned too.

1.2 Methodology

The target of the research comprises those meth-
ods that exploit only knowledge about the input
and output to compute and break down perfor-
mance metrics and to characterize errors. Among
such works, we highlight the proposals that pro-
vide a tool for DNN evaluation, possibly together
with functions for model design and training.
This perimeter excludes those contributions that
address DNN behavior and performances but pur-
sue different targets such as special-purpose and

domain-dependent metrics, the visualization of
DNN internal representations [25], model design
for interpretability [5], and human-in-the-loop in-
terpretation [28].

The corpus of the relevant research has been
identified by following a simplified PRISMA pro-
cedure [29] for systematic reviews. Figure 2 illus-
trates the adopted workflow.

1. The search has been conducted on the Scopus
repository, since previous studies have shown
that it supports bibliographic research better
than other sources [30]. The search phrases
have been composed as follows:

<search> :- <task> AND <goal> AND <system>

<task> :- machine learning | deep learning |

computer vision | classification |

image classification |

scene classification |

object detection |

instance segmentation |

semantic segmentation |

object tracking |

pose estimation |

activity detection |

action detection

<goal> :- model diagnosis |

error diagnosis |

performance analysis

<system> :- tool | framework | workbench

The output of the search was filtered to retain
only contributions in journals, conferences and
workshops.

2. The initial corpus has been expanded through
snowballing, recursively adding further related
studies citing or cited by the works in the initial
corpus.

3. The expanded corpus, composed of 1,746
works, has been reduced by removing dupli-
cates. Next, we have identified and eliminated
the studies unrelated to black-box techniques,
by checking the title, keywords and abstract
of each contribution. The reduced corpus con-
tained 67 contributions.

4. A final eligibility filter has been applied by
reading the full-text of the articles in the re-
duced corpus. This final step yielded the 29
works considered in this survey.
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Figure 2 PRISMA flow diagram of the systematic review

1.3 Contributions

The contributions of this paper can be summa-
rized as follows:

• 29 black-box DNN performance diagnosis tools
are identified from a initial corpus of 1,746
papers resulting from keyword and cross-
references search.

• The tools are described and compared based
on different dimensions (year, task, data type,
metrics, performance and error break down
functions, openness and extensibility)

• A list of open issues and relevant research
directions are identified and discussed.

• A brief overview of the status of the DNN
diagnosis tools in sectors other than CV is
provided.

The rest of the paper is organized as fol-
lows: Section 2 describes the dimensions used to
categorize the surveyed tools, Section 3 and 4 de-
scribe and compare the different tools based on
the identified dimensions; Section 5 highlights the
open issues and discusses the relevant research
directions; finally, Section 6 draws the conclusions.

2 Classification of the tools

The relevant proposals are described and com-
pared along six dimensions: task, media types,
metrics, break down functions, custom properties,
and openness and extensibility.

Task: An error diagnosis tool is typically de-
signed for performance analysis of a specific task,
which in turn may apply to a specific media
type or to a range of media types. The surveyed
diagnosis tools span the following tasks:

• Classification (CL): assignment of class labels to
input samples. The samples used in CV appli-
cations belong to visual media; however, a tool
may apply the same classification performance
diagnosis functions to other data types, such
as text, aural content, and record data. There-
fore we consider classification in general and not
only image classification.

• Object Detection (OD): localization of objects
of a certain class through bounding boxes in
images and videos.

• Semantic Segmentation (SS): assignment of a
class label to each pixel in images or videos.

• Instance Segmentation (IS): similar to semantic
segmentation but multiple objects of the same
class are treated as separate instances.

• Object Tracking (OT): similar to object detec-
tion but each unique object is tracked as it
moves across the frames of a video.

• Pose Estimation (PE): recognition of single
or multiple body poses through key points in
image and video.

• Action Detection (AD): assignment of an action
label to a video.

• Video Relation Detection (VRD): spatio-
temporal localization of object and subject pairs
in videos and assignment of a label that de-
scribes their interaction.

Media types: Depending on the task, several
media types can be relevant. The media types pro-
cessed by the surveyed tools comprise image and
video. The “generic” media type is used to refer
to values of arbitrary record type.

Metrics: The quantitative analysis relies on
metrics that may vary based on the targeted task.
Near 40 metrics are mentioned in the surveyed
tools. The definition of the non standard met-
rics can be found in the publications cited in the
comparison tables.

Break down functions: In addition to the
computation of the performance metrics, some
tools implement functions that improve the char-
acterization of the input and of the predictions, by
breaking down input data sets, metrics and errors
based on several criteria.
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• Overall / Per-class / Per-property performance
analysis: the tool supports the computation of
the metrics for the entire data set and/or for
individual classes or properties of the input.

• Overall / Per-class / Per-property reporting: the
tool supports the construction of summary re-
ports for the different levels of granularity used
to compute the performance metrics.

• Categorization of errors: the tool supports the
attribution of errors to specific categories, e.g.,
confusion with similar/dissimilar classes, poor
localization, occlusion, etc.

• Error contribution isolation: the tool supports
error impact analysis by highlighting the effect
of all errors of a certain type on the performance
metrics.

• Properties / Class distribution: the tool visual-
izes the distribution of properties and classes of
the input data set.

Custom property editing: Some tools inte-
grate a framework for adding custom properties
to the input samples, with the following features:

• Manual annotation creation: a graphical inter-
face allows the user to add annotations to the
input samples.

• Annotation purpose selection: annotation can
be distinguished into those for training (e.g.,
class labels) and those for diagnosis (e.g., do-
main dependent properties).

• Automatic annotation extraction: the tool en-
ables the execution of algorithms for extracting
meta-data and associating them to the input
samples as custom properties.

• Selective visualization: the user can display the
input data set and its annotations with multiple
criteria (e.g., all samples of a certain class or
with a specific property).

Openness and extensibility: Openness and
extensibility are fundamental properties to sup-
port adoption especially when novel metrics or
diagnosis approaches are proposed. The surveyed
tools have been assessed based on their open
source status and on the effort required for their
extension. This qualitative dimension is character-
ized by means of the following values:

• Open source: the code is public and freely
available.

Figure 3 Venn diagram of the distribution of the surveyed
tools in three macro-categories: Input characterization
oriented, Error categorization oriented and Performance
visualization oriented. Each circle represents the tools in
one specific macro-category, while the intersections be-
tween circles show tools assigned to multiple categories
(e.g., the 8 tools in the violet area pertain to both the Input
characterization and Error categorization categories)

• User-defined metrics: the tool can be extended
with custom metrics without modifying the
framework.

• Data set independence: the tool can be applied
to multiple data sets.

• User-defined properties: the tool enables the
plug-in of modules that implement custom anal-
ysis types not present in the original proposal.

3 Tool characterization and
description

Table 1 lists the 29 identified tools with the name
of the tool or of its authors, the publication year,
the targeted tasks, the media types, the ability to
work with different data sets, and the link to the
source code (only for open-source tools)1.

The tools can be grouped into three cate-
gories, shown in Figure 3, based on their prevalent
approach to prediction performance diagnosis.

• Input characterization oriented : tools in this
class stress the annotation of the input with
custom properties to distinguish which aspects
of the input affect the output and cause model
failure and performance loss. Figure 4 shows an
example of the interface for annotating images
with custom properties and Figure 5 illustrates

1The link to the code repository is navigable in the online
version of the paper.



Springer Nature 2021 LATEX template

6 Black-box Error Diagnosis in Deep Neural Networks for Computer Vision: a Survey of Tools

Table 1 The surveyed tools listed by ascending year of
publication. In the Code column, “-” indicates that the
code is not available and “link” contains a reference to
the code repository

Reference Year Task Media
Data set
indepen-
dence

Code

Dollar et al.[31] 2009 OD image no -
Hoiem et al. [32] 2012 OD image yes link
Russakovsky et
al. [33]

2013 OD image no -

COCO API
[34]

2014 OD,
IS,
PE

image yes link

Hariharan et al.
[35]

2014 IS image no link

Zhu et. al. [36] 2015 OD image no -
ModelTracker
[37]

2015 CL generic yes -

Redondo et al.
[38]

2016 PE,
OD+PE

image no link

Prospector [39] 2016 CL generic yes -
Zhang et al. [40] 2016 OD image no -
Ronchi et al.
[41]

2017 PE image yes link

Explanation
Explorer [42]

2017 CL generic yes link

Squares [43] 2017 CL generic yes -
Sigurdsson et al.
[44]

2017 AD video no link

DETAD
[45]

2018 AD video yes link

Nekrasov et al.
[46]

2018 SS image no -

Manifold
[47]

2018 CL generic yes link

What If Tool
[48]

2019 CL,
BD

generic yes link

TIDE [49] 2020 OD,
IS

image yes link

ODIN [50, 51] 2020 OD,
IS,
CL

image/
generic

yes link

Padilla et al.
[52]

2020 OD image yes link

TF-GraF [53] 2020 OD image yes link
Boxer [54] 2020 CL generic yes -
OpenVINO [55] 2020 CL,

OD,
SS, IS

images yes -

Padilla et al.
[56]

2021 OD,
OT

image yes link

TracKlinic [57] 2021 OT video yes -
Chen et al. [58] 2021 VRD video yes link
AIDeveloper
[59]

2021 CL image yes link

DETOXER [60] 2022 CL video yes link

an example of the use of custom properties to
break down the Average Precision (AP) metrics.

• Error categorization oriented : tools in this class
stress the distinction among different types of
errors to quantify the contribution of an error
type to the performance loss. Figure 6 illustrates
an example of error characterization diagram.

• Performance visualization oriented : tools in this
class resort to advanced visualization and in-
teraction to support the human judgement of

the performance problems. Figure 7 shows an
example of the functionality of a performance
visualization tool.

Figure 4 ODIN tool [51]: the GUI lets the user annotate
the input samples denoting either the class or a custom
property not used for training

Figure 5 [32] Use of custom properties (occlusion, trun-
cation, bbox size, bbox aspect ratio, view point, part
visibility) of the images for performance break down. Prop-
erty sensitivity and impact analysis diagram (top): it shows
the variation of AP for the different properties. AP break
down diagram (bottom): it breaks down the AP metrics by
bbox size value

https://github.com/wk910930/diagnosing-object-detectors
https://github.com/cocodataset/cocoapi
https://github.com/bharath272/sds_eccv2014
https://github.com/gramuah/pose-errors
https://github.com/matteorr/coco-analyze
https://github.com/nyuvis/explanation_explorer
https://github.com/gsig/actions-for-actions
https://github.com/HumamAlwassel/DETAD
https://github.com/uber/manifold
https://github.com/pair-code/what-if-tool
https://github.com/dbolya/tide
https://github.com/rnt-pmi/odin
https://github.com/rafaelpadilla/Object-Detection-metrics
https://github.com/boguss1225/ObjectDetectionGUI
https://github.com/rafaelpadilla/review_object_detection_metrics
https://github.com/shanshuo/DiagnoseVRD
https://github.com/maikherbig/AIDeveloper
https://github.com/MahsanNourani/DETOXER
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Figure 6 Error categorization in the TIDE tool [49]:
errors are distinguished in the types: categorization, local-
ization, categorization+localization, duplicate detection,
background and missed ground truth

Figure 7 Interactive performance visualization in the
What If Tool [48]: the user can interact with the slider
to modify the classification threshold and view the corre-
sponding point on the curves, the values of the confusion
matrix and the errors

Figure 8 shows the distribution of the tools
across the CV tasks. Objection Detection and
Classification are the most represented ones. The
relevance of OD is not surprising because the pio-
neering works on black-box diagnosis [31] and [32]
originated from the performance analysis of that
task. Most tools work with images or with generic
inputs, provide open-source code and have been
released in the last five years. Figure 9 illustrates
the distribution over time of the surveyed works. If
one does not consider the early 2009 work [31], the
timeline shows that the interest begun in 2012, the
same year in which the research on Deep Learn-
ing started its escalation. The idea originated in
the CV field for such tasks as object detection and

Figure 8 Distribution of the surveyed tools per task

Figure 9 Distribution of the surveyed tools per year and
per type of task

image segmentation and then propagated to other
ML applications.

3.1 Descriptions of the tools

In the rest of this section we provide a brief
description of the surveyed tools in ascending
chronological order.

Dollar et al.: The work [31] presented a data
set for pedestrian detection consisting of an anno-
tated video with challenging low resolution images
and occluded people. The data set was used to
evaluate several detectors and the authors ad-
vocated the use of ad-hoc features of the input
to help diagnose errors and support model re-
finement. To this end, performances were broken
down based on specific properties of the input,
such as the scale, the aspect ratio of the ground
truth bounding boxes and the presence of occlu-
sions of the pedestrians. Although the code was
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not released, this early work is the first exam-
ple of a black-box diagnosis tool and inspired the
posterior proposals.

Hoiem et al.: The work in [32] pioneered
the systematic black-box approach to error anal-
ysis in OD tasks and showed the utility of adding
extra annotations to the input besides the la-
bels used for training. The framework exploits a
fixed set of diagnosis-oriented object meta-data
that can affect the model accuracy, such as: size,
parts visibility, aspect ratio, shape and occlusion
(Figure 5). The authors demonstrate how break-
ing down standard metrics into sub-metrics linked
to a metadata value aids in understanding model
faults and in focusing redesign where the margin
for improvement is maximal.

Russakovsky et al.: The work in [33] fol-
lows the black-box diagnosis method of [32] and
assesses the performance of several object detec-
tors applied to the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) data set. A first
type of analysis breaks down the performance in-
dicators using per-image properties, such as the
number of instances per image and the chance per-
formance of localization (CPL). A second type of
analysis shows how the performances are affected
by per-class properties, such as the distinctiveness
of color and of shape, the instance deformability
and the amount of texture.

COCO API: A step towards the populariza-
tion of custom input properties as an aid for error
diagnosis is found in the development framework
of the MS COCO data set [34]. The computation
of mean Average Precision (mAP) is differentiated
based on the object size: mAPsmall, mAPmedium

and mAPbig. This distinction assists the diagnosis
of the issues and enables the design of strategies
to improve the localization, such as multi-scale ob-
ject detection [61]. In addition to the the break
down of the metrics, the API also allows devel-
opers to load any data set that respects the MS
COCO format and to visualize both the images
and the annotations.

Hariharan et al: The work in [35] intro-
duces simultaneous detection and segmentation
(SDS) as a novel computer vision task. The au-
thors provide the DNN architecture and a tool for
its diagnosis. Besides the assessment of standard
metrics, error diagnosis is supported by introduc-
ing three error classes (localization, confusion with

similar classes, and confusion with background)
and by computing the impact of each error type
on the performance indicators.

Zhu et.al.: The authors of [36] follow the
methodology of [32] and evaluate object detectors
using custom properties. They contrast different
methods for creating object proposals on the PAS-
CAL VOC data set. The comparison uses object
characteristics such as size, aspect ratio, iconic
view, color contrast, shape regularity and tex-
ture. The authors also discuss how to exploit
objects properties to investigate model limitations
and show the sensitivity of the model to the
characteristics of the objects.

ModelTracker: The work in [37] investigates
the performances of a classifier with a black-box
approach that combines metrics summaries and
interactive visualizations. Binary predictions are
color-coded and arranged by classification score.
The analysis of results is facilitated by tagging
input samples with custom properties and by
highlighting samples similarity and outliers.

Redondo et al.: The authors of [38] propose
a diagnostic tool tailored to the study of pose es-
timation errors. The tool examines the effects of
custom properties (aspect ratio, size, visibility of
parts) on the detection and pose estimation per-
formances and highlights the impact of different
types of pose-related False Positives. The authors
analyze four state-of-the-art object detection and
posture estimation models to uncover flaws and
recommend improvements.

Prospector: The work in [39] describes a
web-based tool that implements counterfactual
analysis. The tool implements a partial depen-
dence technique for determining the impact of
each input feature on the DNN results. The de-
veloper can apply changes to the input data and
measure the impact on the output. The system
suggests the shift in the value of each input feature
that would lead to the greatest performance im-
provement. The diagnostic utility of the approach
is demonstrated in a diabetes prediction task.

Zhang et al.: In [40] the authors apply er-
ror diagnosis to the state-of-the-art pedestrian
detection algorithms. They enhance the anno-
tations of the Caltech [31] data set and study
both False Positives (FPs) and False Negatives
(FNs) with different error categories. FP errors are
distinguished into localization, background, and
annotation. FN errors are categorized into scale,
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viewpoint, occlusion, and other types. The authors
also analyze the impact of FPs on performances.

Ronchi et al.: The work in [41] applies the
approach of [32] to the Multi-Instance Pose Esti-
mation task. Three error types are defined (local-
ization, scoring and background) and the impact
of three challenging factors is studied (occlusion,
crowding and size). Their tool visualizes the distri-
bution of errors for each key point and highlights
the improvement in the Precision-Recall curve
obtainable by correcting specific types of errors.

Explanation Explorer: In [42], the authors
of Prospector [39] describe a novel tool for the as-
sessment and interpretability of binary classifiers.
Their approach comprises three steps: 1) the dis-
play of classical performance metrics and analyses;
2) the explanation generation, which computes
the features of the input samples that impact the
outcome most significantly; 3) the interactive vi-
sualization of the explanations. The visualization
is organized in three stages: 1) outcome-level, fo-
cusing on the overall accuracy; 2) feature-level,
presenting the explanations along with the cor-
responding features; and 3) instance-level, which
allows the user to analyze each instance and de-
rive hypotheses about the classifier failures. The
authors advocate that visual analytics should play
a major role in error diagnosis but also highlight
that not all failures can be rectified by training a
stronger model because some errors require bias
mitigation in the original data set.

Squares: Squares [43] is a tool for the inter-
active performance analysis of multi-class single-
label classifiers. The classes and the corresponding
instances are displayed on the same row with a
distinctive color. The observations are ordered by
their prediction confidence score and grouped. The
first group represents the FNs whereas the second
cluster comprises both the True Positives (TPs)
(highlighted with the color of their class) and the
FPs (highlighted with the color of their true class).
When an observation is selected from one class,
its representations in the other classes are empha-
sized visually, thus allowing a comparison among
the different predictions of the same sample.

Sigurdsson et al.: The work in [44] surveys
the state-of-the-art in the action detection task
and compares the existing methods. The eval-
uation is based on the categorization of errors
in four classes: boundary, other class with the
same object, other class with the same verb, other

class with neither and no class. A further anal-
ysis evaluates the models w.r.t. the complexity
of the objects/verbs that characterize a category.
Finally, the authors examine the impact of two
specific features of the input: the temporal extent
of the action and the presence of people.

DETAD: The focus of [45] is on the identifica-
tion of temporal actions in videos. The diagnosis
tool enables the analysis of FPs and FNs and the
estimation of the sensitivity of mAP-based met-
rics to six action characteristics: length, context
distance, agreement, coverage, context size and
number of instances.

Nekrasov et al.: In [46] the authors apply
the black-box diagnostic strategy of [32] to the
semantic segmentation task.

Manifold: The authors of [47] discuss an
interactive framework for the evaluation and de-
bugging of ML models. An agreement analysis
function enables the comparison of model pairs
by highlighting the similarities and differences of
their predictions. A feature distribution function
permits the selection of a subset of the samples
and measures the intra-group similarity based on
the occurrence frequency of each feature.

What If Tool: As the name suggests, the
tool described in [48] allows researchers to analyze
the performances of ML systems in hypothetical
situations by visualizing the effect of several fea-
tures on different models and on different subsets
of the input data. Among all the surveyed tools,
this is the only one providing also a fairness anal-
ysis that highlights bias in the input data set.
Other functionalities support data point editing,
counterfactual reasoning, performance measures
for classification and regression (Figure 7) and
data set fairness optimization.

TIDE: The tool illustrated in [49] supports
error diagnosis in object detection and instance
segmentation. The tool is applicable to multiple
data sets and output formats. Similarly to [32]
it categorizes detection and segmentation errors
and provides compact error summaries and im-
pact reports. For example, it includes the direct
comparison of results by different models (Figure
10). Unlike other tools such as [32, 50], TIDE pur-
posely avoids resorting to properties of the input
other than those used for training.

ODIN: The ODIN framework [50, 51] aims
at generalizing and integrating into a unique so-
lution the previous approaches to DNN black-box
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Figure 10 Error categorization and model comparison in TIDE [49]

diagnosis for classification, object detection and
instance segmentation. ODIN allows the addition
of custom properties to the input, supports the
plug-in of user-defined performance indicators and
implements a wide range of metrics and analy-
sis reports off-the-shelf (Figure 4). It can be used
to study both model performance and data set
bias. It combines error impact sensitivity and con-
fidence calibration. The latter analysis evaluates
the similarity of the distribution of predictions to
the real probability distribution of the input data.
The tool also comprises a Graphical User Inter-
face (GUI) for annotating the input with custom
properties.

Padilla et al.: The authors of [52] discuss the
most commonly used metrics for object detection
and provide the implementation code in a toolkit.
The work in [56] describes the most recent release,
which makes the toolkit independent of the input
formats, adds more bounding box formats, and
includes novel spatio-temporal metrics for object
detection in video.

TF-GraF: The goal of the work in [53] is
to create an easy-to-use Tensorflow object detec-
tion environment, simplifying the installation and
set-up and the coding and execution of the work-
flows. The tool supports pre-processing, training
and evaluation with the MS COCO metrics. It in-
corporates the best known object detection and in-
stance segmentation architectures (Faster RCNN,
SSD, Mask RCNN) and provides the visualization
of the training and test data sets. Non-experts
can configure, train, and assess DNNs with no
programming.

Boxer: The work in [54] presents a tool called
Boxer for comparing the performances of different
classifiers. The system supports the selection of
metrics, the grouping of training and test data into
“boxes” based on selected features and the com-
parative visualization of the outputs. To evaluate

data quality and bias, a novel method based on
set algebra is presented to link views and analyze
multiple data subsets. The authors demonstrate
the tool utility in a variety of use cases and discuss
strategies for dealing with very large data sets.

OpenVINO DL Workbench: The work
in [55] focuses on model training, analysis, op-
timization, evaluation and deployment, covering
the entire model development workflow with a
hybrid black-box and white-box approach. The
workbench includes an Accuracy Checker that im-
plements a black-box analysis for classification,
regression, and object detection tasks by com-
puting the most common metrics for the whole
data set and per class. It also supports the open-
box analysis, for example to evaluate and improve
model performance in terms of execution time and
memory consumption.

TracKlinic: The work in [57] studies the
factors that challenge object tracking in videos.
Custom properties can be manually associated
with the video frames to specify seven common
error-inducing factors: occlusion, rotation, out-of-
view, background clutter, illumination variation,
shape variation, and motion blur. The proposed
diagnosis tool exploits the Intersection over Union
(IoU) base metrics to analyze the failure rates
and the success scores of ten state-of-the-art ar-
chitectures applied to three benchmark data sets
manually annotated with the above mentioned
factors. Per-frame proposals of alternative models
can be visualized together and compared with the
ground truth annotations. The diagnosis results
show that most models fail when complex situ-
ations occur, such as out-of-view transitions and
shape variations.

Chen et al.: The work in [58] focuses on
the relation detection task in videos and assesses
the state-of-the-art detectors over two benchmarks
(ImageNet-VidVRD [62] and VidOR [63]). The
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authors categorize the FPs and compute their im-
pact over the Average Precision, analyze the FN
distribution across different input characteristics
(e.g., the video length, the number of subjec-
t/predicate/object instances, the subject/object
pixel scale) and compute the performance gain
achievable by removing each error type.

AIDeveloper: The work in [59] presents an
open-source software supporting the entire devel-
opment process of an image classification model:
dataset definition and visualization, model train-
ing and optimization and performance evaluation.
The tool includes an easy-to-use GUI that allows
researchers to develop DL-powered applications
without coding.

DETOXER: The work in [60] is an interac-
tive visual analytics tool for debugging Tempo-
ral Multi-Label Classification models in multiple
videos. The authors designed it in order to provide
three different levels of granularity for explana-
tions and evaluation: frame-level analysis offer-
ing a compact visualization of all the categories;
video-level explanation providing an overview of
the errors (false positives and false negatives) for
each video; and, global-level summary revealing
error trends across all the analyzed videos.

4 Comparison of diagnostic
tools

For each tool described in Section 3 the supported
metrics and types of analysis were extracted,
resulting in more than 70 options. For ease of com-
parison four tables are introduced, one for each
family of homogeneous metrics/analyses: generic
multi-task (Table 2), classification (Table 3), lo-
calization (Table 4), and a miscellaneous category
grouping the functions found in the less frequent
tools for object tracking and pose estimation
(Table 5). The rows specify the metrics/analy-
sis and the columns the tools that support them,
sorted in chronological order. For space reasons,
the tool or authors’ names are omitted but they
can be recovered from the corresponding reference.
Each cell specifies if the option is offered by the
specified tool. The symbol “-” means that the row
is not relevant for the specific tool. For example,
a metrics specific for pose estimation is not rel-
evant for tools focused on object tracking. Note
that when some base metrics is used to compute a

derived metrics (e.g., IoU and AP in Table 4) the
row of the base metrics contains the Xvalue only
when the tool exposes the base metrics explicitly.

4.1 Multi-task metrics and analyses

Table 2 lists 16 general metrics that apply to
all the considered tasks and the 23 tools that
implement them. Only Accuracy is well repre-
sented in the surveyed classification tools. Other
standard ML metrics (e.g., precision, recall, F1-
score and AUCs) are present only in 4 or 5 tools,
less than one may expect. A similar consideration
also holds for the Precision-Recall, F1 and ROC
curves, usually employed to visualize and compare
performances and optimize the hyperparameters.
Only 7 out of 23 tools offer such features. The
most represented types of analysis are those re-
lated to FPs and FNs, which are the most common
starting points for error diagnosis.

4.2 Classification metrics and
analyses

Table 3 lists 8 classification-specific metrics imple-
mented in 8 frameworks. The Confusion Matrix
is implemented by 7 out of 8 tools, whereas Er-
ror Rate, Mean Error (ME), Mean Absolute Error
(MAE), Mean Squared Error (MSE), Odds Ra-
tio and the True Negative (TN) analysis are
implemented by only one proposal.

4.3 Localization metrics and
analyses

Table 4 presents the 6 localization-specific metrics
and the 19 tools that implement them. The sur-
veyed frameworks support a variety of localization
tasks: OD, IS, SS, AD and PE. The review shows
that there is little consensus among localization-
oriented frameworks about which metrics are es-
sential and should be provided off-the-shelf. The
implementation by tools concentrates only on the
metrics commonly required by the most popular
CV benchmarks: Average Precision (IoU) for OD
and IS; other useful metrics, both general and
localization-specific, such as Miss Rate, Average
Recall (IoU) or F1 Score are implemented rather
infrequently by the object localization tools.
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Table 2 Multi-task metrics and analyses.

Metric /
Analysis

[32] [33] [34] [35] [36] [38] [39] [40] [41] [42] [44] [45] [46] [48] [49] [50] [52] [54] [55] [57] [58] [59] [60]

Accuracy - X - - - - X - - X - - X X - X - X X - - X X
Precision X X X - X
Recall X X X X - X
ROC Curve - - - - - - - - X - - X - X - - - X
ROC AUC - - - - - - - - X - - X - X - X - - X
PR curve X X X X X - X
PR AUC X X X -
F1 Score X X X - X
F1 Curve X -
F1 AUC X -
# FP X X X
# FN X X X
FN Analysis X X X X X X X
FP Analysis X X X X X X X X X X X X
TP Analysis X
Reliability
Analysis

X X

Table 3 Classification-specific metrics and analyses.

Metric / Analysis [42] [43] [47] [48] [50] [54] [55] [59]
Error Rate X
Confusion Matrix X X X X X X X
Mean Error X
Mean Absolute Error X
Mean Squared Error X
Odds Ratio X
Matthews Correlation Coefficient X X
TN Analysis X

4.4 Object Tracking and Pose
Estimation metrics and analyses

Table 5 lists task-specific metrics found in tools
designed for OT and PE. Also in this case a lack of
consensus about a common set of relevant metrics
can be observed. For example both [41] and [38]
focus on PE but do not share any of the task-
specific metrics.

4.5 Error categorization metrics and
analyses

Table 6 lists 12 tools that implement error cat-
egorization and define 14 types of errors. Error
categorization is provided only by OD, IS or PE
tools and is not yet common for other tasks. As
discussed in the surveyed works, error categoriza-
tion unveils specific factors associated with model
failure that are difficult to extract from aggregated

metrics alone. The error categorization tools ex-
ploit this feature for impact analysis and highlight
the performance gain obtainable by removing or
mitigating a specific type of error.

4.6 Additional features

Table 7 presents 14 features not related to any spe-
cific metrics. Some functions let the user inspect
the predictions at different levels of granularity
and display the distribution of classes and proper-
ties in the input data set. Other functions refer to
the availability and extensibility of custom prop-
erties and metrics. A last group contains functions
for model comparison and data set annotation
and visualization. The multi-level analysis and the
comparison of models are present in most tools.
Few frameworks accept custom evaluation crite-
ria. Despite the fact that many frameworks include

Table 4 Localization-specific metrics and analyses.

Metric / Analysis [31] [32] [34] [35] [36] [38] [40] [41] [44] [45] [46] [49] [50] [52] [53] [55] [56] [57] [58]

Mean IoU X - - X X
Average Precision (IoU) X X X X X X X X X X X X X X
Average Recall (IoU) X X X X
Miss Rate X X - - X
Localization Latency X
IoU Analysis X X X X X X
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Table 5 Object Tracking and Pose Estimation metrics and analyses.

Metric / Analysis [38] [41] [56] [57]
Success Score (OT) - - X
Failure Rate (OT) - - X
Consistency Analysis (OT) - - X
Spatio-Temporal Tube Average Precision (STT-AP) (OT) - - X
Pose Estimation Average Precision (PE) X - -
Average Viewpoint Precision(PE) X - -
Average Orientation Similarity(PE) X - -
Mean Angle Error (PE) X - -
Median Angle Error (PE) X - -
Object Keypoint Similarity (PE) X - -

Table 6 Error categorization metrics and analysis.

Metric / Analysis [32] [35] [38] [40] [41] [44] [45] [46] [49] [50] [57] [58]
Errors Categorization (ET) X X X X X X X X X X X X
ET: Classification X X X
ET: Localization X X X X X X X X X
ET: Classification + Localization X
ET: Duplicated X X X X
ET: Missed Ground Truth X X X X
ET: Confusion with background X X - X X X X X X X X
ET: Confusion with similar class X X - X X
ET: Confusion withn similar class X - X X
ET: Other X X X X X X X X X
ET: Opposite (PE) - X - - - - - - - -
ET: Nearby (PE) - X - - - - - - - -
ET: Confusion with other class with same object - - - - - X - - - - -
ET: Confusion with other class with same verb - - - - - X - - - - -
ET: Boundary - - - - - X - - - - -
Error Contribution Analysis X X X X X X X X X X

analysis processes that depend on custom prop-
erties, only 2 tools include an annotator GUI.
Only 5 tools offer an interface for visualizing and
filtering the Ground Truth (GT) data and the
model predictions (e.g., for filtering predictions by
a specific error type). A final remark on the re-
porting capabilities: less than 30% of the surveyed
tools offer a way to build a comprehensive report
with all the relevant metrics. Even less tools pro-
vide a summary organized by class or by custom
property.

4.7 Beyond Computer Vision

The focus of this survey is on the tools that
assist the CV tasks. The overview has been ex-
tended also to the frameworks that support the
classification of other types of data, because they
share most metrics and types of analysis with
the surveyed image classification tools. However,
the black-box diagnosis approach is relevant also
in other scenarios in which DNNs are applied
to such tasks as time series analysis (TS), natu-
ral language processing (NLP), and recommender
systems (RS). In this section we provide some es-
sential references to the research and survey works

that address the black-box diagnosis for tasks
other than the CV ones.

A notable example is the application of DNNs
to temporal data series for such applications as
anomaly detection [64, 65] and predictive main-
tenance [66]. The time series data sets for such
applications are characterized by many properties
(e.g., the sampling frequency, the stationarity and
periodicity of the series, the type and physical
characteristics of the signal and of the corre-
sponding acquisition sensor). Such a richness of
significant input properties could be exploited to
enable the break down of performance indicators
and the attribution of errors to specific features
of the input. Recent works have started to imple-
ment off-the-shelf black-box error diagnosis and
performance break down functionalities [67].

Tools such as [68–70] extend the support be-
yond the use of basic metrics in the evaluation
phase and cover also the training and refinement of
the model. The work [71] proposes novel temporal
evaluation metrics and provides their implemen-
tation as command line scripts. Several research
and commercial frameworks assist the workflow
of anomaly detection and predictive maintenance
applications but do not support error attribu-
tion and metrics break down. An example is
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Table 7 Performance break down, input distribution, custom properties and metrics, model comparison, data editing
and visualization functions.

Feature [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [52] [53] [54] [55] [56] [57] [58] [59] [60]
Performance break down and input distribution functions

Overall Analysis X X X X X X X X X X X X X X X X X X X X X X X
Per class Analysis X X X X X X X X X X X X X X X X
Per property Analysis X X X X X X X X X X X X X X X X X X X
Overall report X X X X X X X
Per class report X X X
Per property report X X
Property distribution X X X X X X
Class distribution X X X X X

Custom properties and metrics
Builtin input properties X X X X X X X X X X X X X X X X X
User-defined properties X X X X X X X X
User-defined metrics X

Editing, visualization and comparison functions
Model comparison X X X X X X X X X X X X X X
Annotator X X
Visualizer X X X X X

RELOAD [68], which aids the ingestion of data,
the selection of the most informative features,
the execution of multiple anomaly detection al-
gorithms, the evaluation of alternative anomaly
identification strategies, the evaluation of multi-
ple metrics and the visualization of results in a
GUI. RELOAD implements multiple metrics and
algorithms off-the-shelf and has an extensible ar-
chitecture. However it does not support yet the
break down of performance metrics and the attri-
bution of errors based on the features of the input.
A black-box error diagnosis tool for time series is
ODIN TS [72], an extension of the ODIN tool [51]
for time series analysis. ODIN TS implements the
basic time series metrics and diagrams (accuracy,
precision, recall, F1 score, miss alarm rate, false
alarm rate, NAB score, MAE, MSE, Root Mean
Squared Error, Mean Absolute Percentage Error,
Precision-Recall and ROC curves), introduces new
types of analysis for anomaly detection, such as
FP error categorization, enables the annotation of
the time series and the visualization of the data
set and of the predictions.

In the NLP field, the BlackBox workshops se-
ries2 is dedicated to interpretability and diagnosis
issues in the application of DNNs to NLP prob-
lems, with a multidisciplinary approach spanning
not only machine learning, but also psychology,
linguistics, and neuroscience. As an example of
this line of research, the work [73] describes the
GEval tool, a framework for detecting anomalies
in NLP test sets, supporting data preparation, de-
tecting problems in the model and comparing the
output of alternative models. LIT (Language In-
terpretability Tool) [74], by Google Research, is a
framework focused on the interpretability of NLP

2https://blackboxnlp.github.io/

models, which also supports multiple evaluation
metrics, counterfactual analysis and the visualiza-
tion of the data set and of the model outputs.
EXPATS (Explainable Automated Text Scoring)
[75] builds upon LIT and offers life cycle support
for the specific NLP task of text scoring. It imple-
ments multiple feature extractors and metrics and
can work with predefined or user-supplied mod-
els. The tool is open source and designed with an
open architecture, to enable the plugin of custom
analysis components.

The proliferation of algorithms in the recom-
mender system sector has spawned the interest for
tools supporting the life cycle of system develop-
ment, with the aim of standardizing the evaluation
and easing the reproduction of results. The re-
cent contributions include comprehensive libraries
implementing the most popular RS algorithms,
such as the RecBole library [76], and tools sup-
porting the model development and assessment.
A recent example of the available toolkits is EL-
LIOT [77] an open-source recommendation system
development framework assisting pre-processing
operations, enabling alternative hyperparameters
optimization strategies and implementing multi-
ple evaluation metrics. ELLIOT also covers bias
and fairness analysis, supported by statistical
significance tests, a functionality particularly rel-
evant in recommendation scenarios.

5 Issues and research
directions

Black-box error diagnosis is a viable comple-
ment to interpretability techniques for achieving
a deeper understanding of the performances of
DNNs. However, the panorama of the tools and

https://blackboxnlp.github.io/
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frameworks that support error diagnosis shows
that there are still margins for improvement and
research before full maturity is attained.

5.1 Open issues

The analysis of the surveyed tools reveals several
open issues.

• Consensus: Average Precision and Accuracy
are implemented off-the-shelf by most CV and
classification tools. But besides such basic met-
rics, there is little agreement among the tools
addressing the same task about the core set
of metrics and analyses that are most benefi-
cial to performance and error diagnosis. Table
8 shows task by task the percentages of tools
that implement each metrics. A common effort
to define a core set of metrics per task must
go beyond the few metrics popularized by the
benchmarks focused on end-to-end evaluation.
The definition of a consensus set of metrics and
analyses would promote the design of method-
ological guidelines for black-box error diagnosis
based on fundamental performance indicators
and diagnosis reports available off-the-shelf. It
would also help model and framework develop-
ers save time in the implementation of diagnosis
metrics and reports and concentrate on more
advanced functionalities of their architectures
and tools. The starting point for the definition
of a consensus set of indicators is the abun-
dant literature on the performance metrics most
suitable for each task [52, 56, 78–80].

• Workflow coverage: all the analyzed tools fo-
cus on prediction performance evaluation with
few considering also the other life cycle phases of
Figure 1. Thus, a complete development work-
flow would require the use of multiple tools, each
one with its own input/output formats, con-
figuration, metrics, and visualizations/reports.
Integrating in one solution the support to all
the life cycle phases would accelerate the model
development, evaluation and refinement loop.
This requirements is especially relevant to those
tools that offer the break down of metrics based
on custom properties, which should be added
manually to the input data set, or extracted
automatically from it, during the preparation
phase.

• Visual analytics and support for qual-
itative analysis: the surveyed tools include

almost only quantitative metrics or analyses
that are useful to measure model performance
or diagnose errors. In particular, when deal-
ing with visual data, these measures are not
enough to fully understand the model behavior.
Qualitative analysis is fundamental to visualize
both errors and correct predictions and, as-
sociated with interpretability techniques, may
help discover unwanted correlations. The inter-
faces of error diagnosis tools could be extended
to support the automatic visualization of data
samples relevant for qualitative analysis, e.g.,
those falling into given ranges of one or more
output metrics or those displaying a certain
type of error.

• Automatic extraction of properties: cus-
tom properties associated to the input data have
been shown to be beneficial in diagnosing and
categorizing errors. Such properties in part can
be automatically derived from the data (e.g.,
image color space, bounding box size and aspect
ratio, difficulty and quality level, number of ob-
jects, etc.). Some of the analyzed tools compute
only elementary properties (e.g., bounding box
size or image color scheme) and none integrate
an approach to extract non trivial diagnosis-
oriented properties automatically.

• Data quality assessment: errors that are
attributed to the model may be due to the pres-
ence of noise in the ground truth annotations.
Only few tools integrate data quality and error
diagnosis and provide head to head compari-
son of the same model on different data sets. A
particular case of data quality analysis is bias
detection in the input data set, which is the sub-
ject of a completely distinct family of tools [20]
but is supported only by one black-box error
diagnosis framework [48].

• Scalability: the authors of several tools openly
admit that their framework cannot be applied
to very large data sets, featuring many samples,
many classes, or many custom properties. The
difficulty stems from both the computational
effort required (e.g., metrics may be computa-
tionally heavy) and from the visualization of
results (traditional plots, interactive views, and
summaries get cluttered and difficult to read).

• Architecture and API standardization:
Albeit most tools publish their implementation
code in open source repositories, the lack of
a common architecture and of standard APIs
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Table 8 The tools that implement each metrics in percentage. Each column represents a task or a family of related tasks
and shows the number of tools that support it.

Metrics-Analysis/Task CL (11) OD/IS/SS (14) PE (3) AD (2) OT (2) VRD (1)

Metrics

Accuracy 73% (8) 14% (2) 0% (0) - - -

Error Rate 9% (1) - - - - -

Precision 36% (4) 14% (2) 0% (0) 0% (0) 0% (0) 0% (0)

Recall 36% (4) 21% (3) 0% (0) 0% (0) 0% (0) 0% (0)

F1 score 36% (4) 14% (2) 0% (0) 0% (0) 0% (0) 0% (0)

Average Precision 18% (2) 64% (9) 100% (3) 100% (2) 50% (1) 100% (1)

Average Recall 9% (1) 29% (4) 33% (1) 0% (0) 50% (1) 0% (0)

ROC AUC 45% (5) - - - - -

Precision-Recall AUC 36% (4) 7% (1) 0% (0) 0% (0) 0% (0) 0% (0)

F1 AUC 9% (1) 7% (1) 0% (0) 0% (0) 0% (0) 0% (0)

Mean Error 9% (1) - - - - -

Mean Absolute Error 9% (1) - - - - -

Mean Squared Error 9% (1) - - - - -

Odds Ratio 9% (1) - - - - -

Matthews Correlation Coeffi-
cient

18% (2) - - - - -

Mean Intersection Over Union
(Mean IoU)

- 21% (3) 0% (0) 0% (0) 100% (2) 0% (0)

Miss Rate - 21% (3) - - 0% (0) 0% (0)

Localization Latency - 7% (1) - 0% (0) 0% (0) 0% (0)

Success Score - - - - 50% (1) -

Failure Rate - - - - 50% (1) -

Spatio-Temporal Tube Average
Precision (STT-AP)

- - - - 50% (1) -

Average Viewpoint Precision - - 33% (1) - - -

Average Orientation Similarity - - 33% (1) - - -

Mean Angle Error - - 33% (1) - - -

Median Angle Error - - 33% (1) - - -

Object Keypoint Similarity - - 33% (1) - - -

Curves
ROC curve 36% (4) - - - - -

Precision-Recall curve 36% (4) 14% (2) 33% (1) 0% (0) 0% (0) 0% (0)

F1 curve 10% (1) 7% (1) 0% (0) 0% (0) 0% (0) 0% (0)

Analysis

Confusion Matrix 73% (8) - - - - -

# False Positives (FP) 27% (3) 14% (2) 0% (0) 0% (0) 0% (0) 0% (0)

# False Negatives (FN) 27% (3) 14% (2) 0% (0) 0% (0) 0% (0) 0% (0)

True Positive Analysis 9% (1) 7% (1) 0% (0) 0% (0) 0% (0) 0% (0)

False Positive Analysis 9% (1) 50% (7) 100% (3) 100% (2) 50% (1) 100% (1)

False Negative Analysis 9% (1) 29% (4) 66% (2) 50% (1) 0% (0) 100% (1)

True Negative Analysis 9% (1) - - - - -

Error Categorization 9% (1) 43% (6) 100% (3) 100% (2) 50% (1) 100% (1)

False Positive Error Categoriza-
tion

9% (1) 43% (6) 100% (3) 100% (2) 50% (1) 100% (1)

False Negative Error Categoriza-
tion

9% (1) 14% (2) 0% () 0% () 0% () 100% (1)

Error Contribution Analysis 9% (1) 50% (7) 66% (2) 50% (1) 0% (0) 100% (1)

Intersection Over Union Analysis - 36% (5) 33% (1) 0% (0) 50% (1) 0% (0)

Reliability Analysis 9% (1) 7% (1) 0% (0) 0% (0) 50% (1) 0% (0)

Temporal Reasoning - - - 50% (1) 0% (0) -

Person-based Reasoning - - - 50% (1) 0% (0) -

Qualitative Analysis (Visualizer) 27% (3) 21% (3) 0% (0) - 0% (0) 0% (0)
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makes the implementation of metrics, prop-
erty extractors and visualizations/reports non
portable and requires the re-implementation or
the wrapping of even the most basic perfor-
mance indicators. The definition of a plug-in
architecture and of standard module interfaces
is typical in more mature fields such as soft-
ware development, as witnessed e.g., by the
popular Eclipse3 and JetBrains4 frameworks. A
similar approach applied to black-box diagnosis
tools and more generally to DNN workflow man-
agement tools would promote the development
of a community-managed library of reusable
metrics, property extractors and visualization-
s/reports which could be installed rather than
re-implemented in any given framework.

5.2 Research directions

The review of DNNs black-box diagnosis frame-
works uncovers many research challenges that are
still to be pursued.

• Integration of black-box diagnosis and in-
terpretability techniques: interpretability in
machine learning is defined as “the ability to ex-
plain or to present in understandable terms to a
human” [5, 6] how a model makes a prediction.
The interpretability of DNNs has attracted in-
creasing attention by researchers [8] due to the
impact that this class of algorithms has in crit-
ical domains such as medicine, economy, safety
and social sciences. Interpretability techniques
offer a view of the system behavior alternative
but closely related to that afforded by black-
box error diagnosis. They seek to unveil inter-
pretability factors i.e., human-understandable
concepts and processes that are at the base of
the model prediction. Black-box error diagno-
sis and performance break down can aid the
discovery of interpretability factors: if a model
consistently fails or succeeds when the input
exhibits certain human-defined properties, this
is a hint that such properties play a role in
the interpretability. For example, if a system
for iconography classification in art images [81]
consistently classifies representations of a given
subject (e.g., images of Saint Jerome in Chris-
tian art paintings) with more accuracy and

3https://www.eclipse.org
4https://www.jetbrains.com/

confidence when the input contains distinctive
symbols (e.g., a lion couched at the saint’s feet
or the cardinal’s galero) this finding could attest
the interpretative value of such symbols in the
classification of that character. The relationship
between interpretability and black-box analy-
sis is exploited in methods, such as [82], that
aim at discovering interpretability factors by
modifying the input data and then measuring
the changes in the output (e.g., by suppress-
ing some features or masking part of an image),
and [83, 84], which allow the user to understand
and interpret the models outputs based on the
confusion matrices.

• Integration of performance break down
and impact analysis with saliency/atten-
tion maps: a specific case of integration of
interpretability techniques and black-box anal-
ysis occurs in CV: DNNs interpretability ap-
proaches compute saliency or attention maps
which highlight the pixels that are more im-
portant for the classification of the image. The
saliency/attention maps could help the designer
discover some properties of the input that af-
fect prediction performance. Such properties
could then be added as annotations to the
input data set and used by the performance
break down functionality to quantify their im-
pact on the prediction performances. A step in
this direction is the SECA system [28], which
uses crowdsourced conceptual labels associated
to saliency maps to enable explanation queries
about the inference made by DNNs for image
classification. The interpretability factors de-
rived in this way could be exploited for error
diagnosis and performance break down bridg-
ing the gap between performance-oriented and
interpretation-oriented model evaluation.

• Integration of error diagnosis and run-
time performance analysis: at the beginning
of their diffusion DL models were designed to
obtain the best possible performance on GPU-
accelerated systems. With the emergence of
mobile and edge AI applications the portabil-
ity of DL models to constrained hardware (e.g.,
mobile phones and embedded devices) has be-
come a major research topic [85]. The profiling
of models (e.g., with metrics based on through-
put, occupied memory, latency, or operation
level) helps optimize architectures and support
math-limited or memory-limited devices. Some

https://www.eclipse.org
https://www.jetbrains.com/
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techniques have been proposed, such as model
pruning and quantization, but their automatic
application and the parameters optimization
search are still ongoing research. Only one tool
[55] among the surveyed ones integrates run-
time performance analysis and some elementary
diagnosis functions such as accuracy checking
and model comparison. Given that in hardware-
constrained scenarios the trade off between
accuracy and runtime performances is a promi-
nent concern, integrating the two perspectives
would produce a constraint-aware tool extend-
ing error diagnosis and performance break down
to scenarios with hardware limitations.

• Model design guidance: deep neural models
are not mere data driven tools. They embody
a lot of prior knowledge expressed implicitly in
the structure of the architecture, in the selec-
tion of the operators and in the definition of
the training strategy and of the data set. A re-
cent research field, the so called automated deep
learning (AutoDL), addresses the combined se-
lection and hyperparameter optimization of clas-
sification algorithms [86, 87]. AutoDL research
investigates the design patterns that can be ap-
plied to support or even minimize the human
effort in the definition of optimal DL models
for a variety of tasks [88, 89]. Current meth-
ods mostly rely on neural architecture search,
which applies a rather brute force space explo-
ration approach to the distillation of the best
model for a given task. An extremely inter-
esting evolution of the future error diagnosis
frameworks would be to turn them into tools
capable not only of diagnosing problems, but
also to recommend model improvements. This
would require a mapping between the model
weaknesses identified by error diagnosis and
a portfolio of model refactoring and improve-
ment operators distilling the current wisdom
of manual and automated DL design. Such a
progress would somehow reconcile the practices
of software development and data driven model
design, which are now regarded as completely
secluded and move the AutoDL field beyond the
mere architecture search.

• New task and data types: As shown in Table
1 and in the brief overview of Section 4.7, the
surveyed frameworks focus mostly on classifica-
tion and CV localization tasks. The black-box

error diagnosis approach and tools could bene-
fit also other domains especially those featuring
complex data and non trivial performance indi-
cators.

6 Conclusions

This survey presented the existing tools for the
black-box diagnosis of errors in DL models for
CV tasks. Major properties that would guide the
user choice have been discussed and analyzed: sup-
ported tasks and media types, implemented met-
rics and analyses, performance break down func-
tionalities, customization capabilities and open-
ness. Novelties, advantages and disadvantages of
the surveyed works have been described to provide
the reader with a clear and up to date view of the
field. Metrics, analyses and functionalities have
been collected from each work and grouped by
task to ease the comparison between the tools with
a common focus. Several issues emerged from the
survey have been discussed and the most promis-
ing research directions have been highlighted to
help improve the present state of the art.
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List of Abbreviations

AD Action Detection
AI Artificial Intelligence
AP Average Precision
AUC Area Under the Curve
CAM Class Activation Map
CL Classification
CV Computer Vision
DNN Deep Neural Network
ET Error Type
FN False Negative
FP False Positive
GT Ground Truth
IoU Intersection over Union
IS Instance Segmenttion
MAE Mean Absolute Error
mAP mean Average Precision
ME Mean Error
ML Machine Learning
MSE Mean Squared Error
NAB Numenta Anomaly Benchmark
NLP Natural Language Processing
OD Object Detection
OT Object Tracking
PE Pose Estimation
PR Precision-Recall
RMSE Root Mean Squared Error
ROC Receiver Operating Characteristic
RS Recommender Systems
SS Semantic Segmentation
TN True Negative
TP True Positive
TS Time Series
VRD Video Relation Detection
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Y, et al (2016) Pose estimation errors, the
ultimate diagnosis. In: European Conference
on Computer Vision, Springer, pp 118–134

[39] Krause J, Perer A, Ng K (2016) Interacting
with predictions: Visual inspection of black-
box machine learning models. In: Proceedings
of the 2016 CHI conference on human factors
in computing systems, pp 5686–5697

[40] Zhang S, Benenson R, Omran M, et al (2016)
How far are we from solving pedestrian detec-
tion? In: Proceedings of the iEEE conference
on computer vision and pattern recognition,
pp 1259–1267

[41] Ruggero Ronchi M, Perona P (2017) Bench-
marking and error diagnosis in multi-instance

pose estimation. In: Proceedings of the IEEE
international conference on computer vision,
pp 369–378

[42] Krause J, Dasgupta A, Swartz J, et al (2017)
A workflow for visual diagnostics of binary
classifiers using instance-level explanations.
In: 2017 IEEE Conference on Visual Analyt-
ics Science and Technology (VAST), IEEE,
pp 162–172

[43] Ren D, Amershi S, Lee B, et al (2016)
Squares: Supporting interactive performance
analysis for multiclass classifiers. IEEE trans-
actions on visualization and computer graph-
ics 23(1):61–70

[44] Sigurdsson GA, Russakovsky O, Gupta A
(2017) What actions are needed for under-
standing human actions in videos? In: Pro-
ceedings of the IEEE international conference
on computer vision, pp 2137–2146

[45] Alwassel H, Heilbron FC, Escorcia V, et al
(2018) Diagnosing error in temporal action
detectors. In: Proceedings of the European
Conference on Computer Vision (ECCV), pp
256–272

[46] Nekrasov V, Shen C, Reid I (2018) Diagnos-
tics in semantic segmentation. arXiv preprint
arXiv:180910328

[47] Zhang J, Wang Y, Molino P, et al (2018)
Manifold: A model-agnostic framework for in-
terpretation and diagnosis of machine learn-
ing models. IEEE transactions on visualiza-
tion and computer graphics 25(1):364–373

[48] Wexler J, Pushkarna M, Bolukbasi T, et al
(2019) The what-if tool: Interactive probing
of machine learning models. IEEE transac-
tions on visualization and computer graphics
26(1):56–65

[49] Bolya D, Foley S, Hays J, et al (2020) Tide:
A general toolbox for identifying object de-
tection errors. In: European Conference on
Computer Vision, Springer, pp 558–573



Springer Nature 2021 LATEX template

22 Black-box Error Diagnosis in Deep Neural Networks for Computer Vision: a Survey of Tools

[50] Torres RN, Fraternali P, Romero J (2020)
Odin: An object detection and instance seg-
mentation diagnosis framework. In: European
Conference on Computer Vision, Springer, pp
19–31

[51] Torres RN, Milani F, Fraternali P (2021)
Odin: Pluggable meta-annotations and met-
rics for the diagnosis of classification and
localization. In: International Conference on
Machine Learning, Optimization, and Data
Science, Springer, pp 383–398

[52] Padilla R, Netto SL, da Silva EA (2020) A
survey on performance metrics for object-
detection algorithms. In: 2020 International
Conference on Systems, Signals and Image
Processing (IWSSIP), IEEE, pp 237–242

[53] Yoon H, Lee SH, Park M (2020) Ten-
sorflow with user friendly graphical frame-
work for object detection api. arXiv preprint
arXiv:200606385

[54] Gleicher M, Barve A, Yu X, et al (2020)
Boxer: Interactive comparison of classifier re-
sults. In: Computer Graphics Forum, Wiley
Online Library, pp 181–193

[55] Demidovskij A, Tugaryov A, Kashchikhin A,
et al (2021) Openvino deep learning work-
bench: Towards analytical platform for neural
networks inference optimization. In: Journal
of Physics: Conference Series, IOP Publish-
ing, p 012012

[56] Padilla R, Passos WL, Dias TL, et al (2021) A
comparative analysis of object detection met-
rics with a companion open-source toolkit.
Electronics 10(3):279

[57] Fan H, Yang F, Chu P, et al (2021) Track-
linic: Diagnosis of challenge factors in visual
tracking. In: Proceedings of the IEEE/CVF
Winter Conference on Applications of Com-
puter Vision (WACV), pp 970–979

[58] Chen S, Pascal M, Snoek CG (2021) Diag-
nosing errors in video relation detectors. In:
BMVC
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